Genome‐wide association study‐based deep learning for survival prediction

Informative and accurate survival prediction with individualized dynamic risk profiles over time is critical for personalized disease prevention and clinical management. The massive genetic data, such as SNPs from genome‐wide association studies (GWAS), together with well‐characterized time‐to‐event...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 39; no. 30; pp. 4605 - 4620
Main Authors Sun, Tao, Wei, Yue, Chen, Wei, Ding, Ying
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 30.12.2020
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.8743

Cover

Abstract Informative and accurate survival prediction with individualized dynamic risk profiles over time is critical for personalized disease prevention and clinical management. The massive genetic data, such as SNPs from genome‐wide association studies (GWAS), together with well‐characterized time‐to‐event phenotypes provide unprecedented opportunities for developing effective survival prediction models. Recent advances in deep learning have made extraordinary achievements in establishing powerful prediction models in the biomedical field. However, the applications of deep learning approaches in survival prediction are limited, especially with utilizing the wealthy GWAS data. Motivated by developing powerful prediction models for the progression of an eye disease, age‐related macular degeneration (AMD), we develop and implement a multilayer deep neural network (DNN) survival model to effectively extract features and make accurate and interpretable predictions. Various simulation studies are performed to compare the prediction performance of the DNN survival model with several other machine learning‐based survival models. Finally, using the GWAS data from two large‐scale randomized clinical trials in AMD with over 7800 observations, we show that the DNN survival model not only outperforms several existing survival prediction models in terms of prediction accuracy (eg, c‐index =0.76), but also successfully detects clinically meaningful risk subgroups by effectively learning the complex structures among genetic variants. Moreover, we obtain a subject‐specific importance measure for each predictor from the DNN survival model, which provides valuable insights into the personalized early prevention and clinical management for this disease.
AbstractList Informative and accurate survival prediction with individualized dynamic risk profiles over time is critical for personalized disease prevention and clinical management. The massive genetic data, such as SNPs from genome-wide association studies (GWAS), together with well-characterized time-to-event phenotypes provide unprecedented opportunities for developing effective survival prediction models. Recent advances in deep learning have made extraordinary achievements in establishing powerful prediction models in the biomedical field. However, the applications of deep learning approaches in survival prediction are limited, especially with utilizing the wealthy GWAS data. Motivated by developing powerful prediction models for the progression of an eye disease, age-related macular degeneration (AMD), we develop and implement a multilayer deep neural network (DNN) survival model to effectively extract features and make accurate and interpretable predictions. Various simulation studies are performed to compare the prediction performance of the DNN survival model with several other machine learning-based survival models. Finally, using the GWAS data from two large-scale randomized clinical trials in AMD with over 7800 observations, we show that the DNN survival model not only outperforms several existing survival prediction models in terms of prediction accuracy (eg, c-index =0.76), but also successfully detects clinically meaningful risk subgroups by effectively learning the complex structures among genetic variants. Moreover, we obtain a subject-specific importance measure for each predictor from the DNN survival model, which provides valuable insights into the personalized early prevention and clinical management for this disease.Informative and accurate survival prediction with individualized dynamic risk profiles over time is critical for personalized disease prevention and clinical management. The massive genetic data, such as SNPs from genome-wide association studies (GWAS), together with well-characterized time-to-event phenotypes provide unprecedented opportunities for developing effective survival prediction models. Recent advances in deep learning have made extraordinary achievements in establishing powerful prediction models in the biomedical field. However, the applications of deep learning approaches in survival prediction are limited, especially with utilizing the wealthy GWAS data. Motivated by developing powerful prediction models for the progression of an eye disease, age-related macular degeneration (AMD), we develop and implement a multilayer deep neural network (DNN) survival model to effectively extract features and make accurate and interpretable predictions. Various simulation studies are performed to compare the prediction performance of the DNN survival model with several other machine learning-based survival models. Finally, using the GWAS data from two large-scale randomized clinical trials in AMD with over 7800 observations, we show that the DNN survival model not only outperforms several existing survival prediction models in terms of prediction accuracy (eg, c-index =0.76), but also successfully detects clinically meaningful risk subgroups by effectively learning the complex structures among genetic variants. Moreover, we obtain a subject-specific importance measure for each predictor from the DNN survival model, which provides valuable insights into the personalized early prevention and clinical management for this disease.
Informative and accurate survival prediction with individualized dynamic risk profiles over time is critical for personalized disease prevention and clinical management. The massive genetic data, such as SNPs from genome‐wide association studies (GWAS), together with well‐characterized time‐to‐event phenotypes provide unprecedented opportunities for developing effective survival prediction models. Recent advances in deep learning have made extraordinary achievements in establishing powerful prediction models in the biomedical field. However, the applications of deep learning approaches in survival prediction are limited, especially with utilizing the wealthy GWAS data. Motivated by developing powerful prediction models for the progression of an eye disease, age‐related macular degeneration (AMD), we develop and implement a multilayer deep neural network (DNN) survival model to effectively extract features and make accurate and interpretable predictions. Various simulation studies are performed to compare the prediction performance of the DNN survival model with several other machine learning‐based survival models. Finally, using the GWAS data from two large‐scale randomized clinical trials in AMD with over 7800 observations, we show that the DNN survival model not only outperforms several existing survival prediction models in terms of prediction accuracy (eg, c‐index =0.76 ), but also successfully detects clinically meaningful risk subgroups by effectively learning the complex structures among genetic variants. Moreover, we obtain a subject‐specific importance measure for each predictor from the DNN survival model, which provides valuable insights into the personalized early prevention and clinical management for this disease.
Informative and accurate survival prediction with individualized dynamic risk profiles over time is critical for personalized disease prevention and clinical management. The massive genetic data, such as SNPs from genome‐wide association studies (GWAS), together with well‐characterized time‐to‐event phenotypes provide unprecedented opportunities for developing effective survival prediction models. Recent advances in deep learning have made extraordinary achievements in establishing powerful prediction models in the biomedical field. However, the applications of deep learning approaches in survival prediction are limited, especially with utilizing the wealthy GWAS data. Motivated by developing powerful prediction models for the progression of an eye disease, age‐related macular degeneration (AMD), we develop and implement a multilayer deep neural network (DNN) survival model to effectively extract features and make accurate and interpretable predictions. Various simulation studies are performed to compare the prediction performance of the DNN survival model with several other machine learning‐based survival models. Finally, using the GWAS data from two large‐scale randomized clinical trials in AMD with over 7800 observations, we show that the DNN survival model not only outperforms several existing survival prediction models in terms of prediction accuracy (eg, c‐index =0.76), but also successfully detects clinically meaningful risk subgroups by effectively learning the complex structures among genetic variants. Moreover, we obtain a subject‐specific importance measure for each predictor from the DNN survival model, which provides valuable insights into the personalized early prevention and clinical management for this disease.
Author Chen, Wei
Sun, Tao
Ding, Ying
Wei, Yue
AuthorAffiliation 1 Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
3 Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
2 Center for Applied Statistics and School of Statistics, Renmin University of China, Beijing, China
AuthorAffiliation_xml – name: 3 Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
– name: 1 Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
– name: 2 Center for Applied Statistics and School of Statistics, Renmin University of China, Beijing, China
Author_xml – sequence: 1
  givenname: Tao
  surname: Sun
  fullname: Sun, Tao
  organization: Renmin University of China
– sequence: 2
  givenname: Yue
  surname: Wei
  fullname: Wei, Yue
  organization: University of Pittsburgh
– sequence: 3
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: University of Pittsburgh
– sequence: 4
  givenname: Ying
  orcidid: 0000-0003-1352-1000
  surname: Ding
  fullname: Ding, Ying
  email: yingding@pitt.edu
  organization: University of Pittsburgh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32974946$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9u1DAQxi1U1G7_SDwBisSFS5ZxHNvJBQlVpVRqxQF6thxnXFwl9mInW-2NR-AZeRK83bb8EZxmpPnNp2_mOyR7Pngk5AWFJQWo3iQ3LhtZs2dkQaGVJVS82SMLqKQshaT8gBymdAtAKa_kPjlgVSvrthYLcnWOPoz449v3O9djoVMKxunJBV-kae43edDphH3RI66KAXX0zt8UNsQizXHt1nooVhF7Z7Y7x-S51UPCk4d6RK7fn30-_VBefjy_OH13WRoONSsp41Ry3nRaW9uhaDTQ1rQCtOBV24qe5VbahllmJNSd6QxaaVlfG6tRV-yIvN3pruZuxN6gn6Ie1Cq6UceNCtqpPyfefVE3Ya0a4KLiLAu8fhCI4euMaVKjSwaHQXsMc1JVXQshQQqR0Vd_obdhjj6flykJAIIBZOrl746erDx-OgPLHWBiSCmiVcZN94_OBt2gKKhtlCpHqbZR_rL4tPCo-Q-03KF3bsDNfzn16eLqnv8JNyywTg
CitedBy_id crossref_primary_10_1002_sim_10333
crossref_primary_10_3390_genes13091674
crossref_primary_10_1089_omi_2022_0155
crossref_primary_10_1093_bib_bbad453
crossref_primary_10_1111_biom_13734
crossref_primary_10_3390_math9111244
crossref_primary_10_3389_fpsyt_2022_861258
crossref_primary_10_1155_2022_1176060
crossref_primary_10_1016_j_crmeth_2024_100817
crossref_primary_10_1109_ACCESS_2022_3182543
crossref_primary_10_1186_s12859_023_05535_2
crossref_primary_10_1007_s10462_023_10681_3
crossref_primary_10_1007_s11222_022_10140_z
crossref_primary_10_2174_1389202923666220927105311
crossref_primary_10_3390_agriculture13091782
crossref_primary_10_1002_qub2_51
crossref_primary_10_1002_alz_13427
crossref_primary_10_1093_bib_bbac354
crossref_primary_10_3390_axioms11060280
crossref_primary_10_1155_2023_6678837
crossref_primary_10_1155_2021_2160322
crossref_primary_10_1111_ppl_13969
crossref_primary_10_1007_s42081_024_00270_1
crossref_primary_10_1515_hsz_2021_0109
crossref_primary_10_1007_s00180_024_01561_7
crossref_primary_10_1080_15366367_2023_2246707
crossref_primary_10_1093_bib_bbae449
crossref_primary_10_6339_24_JDS1119
Cites_doi 10.1056/NEJMp1500523
10.1534/genetics.116.196998
10.1201/b12677
10.1109/BIBM.2018.8621345
10.1007/BF02551274
10.1016/0893-6080(89)90020-8
10.1186/s12874-018-0482-1
10.1016/S0197-2456(99)00031-8
10.1111/j.0006-341X.2000.00337.x
10.1093/bib/bbx044
10.1080/01621459.2017.1409122
10.1093/biostatistics/kxz032
10.1245/s10434-017-6024-y
10.1002/sim.4780140108
10.1016/j.ajhg.2018.12.012
10.1080/01621459.1977.10480613
10.1038/nm.2323
10.1371/journal.pcbi.1006076
10.1145/3292500.3330648
10.1016/j.ophtha.2018.02.037
10.1038/nature14539
10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
10.1016/j.ophtha.2012.05.027
10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5
10.1145/2939672.2939778
10.1002/bimj.200610301
10.1212/WNL.0000000000004820
10.1038/s41598-017-11817-6
10.1038/ng.3448
10.1111/biom.12990
10.1038/s41551-018-0195-0
10.1007/s10985-018-09459-5
10.1093/hmg/ddy002
10.14694/EdBook_AM.2014.34.71
10.1214/08-AOAS169
10.1164/ajrccm.162.4.9912111
10.1111/j.2517-6161.1996.tb02080.x
ContentType Journal Article
Copyright 2020 John Wiley & Sons Ltd
2020 John Wiley & Sons Ltd.
2020 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons Ltd
– notice: 2020 John Wiley & Sons Ltd.
– notice: 2020 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
NPM
K9.
7X8
5PM
DOI 10.1002/sim.8743
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

PubMed
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 4620
ExternalDocumentID PMC8056253
32974946
10_1002_sim_8743
SIM8743
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UL1 TR001857
– fundername: NEI NIH HHS
  grantid: R21 EY030488
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
K9.
7X8
5PM
ID FETCH-LOGICAL-c5043-13517558baaffbe68a019c960a652996d360a7f83f3c704bcbcef7f3d4cfaea23
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Thu Aug 21 14:15:57 EDT 2025
Fri Jul 11 08:06:21 EDT 2025
Sun Jul 13 04:59:12 EDT 2025
Mon Jul 21 06:05:08 EDT 2025
Thu Apr 24 23:01:11 EDT 2025
Tue Jul 01 03:28:16 EDT 2025
Wed Jan 22 16:30:50 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords predictor importance
deep learning
AMD progression
GWAS
survival prediction
Language English
License 2020 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5043-13517558baaffbe68a019c960a652996d360a7f83f3c704bcbcef7f3d4cfaea23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1352-1000
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8056253
PMID 32974946
PQID 2470006300
PQPubID 48361
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8056253
proquest_miscellaneous_2446670766
proquest_journals_2470006300
pubmed_primary_32974946
crossref_citationtrail_10_1002_sim_8743
crossref_primary_10_1002_sim_8743
wiley_primary_10_1002_sim_8743_SIM8743
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 December 2020
PublicationDateYYYYMMDD 2020-12-30
PublicationDate_xml – month: 12
  year: 2020
  text: 30 December 2020
  day: 30
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1989; 2
2010; 11
2017; 7
2012
2015; 521
2010
1995; 14
2018; 125
2019; 104
2007
1999; 20
2011; 17
2016; 18
2012; 14
1996; 58
2008; 2
1996; 15
2018; 27
2018; 25
2015; 372
2018; 18
2018; 2
2000; 56
1999; 18
2018; 113
2006; 48
2019; 25
1977; 72
2019
2000; 162
2018; 90
2018
2017
2007; 7
2017; 19
2016
2015
2014
2013
2018; 75
2016; 48
2012; 119
2018; 14
2017; 206
e_1_2_8_28_1
Schumacher M (e_1_2_8_6_1) 2012
Vincent P (e_1_2_8_47_1) 2010; 11
e_1_2_8_24_1
Ishwaran H (e_1_2_8_39_1) 2007; 7
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
Klambauer G (e_1_2_8_26_1) 2017
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_29_1
Mi X (e_1_2_8_40_1) 2018; 75
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
AREDS Group (e_1_2_8_41_1) 1999; 20
e_1_2_8_2_1
e_1_2_8_4_1
Chollet F (e_1_2_8_36_1) 2018
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_18_1
Tibshirani R (e_1_2_8_37_1) 1996; 58
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
Min S (e_1_2_8_12_1) 2016; 18
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 119
  start-page: 2282
  issue: 11
  year: 2012
  end-page: 2289
  article-title: The age‐related eye disease study 2 (AREDS2): study design and baseline characteristics (AREDS2 report number 1)
  publication-title: Ophthalmology
– volume: 15
  start-page: 361
  issue: 4
  year: 1996
  end-page: 387
  article-title: Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
  publication-title: Stat Medic
– volume: 14
  issue: 4
  year: 2018
  article-title: Cox‐nnet: an artificial neural network method for prognosis prediction of high‐throughput omics data
  publication-title: PLoS Comput Biol
– volume: 72
  start-page: 557
  issue: 359
  year: 1977
  end-page: 565
  article-title: The efficiency of Cox's likelihood function for censored data
  publication-title: J Am Stat Assoc
– volume: 125
  start-page: 1410
  issue: 9
  year: 2018
  end-page: 1420
  article-title: A deep learning algorithm for prediction of age‐related eye disease study severity scale for age‐related macular degeneration from color fundus photography
  publication-title: Ophthalmology
– volume: 18
  start-page: 2529
  issue: 17‐18
  year: 1999
  end-page: 2545
  article-title: Assessment and comparison of prognostic classification schemes for survival data
  publication-title: Stat Medic
– volume: 48
  start-page: 134
  issue: 2
  year: 2016
  end-page: 143
  article-title: A large genome‐wide association study of age‐related macular degeneration highlights contributions of rare and common variants
  publication-title: Nature Genet
– year: 2007
– volume: 7
  start-page: 25
  issue: 2
  year: 2007
  end-page: 31
  article-title: Random survival forests for R
  publication-title: R News
– volume: 48
  start-page: 1029
  issue: 6
  year: 2006
  end-page: 1040
  article-title: Consistent estimation of the expected Brier score in general survival models with right‐censored event times
  publication-title: Biometr J
– volume: 56
  start-page: 337
  issue: 2
  year: 2000
  end-page: 344
  article-title: Time‐dependent ROC curves for censored survival data and a diagnostic marker
  publication-title: Biometrics
– volume: 18
  start-page: 851
  issue: 5
  year: 2016
  end-page: 869
  article-title: Deep learning in bioinformatics
  publication-title: Brief Bioinform
– volume: 90
  start-page: e188
  issue: 3
  year: 2018
  end-page: e196
  article-title: Whole genome sequence analyses of brain imaging measures in the Framingham study
  publication-title: Neurology
– volume: 25
  start-page: 546
  issue: 3
  year: 2019
  end-page: 568
  article-title: Copula‐based score test for bivariate time‐to‐event data, with application to a genetic study of AMD progression
  publication-title: Lifetime Data Anal
– volume: 17
  start-page: 297
  issue: 3
  year: 2011
  article-title: Cancer genomics: from discovery science to personalized medicine
  publication-title: Nature Medic
– volume: 206
  start-page: 119
  issue: 1
  year: 2017
  end-page: 133
  article-title: Bivariate analysis of age‐related macular degeneration progression using genetic risk scores
  publication-title: Genetics
– year: 2016
– year: 2018
– volume: 75
  start-page: 674
  issue: 2
  year: 2018
  end-page: 684
  article-title: Bagging and deep learning in optimal individualized treatment rules
  publication-title: Biometrics
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Royal Stat Soc Ser B (Methodol)
– year: 2014
– year: 2010
– volume: 162
  start-page: 1403
  issue: 4
  year: 2000
  end-page: 1406
  article-title: A clinical index to define risk of asthma in young children with recurrent wheezing
  publication-title: Am J Respirat Crit Care Medic
– year: 2012
– year: 2019
  article-title: Copula‐based semiparametric regression method for bivariate data under general interval censoring
  publication-title: Biostatistics
– volume: 19
  start-page: 1236
  issue: 6
  year: 2017
  end-page: 1246
  article-title: Deep learning for healthcare: review, opportunities and challenges
  publication-title: Brief Bioinform
– start-page: 415
  year: 2012
  end-page: 470
– volume: 11
  start-page: 3371
  issue: Dec
  year: 2010
  end-page: 3408
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– start-page: 971
  year: 2017
  end-page: 980
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  end-page: 366
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw
– volume: 27
  start-page: 929
  issue: 5
  year: 2018
  end-page: 940
  article-title: Genome‐wide analysis of disease progression in age‐related macular degeneration
  publication-title: Human Molecul Genet
– volume: 113
  start-page: 955
  issue: 523
  year: 2018
  end-page: 972
  article-title: Bayesian neural networks for selection of drug sensitive genes
  publication-title: J Am Stat Assoc
– volume: 2
  start-page: 303
  issue: 4
  year: 1989
  end-page: 314
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Math Control Sign Syst
– volume: 104
  start-page: 260
  issue: 2
  year: 2019
  end-page: 274
  article-title: Efficient variant set mixed model association tests for continuous and binary traits in large‐scale whole‐genome sequencing studies
  publication-title: Am J Human Genet
– volume: 18
  start-page: 24
  issue: 1
  year: 2018
  article-title: DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network
  publication-title: BMC Med Res Methodol
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  article-title: Deep learning
  publication-title: Nature
– volume: 372
  start-page: 793
  issue: 9
  year: 2015
  end-page: 795
  article-title: A new initiative on precision medicine
  publication-title: New Engl J Medic
– volume: 14
  year: 2012
– volume: 2
  start-page: 158
  issue: 3
  year: 2018
  article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
  publication-title: Nature Biomed Eng
– volume: 14
  start-page: 73
  issue: 1
  year: 1995
  end-page: 82
  article-title: A neural network model for survival data
  publication-title: Stat Medic
– volume: 20
  start-page: 573
  issue: 6
  year: 1999
  end-page: 600
  article-title: The age‐related eye disease study (AREDS): design implications
  publication-title: Controll Clin Trials
– volume: 7
  start-page: 11707
  issue: 1
  year: 2017
  article-title: Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models
  publication-title: Sci Rep
– volume: 2
  start-page: 841
  issue: 3
  year: 2008
  end-page: 860
  article-title: Random survival forests
  publication-title: Ann Appl Stat
– volume: 25
  start-page: 349
  issue: 2
  year: 2018
  end-page: 350
  article-title: Precision medicine core: progress in prognostication—populations to patients
  publication-title: Ann Surg Oncol
– year: 2019
– year: 2015
– year: 2013
– ident: e_1_2_8_9_1
  doi: 10.1056/NEJMp1500523
– ident: e_1_2_8_45_1
  doi: 10.1534/genetics.116.196998
– volume-title: Deep Learning with R
  year: 2018
  ident: e_1_2_8_36_1
– ident: e_1_2_8_7_1
  doi: 10.1201/b12677
– ident: e_1_2_8_20_1
  doi: 10.1109/BIBM.2018.8621345
– ident: e_1_2_8_22_1
  doi: 10.1007/BF02551274
– ident: e_1_2_8_23_1
  doi: 10.1016/0893-6080(89)90020-8
– ident: e_1_2_8_17_1
  doi: 10.1186/s12874-018-0482-1
– volume: 20
  start-page: 573
  issue: 6
  year: 1999
  ident: e_1_2_8_41_1
  article-title: The age‐related eye disease study (AREDS): design implications
  publication-title: Controll Clin Trials
  doi: 10.1016/S0197-2456(99)00031-8
– ident: e_1_2_8_28_1
– ident: e_1_2_8_33_1
  doi: 10.1111/j.0006-341X.2000.00337.x
– ident: e_1_2_8_13_1
  doi: 10.1093/bib/bbx044
– ident: e_1_2_8_48_1
  doi: 10.1080/01621459.2017.1409122
– ident: e_1_2_8_4_1
– ident: e_1_2_8_50_1
  doi: 10.1093/biostatistics/kxz032
– start-page: 971
  volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: e_1_2_8_26_1
– ident: e_1_2_8_3_1
  doi: 10.1245/s10434-017-6024-y
– ident: e_1_2_8_16_1
  doi: 10.1002/sim.4780140108
– ident: e_1_2_8_11_1
  doi: 10.1016/j.ajhg.2018.12.012
– volume: 18
  start-page: 851
  issue: 5
  year: 2016
  ident: e_1_2_8_12_1
  article-title: Deep learning in bioinformatics
  publication-title: Brief Bioinform
– ident: e_1_2_8_24_1
  doi: 10.1080/01621459.1977.10480613
– ident: e_1_2_8_2_1
  doi: 10.1038/nm.2323
– start-page: 415
  volume-title: Handbook of Statistics in Clinical Oncology
  year: 2012
  ident: e_1_2_8_6_1
– ident: e_1_2_8_18_1
  doi: 10.1371/journal.pcbi.1006076
– ident: e_1_2_8_46_1
  doi: 10.1145/3292500.3330648
– ident: e_1_2_8_15_1
  doi: 10.1016/j.ophtha.2018.02.037
– ident: e_1_2_8_21_1
  doi: 10.1038/nature14539
– ident: e_1_2_8_30_1
  doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
– ident: e_1_2_8_34_1
– ident: e_1_2_8_42_1
  doi: 10.1016/j.ophtha.2012.05.027
– ident: e_1_2_8_31_1
  doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5
– volume: 7
  start-page: 25
  issue: 2
  year: 2007
  ident: e_1_2_8_39_1
  article-title: Random survival forests for R
  publication-title: R News
– ident: e_1_2_8_29_1
  doi: 10.1145/2939672.2939778
– ident: e_1_2_8_32_1
  doi: 10.1002/bimj.200610301
– ident: e_1_2_8_10_1
  doi: 10.1212/WNL.0000000000004820
– ident: e_1_2_8_19_1
  doi: 10.1038/s41598-017-11817-6
– ident: e_1_2_8_25_1
– ident: e_1_2_8_43_1
  doi: 10.1038/ng.3448
– volume: 75
  start-page: 674
  issue: 2
  year: 2018
  ident: e_1_2_8_40_1
  article-title: Bagging and deep learning in optimal individualized treatment rules
  publication-title: Biometrics
  doi: 10.1111/biom.12990
– ident: e_1_2_8_14_1
  doi: 10.1038/s41551-018-0195-0
– ident: e_1_2_8_49_1
  doi: 10.1007/s10985-018-09459-5
– volume: 11
  start-page: 3371
  year: 2010
  ident: e_1_2_8_47_1
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: e_1_2_8_44_1
  doi: 10.1093/hmg/ddy002
– ident: e_1_2_8_27_1
– ident: e_1_2_8_8_1
  doi: 10.14694/EdBook_AM.2014.34.71
– ident: e_1_2_8_35_1
– ident: e_1_2_8_38_1
  doi: 10.1214/08-AOAS169
– ident: e_1_2_8_5_1
  doi: 10.1164/ajrccm.162.4.9912111
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: e_1_2_8_37_1
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Royal Stat Soc Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
SSID ssj0011527
Score 2.502665
Snippet Informative and accurate survival prediction with individualized dynamic risk profiles over time is critical for personalized disease prevention and clinical...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4605
SubjectTerms AMD progression
Deep learning
Genomes
GWAS
predictor importance
survival prediction
Title Genome‐wide association study‐based deep learning for survival prediction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8743
https://www.ncbi.nlm.nih.gov/pubmed/32974946
https://www.proquest.com/docview/2470006300
https://www.proquest.com/docview/2446670766
https://pubmed.ncbi.nlm.nih.gov/PMC8056253
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-QwFA7iwyKI7o73VYkg-tSx06ZJfRRdbzA-eAHBh5KrDmpncGYQ9ml_wv5Gf4nnNG11vID41EJOmjQ5J-fL7TuErPOYpQm3aaC2pQiYApNSUvMA-ppZBZDBGNzRbZ_wwwt2fJlclqcq8S6M54eoF9zQMorxGg1cqv7WC2lov3PfTMH_wfDbijnS5u-d1sxRrSpaK-5QctFKKt7ZMNqqMo56onfw8v0pydfotXA_-9Pkqqq4P3Vy2xwOVFP_fcPp-L0_-0mmSlRKd7wa_SJjNm-QH-1y371BJv3qHvWXlhpkAjGqp3ieIe0Dm3fv7dO__48dY6l86XBakNdCAvpKQ421PVqGqbimgJZpfwgjFeg67T1gWZhnllzs_znfPQzKKA2BRvazAEP8iSRJlZTOKctTCahRw8RI8gR8HTcxvAqXxi7WImRKK22dcLFh2kkro3iOjOfd3C4QKnQkTeggi7YwcdNpEQ3F4SzOOGH4ItmseizTJYU5RtK4yzz5cpRB02XYdItkrZbsedqOD2SWq07PSsPtZxEToechg0_UyWByuI8ic9sdogzjXISCQ4XmvY7UhcQRTNC2GaSIEe2pBZDOezQl79wUtN4pYtEEqrVRKMen9c7Ojtr4XPqq4G8yEeEqAdJThstkfPAwtCsApQZqtTCaZzWhHyQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIkElVGCBUihgJASnbNPEsVNxqgplC00P0Eo9IEX-hRVtdtXdVaWeeIQ-I0_CTJykLAUJcUokj2MnnvF8YzvfALwQKc8z4fJIbyoZcY0mpZUREY41dxohg7W0o1vsi8Ehf3-UHS3A6_ZfmMAP0S24kWXU8zUZOC1Ir1-yhk6GJ_0cHeA1uM4RZ1Dk9eZjxx210eZrpT1KITeylnk2TtbbmvO-6ArAvHpO8lf8Wjugndvwue16OHfyrT-b6r45_43V8T_f7Q4sN8CUbQVNugsLrurBjaLZeu_BrbDAx8J_Sz1YIpgaWJ7vQfHOVaMT9-P7xdnQOqYux5zV_LVYQO7SMuvcmDWZKr4wBMxsMsPJCtWdjU-pLapzHw533h5sD6ImUUNkiAAtoix_MstyrZT32olcIXA0GBspkaG7EzbFW-nz1KdGxlwbbZyXPrXceOVUkj6AxWpUuYfApEmUjT1WMQ5jN5PXCVE8BXLWSytW4VU7ZKVpWMwpmcZxGfiXkxI_XUmfbhWed5LjwNzxB5m1dtTLxnYnZcJlHKjI8BFdMVodbaWoyo1mJMOFkLEU2KGVoCRdI2mCMdomxxI5pz6dADF6z5dUw681s3dOcDTDbr2steOv_S4_7RZ0ffSvgs_g5uCg2Cv3dvc_PIalhBYNiK0yXoPF6enMPUFkNdVPawv6CQfdI0M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9RAEJ8oJoTEoB4gCOqSGHzqUdrtbnk06gnqEQOSkPjQ7F-9AL0LdxcTn_wIfEY_iTPdtnCiCfGpTXa2u92d2fntv98AvBApzzPh8kjvKhlxjSallRER9jV3GiGDtbSj2z8Qe8f8_Ul2Up-qpLswgR-iXXAjy6jGazLwkfXbV6Sh48F5N0f_dxfucYFAggDRYUsdtdOEa6UtSiF3soZ4Nk62m5yzrugGvrx5TPI6fK38T-8BfGlqHo6dnHanE901P_4gdfy_X3sIizUsZa-CHj2CO67swHy_3njvwP2wvMfCraUOLBBIDRzPS9B_58rhufv18_L7wDqmrnqcVey1mEDO0jLr3IjVcSq-MoTLbDzFoQqVnY0uqCzKswzHvbefX-9FdZiGyBD9WUQx_mSW5Vop77UTuULYaHBmpESGzk7YFF-lz1OfGhlzbbRxXvrUcuOVU0m6AnPlsHSrwKRJlI09ZjEOZ24mr8KheJrGWS-tWIOXTY8VpuYwp1AaZ0VgX04KbLqCmm4NNlvJUeDt-IvMRtPpRW254yLhMg5EZPiJNhltjjZSVOmGU5LhQshYCqzQ46AjbSFpgjO0XY4pckZ7WgHi855NKQffKl7vnMBohtXaqpTjn_Uujvb79HxyW8HnMP_pTa_4uH_wYR0WEloxIKrKeAPmJhdT9xRh1UQ_q-znN5YIIfI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome%E2%80%90wide+association+study%E2%80%90based+deep+learning+for+survival+prediction&rft.jtitle=Statistics+in+medicine&rft.au=Sun%2C+Tao&rft.au=Wei%2C+Yue&rft.au=Chen%2C+Wei&rft.au=Ding%2C+Ying&rft.date=2020-12-30&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=39&rft.issue=30&rft.spage=4605&rft.epage=4620&rft_id=info:doi/10.1002%2Fsim.8743&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sim_8743
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon