An Efficient and Reliable Statistical Method for Estimating Functional Connectivity in Large Scale Brain Networks Using Partial Correlation

Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the appli...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 10; p. 123
Main Authors Wang, Yikai, Kang, Jian, Kemmer, Phebe B., Guo, Ying
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 31.03.2016
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant direct connections are between homologous brain locations in the left and right hemisphere. When comparing partial correlation derived under different sparse tuning parameters, an important finding is that the sparse regularization has more shrinkage effects on negative functional connections than on positive connections, which supports previous findings that many of the negative brain connections are due to non-neurophysiological effects. An R package "DensParcorr" can be downloaded from CRAN for implementing the proposed statistical methods.
AbstractList Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME) which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparse level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with expect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant direct connections are between homologous brain locations in the left and right hemisphere. When comparing partial correlation derived under different sparse tuning parameters, an important finding is that the sparse regularization has more shrinkage effects on negative functional connections than on positive connections, which supports previous findings that many of the negative brain connections were due to non-neurophysiological effects.
Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant direct connections are between homologous brain locations in the left and right hemisphere. When comparing partial correlation derived under different sparse tuning parameters, an important finding is that the sparse regularization has more shrinkage effects on negative functional connections than on positive connections, which supports previous findings that many of the negative brain connections are due to non-neurophysiological effects. An R package "DensParcorr" can be downloaded from CRAN for implementing the proposed statistical methods.Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant direct connections are between homologous brain locations in the left and right hemisphere. When comparing partial correlation derived under different sparse tuning parameters, an important finding is that the sparse regularization has more shrinkage effects on negative functional connections than on positive connections, which supports previous findings that many of the negative brain connections are due to non-neurophysiological effects. An R package "DensParcorr" can be downloaded from CRAN for implementing the proposed statistical methods.
Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant direct connections are between homologous brain locations in the left and right hemisphere. When comparing partial correlation derived under different sparse tuning parameters, an important finding is that the sparse regularization has more shrinkage effects on negative functional connections than on positive connections, which supports previous findings that many of the negative brain connections are due to non-neurophysiological effects. An R package "DensParcorr" can be downloaded from CRAN for implementing the proposed statistical methods.
Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens -based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens -based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens -based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant direct connections are between homologous brain locations in the left and right hemisphere. When comparing partial correlation derived under different sparse tuning parameters, an important finding is that the sparse regularization has more shrinkage effects on negative functional connections than on positive connections, which supports previous findings that many of the negative brain connections are due to non-neurophysiological effects. An R package “DensParcorr” can be downloaded from CRAN for implementing the proposed statistical methods.
Author Kemmer, Phebe B.
Guo, Ying
Wang, Yikai
Kang, Jian
AuthorAffiliation 2 Department of Biostatistics, School of Public Health, University of Michigan Ann Arbor, MI, USA
1 Department of Biostatistics and Bioinformatics, The Rollins School of Public Health, Emory University Atlanta, GA, USA
AuthorAffiliation_xml – name: 1 Department of Biostatistics and Bioinformatics, The Rollins School of Public Health, Emory University Atlanta, GA, USA
– name: 2 Department of Biostatistics, School of Public Health, University of Michigan Ann Arbor, MI, USA
Author_xml – sequence: 1
  givenname: Yikai
  surname: Wang
  fullname: Wang, Yikai
– sequence: 2
  givenname: Jian
  surname: Kang
  fullname: Kang, Jian
– sequence: 3
  givenname: Phebe B.
  surname: Kemmer
  fullname: Kemmer, Phebe B.
– sequence: 4
  givenname: Ying
  surname: Guo
  fullname: Guo, Ying
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27242395$$D View this record in MEDLINE/PubMed
BookMark eNqFUstuEzEUHaEi-oA9K2SJDZsEv8Yz3iCVKC2VwkNAJXaWx3OdOkzsYjtF_Yb-NJ6kVG0lxMr2veccnet7Dqs9HzxU1UuCp4y18q31zqcpxURMMSaUPakOiBB0wmv2Y-_efb86TGmFsaAtp8-qfdpQTpmsD6qbY4_m1jrjwGekfY--wuB0NwD6lnV2KTujB_QR8kXokQ0RzUtpXTp-iU423mQXfAHMgvdQHlcuXyPn0ULHZZEoXEDvoy6VT5B_h_gzofM0cr_omN2WGCMMepR5Xj21ekjw4vY8qs5P5t9nHyaLz6dns-PFxNSYs0mjO8tqwbkmpAVmTU0sY5R3nDbQGWb7VuqGSM0MtLypOelIL0lvGNUSU2BH1dlOtw96pS5jGSdeq6Cd2hZCXKrRnBlA1a1shNWdoCC5MVqWC-E99NIWA6QtWu92Wpebbg29Kb8Y9fBA9GHHuwu1DFeKt41gYhR4cysQw68NpKzWLhkYBu0hbJIiLW4FKfsS_4c2klHCSFMX6OtH0FXYxLKopCjDNZcNpbygXt03f-f6bzwKAO8AJoaUItg7CMFqTKDaJlCNCVTbBBaKeEQxLm_XW8Z3w7-JfwCS_uJ3
CitedBy_id crossref_primary_10_1007_s00429_024_02867_4
crossref_primary_10_1016_j_neuroimage_2018_07_045
crossref_primary_10_1002_sim_8856
crossref_primary_10_1109_ACCESS_2020_2981017
crossref_primary_10_1002_hbm_24381
crossref_primary_10_1080_01621459_2021_1924178
crossref_primary_10_1002_brb3_1705
crossref_primary_10_3934_mbe_2023787
crossref_primary_10_1088_1361_6579_aac033
crossref_primary_10_1109_TNNLS_2023_3311195
crossref_primary_10_1371_journal_pcbi_1010653
crossref_primary_10_1002_ejp_1697
crossref_primary_10_1016_j_neuroscience_2016_12_018
crossref_primary_10_1016_j_neuroimage_2018_12_024
crossref_primary_10_3389_fnins_2023_1147219
crossref_primary_10_1214_22_AOAS1670
crossref_primary_10_1111_jon_12603
crossref_primary_10_1016_j_neuroimage_2018_01_029
crossref_primary_10_1080_01621459_2021_1917417
crossref_primary_10_1080_10618600_2022_2074434
crossref_primary_10_1093_biostatistics_kxab007
crossref_primary_10_1214_22_AOAS1612
crossref_primary_10_3390_e25111509
crossref_primary_10_1038_s41598_019_42090_4
crossref_primary_10_3390_brainsci14050456
crossref_primary_10_1109_TNNLS_2023_3341802
crossref_primary_10_3390_brainsci10090603
crossref_primary_10_3389_fnins_2020_00645
crossref_primary_10_1109_TMI_2017_2786553
crossref_primary_10_1089_brain_2018_0615
crossref_primary_10_2298_TSCI2303927L
crossref_primary_10_1016_j_biopsych_2019_02_019
crossref_primary_10_3389_fnins_2025_1518984
crossref_primary_10_1214_20_STS792
crossref_primary_10_21833_ijaas_2024_10_002
crossref_primary_10_1016_j_spl_2018_02_020
crossref_primary_10_1162_imag_a_00258
crossref_primary_10_1080_01621459_2019_1677242
crossref_primary_10_1093_pm_pnaa317
crossref_primary_10_3389_fnagi_2020_00099
crossref_primary_10_1002_sim_10155
crossref_primary_10_1016_j_jneumeth_2020_108726
crossref_primary_10_1088_1741_2552_ac9d66
crossref_primary_10_1016_j_bandc_2024_106221
crossref_primary_10_1016_j_neucom_2021_02_081
crossref_primary_10_1109_TCBB_2020_2974952
crossref_primary_10_1038_s41598_024_79390_3
crossref_primary_10_1002_hbm_24718
crossref_primary_10_3389_fnins_2020_602584
crossref_primary_10_1097_MD_0000000000041667
crossref_primary_10_3390_e26080695
crossref_primary_10_1162_imag_a_00220
crossref_primary_10_1002_hbm_70095
crossref_primary_10_1038_s41598_018_29538_9
crossref_primary_10_1137_22M1538144
crossref_primary_10_1016_j_neuroimage_2022_119531
crossref_primary_10_1109_JSEN_2024_3387103
crossref_primary_10_1162_neco_a_01229
crossref_primary_10_1093_biostatistics_kxz037
crossref_primary_10_3389_fncom_2023_1251301
crossref_primary_10_1016_j_neuroimage_2022_118925
crossref_primary_10_1080_01621459_2022_2055559
crossref_primary_10_1111_biom_13099
crossref_primary_10_1371_journal_pcbi_1011079
crossref_primary_10_1016_j_tins_2024_05_011
crossref_primary_10_1080_01621459_2023_2220169
crossref_primary_10_1109_TMI_2022_3218745
crossref_primary_10_1088_1741_2552_abc7ef
Cites_doi 10.3389/fnsys.2010.00022
10.1523/JNEUROSCI.5062-08.2009
10.1016/j.neuron.2009.03.024
10.1214/009053606000000281
10.3389/fpsyg.2015.00603
10.1038/nrn2575
10.1371/journal.pone.0129074
10.2202/1544-6115.1175
10.1214/aos/1176344136
10.1038/nrn2961
10.1093/biostatistics/kxm045
10.1016/j.neuroimage.2009.05.005
10.1016/j.neuroimage.2010.08.063
10.1016/j.mri.2009.06.004
10.1016/j.neuroimage.2012.01.022
10.1007/978-1-4612-1694-0_15
10.1137/1.9781611970319
10.1002/mrm.1910340409
10.1016/j.neuroimage.2013.07.064
10.1016/j.neuroimage.2005.12.057
10.1016/j.neuroimage.2008.09.062
10.1198/jasa.2011.tm10155
10.1016/j.neuron.2011.09.006
10.1371/journal.pone.0111554
10.1126/science.1194144
10.1038/jcbfm.1984.73
10.1371/journal.pone.0068910
10.1073/pnas.87.24.9868
10.1073/pnas.0905267106
10.1093/cercor/bhu036
10.1093/brain/awn223
10.1214/08-aos646
10.1214/12-AOS1037
10.1006/nimg.2001.0978
10.1109/TBME.2015.2399495
10.1089/brain.2011.0025
10.1016/j.neuroimage.2008.09.036
10.1198/jasa.2009.0126
ContentType Journal Article
Copyright 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2016 Wang, Kang, Kemmer and Guo. 2016 Wang, Kang, Kemmer and Guo
Copyright_xml – notice: 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2016 Wang, Kang, Kemmer and Guo. 2016 Wang, Kang, Kemmer and Guo
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7TK
5PM
DOA
DOI 10.3389/fnins.2016.00123
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

PubMed
Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Statistics
Public Health
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_58976fab62e94cca962e14ded9f64418
PMC4876368
27242395
10_3389_fnins_2016_00123
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH079448
– fundername: NIMH NIH HHS
  grantid: R01 MH105561
– fundername: NIMH NIH HHS
  grantid: RC2 MH089983
– fundername: NIMH NIH HHS
  grantid: RC2 MH089924
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
C1A
IAO
IEA
IHR
ISR
M48
M~E
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
7TK
5PM
PUEGO
ID FETCH-LOGICAL-c5043-7abf35644a118e3fc51f3324b427ebc3fd89a719a3ce847541b1d91dc32a902e3
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:32:03 EDT 2025
Thu Aug 21 18:25:39 EDT 2025
Thu Jul 10 17:29:18 EDT 2025
Fri Jul 11 10:28:06 EDT 2025
Fri Jul 25 11:46:56 EDT 2025
Thu Jan 02 22:24:52 EST 2025
Thu Apr 24 22:59:12 EDT 2025
Tue Jul 01 01:01:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords fMRI
functional connectivity
L1 regularization
network analysis
CLIME
partial correlation
precision matrix
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5043-7abf35644a118e3fc51f3324b427ebc3fd89a719a3ce847541b1d91dc32a902e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Baxter P. Rogers, Vanderbilt University, USA; Xi Luo, Brown University, USA
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience
Edited by: Brian Caffo, Johns Hopkins University, USA
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2016.00123
PMID 27242395
PQID 2305497224
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_58976fab62e94cca962e14ded9f64418
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4876368
proquest_miscellaneous_1808617246
proquest_miscellaneous_1793213175
proquest_journals_2305497224
pubmed_primary_27242395
crossref_primary_10_3389_fnins_2016_00123
crossref_citationtrail_10_3389_fnins_2016_00123
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-31
PublicationDateYYYYMMDD 2016-03-31
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-31
  day: 31
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2016
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Cai (B7) 2012
Schmittmann (B35) 2015; 10
Ben-Israel (B2) 2003
Murphy (B27) 2009; 44
Biswal (B3) 1995; 34
Smith (B40) 2011; 54
Chen (B8) 2011; 1
Schwarz (B36) 1978; 6
Kemmer (B20) 2015; 6
Smith (B39) 2009; 106
Xia (B44) 2013; 8
Liu (B22) 2010; 24
Bullmore (B5) 2009; 10
Marrelec (B24) 2006; 32
Ogawa (B28) 1990; 87
Buckner (B4) 2009; 29
Liu (B21) 2012; 40
Peng (B29) 2009; 104
Satterthwaite (B31) 2014; 86
Han (B18) 2014
Dosenbach (B11) 2010; 329
Meinshausen (B25) 2006; 34
Friedman (B14) 2008; 9
Efron (B12) 1982
Giove (B15) 2009; 27
Church (B9) 2009; 132
Weissenbacher (B43) 2009; 47
Liu (B23) 2012
Smith (B38) 2012; 62
Zhang (B45) 2015; 62
Cai (B6) 2011; 106
Meunier (B26) 2009; 44
Schmidt (B34) 2006
Deco (B10) 2011; 12
Horwitz (B19) 1984; 4
Power (B30) 2011; 72
Schäfer (B33) 2005; 4
Satterthwaite (B32) 2015; 25
Wasserman (B42) 2009; 37
Goelman (B16) 2014; 9
Akaike (B1) 1998
Tzourio-Mazoyer (B41) 2002; 15
Han (B17) 2013
Seeley (B37) 2009; 62
Fornito (B13) 2010; 4
18079126 - Biostatistics. 2008 Jul;9(3):432-41
18952678 - Brain. 2009 Jan;132(Pt 1):225-38
26325185 - PLoS One. 2015 Sep 01;10(9):e0129074
20817103 - Neuroimage. 2011 Jan 15;54(2):875-91
19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5
23921101 - Neuroimage. 2014 Feb 1;86:544-53
23861951 - PLoS One. 2013 Jul 04;8(7):e68910
19695814 - Magn Reson Imaging. 2009 Oct;27(8):1058-64
25667346 - IEEE Trans Biomed Eng. 2015 Jun;62(6):1623-34
22248579 - Neuroimage. 2012 Aug 15;62(2):1257-66
19190637 - Nat Rev Neurosci. 2009 Mar;10(3):186-98
16646851 - Stat Appl Genet Mol Biol. 2005;4:Article32
22433048 - Brain Connect. 2011;1(3):195-206
20592949 - Front Syst Neurosci. 2010 Jun 17;4:22
25396416 - PLoS One. 2014 Nov 14;9(11):e111554
16777436 - Neuroimage. 2006 Aug 1;32(1):228-37
20829489 - Science. 2010 Sep 10;329(5997):1358-61
2124706 - Proc Natl Acad Sci U S A. 1990 Dec;87(24):9868-72
19784398 - Ann Stat. 2009 Jan 1;37(5A):2178-2201
18976716 - Neuroimage. 2009 Feb 1;44(3):893-905
26029141 - Front Psychol. 2015 May 12;6:603
21170073 - Nat Rev Neurosci. 2011 Jan;12(1):43-56
19442749 - Neuroimage. 2009 Oct 1;47(4):1408-16
19027073 - Neuroimage. 2009 Feb 1;44(3):715-23
6501442 - J Cereb Blood Flow Metab. 1984 Dec;4(4):484-99
8524021 - Magn Reson Med. 1995 Oct;34(4):537-41
19881892 - J Am Stat Assoc. 2009 Jun 1;104(486):735-746
25152607 - Adv Neural Inf Process Syst. 2010 Dec 31;24(2):1432-1440
22099467 - Neuron. 2011 Nov 17;72(4):665-78
11771995 - Neuroimage. 2002 Jan;15(1):273-89
19376066 - Neuron. 2009 Apr 16;62(1):42-52
19211893 - J Neurosci. 2009 Feb 11;29(6):1860-73
24646613 - Cereb Cortex. 2015 Sep;25(9):2383-94
References_xml – year: 2012
  ident: B23
  article-title: High-dimensional sparse precision matrix estimation via sparse column inverse operator
  publication-title: arXiv preprint
– volume: 4
  issue: 22
  year: 2010
  ident: B13
  article-title: Network scaling effects in graph analytic studies of human resting-state FMRI data
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2010.00022
– volume: 29
  start-page: 1860
  year: 2009
  ident: B4
  article-title: Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5062-08.2009
– volume: 62
  start-page: 42
  year: 2009
  ident: B37
  article-title: Neurodegenerative diseases target large-scale human brain networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.03.024
– volume: 34
  start-page: 1436
  year: 2006
  ident: B25
  article-title: High-dimensional graphs and variable selection with the lasso
  publication-title: Ann. Stat.
  doi: 10.1214/009053606000000281
– volume: 6
  issue: 603
  year: 2015
  ident: B20
  article-title: Network-based characterization of brain functional connectivity in Zen practitioners
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2015.00603
– volume: 10
  start-page: 186
  year: 2009
  ident: B5
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2575
– volume: 10
  start-page: e0129074
  year: 2015
  ident: B35
  article-title: Making large-scale networks from fMRI data
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0129074
– volume: 4
  start-page: 1175
  year: 2005
  ident: B33
  article-title: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1175
– year: 2006
  ident: B34
  publication-title: L1precision: Matlab Code for MAP Estimation of Gaussian Graphical Model Precision with L1-Regularizer
– volume: 6
  start-page: 461
  year: 1978
  ident: B36
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344136
– volume: 12
  start-page: 43
  year: 2011
  ident: B10
  article-title: Emerging concepts for the dynamical organization of resting-state activity in the brain
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2961
– volume: 9
  start-page: 432
  year: 2008
  ident: B14
  article-title: Sparse inverse covariance estimation with the graphical lasso
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxm045
– volume: 47
  start-page: 1408
  year: 2009
  ident: B43
  article-title: Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.05.005
– year: 2012
  ident: B7
  publication-title: clime: Constrained L1-Minimization for Inverse (covariance) Matrix Estimation
– volume: 54
  start-page: 875
  year: 2011
  ident: B40
  article-title: Network modelling methods for FMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.063
– volume: 27
  start-page: 1058
  year: 2009
  ident: B15
  article-title: Images-based suppression of unwanted global signals in resting-state functional connectivity studies
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2009.06.004
– volume: 62
  start-page: 1257
  year: 2012
  ident: B38
  article-title: The future of FMRI connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.022
– volume-title: Generalized Inverses: Theory and Applications
  year: 2003
  ident: B2
– start-page: 199
  volume-title: Selected Papers of Hirotugu Akaike
  year: 1998
  ident: B1
  article-title: Information theory and an extension of the maximum likelihood principle
  doi: 10.1007/978-1-4612-1694-0_15
– volume-title: The Jackknife, the Bootstrap and Other Resampling Plans
  year: 1982
  ident: B12
  doi: 10.1137/1.9781611970319
– volume: 34
  start-page: 537
  year: 1995
  ident: B3
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910340409
– volume: 86
  start-page: 544
  year: 2014
  ident: B31
  article-title: Neuroimaging of the Philadelphia neurodevelopmental cohort
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.07.064
– volume: 32
  start-page: 228
  year: 2006
  ident: B24
  article-title: Partial correlation for functional brain interactivity investigation in functional MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.12.057
– volume: 44
  start-page: 715
  year: 2009
  ident: B26
  article-title: Age-related changes in modular organization of human brain functional networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.09.062
– volume: 106
  start-page: 594
  year: 2011
  ident: B6
  article-title: A constrained l 1 minimization approach to sparse precision matrix estimation
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2011.tm10155
– year: 2014
  ident: B18
  article-title: On the impact of dimension reduction on graphical structures
  publication-title: arXiv preprint
– volume: 72
  start-page: 665
  year: 2011
  ident: B30
  article-title: Functional network organization of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.006
– volume: 9
  start-page: e111554
  year: 2014
  ident: B16
  article-title: Maximizing negative correlations in resting-state functional connectivity MRI by time-lag
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0111554
– volume: 329
  start-page: 1358
  year: 2010
  ident: B11
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science
  doi: 10.1126/science.1194144
– volume: 4
  start-page: 484
  year: 1984
  ident: B19
  article-title: Intercorrelations of glucose metabolic rates between brain regions: application to healthy males in a state of reduced sensory input
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.1984.73
– volume: 8
  start-page: e68910
  year: 2013
  ident: B44
  article-title: BrainNet Viewer: a network visualization tool for human brain connectomics
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0068910
– year: 2013
  ident: B17
  article-title: Sparse median graphs estimation in a high dimensional semiparametric model
  publication-title: arXiv preprint
– volume: 87
  start-page: 9868
  year: 1990
  ident: B28
  article-title: Brain magnetic resonance imaging with contrast dependent on blood oxygenation
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.87.24.9868
– volume: 106
  start-page: 13040
  year: 2009
  ident: B39
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0905267106
– volume: 25
  start-page: 2383
  year: 2015
  ident: B32
  article-title: Linked sex differences in cognition and functional connectivity in youth
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhu036
– volume: 132
  start-page: 225
  year: 2009
  ident: B9
  article-title: Control networks in paediatric Tourette syndrome show immature and anomalous patterns of functional connectivity
  publication-title: Brain
  doi: 10.1093/brain/awn223
– volume: 37
  start-page: 2178
  year: 2009
  ident: B42
  article-title: High dimensional variable selection
  publication-title: Ann. Stat.
  doi: 10.1214/08-aos646
– volume: 40
  start-page: 2293
  year: 2012
  ident: B21
  article-title: High-dimensional semiparametric Gaussian copula graphical models
  publication-title: Ann. Stat.
  doi: 10.1214/12-AOS1037
– volume: 24
  start-page: 1432
  year: 2010
  ident: B22
  article-title: Stability approach to regularization selection (stars) for high dimensional graphical models
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 15
  start-page: 273
  year: 2002
  ident: B41
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 62
  start-page: 1623
  year: 2015
  ident: B45
  article-title: Functional brain network classification with compact representation of SICE matrices
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2399495
– volume: 1
  start-page: 195
  year: 2011
  ident: B8
  article-title: Negative functional connectivity and its dependence on the shortest path length of positive network in the resting-state human brain
  publication-title: Brain Connect.
  doi: 10.1089/brain.2011.0025
– volume: 44
  start-page: 893
  year: 2009
  ident: B27
  article-title: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.09.036
– volume: 104
  start-page: 735
  year: 2009
  ident: B29
  article-title: Partial correlation estimation by joint sparse regression models
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2009.0126
– reference: 11771995 - Neuroimage. 2002 Jan;15(1):273-89
– reference: 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5
– reference: 23921101 - Neuroimage. 2014 Feb 1;86:544-53
– reference: 25152607 - Adv Neural Inf Process Syst. 2010 Dec 31;24(2):1432-1440
– reference: 20592949 - Front Syst Neurosci. 2010 Jun 17;4:22
– reference: 22433048 - Brain Connect. 2011;1(3):195-206
– reference: 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41
– reference: 16777436 - Neuroimage. 2006 Aug 1;32(1):228-37
– reference: 19881892 - J Am Stat Assoc. 2009 Jun 1;104(486):735-746
– reference: 19027073 - Neuroimage. 2009 Feb 1;44(3):715-23
– reference: 21170073 - Nat Rev Neurosci. 2011 Jan;12(1):43-56
– reference: 18976716 - Neuroimage. 2009 Feb 1;44(3):893-905
– reference: 18079126 - Biostatistics. 2008 Jul;9(3):432-41
– reference: 19784398 - Ann Stat. 2009 Jan 1;37(5A):2178-2201
– reference: 2124706 - Proc Natl Acad Sci U S A. 1990 Dec;87(24):9868-72
– reference: 20817103 - Neuroimage. 2011 Jan 15;54(2):875-91
– reference: 6501442 - J Cereb Blood Flow Metab. 1984 Dec;4(4):484-99
– reference: 24646613 - Cereb Cortex. 2015 Sep;25(9):2383-94
– reference: 19442749 - Neuroimage. 2009 Oct 1;47(4):1408-16
– reference: 20829489 - Science. 2010 Sep 10;329(5997):1358-61
– reference: 25396416 - PLoS One. 2014 Nov 14;9(11):e111554
– reference: 19211893 - J Neurosci. 2009 Feb 11;29(6):1860-73
– reference: 22248579 - Neuroimage. 2012 Aug 15;62(2):1257-66
– reference: 19376066 - Neuron. 2009 Apr 16;62(1):42-52
– reference: 16646851 - Stat Appl Genet Mol Biol. 2005;4:Article32
– reference: 18952678 - Brain. 2009 Jan;132(Pt 1):225-38
– reference: 25667346 - IEEE Trans Biomed Eng. 2015 Jun;62(6):1623-34
– reference: 22099467 - Neuron. 2011 Nov 17;72(4):665-78
– reference: 26325185 - PLoS One. 2015 Sep 01;10(9):e0129074
– reference: 19190637 - Nat Rev Neurosci. 2009 Mar;10(3):186-98
– reference: 26029141 - Front Psychol. 2015 May 12;6:603
– reference: 23861951 - PLoS One. 2013 Jul 04;8(7):e68910
– reference: 19695814 - Magn Reson Imaging. 2009 Oct;27(8):1058-64
SSID ssj0062842
Score 2.4542525
Snippet Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 123
SubjectTerms Brain
Brain architecture
Brain mapping
Correlation analysis
fMRI
functional connectivity
Functional magnetic resonance imaging
Hemispheric laterality
L1 Regularization
Linear programming
Medical imaging
Network analysis
Neural networks
Neuroimaging
Neuroscience
NMR
Nuclear magnetic resonance
Partial Correlation
Precision matrix
Public health
Regularization methods
Sparsity
Statistical analysis
Statistics
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQ0AKhBQ0SQuIQLfEjsY8LoqqQyolKvVm2Y5eVFrfabQ_8Bv40M3Z21UWovfQWJXYe47Hnm3jmG8bee-9lr5JrI2pPKweuW4-wufUmojlRUnhF-c6n3_uTM_ntXJ3fKvVFMWGVHrgKbqY0GszkfM-jkfg4gwedHONoEpnykuaLNm_jTNU1uMdFl9dNSXTBzCzlRSZu7q7sPHCxY4QKV___AOa_cZK3DM_xU_ZkQowwr2_6jD2K-Tnbn2f0ln_9hg9QYjjLz_F99meeIRZSCLwXuDzCKi4XlB0FlDlUSJnxXrVsNCBeBSLZINCaL4BMXP0zCIHCX0ItLAGLDEuKF4c19o3gqagE5Bo-vgYKnL-AKxJk6bhaTeF1B-zs-OuPLyftVG6hDURj1g7OJ6FQqA6djihSUF0SiLe85EP0QaRRGzd0xokQ0aYp2fluNN0YBHfmE4_iBdvLlzm-YqC85iMXYy9DkmJwJkaHUCklrYXUQjdstpG_DRMXOZXEWFr0SWjEbBkxSyNmy4g17OO2x1Xl4bij7Wca0m07YtAuJ1Cv7KRX9j69atjRRiHsNK3xGbg6SjMg7GnYu-1lnJC0y-JyvLxZW1rxeEew7I42Gj1JhI6yb9jLqmPbt-UDQVyDvYcd7dv5nN0refGzEINLohfs9euH-P5D9pgkWtMvj9je9eomvkH8de3flqn2FwlOMtU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dixMxEA_aezmQQ3t-VE8ZQQQflrpJdjd5klZaDvHKoR7c25LsJmdB07v27sG_wX_amWS7WJG-ld2EZDuTmd98ZIaxN9ZaWRbeZA65J5MVV5lF2JxZ7VCdFFLYgu47ny3K0wv56bK47Bxumy6tcisTo6BuVw35yMcIldGUqVDjfLi-yahrFEVXuxYa99kBimClBuxgOlucf9nK4hKFb4x3lnQ3CMF5ClSiWabHPiwD1evOYzSCix3FFOv3_w90_ps7-Zcymj9kRx2KhEki-yN2z4UhO54EtKB__oK3EPM6o8N8yB4kzxykC0dDdkj4MpVnPma_JwFmsYoELgQmtEA5ynSdCvphuNBZ7DMNCHBhho8I5YYrmKNOTK5EiPkyTepEAcsAnynBHL7iXAdT6kIBi5RvvoGYpADnxLJx4nrd5eM9Zhfz2bePp1nXnyFrqO5ZVhnrRYGAyqCV4oRvitwLBGhW8srZRvhWaVPl2ojGoRIsZG7zVudtI7jR77kTT9ggrIJ7xqCwirdctKVsvBSV0c4ZxFbeKyWkEmrExlvi1E1XvJx6aPyo0YghctaRnDWRs47kHLF3_YzrVLhjz9gp0bsfRyW344PV-qruTnBdKERu3tiSOy2R7zX-yGXrWu0JU-IWT7bcUndyANfouXbEXvev8QRTWMYEt7rb1CQieU44bs8YhaYnYk1ZjtjTxID9bnlFmFjj7GqHNXc-Z_dNWH6PlcQl1SMs1fP9W3_BDum_SjcxT9jgdn3nXiIUu7WvuvP2BxjtNMY
  priority: 102
  providerName: ProQuest
Title An Efficient and Reliable Statistical Method for Estimating Functional Connectivity in Large Scale Brain Networks Using Partial Correlation
URI https://www.ncbi.nlm.nih.gov/pubmed/27242395
https://www.proquest.com/docview/2305497224
https://www.proquest.com/docview/1793213175
https://www.proquest.com/docview/1808617246
https://pubmed.ncbi.nlm.nih.gov/PMC4876368
https://doaj.org/article/58976fab62e94cca962e14ded9f64418
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge5mEEHR8FEZlJITEQxixncR5QKhFLROi1QRU6ptlJ_aoNFxIN4n9DfzT3NlpoKjqS1QlduLm7nK_830R8sIYI_LM6cQC9ySiYDIxAJsTU1pQJ5ngJsN85-ksP5uLj4ts8Tc9un2B652mHfaTmjeXr3_9vHkHAv8WLU7Qt6fOLz1W3k6DX4Hx2-QQ9FKB_QymovMp5PAhDr7PHPOEAKhHp-XOO2wpqVDLfxcA_T-O8h_FNLlH7raIkg4jC9wnt6zvkeOhB2v6-w19SUOMZ9g875E7cZeOxuSjHjlCrBlLNR-T30NPx6GiBDyIal9TjFfG1CraDYMHTUPPaQpgl47hFCJef0EnoB_jtiINsTNV7EpBl55-wmBz-gXmWjrCjhR0FmPP1zQELNBzZN8wsWna2LwHZD4Zf31_lrS9GpIKa6AlhTaOZwCuNFgslrsqSx0HsGYEK6ypuKtlqYu01LyyoBAzkZq0LtO64kyXb5jlD8mBX3n7mNDMSFYzXueicoIXurRWA85yTkouJJd9crohjqraQubYT-NSgUGD5FSBnArJqQI5--RVN-NHLOKxZ-wI6d2Nw_Lb4cSquVCtNKtMAopz2uTMlgJkoIQfqahtXTrEl7DEkw23qA1LKzD2wBgvADP1yfPuMkgzumi0t6vrtcLPJUsR0-0ZI8EMBfYWeZ88igzYrZYViI9LmF1ssebW39m-4pffQlVxgbUJc_lk_9KfkiN8VzEr84QcXDXX9hnAsiszIIej8ez88yBsa8DxwyIdBAn8A47kOoY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeqASQpDyCBQwEiBxWKVrex8-IJRAopQmUQWt1NvW3rVLJHBK0gr1N_Bf-I3M2JsVQSi33qJdO3YyD3_jeRHySmst0sSqyAD3RCJjeaQBNkdaGjhOEsF1gvnOk2k6OhGfTpPTLfJ7lQuDYZUrnegVdTUv8Y68C1AZTJkMTpz3Fz8i7BqF3tVVC43AFofm-ieYbMt3Bx-Bvq8ZGw6OP4yiuqtAVGK1rihT2vIEYIACbG24LZPYcoAVWrDM6JLbKpcqi6XipQHVnYhYx5WMq5IzJfeZ4fC9t8i24Ok-a5Ht_mB69Hml-1NQ9t6_mmIuEhgDwTEKZqDsWjdzWB889t4PxtcOQt8v4H8g999Yzb8Ov-E9crdGrbQX2Ow-2TKuTXZ7Diz279f0DfVxpP6Cvk3uhJtAGhKc2mQH8WwoB71LfvUcHfiqFbAQVa6iGBON6Vu0GQYLTXxfawqAmg7gEaJqd06HcAaHq0vq43PK0PmCzhwdY0A7_QJzDe1j1ws6DfHtS-qDIugRioifuFjU8X8PyMmNUO4habm5M48JTXTOKsarVJRW8ExJYxRgOWvznIuc5x3SXRGnKOti6diz41sBRhOSs_DkLJCchSdnh7xtZlyEQiEbxvaR3s04LPHtH8wX50WtMYokB6RolU6ZkQLkTMKHWFSmkhYxLGxxb8UtRa13YI1GSjrkZfMaNAa6gZQz86tlgSqZxYgbN4zJwdQFbCvSDnkUGLDZLcsQg0uYna2x5trPWX_jZl995XKB9Q_T_Mnmrb8gt0fHk3ExPpgePiU7-L-FLNA90rpcXJlnAAMv9fNa9ig5u2lx_wMohXDL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJ6FJCEHHpTDASIDEQ1RiOxc_INSyVhvbqgqYtLdgJ_aotLmj3YT2G_hH_DrOsZOIItS3vVWJXbs9t-_Y50LIK621SBOrIgPcE4mM5ZEG2BxpacCcJILrBPOdjybp3rH4dJKcbJDfTS4MhlU2OtEr6mpe4hl5H6AyuDIZWJy-rcMiprvjDxc_IuwghTetTTuNwCIH5vonuG_L9_u7QOvXjI1HXz_uRXWHgajEyl1RprTlCUACBTjbcFsmseUAMbRgmdElt1UuVRZLxUsDajwRsY4rGVclZ0q-Y4bD994imxl6RR2yORxNpp8bO5CC4vd3rSnmJYFjEC5JwSWUfetmDmuFx_4mhPEVo-h7B_wP8P4bt_mXIRzfI3drBEsHgeXukw3jumR74MB7P7-mb6iPKfWH9V1yJ5wK0pDs1CVbiG1Daeht8mvg6MhXsICFqHIVxfhoTOWi7TBY6Mj3uKYArukIHiHCdqd0DPY4HGNSH6tThi4YdOboIQa30y8w19AhdsCgkxDrvqQ-QIJOUVz8xMWijgV8QI5vhHIPScfNnXlMaKJzVjFepaK0gmdKGqMA11mb51zkPO-RfkOcoqwLp2P_jrMCHCgkZ-HJWSA5C0_OHnnbzrgIRUPWjB0ivdtxWO7bP5gvTotaexRJDqjRKp0yIwXInIQPsahMJS3iWdjiTsMtRa2DYI1WYnrkZfsatAdeCSln5lfLAtUzixFDrhmTg9sLOFekPfIoMGC7W5YhHpcwO1thzZWfs_rGzb77KuYCayGm-ZP1W39BboOYF4f7k4OnZAv_tpAQukM6l4sr8wwQ4aV-XoseJd9uWtr_AFo6dQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+and+Reliable+Statistical+Method+for+Estimating+Functional+Connectivity+in+Large+Scale+Brain+Networks+Using+Partial+Correlation&rft.jtitle=Frontiers+in+neuroscience&rft.au=Wang%2C+Yikai&rft.au=Kang%2C+Jian&rft.au=Kemmer%2C+Phebe+B&rft.au=Guo%2C+Ying&rft.date=2016-03-31&rft.pub=Frontiers+Research+Foundation&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389%2Ffnins.2016.00123&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon