Genome‐wide association study‐based deep learning for survival prediction
Informative and accurate survival prediction with individualized dynamic risk profiles over time is critical for personalized disease prevention and clinical management. The massive genetic data, such as SNPs from genome‐wide association studies (GWAS), together with well‐characterized time‐to‐event...
Saved in:
Published in | Statistics in medicine Vol. 39; no. 30; pp. 4605 - 4620 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
30.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0277-6715 1097-0258 1097-0258 |
DOI | 10.1002/sim.8743 |
Cover
Abstract | Informative and accurate survival prediction with individualized dynamic risk profiles over time is critical for personalized disease prevention and clinical management. The massive genetic data, such as SNPs from genome‐wide association studies (GWAS), together with well‐characterized time‐to‐event phenotypes provide unprecedented opportunities for developing effective survival prediction models. Recent advances in deep learning have made extraordinary achievements in establishing powerful prediction models in the biomedical field. However, the applications of deep learning approaches in survival prediction are limited, especially with utilizing the wealthy GWAS data. Motivated by developing powerful prediction models for the progression of an eye disease, age‐related macular degeneration (AMD), we develop and implement a multilayer deep neural network (DNN) survival model to effectively extract features and make accurate and interpretable predictions. Various simulation studies are performed to compare the prediction performance of the DNN survival model with several other machine learning‐based survival models. Finally, using the GWAS data from two large‐scale randomized clinical trials in AMD with over 7800 observations, we show that the DNN survival model not only outperforms several existing survival prediction models in terms of prediction accuracy (eg, c‐index =0.76), but also successfully detects clinically meaningful risk subgroups by effectively learning the complex structures among genetic variants. Moreover, we obtain a subject‐specific importance measure for each predictor from the DNN survival model, which provides valuable insights into the personalized early prevention and clinical management for this disease. |
---|---|
AbstractList | Informative and accurate survival prediction with individualized dynamic risk profiles over time is critical for personalized disease prevention and clinical management. The massive genetic data, such as SNPs from genome-wide association studies (GWAS), together with well-characterized time-to-event phenotypes provide unprecedented opportunities for developing effective survival prediction models. Recent advances in deep learning have made extraordinary achievements in establishing powerful prediction models in the biomedical field. However, the applications of deep learning approaches in survival prediction are limited, especially with utilizing the wealthy GWAS data. Motivated by developing powerful prediction models for the progression of an eye disease, age-related macular degeneration (AMD), we develop and implement a multilayer deep neural network (DNN) survival model to effectively extract features and make accurate and interpretable predictions. Various simulation studies are performed to compare the prediction performance of the DNN survival model with several other machine learning-based survival models. Finally, using the GWAS data from two large-scale randomized clinical trials in AMD with over 7800 observations, we show that the DNN survival model not only outperforms several existing survival prediction models in terms of prediction accuracy (eg, c-index =0.76), but also successfully detects clinically meaningful risk subgroups by effectively learning the complex structures among genetic variants. Moreover, we obtain a subject-specific importance measure for each predictor from the DNN survival model, which provides valuable insights into the personalized early prevention and clinical management for this disease.Informative and accurate survival prediction with individualized dynamic risk profiles over time is critical for personalized disease prevention and clinical management. The massive genetic data, such as SNPs from genome-wide association studies (GWAS), together with well-characterized time-to-event phenotypes provide unprecedented opportunities for developing effective survival prediction models. Recent advances in deep learning have made extraordinary achievements in establishing powerful prediction models in the biomedical field. However, the applications of deep learning approaches in survival prediction are limited, especially with utilizing the wealthy GWAS data. Motivated by developing powerful prediction models for the progression of an eye disease, age-related macular degeneration (AMD), we develop and implement a multilayer deep neural network (DNN) survival model to effectively extract features and make accurate and interpretable predictions. Various simulation studies are performed to compare the prediction performance of the DNN survival model with several other machine learning-based survival models. Finally, using the GWAS data from two large-scale randomized clinical trials in AMD with over 7800 observations, we show that the DNN survival model not only outperforms several existing survival prediction models in terms of prediction accuracy (eg, c-index =0.76), but also successfully detects clinically meaningful risk subgroups by effectively learning the complex structures among genetic variants. Moreover, we obtain a subject-specific importance measure for each predictor from the DNN survival model, which provides valuable insights into the personalized early prevention and clinical management for this disease. Informative and accurate survival prediction with individualized dynamic risk profiles over time is critical for personalized disease prevention and clinical management. The massive genetic data, such as SNPs from genome‐wide association studies (GWAS), together with well‐characterized time‐to‐event phenotypes provide unprecedented opportunities for developing effective survival prediction models. Recent advances in deep learning have made extraordinary achievements in establishing powerful prediction models in the biomedical field. However, the applications of deep learning approaches in survival prediction are limited, especially with utilizing the wealthy GWAS data. Motivated by developing powerful prediction models for the progression of an eye disease, age‐related macular degeneration (AMD), we develop and implement a multilayer deep neural network (DNN) survival model to effectively extract features and make accurate and interpretable predictions. Various simulation studies are performed to compare the prediction performance of the DNN survival model with several other machine learning‐based survival models. Finally, using the GWAS data from two large‐scale randomized clinical trials in AMD with over 7800 observations, we show that the DNN survival model not only outperforms several existing survival prediction models in terms of prediction accuracy (eg, c‐index =0.76 ), but also successfully detects clinically meaningful risk subgroups by effectively learning the complex structures among genetic variants. Moreover, we obtain a subject‐specific importance measure for each predictor from the DNN survival model, which provides valuable insights into the personalized early prevention and clinical management for this disease. Informative and accurate survival prediction with individualized dynamic risk profiles over time is critical for personalized disease prevention and clinical management. The massive genetic data, such as SNPs from genome‐wide association studies (GWAS), together with well‐characterized time‐to‐event phenotypes provide unprecedented opportunities for developing effective survival prediction models. Recent advances in deep learning have made extraordinary achievements in establishing powerful prediction models in the biomedical field. However, the applications of deep learning approaches in survival prediction are limited, especially with utilizing the wealthy GWAS data. Motivated by developing powerful prediction models for the progression of an eye disease, age‐related macular degeneration (AMD), we develop and implement a multilayer deep neural network (DNN) survival model to effectively extract features and make accurate and interpretable predictions. Various simulation studies are performed to compare the prediction performance of the DNN survival model with several other machine learning‐based survival models. Finally, using the GWAS data from two large‐scale randomized clinical trials in AMD with over 7800 observations, we show that the DNN survival model not only outperforms several existing survival prediction models in terms of prediction accuracy (eg, c‐index =0.76), but also successfully detects clinically meaningful risk subgroups by effectively learning the complex structures among genetic variants. Moreover, we obtain a subject‐specific importance measure for each predictor from the DNN survival model, which provides valuable insights into the personalized early prevention and clinical management for this disease. |
Author | Chen, Wei Sun, Tao Ding, Ying Wei, Yue |
AuthorAffiliation | 1 Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA 3 Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA 2 Center for Applied Statistics and School of Statistics, Renmin University of China, Beijing, China |
AuthorAffiliation_xml | – name: 3 Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA – name: 1 Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA – name: 2 Center for Applied Statistics and School of Statistics, Renmin University of China, Beijing, China |
Author_xml | – sequence: 1 givenname: Tao surname: Sun fullname: Sun, Tao organization: Renmin University of China – sequence: 2 givenname: Yue surname: Wei fullname: Wei, Yue organization: University of Pittsburgh – sequence: 3 givenname: Wei surname: Chen fullname: Chen, Wei organization: University of Pittsburgh – sequence: 4 givenname: Ying orcidid: 0000-0003-1352-1000 surname: Ding fullname: Ding, Ying email: yingding@pitt.edu organization: University of Pittsburgh |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32974946$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9u1DAQxi1U1G7_SDwBisSFS5ZxHNvJBQlVpVRqxQF6thxnXFwl9mInW-2NR-AZeRK83bb8EZxmpPnNp2_mOyR7Pngk5AWFJQWo3iQ3LhtZs2dkQaGVJVS82SMLqKQshaT8gBymdAtAKa_kPjlgVSvrthYLcnWOPoz449v3O9djoVMKxunJBV-kae43edDphH3RI66KAXX0zt8UNsQizXHt1nooVhF7Z7Y7x-S51UPCk4d6RK7fn30-_VBefjy_OH13WRoONSsp41Ry3nRaW9uhaDTQ1rQCtOBV24qe5VbahllmJNSd6QxaaVlfG6tRV-yIvN3pruZuxN6gn6Ie1Cq6UceNCtqpPyfefVE3Ya0a4KLiLAu8fhCI4euMaVKjSwaHQXsMc1JVXQshQQqR0Vd_obdhjj6flykJAIIBZOrl746erDx-OgPLHWBiSCmiVcZN94_OBt2gKKhtlCpHqbZR_rL4tPCo-Q-03KF3bsDNfzn16eLqnv8JNyywTg |
CitedBy_id | crossref_primary_10_1002_sim_10333 crossref_primary_10_3390_genes13091674 crossref_primary_10_1089_omi_2022_0155 crossref_primary_10_1093_bib_bbad453 crossref_primary_10_1111_biom_13734 crossref_primary_10_3390_math9111244 crossref_primary_10_3389_fpsyt_2022_861258 crossref_primary_10_1155_2022_1176060 crossref_primary_10_1016_j_crmeth_2024_100817 crossref_primary_10_1109_ACCESS_2022_3182543 crossref_primary_10_1186_s12859_023_05535_2 crossref_primary_10_1007_s10462_023_10681_3 crossref_primary_10_1007_s11222_022_10140_z crossref_primary_10_2174_1389202923666220927105311 crossref_primary_10_3390_agriculture13091782 crossref_primary_10_1002_qub2_51 crossref_primary_10_1002_alz_13427 crossref_primary_10_1093_bib_bbac354 crossref_primary_10_3390_axioms11060280 crossref_primary_10_1155_2023_6678837 crossref_primary_10_1155_2021_2160322 crossref_primary_10_1111_ppl_13969 crossref_primary_10_1007_s42081_024_00270_1 crossref_primary_10_1515_hsz_2021_0109 crossref_primary_10_1007_s00180_024_01561_7 crossref_primary_10_1080_15366367_2023_2246707 crossref_primary_10_1093_bib_bbae449 crossref_primary_10_6339_24_JDS1119 |
Cites_doi | 10.1056/NEJMp1500523 10.1534/genetics.116.196998 10.1201/b12677 10.1109/BIBM.2018.8621345 10.1007/BF02551274 10.1016/0893-6080(89)90020-8 10.1186/s12874-018-0482-1 10.1016/S0197-2456(99)00031-8 10.1111/j.0006-341X.2000.00337.x 10.1093/bib/bbx044 10.1080/01621459.2017.1409122 10.1093/biostatistics/kxz032 10.1245/s10434-017-6024-y 10.1002/sim.4780140108 10.1016/j.ajhg.2018.12.012 10.1080/01621459.1977.10480613 10.1038/nm.2323 10.1371/journal.pcbi.1006076 10.1145/3292500.3330648 10.1016/j.ophtha.2018.02.037 10.1038/nature14539 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 10.1016/j.ophtha.2012.05.027 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5 10.1145/2939672.2939778 10.1002/bimj.200610301 10.1212/WNL.0000000000004820 10.1038/s41598-017-11817-6 10.1038/ng.3448 10.1111/biom.12990 10.1038/s41551-018-0195-0 10.1007/s10985-018-09459-5 10.1093/hmg/ddy002 10.14694/EdBook_AM.2014.34.71 10.1214/08-AOAS169 10.1164/ajrccm.162.4.9912111 10.1111/j.2517-6161.1996.tb02080.x |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons Ltd 2020 John Wiley & Sons Ltd. 2020 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2020 John Wiley & Sons Ltd – notice: 2020 John Wiley & Sons Ltd. – notice: 2020 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION NPM K9. 7X8 5PM |
DOI | 10.1002/sim.8743 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 4620 |
ExternalDocumentID | PMC8056253 32974946 10_1002_sim_8743 SIM8743 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCATS NIH HHS grantid: UL1 TR001857 – fundername: NEI NIH HHS grantid: R21 EY030488 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c5043-13517558baaffbe68a019c960a652996d360a7f83f3c704bcbcef7f3d4cfaea23 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Thu Aug 21 14:15:57 EDT 2025 Fri Jul 11 08:06:21 EDT 2025 Sun Jul 13 04:59:12 EDT 2025 Mon Jul 21 06:05:08 EDT 2025 Thu Apr 24 23:01:11 EDT 2025 Tue Jul 01 03:28:16 EDT 2025 Wed Jan 22 16:30:50 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Keywords | predictor importance deep learning AMD progression GWAS survival prediction |
Language | English |
License | 2020 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5043-13517558baaffbe68a019c960a652996d360a7f83f3c704bcbcef7f3d4cfaea23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1352-1000 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8056253 |
PMID | 32974946 |
PQID | 2470006300 |
PQPubID | 48361 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8056253 proquest_miscellaneous_2446670766 proquest_journals_2470006300 pubmed_primary_32974946 crossref_citationtrail_10_1002_sim_8743 crossref_primary_10_1002_sim_8743 wiley_primary_10_1002_sim_8743_SIM8743 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 30 December 2020 |
PublicationDateYYYYMMDD | 2020-12-30 |
PublicationDate_xml | – month: 12 year: 2020 text: 30 December 2020 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Stat Med |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1989; 2 2010; 11 2017; 7 2012 2015; 521 2010 1995; 14 2018; 125 2019; 104 2007 1999; 20 2011; 17 2016; 18 2012; 14 1996; 58 2008; 2 1996; 15 2018; 27 2018; 25 2015; 372 2018; 18 2018; 2 2000; 56 1999; 18 2018; 113 2006; 48 2019; 25 1977; 72 2019 2000; 162 2018; 90 2018 2017 2007; 7 2017; 19 2016 2015 2014 2013 2018; 75 2016; 48 2012; 119 2018; 14 2017; 206 e_1_2_8_28_1 Schumacher M (e_1_2_8_6_1) 2012 Vincent P (e_1_2_8_47_1) 2010; 11 e_1_2_8_24_1 Ishwaran H (e_1_2_8_39_1) 2007; 7 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 Klambauer G (e_1_2_8_26_1) 2017 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_29_1 Mi X (e_1_2_8_40_1) 2018; 75 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 AREDS Group (e_1_2_8_41_1) 1999; 20 e_1_2_8_2_1 e_1_2_8_4_1 Chollet F (e_1_2_8_36_1) 2018 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_18_1 Tibshirani R (e_1_2_8_37_1) 1996; 58 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 Min S (e_1_2_8_12_1) 2016; 18 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_33_1 e_1_2_8_50_1 |
References_xml | – volume: 119 start-page: 2282 issue: 11 year: 2012 end-page: 2289 article-title: The age‐related eye disease study 2 (AREDS2): study design and baseline characteristics (AREDS2 report number 1) publication-title: Ophthalmology – volume: 15 start-page: 361 issue: 4 year: 1996 end-page: 387 article-title: Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors publication-title: Stat Medic – volume: 14 issue: 4 year: 2018 article-title: Cox‐nnet: an artificial neural network method for prognosis prediction of high‐throughput omics data publication-title: PLoS Comput Biol – volume: 72 start-page: 557 issue: 359 year: 1977 end-page: 565 article-title: The efficiency of Cox's likelihood function for censored data publication-title: J Am Stat Assoc – volume: 125 start-page: 1410 issue: 9 year: 2018 end-page: 1420 article-title: A deep learning algorithm for prediction of age‐related eye disease study severity scale for age‐related macular degeneration from color fundus photography publication-title: Ophthalmology – volume: 18 start-page: 2529 issue: 17‐18 year: 1999 end-page: 2545 article-title: Assessment and comparison of prognostic classification schemes for survival data publication-title: Stat Medic – volume: 48 start-page: 134 issue: 2 year: 2016 end-page: 143 article-title: A large genome‐wide association study of age‐related macular degeneration highlights contributions of rare and common variants publication-title: Nature Genet – year: 2007 – volume: 7 start-page: 25 issue: 2 year: 2007 end-page: 31 article-title: Random survival forests for R publication-title: R News – volume: 48 start-page: 1029 issue: 6 year: 2006 end-page: 1040 article-title: Consistent estimation of the expected Brier score in general survival models with right‐censored event times publication-title: Biometr J – volume: 56 start-page: 337 issue: 2 year: 2000 end-page: 344 article-title: Time‐dependent ROC curves for censored survival data and a diagnostic marker publication-title: Biometrics – volume: 18 start-page: 851 issue: 5 year: 2016 end-page: 869 article-title: Deep learning in bioinformatics publication-title: Brief Bioinform – volume: 90 start-page: e188 issue: 3 year: 2018 end-page: e196 article-title: Whole genome sequence analyses of brain imaging measures in the Framingham study publication-title: Neurology – volume: 25 start-page: 546 issue: 3 year: 2019 end-page: 568 article-title: Copula‐based score test for bivariate time‐to‐event data, with application to a genetic study of AMD progression publication-title: Lifetime Data Anal – volume: 17 start-page: 297 issue: 3 year: 2011 article-title: Cancer genomics: from discovery science to personalized medicine publication-title: Nature Medic – volume: 206 start-page: 119 issue: 1 year: 2017 end-page: 133 article-title: Bivariate analysis of age‐related macular degeneration progression using genetic risk scores publication-title: Genetics – year: 2016 – year: 2018 – volume: 75 start-page: 674 issue: 2 year: 2018 end-page: 684 article-title: Bagging and deep learning in optimal individualized treatment rules publication-title: Biometrics – volume: 58 start-page: 267 issue: 1 year: 1996 end-page: 288 article-title: Regression shrinkage and selection via the lasso publication-title: J Royal Stat Soc Ser B (Methodol) – year: 2014 – year: 2010 – volume: 162 start-page: 1403 issue: 4 year: 2000 end-page: 1406 article-title: A clinical index to define risk of asthma in young children with recurrent wheezing publication-title: Am J Respirat Crit Care Medic – year: 2012 – year: 2019 article-title: Copula‐based semiparametric regression method for bivariate data under general interval censoring publication-title: Biostatistics – volume: 19 start-page: 1236 issue: 6 year: 2017 end-page: 1246 article-title: Deep learning for healthcare: review, opportunities and challenges publication-title: Brief Bioinform – start-page: 415 year: 2012 end-page: 470 – volume: 11 start-page: 3371 issue: Dec year: 2010 end-page: 3408 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – start-page: 971 year: 2017 end-page: 980 – volume: 2 start-page: 359 issue: 5 year: 1989 end-page: 366 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw – volume: 27 start-page: 929 issue: 5 year: 2018 end-page: 940 article-title: Genome‐wide analysis of disease progression in age‐related macular degeneration publication-title: Human Molecul Genet – volume: 113 start-page: 955 issue: 523 year: 2018 end-page: 972 article-title: Bayesian neural networks for selection of drug sensitive genes publication-title: J Am Stat Assoc – volume: 2 start-page: 303 issue: 4 year: 1989 end-page: 314 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math Control Sign Syst – volume: 104 start-page: 260 issue: 2 year: 2019 end-page: 274 article-title: Efficient variant set mixed model association tests for continuous and binary traits in large‐scale whole‐genome sequencing studies publication-title: Am J Human Genet – volume: 18 start-page: 24 issue: 1 year: 2018 article-title: DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network publication-title: BMC Med Res Methodol – volume: 521 start-page: 436 issue: 7553 year: 2015 article-title: Deep learning publication-title: Nature – volume: 372 start-page: 793 issue: 9 year: 2015 end-page: 795 article-title: A new initiative on precision medicine publication-title: New Engl J Medic – volume: 14 year: 2012 – volume: 2 start-page: 158 issue: 3 year: 2018 article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning publication-title: Nature Biomed Eng – volume: 14 start-page: 73 issue: 1 year: 1995 end-page: 82 article-title: A neural network model for survival data publication-title: Stat Medic – volume: 20 start-page: 573 issue: 6 year: 1999 end-page: 600 article-title: The age‐related eye disease study (AREDS): design implications publication-title: Controll Clin Trials – volume: 7 start-page: 11707 issue: 1 year: 2017 article-title: Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models publication-title: Sci Rep – volume: 2 start-page: 841 issue: 3 year: 2008 end-page: 860 article-title: Random survival forests publication-title: Ann Appl Stat – volume: 25 start-page: 349 issue: 2 year: 2018 end-page: 350 article-title: Precision medicine core: progress in prognostication—populations to patients publication-title: Ann Surg Oncol – year: 2019 – year: 2015 – year: 2013 – ident: e_1_2_8_9_1 doi: 10.1056/NEJMp1500523 – ident: e_1_2_8_45_1 doi: 10.1534/genetics.116.196998 – volume-title: Deep Learning with R year: 2018 ident: e_1_2_8_36_1 – ident: e_1_2_8_7_1 doi: 10.1201/b12677 – ident: e_1_2_8_20_1 doi: 10.1109/BIBM.2018.8621345 – ident: e_1_2_8_22_1 doi: 10.1007/BF02551274 – ident: e_1_2_8_23_1 doi: 10.1016/0893-6080(89)90020-8 – ident: e_1_2_8_17_1 doi: 10.1186/s12874-018-0482-1 – volume: 20 start-page: 573 issue: 6 year: 1999 ident: e_1_2_8_41_1 article-title: The age‐related eye disease study (AREDS): design implications publication-title: Controll Clin Trials doi: 10.1016/S0197-2456(99)00031-8 – ident: e_1_2_8_28_1 – ident: e_1_2_8_33_1 doi: 10.1111/j.0006-341X.2000.00337.x – ident: e_1_2_8_13_1 doi: 10.1093/bib/bbx044 – ident: e_1_2_8_48_1 doi: 10.1080/01621459.2017.1409122 – ident: e_1_2_8_4_1 – ident: e_1_2_8_50_1 doi: 10.1093/biostatistics/kxz032 – start-page: 971 volume-title: Advances in Neural Information Processing Systems year: 2017 ident: e_1_2_8_26_1 – ident: e_1_2_8_3_1 doi: 10.1245/s10434-017-6024-y – ident: e_1_2_8_16_1 doi: 10.1002/sim.4780140108 – ident: e_1_2_8_11_1 doi: 10.1016/j.ajhg.2018.12.012 – volume: 18 start-page: 851 issue: 5 year: 2016 ident: e_1_2_8_12_1 article-title: Deep learning in bioinformatics publication-title: Brief Bioinform – ident: e_1_2_8_24_1 doi: 10.1080/01621459.1977.10480613 – ident: e_1_2_8_2_1 doi: 10.1038/nm.2323 – start-page: 415 volume-title: Handbook of Statistics in Clinical Oncology year: 2012 ident: e_1_2_8_6_1 – ident: e_1_2_8_18_1 doi: 10.1371/journal.pcbi.1006076 – ident: e_1_2_8_46_1 doi: 10.1145/3292500.3330648 – ident: e_1_2_8_15_1 doi: 10.1016/j.ophtha.2018.02.037 – ident: e_1_2_8_21_1 doi: 10.1038/nature14539 – ident: e_1_2_8_30_1 doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 – ident: e_1_2_8_34_1 – ident: e_1_2_8_42_1 doi: 10.1016/j.ophtha.2012.05.027 – ident: e_1_2_8_31_1 doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5 – volume: 7 start-page: 25 issue: 2 year: 2007 ident: e_1_2_8_39_1 article-title: Random survival forests for R publication-title: R News – ident: e_1_2_8_29_1 doi: 10.1145/2939672.2939778 – ident: e_1_2_8_32_1 doi: 10.1002/bimj.200610301 – ident: e_1_2_8_10_1 doi: 10.1212/WNL.0000000000004820 – ident: e_1_2_8_19_1 doi: 10.1038/s41598-017-11817-6 – ident: e_1_2_8_25_1 – ident: e_1_2_8_43_1 doi: 10.1038/ng.3448 – volume: 75 start-page: 674 issue: 2 year: 2018 ident: e_1_2_8_40_1 article-title: Bagging and deep learning in optimal individualized treatment rules publication-title: Biometrics doi: 10.1111/biom.12990 – ident: e_1_2_8_14_1 doi: 10.1038/s41551-018-0195-0 – ident: e_1_2_8_49_1 doi: 10.1007/s10985-018-09459-5 – volume: 11 start-page: 3371 year: 2010 ident: e_1_2_8_47_1 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – ident: e_1_2_8_44_1 doi: 10.1093/hmg/ddy002 – ident: e_1_2_8_27_1 – ident: e_1_2_8_8_1 doi: 10.14694/EdBook_AM.2014.34.71 – ident: e_1_2_8_35_1 – ident: e_1_2_8_38_1 doi: 10.1214/08-AOAS169 – ident: e_1_2_8_5_1 doi: 10.1164/ajrccm.162.4.9912111 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: e_1_2_8_37_1 article-title: Regression shrinkage and selection via the lasso publication-title: J Royal Stat Soc Ser B (Methodol) doi: 10.1111/j.2517-6161.1996.tb02080.x |
SSID | ssj0011527 |
Score | 2.502665 |
Snippet | Informative and accurate survival prediction with individualized dynamic risk profiles over time is critical for personalized disease prevention and clinical... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4605 |
SubjectTerms | AMD progression Deep learning Genomes GWAS predictor importance survival prediction |
Title | Genome‐wide association study‐based deep learning for survival prediction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8743 https://www.ncbi.nlm.nih.gov/pubmed/32974946 https://www.proquest.com/docview/2470006300 https://www.proquest.com/docview/2446670766 https://pubmed.ncbi.nlm.nih.gov/PMC8056253 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-QwFA7iwyKI7o73VYkg-tSx06ZJfRRdbzA-eAHBh5KrDmpncGYQ9ml_wv5Gf4nnNG11vID41EJOmjQ5J-fL7TuErPOYpQm3aaC2pQiYApNSUvMA-ppZBZDBGNzRbZ_wwwt2fJlclqcq8S6M54eoF9zQMorxGg1cqv7WC2lov3PfTMH_wfDbijnS5u-d1sxRrSpaK-5QctFKKt7ZMNqqMo56onfw8v0pydfotXA_-9Pkqqq4P3Vy2xwOVFP_fcPp-L0_-0mmSlRKd7wa_SJjNm-QH-1y371BJv3qHvWXlhpkAjGqp3ieIe0Dm3fv7dO__48dY6l86XBakNdCAvpKQ421PVqGqbimgJZpfwgjFeg67T1gWZhnllzs_znfPQzKKA2BRvazAEP8iSRJlZTOKctTCahRw8RI8gR8HTcxvAqXxi7WImRKK22dcLFh2kkro3iOjOfd3C4QKnQkTeggi7YwcdNpEQ3F4SzOOGH4ItmseizTJYU5RtK4yzz5cpRB02XYdItkrZbsedqOD2SWq07PSsPtZxEToechg0_UyWByuI8ic9sdogzjXISCQ4XmvY7UhcQRTNC2GaSIEe2pBZDOezQl79wUtN4pYtEEqrVRKMen9c7Ojtr4XPqq4G8yEeEqAdJThstkfPAwtCsApQZqtTCaZzWhHyQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIkElVGCBUihgJASnbNPEsVNxqgplC00P0Eo9IEX-hRVtdtXdVaWeeIQ-I0_CTJykLAUJcUokj2MnnvF8YzvfALwQKc8z4fJIbyoZcY0mpZUREY41dxohg7W0o1vsi8Ehf3-UHS3A6_ZfmMAP0S24kWXU8zUZOC1Ir1-yhk6GJ_0cHeA1uM4RZ1Dk9eZjxx210eZrpT1KITeylnk2TtbbmvO-6ArAvHpO8lf8Wjugndvwue16OHfyrT-b6r45_43V8T_f7Q4sN8CUbQVNugsLrurBjaLZeu_BrbDAx8J_Sz1YIpgaWJ7vQfHOVaMT9-P7xdnQOqYux5zV_LVYQO7SMuvcmDWZKr4wBMxsMsPJCtWdjU-pLapzHw533h5sD6ImUUNkiAAtoix_MstyrZT32olcIXA0GBspkaG7EzbFW-nz1KdGxlwbbZyXPrXceOVUkj6AxWpUuYfApEmUjT1WMQ5jN5PXCVE8BXLWSytW4VU7ZKVpWMwpmcZxGfiXkxI_XUmfbhWed5LjwNzxB5m1dtTLxnYnZcJlHKjI8BFdMVodbaWoyo1mJMOFkLEU2KGVoCRdI2mCMdomxxI5pz6dADF6z5dUw681s3dOcDTDbr2steOv_S4_7RZ0ffSvgs_g5uCg2Cv3dvc_PIalhBYNiK0yXoPF6enMPUFkNdVPawv6CQfdI0M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9RAEJ8oJoTEoB4gCOqSGHzqUdrtbnk06gnqEQOSkPjQ7F-9AL0LdxcTn_wIfEY_iTPdtnCiCfGpTXa2u92d2fntv98AvBApzzPh8kjvKhlxjSallRER9jV3GiGDtbSj2z8Qe8f8_Ul2Up-qpLswgR-iXXAjy6jGazLwkfXbV6Sh48F5N0f_dxfucYFAggDRYUsdtdOEa6UtSiF3soZ4Nk62m5yzrugGvrx5TPI6fK38T-8BfGlqHo6dnHanE901P_4gdfy_X3sIizUsZa-CHj2CO67swHy_3njvwP2wvMfCraUOLBBIDRzPS9B_58rhufv18_L7wDqmrnqcVey1mEDO0jLr3IjVcSq-MoTLbDzFoQqVnY0uqCzKswzHvbefX-9FdZiGyBD9WUQx_mSW5Vop77UTuULYaHBmpESGzk7YFF-lz1OfGhlzbbRxXvrUcuOVU0m6AnPlsHSrwKRJlI09ZjEOZ24mr8KheJrGWS-tWIOXTY8VpuYwp1AaZ0VgX04KbLqCmm4NNlvJUeDt-IvMRtPpRW254yLhMg5EZPiJNhltjjZSVOmGU5LhQshYCqzQ46AjbSFpgjO0XY4pckZ7WgHi855NKQffKl7vnMBohtXaqpTjn_Uujvb79HxyW8HnMP_pTa_4uH_wYR0WEloxIKrKeAPmJhdT9xRh1UQ_q-znN5YIIfI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome%E2%80%90wide+association+study%E2%80%90based+deep+learning+for+survival+prediction&rft.jtitle=Statistics+in+medicine&rft.au=Sun%2C+Tao&rft.au=Wei%2C+Yue&rft.au=Chen%2C+Wei&rft.au=Ding%2C+Ying&rft.date=2020-12-30&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=39&rft.issue=30&rft.spage=4605&rft.epage=4620&rft_id=info:doi/10.1002%2Fsim.8743&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sim_8743 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |