Event-related changes in neuromagnetic activity associated with syncopation and synchronization timing tasks

For low rhythmic rates (1.0 to ∼2.0 Hz), subjects are able to successfully coordinate finger flexion with an external metronome in either a syncopated (between the beats) or synchronized (on each beat) fashion. Beyond this rate, however, syncopation becomes unstable and subjects spontaneously switch...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 14; no. 2; pp. 65 - 80
Main Authors Mayville, Justine M., Fuchs, Armin, Ding, Mingzhou, Cheyne, Douglas, Deecke, Lüder, Kelso, J.A. Scott
Format Journal Article
LanguageEnglish
Published New York John Wiley & Sons, Inc 01.10.2001
Wiley-Liss
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For low rhythmic rates (1.0 to ∼2.0 Hz), subjects are able to successfully coordinate finger flexion with an external metronome in either a syncopated (between the beats) or synchronized (on each beat) fashion. Beyond this rate, however, syncopation becomes unstable and subjects spontaneously switch to synchronization to maintain a 1:1 stimulus/response relationship. We used a whole‐head magnetometer to investigate the spatiotemporal dynamics of neuromagnetic activity (MEG) associated with both coordinative patterns at eight different rates spanning the range 1.0–2.75 Hz. Timing changes in the event‐related fields accompanied transitions from syncopation to synchronization and followed the placement of the motor response within each stimulus/response cycle. Decomposition of event‐related fields into component auditory and motor brain responses revealed that the amplitude of the former decreased with increasing coordination rate whereas the motor contribution remained approximately constant across all rates. Such an interaction may contribute to changes in auditory‐motor integration that cause syncopation to become unstable. Examination of event‐related changes in high frequency bands revealed that MEG signal power in the beta band (15–30 Hz) was significantly lower during syncopated coordination in sensors covering the contralateral sensorimotor area suggesting a dependence of beta rhythm amplitude on task difficulty. Suppression of beta rhythms was also stronger during synchronization preceded by syncopation, e.g., after subjects had switched, when compared with a control condition in which subjects synchronized throughout the entire range of rates. Hum. Brain Mapping 14:65–80, 2001. © 2001 Wiley‐Liss, Inc.
AbstractList For low rhythmic rates (1.0 to approximately 2.0 Hz), subjects are able to successfully coordinate finger flexion with an external metronome in either a syncopated (between the beats) or synchronized (on each beat) fashion. Beyond this rate, however, syncopation becomes unstable and subjects spontaneously switch to synchronization to maintain a 1:1 stimulus/response relationship. We used a whole-head magnetometer to investigate the spatiotemporal dynamics of neuromagnetic activity (MEG) associated with both coordinative patterns at eight different rates spanning the range 1.0-2.75 Hz. Timing changes in the event-related fields accompanied transitions from syncopation to synchronization and followed the placement of the motor response within each stimulus/response cycle. Decomposition of event-related fields into component auditory and motor brain responses revealed that the amplitude of the former decreased with increasing coordination rate whereas the motor contribution remained approximately constant across all rates. Such an interaction may contribute to changes in auditory-motor integration that cause syncopation to become unstable. Examination of event-related changes in high frequency bands revealed that MEG signal power in the beta band (15-30 Hz) was significantly lower during syncopated coordination in sensors covering the contralateral sensorimotor area suggesting a dependence of beta rhythm amplitude on task difficulty. Suppression of beta rhythms was also stronger during synchronization preceded by syncopation, e.g., after subjects had switched, when compared with a control condition in which subjects synchronized throughout the entire range of rates.
For low rhythmic rates (1.0 to ∼2.0 Hz), subjects are able to successfully coordinate finger flexion with an external metronome in either a syncopated (between the beats) or synchronized (on each beat) fashion. Beyond this rate, however, syncopation becomes unstable and subjects spontaneously switch to synchronization to maintain a 1:1 stimulus/response relationship. We used a whole‐head magnetometer to investigate the spatiotemporal dynamics of neuromagnetic activity (MEG) associated with both coordinative patterns at eight different rates spanning the range 1.0–2.75 Hz. Timing changes in the event‐related fields accompanied transitions from syncopation to synchronization and followed the placement of the motor response within each stimulus/response cycle. Decomposition of event‐related fields into component auditory and motor brain responses revealed that the amplitude of the former decreased with increasing coordination rate whereas the motor contribution remained approximately constant across all rates. Such an interaction may contribute to changes in auditory‐motor integration that cause syncopation to become unstable. Examination of event‐related changes in high frequency bands revealed that MEG signal power in the beta band (15–30 Hz) was significantly lower during syncopated coordination in sensors covering the contralateral sensorimotor area suggesting a dependence of beta rhythm amplitude on task difficulty. Suppression of beta rhythms was also stronger during synchronization preceded by syncopation, e.g., after subjects had switched, when compared with a control condition in which subjects synchronized throughout the entire range of rates. Hum. Brain Mapping 14:65–80, 2001. © 2001 Wiley‐Liss, Inc.
For low rhythmic rates (1.0 to similar to 2.0 Hz), subjects are able to successfully coordinate finger flexion with an external metronome in either a syncopated (between the beats) or synchronized (on each beat) fashion. Beyond this rate, however, syncopation becomes unstable and subjects spontaneously switch to synchronization to maintain a 1:1 stimulus/response relationship. We used a whole-head magnetometer to investigate the spatiotemporal dynamics of neuromagnetic activity (MEG) associated with both coordinative patterns at eight different rates spanning the range 1.0-2.75 Hz. Timing changes in the event-related fields accompanied transitions from syncopation to synchronization and followed the placement of the motor response within each stimulus/response cycle. Decomposition of event-related fields into component auditory and motor brain responses revealed that the amplitude of the former decreased with increasing coordination rate whereas the motor contribution remained approximately constant across all rates. Such an interaction may contribute to changes in auditory-motor integration that cause syncopation to become unstable. Examination of event-related changes in high frequency bands revealed that MEG signal power in the beta band (15-30 Hz) was significantly lower during syncopated coordination in sensors covering the contralateral sensorimotor area suggesting a dependence of beta rhythm amplitude on task difficulty. Suppression of beta rhythms was also stronger during synchronization preceded by syncopation, e.g., after subjects had switched, when compared with a control condition in which subjects synchronized throughout the entire range of rates.
For low rhythmic rates (1.0 to approximately 2.0 Hz), subjects are able to successfully coordinate finger flexion with an external metronome in either a syncopated (between the beats) or synchronized (on each beat) fashion. Beyond this rate, however, syncopation becomes unstable and subjects spontaneously switch to synchronization to maintain a 1:1 stimulus/response relationship. We used a whole-head magnetometer to investigate the spatiotemporal dynamics of neuromagnetic activity (MEG) associated with both coordinative patterns at eight different rates spanning the range 1.0-2.75 Hz. Timing changes in the event-related fields accompanied transitions from syncopation to synchronization and followed the placement of the motor response within each stimulus/response cycle. Decomposition of event-related fields into component auditory and motor brain responses revealed that the amplitude of the former decreased with increasing coordination rate whereas the motor contribution remained approximately constant across all rates. Such an interaction may contribute to changes in auditory-motor integration that cause syncopation to become unstable. Examination of event-related changes in high frequency bands revealed that MEG signal power in the beta band (15-30 Hz) was significantly lower during syncopated coordination in sensors covering the contralateral sensorimotor area suggesting a dependence of beta rhythm amplitude on task difficulty. Suppression of beta rhythms was also stronger during synchronization preceded by syncopation, e.g., after subjects had switched, when compared with a control condition in which subjects synchronized throughout the entire range of rates.For low rhythmic rates (1.0 to approximately 2.0 Hz), subjects are able to successfully coordinate finger flexion with an external metronome in either a syncopated (between the beats) or synchronized (on each beat) fashion. Beyond this rate, however, syncopation becomes unstable and subjects spontaneously switch to synchronization to maintain a 1:1 stimulus/response relationship. We used a whole-head magnetometer to investigate the spatiotemporal dynamics of neuromagnetic activity (MEG) associated with both coordinative patterns at eight different rates spanning the range 1.0-2.75 Hz. Timing changes in the event-related fields accompanied transitions from syncopation to synchronization and followed the placement of the motor response within each stimulus/response cycle. Decomposition of event-related fields into component auditory and motor brain responses revealed that the amplitude of the former decreased with increasing coordination rate whereas the motor contribution remained approximately constant across all rates. Such an interaction may contribute to changes in auditory-motor integration that cause syncopation to become unstable. Examination of event-related changes in high frequency bands revealed that MEG signal power in the beta band (15-30 Hz) was significantly lower during syncopated coordination in sensors covering the contralateral sensorimotor area suggesting a dependence of beta rhythm amplitude on task difficulty. Suppression of beta rhythms was also stronger during synchronization preceded by syncopation, e.g., after subjects had switched, when compared with a control condition in which subjects synchronized throughout the entire range of rates.
Author Mayville, Justine M.
Deecke, Lüder
Fuchs, Armin
Ding, Mingzhou
Cheyne, Douglas
Kelso, J.A. Scott
AuthorAffiliation 3 Department of Clinical Neurology, University of Vienna and General Hospital, Vienna, Austria
2 Simon Fraser University, Vancouver, BC, Canada
1 Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida
AuthorAffiliation_xml – name: 1 Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida
– name: 3 Department of Clinical Neurology, University of Vienna and General Hospital, Vienna, Austria
– name: 2 Simon Fraser University, Vancouver, BC, Canada
Author_xml – sequence: 1
  givenname: Justine M.
  surname: Mayville
  fullname: Mayville, Justine M.
  organization: Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida
– sequence: 2
  givenname: Armin
  surname: Fuchs
  fullname: Fuchs, Armin
  email: afuchs@fau.edu
  organization: Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida
– sequence: 3
  givenname: Mingzhou
  surname: Ding
  fullname: Ding, Mingzhou
  organization: Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida
– sequence: 4
  givenname: Douglas
  surname: Cheyne
  fullname: Cheyne, Douglas
  organization: Simon Fraser University, Vancouver, BC, Canada
– sequence: 5
  givenname: Lüder
  surname: Deecke
  fullname: Deecke, Lüder
  organization: Department of Clinical Neurology, University of Vienna and General Hospital, Vienna, Austria
– sequence: 6
  givenname: J.A. Scott
  surname: Kelso
  fullname: Kelso, J.A. Scott
  organization: Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1111570$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/11500991$$D View this record in MEDLINE/PubMed
BookMark eNqFkl2L1DAUhoOsuB8K_gLphYg3XZM0bZobYV32Q1i_QBG8CadpOo3bJmOSmd3x15vOjMOuIpKLc5I85-W8yTlEe9ZZjdBTgo8JxvRV34wpYfQBOiBY8BwTUexNeVXmgnGyjw5D-I4xISUmj9D-FLEQ5AANZ0ttY-71AFG3merBznTIjM2sXng3wszqaFQGKpqliasMQnDKrOEbE_ssrKxyc4jG2Qxsu9733lnzc3MWzWjsLIsQrsNj9LCDIegn23iEvpyffT69zK8-XLw9PbnKVZlM5AQqpVRJaqqBCQaCCsZaopquhJZBgzkrNG_KssEV7ahoBKNlxQkhVdnqti2O0OuN7nzRjLpVyaGHQc69GcGvpAMj799Y08uZW8qq5hQXLAm82Ap492OhQ5SjCUoPA1jtFkFygmtRV_V_QVKnRcUEPrvb0q6X3z-RgOdbAIKCofNglQl3uERynLDjDaa8C8HrTioT1y-djJhBEiyniZBpIuQ0Eang5R8FO8m_0XyD3phBr_7Jycs37-7zJkR9u-PBX8uKF7yUX99fyLriH-mnb0TS4hd55dXS
CitedBy_id crossref_primary_10_1037_0096_1523_28_4_776
crossref_primary_10_3758_BF03206433
crossref_primary_10_1007_s00422_005_0558_y
crossref_primary_10_3389_fnhum_2017_00582
crossref_primary_10_1073_pnas_0401300101
crossref_primary_10_1007_s00221_012_3103_y
crossref_primary_10_1016_j_brainres_2007_03_063
crossref_primary_10_1016_j_neulet_2010_06_054
crossref_primary_10_1007_s00221_018_5343_y
crossref_primary_10_1002_hbm_10065
crossref_primary_10_1016_j_neuroimage_2009_09_064
crossref_primary_10_1016_S0167_9457_03_00048_4
crossref_primary_10_1002_mds_22535
crossref_primary_10_1371_journal_pone_0094446
crossref_primary_10_1016_j_neubiorev_2014_10_003
crossref_primary_10_1073_pnas_162114799
crossref_primary_10_1016_j_pneurobio_2007_02_003
crossref_primary_10_1007_s00221_005_0205_9
crossref_primary_10_1016_S0001_6918_02_00033_1
crossref_primary_10_1007_s00422_021_00890_w
crossref_primary_10_1016_j_neulet_2010_07_074
crossref_primary_10_1007_s00221_009_1943_x
crossref_primary_10_1111_j_1749_6632_2009_04579_x
crossref_primary_10_1525_mp_2007_25_1_43
crossref_primary_10_1016_j_neulet_2019_134331
crossref_primary_10_1093_cercor_bhq008
crossref_primary_10_1016_S0304_3940_02_00956_4
crossref_primary_10_1016_S1388_2457_01_00626_5
crossref_primary_10_1016_j_brainres_2006_06_039
crossref_primary_10_1016_j_neuroimage_2011_08_010
crossref_primary_10_1016_j_brainres_2009_06_099
crossref_primary_10_1016_S0001_6918_02_00031_8
crossref_primary_10_3389_fresc_2021_783259
crossref_primary_10_1371_journal_pone_0005248
crossref_primary_10_1111_j_1469_8986_2010_01053_x
crossref_primary_10_1016_j_brainres_2016_09_011
crossref_primary_10_1007_s00422_004_0539_6
crossref_primary_10_1016_S1388_2457_02_00299_7
crossref_primary_10_1016_j_neuroimage_2008_03_023
crossref_primary_10_1016_S1053_8119_03_00351_3
crossref_primary_10_3389_fneur_2015_00185
crossref_primary_10_1016_j_neuroimage_2004_12_029
crossref_primary_10_1098_rspb_2001_1620
crossref_primary_10_1155_2016_2073454
crossref_primary_10_1162_jocn_2008_21182
crossref_primary_10_3389_fpsyg_2014_01111
crossref_primary_10_1046_j_1460_9568_2002_02190_x
crossref_primary_10_1016_j_tics_2004_10_005
crossref_primary_10_1016_j_neuroimage_2004_11_007
crossref_primary_10_1016_j_neubiorev_2013_08_003
crossref_primary_10_1007_s00221_005_2354_2
crossref_primary_10_1016_j_ridd_2013_11_002
Cites_doi 10.1016/0013-4694(81)90139-5
10.1098/rspb.1999.0715
10.1016/0306-4522(94)90263-1
10.1097/00001756-199309150-00001
10.1111/j.1469-8986.1987.tb00311.x
10.1016/0013-4694(94)90166-X
10.1016/0167-2789(95)00056-A
10.1016/0013-4694(70)90138-0
10.1016/0013-4694(95)00258-8
10.1038/33922
10.1016/S0924-980X(97)00070-2
10.1016/S0306-4522(98)00521-1
10.1016/S0168-5597(96)96051-7
10.1152/jn.1998.79.3.1567
10.1016/0013-4694(82)90041-4
10.1038/338334a0
10.1016/S0375-9601(99)00908-1
10.1037/0096-1523.25.6.1579
10.1016/S0167-9457(96)00031-0
10.1007/978-3-642-79570-1
10.1016/0013-4694(91)90044-5
10.1016/S1364-6613(97)01059-0
10.1016/S1388-2457(99)00141-8
10.1016/S0924-980X(97)00074-X
10.1097/00001756-199212000-00006
10.1016/0013-4694(77)90235-8
10.1016/0168-5597(95)00048-W
10.1016/0167-2789(96)00059-0
10.1016/S0167-8760(97)00755-1
10.1007/s002210050805
10.1016/B978-0-12-213562-0.50010-3
10.1073/pnas.89.12.5670
10.1016/0375-9601(92)90583-8
10.1006/nimg.2000.0589
10.1016/S0375-9601(99)00909-3
10.1142/S0218127492000537
10.1016/0013-4694(89)90250-2
10.1097/00001756-199808030-00047
ContentType Journal Article
Copyright Copyright © 2001 Wiley‐Liss, Inc.
2001 INIST-CNRS
Copyright 2001 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2001 Wiley‐Liss, Inc.
– notice: 2001 INIST-CNRS
– notice: Copyright 2001 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1002/hbm.1042
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE


Neurosciences Abstracts
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate MEG and Syncopated/Synchronized Coordination
EISSN 1097-0193
EndPage 80
ExternalDocumentID PMC6872034
11500991
1111570
10_1002_hbm_1042
HBM1042
ark_67375_WNG_867P2QZ1_2
Genre article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: National Institutes of Mental Health
  funderid: MH42900; MH01386
– fundername: Human Frontier Science Program
– fundername: National Institute of Neurological Disorders and Stroke
  funderid: NS39845
– fundername: NIMH NIH HHS
  grantid: MH42900
– fundername: NIMH NIH HHS
  grantid: MH01386
– fundername: NINDS NIH HHS
  grantid: NS39845
– fundername: National Institutes of Mental Health
  grantid: MH42900; MH01386
– fundername: National Institute of Neurological Disorders and Stroke
  grantid: NS39845
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAMMB
AANHP
AAYCA
ACCMX
ACRPL
ACYXJ
ADNMO
AEFGJ
AFPKN
AGQPQ
AGXDD
AIDQK
AIDYY
PHGZM
PHGZT
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c5042-1a6ccc5182ea494a92944d1cbf5ad4ab0743e7b55b062f29b94256711165dedd3
IEDL.DBID DR2
ISSN 1065-9471
IngestDate Thu Aug 21 14:06:26 EDT 2025
Fri Jul 11 09:10:29 EDT 2025
Fri Jul 11 02:19:47 EDT 2025
Wed Feb 19 01:23:12 EST 2025
Mon Jul 21 09:16:08 EDT 2025
Thu Apr 24 23:13:26 EDT 2025
Tue Jul 01 04:25:49 EDT 2025
Tue Jul 15 06:20:24 EDT 2025
Wed Oct 30 09:52:07 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Human
Electrodiagnosis
Nervous system diseases
Coordination
Syncope
Consciousness impairment
Central nervous system
Exploration
Neurological disorder
Synchronization
Event evoked potential
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright 2001 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5042-1a6ccc5182ea494a92944d1cbf5ad4ab0743e7b55b062f29b94256711165dedd3
Notes istex:7DE003C3684BA3B86591616E99A8041C6C024871
National Institute of Neurological Disorders and Stroke - No. NS39845
ark:/67375/WNG-867P2QZ1-2
Human Frontier Science Program
National Institutes of Mental Health - No. MH42900; No. MH01386
ArticleID:HBM1042
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6872034
PMID 11500991
PQID 18181298
PQPubID 23462
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6872034
proquest_miscellaneous_71089868
proquest_miscellaneous_18181298
pubmed_primary_11500991
pascalfrancis_primary_1111570
crossref_citationtrail_10_1002_hbm_1042
crossref_primary_10_1002_hbm_1042
wiley_primary_10_1002_hbm_1042_HBM1042
istex_primary_ark_67375_WNG_867P2QZ1_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2001
PublicationDateYYYYMMDD 2001-10-01
PublicationDate_xml – month: 10
  year: 2001
  text: October 2001
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: New York, NY
– name: United States
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2001
Publisher John Wiley & Sons, Inc
Wiley-Liss
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-Liss
References Mayville JM, Bressler SL, Fuchs A, Kelso JAS. 1999. Spatiotemporal reorganization of electrical activity in the human brain associated with a timing transition in rhythmic auditory-motor coordination. Exp Brain Res 127: 371-381.
Carson RG, Chua R, Byblow WD, Poon P, Smethurst CJ. 1999. Changes in posture alter the attentional demands of voluntary movement. Proc R Soc Lond B 266: 853-857.
Daffertshofer A, Peper CE, Beek PJ. 2000. Spectral analyses of event-related encephalographic signals. Phys Lett A 266: 290-302.
Fuchs A, Kelso JAS, Haken H. 1992. Phase transitions in the human brain: spatial mode dynamics. Int J Bif Chaos 2: 917-939.
Kelso JAS. 1995. Dynamic patterns: the self-organization of human brain and behavior. Cambridge, MA: MIT Press.
Temprado JJ, Zanone PG, Monno A, Laurent M. 1999. Attentional load associated with performing and stabilizing preferred bimanual patterns. J Exp Psychol Hum Percept Perform 25: 1579-1594.
Kelso JAS, Bressler SL, Buchanan S, DeGuzman GC, Ding M, Fuchs A, Holroyd T. 1992. A phase transition in human brain and behavior. Phys Lett A 169: 134-144.
Friedrich R, Uhl C. 1996. Spatiotemporal analysis of human electroencephalograms: Petit-Mal epilepsy. Physica D 98: 171-182.
Lins OG, Picton TW. 1995. Auditory steady-state responses to multiple simultaneous stimuli. Electroencephalogr Clin Neurophysiol 96: 420-432.
Leocani L, Toro C, Manganotti P, Zhuang P, Hallett M. 1997. Event-related coherence and event-related desynchronization/synchronization in the 10 Hz and 20 Hz EEG during self-paced movements. Electroencephalogr Clin Neurophysiol 104: 199-206.
Engström DA, Kelso JAS, Holroyd T. 1996. Reaction-anticipation transitions in human perception-action patterns. Hum Mov Sci 15: 809-832.
Lopes da Silva FH, van Rotterdam A, Storm van Leeuwen W, Tielen AM. 1970. Dynamic characteristics of visual evoked potentials in the dog. II. Beta frequency selectivity in evoked potentials and background activity. Electroencephalogr Clin Neurophysiol 29: 260-268.
Pfurtscheller G. 1981. Central beta rhythm during sensory motor activities in man. Electroencephalogr Clin Neurophysiol 51: 253-264.
Haken H. 1996. Principles of brain functioning. Berlin: Springer.
Hari R, Kaila K, Katila T, Tuomisto T, Varpula T. 1982. Interstimulus interval dependence of the auditory vertex response and its magnetic counterpart: implications for their neural generation. Electroencephalogr Clin Neurophysiol 54: 561-569.
Pfurtscheller G, Neuper C. 1992. Simultaneous EEG 10 Hz desynchronization and 40 Hz synchronization during finger movements. NeuroReport 3: 1057-1060.
Lopes da Silva FH. 1991. Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr Clin Neurophysiol 79: 81-93.
Gray CM, König P, Engel AK, Singer W. 1989. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338: 334-337.
Bendat JS, Piersol AG. 1986. Random data: analysis and measurement procedures (2nd edition). New York: Wiley and Sons.
Kelso JAS, Fuchs A, Lancaster R, Holroyd T, Cheyne D, Weinberg H. 1998. Dynamic cortical activity in the human brain reveals motor equivalence. Nature 392: 814-818.
Nashmi R, Mendonça AJ, MacKay WA. 1994. EEG rhythms of the sensorimotor region during hand movements. Electroencephalogr Clinical Neurophysiol 91: 456-467.
Fuchs A, Mayville JM, Cheyne D, Weinberg H, Deecke L, Kelso JAS. 2000b. Spatiotemporal analysis of neuromagnetic events underlying the emergence of coordinative instabilities. Neuroimage 12: 71-84.
Fuchs A, Deecke L, Kelso JAS. 2000a. Phase transitions in the human brain revealed by large SQuID arrays: response to Daffertshofer, Peper and Beek. Phys Lett A 266: 303-308.
MacKay WA. 1997. Synchronized neuronal oscillations and their role in motor processes. Trends Cogn Sci 1: 176-183.
Näätänen R, Picton T. 1987. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24: 375-425.
Pfurtscheller G, Aranibar A. 1977. Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr Clin Neurophysiol 2: 817-826.
Pfurtscheller G, Zalaudek K, Neuper C. 1998. Event-related beta synchronization after wrist, finger and thumb movement. Electroencephalogr Clin Neurophysiol 109: 154-160.
Pfurtscheller G, Lopes da Silva FH. 1999. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110: 1842-1857.
Pfurtscheller G, Berghold A. 1989. Patterns of cortical activation during planning of voluntary movement. Electroencephalogr Clin Neurophysiol 72: 250-258.
Kristeva-Feige R, Feige B, Makeig S, Ross B, Elbert T. 1993. Oscillatory brain activity during a motor task. NeuroReport 4: 1291-1294.
Hari R, Salmelin R, Mäkelä JP, Salenius S, Helle M. 1997. Magnetoencephalographic cortical rhythms. Int J Psychophysiol 26: 51-62.
Vanni S, Portin K, Virsu V, Hari R. 1999. Mu rhythm modulation during changes of visual percepts. Neuroscience 91: 21-31.
Liu L, Ioannides AA, Taylor JG. 1998. Observation of quantization effects in human auditory cortex. NeuroReport 9: 2679-2690.
Salmelin R, Hari R. 1994. Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience 60: 537-550.
Wallenstein GV, Kelso JAS, Bressler SL. 1995. Phase transitions in spatiotemporal patterns of brain activity and behavior. Physica D 20: 626-634.
Manganotti P, Gerloff C, Toro C, Katsuta H, Sadato N, Zhuang P, Leocani L, Hallet M. 1998. Task-related coherence and task-related spectral power changes during sequential finger movements. Electroencephalogr Clin Neurophysiol 109: 50-62.
Pfurtscheller G, Stancák A Jr, Neuper C. 1996. Post-movement beta synchronization. A correlate of an idling motor area? Electroencephalogr Clin Neurophysiol 98: 281-293.
Classen J, Gerloff C, Honda M, Hallett M. 1998. Integrative visuomotor behavior is associated with interregionally coherent oscillations in the human brain. J Neurophysiol 79: 1567-1573.
Murthy VN, Fetz EE. 1992. Coherent 25-30 Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc Natl Acad Sci USA 89: 5670-5674.
1995; 96
1989; 338
1991; 79
1997; 26
1982; 54
1992; 169
1999; 25
1996
1995
1997; 1
1999; 266
1991
1996; 15
1999; 127
1994; 60
1996; 98
1998; 392
1993; 4
1999
2000b; 12
1987; 24
1995; 20
1997; 104
1989; 72
1990
2000a; 266
1986
1999; 110
1998; 109
1977; 2
1982
2000; 266
1994; 91
1970; 29
1999; 91
1992; 89
1981; 51
1992; 2
1992; 3
1998; 9
1998; 79
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_29_1
Kelso JAS (e_1_2_5_18_1) 1991
Bendat JS (e_1_2_5_2_1) 1986
e_1_2_5_42_1
e_1_2_5_41_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
Holroyd T (e_1_2_5_16_1) 1999
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
Kelso JAS (e_1_2_5_20_1) 1995
e_1_2_5_19_1
Kelso JAS (e_1_2_5_17_1) 1990
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – reference: Leocani L, Toro C, Manganotti P, Zhuang P, Hallett M. 1997. Event-related coherence and event-related desynchronization/synchronization in the 10 Hz and 20 Hz EEG during self-paced movements. Electroencephalogr Clin Neurophysiol 104: 199-206.
– reference: Hari R, Kaila K, Katila T, Tuomisto T, Varpula T. 1982. Interstimulus interval dependence of the auditory vertex response and its magnetic counterpart: implications for their neural generation. Electroencephalogr Clin Neurophysiol 54: 561-569.
– reference: Manganotti P, Gerloff C, Toro C, Katsuta H, Sadato N, Zhuang P, Leocani L, Hallet M. 1998. Task-related coherence and task-related spectral power changes during sequential finger movements. Electroencephalogr Clin Neurophysiol 109: 50-62.
– reference: Carson RG, Chua R, Byblow WD, Poon P, Smethurst CJ. 1999. Changes in posture alter the attentional demands of voluntary movement. Proc R Soc Lond B 266: 853-857.
– reference: Liu L, Ioannides AA, Taylor JG. 1998. Observation of quantization effects in human auditory cortex. NeuroReport 9: 2679-2690.
– reference: Pfurtscheller G, Zalaudek K, Neuper C. 1998. Event-related beta synchronization after wrist, finger and thumb movement. Electroencephalogr Clin Neurophysiol 109: 154-160.
– reference: Lopes da Silva FH, van Rotterdam A, Storm van Leeuwen W, Tielen AM. 1970. Dynamic characteristics of visual evoked potentials in the dog. II. Beta frequency selectivity in evoked potentials and background activity. Electroencephalogr Clin Neurophysiol 29: 260-268.
– reference: Pfurtscheller G, Lopes da Silva FH. 1999. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110: 1842-1857.
– reference: Nashmi R, Mendonça AJ, MacKay WA. 1994. EEG rhythms of the sensorimotor region during hand movements. Electroencephalogr Clinical Neurophysiol 91: 456-467.
– reference: Engström DA, Kelso JAS, Holroyd T. 1996. Reaction-anticipation transitions in human perception-action patterns. Hum Mov Sci 15: 809-832.
– reference: Salmelin R, Hari R. 1994. Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience 60: 537-550.
– reference: MacKay WA. 1997. Synchronized neuronal oscillations and their role in motor processes. Trends Cogn Sci 1: 176-183.
– reference: Pfurtscheller G, Stancák A Jr, Neuper C. 1996. Post-movement beta synchronization. A correlate of an idling motor area? Electroencephalogr Clin Neurophysiol 98: 281-293.
– reference: Wallenstein GV, Kelso JAS, Bressler SL. 1995. Phase transitions in spatiotemporal patterns of brain activity and behavior. Physica D 20: 626-634.
– reference: Haken H. 1996. Principles of brain functioning. Berlin: Springer.
– reference: Murthy VN, Fetz EE. 1992. Coherent 25-30 Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc Natl Acad Sci USA 89: 5670-5674.
– reference: Lins OG, Picton TW. 1995. Auditory steady-state responses to multiple simultaneous stimuli. Electroencephalogr Clin Neurophysiol 96: 420-432.
– reference: Pfurtscheller G, Aranibar A. 1977. Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr Clin Neurophysiol 2: 817-826.
– reference: Fuchs A, Kelso JAS, Haken H. 1992. Phase transitions in the human brain: spatial mode dynamics. Int J Bif Chaos 2: 917-939.
– reference: Vanni S, Portin K, Virsu V, Hari R. 1999. Mu rhythm modulation during changes of visual percepts. Neuroscience 91: 21-31.
– reference: Daffertshofer A, Peper CE, Beek PJ. 2000. Spectral analyses of event-related encephalographic signals. Phys Lett A 266: 290-302.
– reference: Friedrich R, Uhl C. 1996. Spatiotemporal analysis of human electroencephalograms: Petit-Mal epilepsy. Physica D 98: 171-182.
– reference: Pfurtscheller G. 1981. Central beta rhythm during sensory motor activities in man. Electroencephalogr Clin Neurophysiol 51: 253-264.
– reference: Gray CM, König P, Engel AK, Singer W. 1989. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338: 334-337.
– reference: Kelso JAS, Fuchs A, Lancaster R, Holroyd T, Cheyne D, Weinberg H. 1998. Dynamic cortical activity in the human brain reveals motor equivalence. Nature 392: 814-818.
– reference: Kelso JAS. 1995. Dynamic patterns: the self-organization of human brain and behavior. Cambridge, MA: MIT Press.
– reference: Kelso JAS, Bressler SL, Buchanan S, DeGuzman GC, Ding M, Fuchs A, Holroyd T. 1992. A phase transition in human brain and behavior. Phys Lett A 169: 134-144.
– reference: Temprado JJ, Zanone PG, Monno A, Laurent M. 1999. Attentional load associated with performing and stabilizing preferred bimanual patterns. J Exp Psychol Hum Percept Perform 25: 1579-1594.
– reference: Kristeva-Feige R, Feige B, Makeig S, Ross B, Elbert T. 1993. Oscillatory brain activity during a motor task. NeuroReport 4: 1291-1294.
– reference: Lopes da Silva FH. 1991. Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr Clin Neurophysiol 79: 81-93.
– reference: Classen J, Gerloff C, Honda M, Hallett M. 1998. Integrative visuomotor behavior is associated with interregionally coherent oscillations in the human brain. J Neurophysiol 79: 1567-1573.
– reference: Fuchs A, Deecke L, Kelso JAS. 2000a. Phase transitions in the human brain revealed by large SQuID arrays: response to Daffertshofer, Peper and Beek. Phys Lett A 266: 303-308.
– reference: Näätänen R, Picton T. 1987. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24: 375-425.
– reference: Hari R, Salmelin R, Mäkelä JP, Salenius S, Helle M. 1997. Magnetoencephalographic cortical rhythms. Int J Psychophysiol 26: 51-62.
– reference: Pfurtscheller G, Neuper C. 1992. Simultaneous EEG 10 Hz desynchronization and 40 Hz synchronization during finger movements. NeuroReport 3: 1057-1060.
– reference: Fuchs A, Mayville JM, Cheyne D, Weinberg H, Deecke L, Kelso JAS. 2000b. Spatiotemporal analysis of neuromagnetic events underlying the emergence of coordinative instabilities. Neuroimage 12: 71-84.
– reference: Bendat JS, Piersol AG. 1986. Random data: analysis and measurement procedures (2nd edition). New York: Wiley and Sons.
– reference: Mayville JM, Bressler SL, Fuchs A, Kelso JAS. 1999. Spatiotemporal reorganization of electrical activity in the human brain associated with a timing transition in rhythmic auditory-motor coordination. Exp Brain Res 127: 371-381.
– reference: Pfurtscheller G, Berghold A. 1989. Patterns of cortical activation during planning of voluntary movement. Electroencephalogr Clin Neurophysiol 72: 250-258.
– volume: 72
  start-page: 250
  year: 1989
  end-page: 258
  article-title: Patterns of cortical activation during planning of voluntary movement
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 15
  start-page: 809
  year: 1996
  end-page: 832
  article-title: Reaction‐anticipation transitions in human perception‐action patterns
  publication-title: Hum Mov Sci
– volume: 79
  start-page: 81
  year: 1991
  end-page: 93
  article-title: Neural mechanisms underlying brain waves: from neural membranes to networks
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 3
  start-page: 1057
  year: 1992
  end-page: 1060
  article-title: Simultaneous EEG 10 Hz desynchronization and 40 Hz synchronization during finger movements
  publication-title: NeuroReport
– start-page: 446
  year: 1999
  end-page: 449
– volume: 266
  start-page: 853
  year: 1999
  end-page: 857
  article-title: Changes in posture alter the attentional demands of voluntary movement
  publication-title: Proc R Soc Lond B
– volume: 91
  start-page: 21
  year: 1999
  end-page: 31
  article-title: Mu rhythm modulation during changes of visual percepts
  publication-title: Neuroscience
– volume: 392
  start-page: 814
  year: 1998
  end-page: 818
  article-title: Dynamic cortical activity in the human brain reveals motor equivalence
  publication-title: Nature
– volume: 25
  start-page: 1579
  year: 1999
  end-page: 1594
  article-title: Attentional load associated with performing and stabilizing preferred bimanual patterns
  publication-title: J Exp Psychol Hum Percept Perform
– volume: 20
  start-page: 626
  year: 1995
  end-page: 634
  article-title: Phase transitions in spatiotemporal patterns of brain activity and behavior
  publication-title: Physica D
– volume: 79
  start-page: 1567
  year: 1998
  end-page: 1573
  article-title: Integrative visuomotor behavior is associated with interregionally coherent oscillations in the human brain
  publication-title: J Neurophysiol
– volume: 266
  start-page: 303
  year: 2000a
  end-page: 308
  article-title: Phase transitions in the human brain revealed by large SQuID arrays: response to Daffertshofer, Peper and Beek
  publication-title: Phys Lett A
– year: 1996
– volume: 4
  start-page: 1291
  year: 1993
  end-page: 1294
  article-title: Oscillatory brain activity during a motor task
  publication-title: NeuroReport
– volume: 51
  start-page: 253
  year: 1981
  end-page: 264
  article-title: Central beta rhythm during sensory motor activities in man
  publication-title: Electroencephalogr Clin Neurophysiol
– start-page: 149
  year: 1982
  end-page: 180
– volume: 1
  start-page: 176
  year: 1997
  end-page: 183
  article-title: Synchronized neuronal oscillations and their role in motor processes
  publication-title: Trends Cogn Sci
– volume: 91
  start-page: 456
  year: 1994
  end-page: 467
  article-title: EEG rhythms of the sensorimotor region during hand movements
  publication-title: Electroencephalogr Clinical Neurophysiol
– volume: 98
  start-page: 171
  year: 1996
  end-page: 182
  article-title: Spatiotemporal analysis of human electroencephalograms: Petit‐Mal epilepsy
  publication-title: Physica D
– volume: 9
  start-page: 2679
  year: 1998
  end-page: 2690
  article-title: Observation of quantization effects in human auditory cortex
  publication-title: NeuroReport
– volume: 266
  start-page: 290
  year: 2000
  end-page: 302
  article-title: Spectral analyses of event‐related encephalographic signals
  publication-title: Phys Lett A
– volume: 26
  start-page: 51
  year: 1997
  end-page: 62
  article-title: Magnetoencephalographic cortical rhythms
  publication-title: Int J Psychophysiol
– volume: 110
  start-page: 1842
  year: 1999
  end-page: 1857
  article-title: Event‐related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin Neurophysiol
– volume: 98
  start-page: 281
  year: 1996
  end-page: 293
  article-title: Post‐movement beta synchronization. A correlate of an idling motor area?
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 60
  start-page: 537
  year: 1994
  end-page: 550
  article-title: Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement
  publication-title: Neuroscience
– year: 1986
– volume: 12
  start-page: 71
  year: 2000b
  end-page: 84
  article-title: Spatiotemporal analysis of neuromagnetic events underlying the emergence of coordinative instabilities
  publication-title: Neuroimage
– volume: 109
  start-page: 50
  year: 1998
  end-page: 62
  article-title: Task‐related coherence and task‐related spectral power changes during sequential finger movements
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 96
  start-page: 420
  year: 1995
  end-page: 432
  article-title: Auditory steady‐state responses to multiple simultaneous stimuli
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 127
  start-page: 371
  year: 1999
  end-page: 381
  article-title: Spatiotemporal reorganization of electrical activity in the human brain associated with a timing transition in rhythmic auditory‐motor coordination
  publication-title: Exp Brain Res
– volume: 169
  start-page: 134
  year: 1992
  end-page: 144
  article-title: A phase transition in human brain and behavior
  publication-title: Phys Lett A
– volume: 54
  start-page: 561
  year: 1982
  end-page: 569
  article-title: Interstimulus interval dependence of the auditory vertex response and its magnetic counterpart: implications for their neural generation
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 104
  start-page: 199
  year: 1997
  end-page: 206
  article-title: Event‐related coherence and event‐related desynchronization/synchronization in the 10 Hz and 20 Hz EEG during self‐paced movements
  publication-title: Electroencephalogr Clin Neurophysiol
– start-page: 97
  year: 1991
  end-page: 112
– volume: 2
  start-page: 817
  year: 1977
  end-page: 826
  article-title: Event‐related cortical desynchronization detected by power measurements of scalp EEG
  publication-title: Electroencephalogr Clin Neurophysiol
– year: 1995
– volume: 338
  start-page: 334
  year: 1989
  end-page: 337
  article-title: Oscillatory responses in cat visual cortex exhibit inter‐columnar synchronization which reflects global stimulus properties
  publication-title: Nature
– volume: 24
  start-page: 375
  year: 1987
  end-page: 425
  article-title: The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure
  publication-title: Psychophysiology
– volume: 109
  start-page: 154
  year: 1998
  end-page: 160
  article-title: Event‐related beta synchronization after wrist, finger and thumb movement
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 2
  start-page: 917
  year: 1992
  end-page: 939
  article-title: Phase transitions in the human brain: spatial mode dynamics
  publication-title: Int J Bif Chaos
– volume: 89
  start-page: 5670
  year: 1992
  end-page: 5674
  article-title: Coherent 25–30 Hz oscillations in the sensorimotor cortex of awake behaving monkeys
  publication-title: Proc Natl Acad Sci USA
– start-page: 139
  year: 1990
  end-page: 169
– volume: 29
  start-page: 260
  year: 1970
  end-page: 268
  article-title: Dynamic characteristics of visual evoked potentials in the dog. II. Beta frequency selectivity in evoked potentials and background activity
  publication-title: Electroencephalogr Clin Neurophysiol
– ident: e_1_2_5_35_1
  doi: 10.1016/0013-4694(81)90139-5
– ident: e_1_2_5_3_1
  doi: 10.1098/rspb.1999.0715
– ident: e_1_2_5_41_1
  doi: 10.1016/0306-4522(94)90263-1
– ident: e_1_2_5_22_1
  doi: 10.1097/00001756-199309150-00001
– ident: e_1_2_5_32_1
  doi: 10.1111/j.1469-8986.1987.tb00311.x
– ident: e_1_2_5_33_1
  doi: 10.1016/0013-4694(94)90166-X
– ident: e_1_2_5_44_1
  doi: 10.1016/0167-2789(95)00056-A
– ident: e_1_2_5_26_1
  doi: 10.1016/0013-4694(70)90138-0
– ident: e_1_2_5_38_1
  doi: 10.1016/0013-4694(95)00258-8
– start-page: 139
  volume-title: Attention and performance XIII
  year: 1990
  ident: e_1_2_5_17_1
– ident: e_1_2_5_21_1
  doi: 10.1038/33922
– ident: e_1_2_5_39_1
  doi: 10.1016/S0924-980X(97)00070-2
– ident: e_1_2_5_43_1
  doi: 10.1016/S0306-4522(98)00521-1
– ident: e_1_2_5_23_1
  doi: 10.1016/S0168-5597(96)96051-7
– volume-title: Random data: analysis and measurement procedures
  year: 1986
  ident: e_1_2_5_2_1
– ident: e_1_2_5_4_1
  doi: 10.1152/jn.1998.79.3.1567
– ident: e_1_2_5_14_1
  doi: 10.1016/0013-4694(82)90041-4
– ident: e_1_2_5_12_1
  doi: 10.1038/338334a0
– ident: e_1_2_5_5_1
  doi: 10.1016/S0375-9601(99)00908-1
– ident: e_1_2_5_42_1
  doi: 10.1037/0096-1523.25.6.1579
– ident: e_1_2_5_6_1
  doi: 10.1016/S0167-9457(96)00031-0
– ident: e_1_2_5_13_1
  doi: 10.1007/978-3-642-79570-1
– ident: e_1_2_5_27_1
  doi: 10.1016/0013-4694(91)90044-5
– ident: e_1_2_5_28_1
  doi: 10.1016/S1364-6613(97)01059-0
– ident: e_1_2_5_40_1
  doi: 10.1016/S1388-2457(99)00141-8
– volume-title: Dynamic patterns: the self‐organization of human brain and behavior
  year: 1995
  ident: e_1_2_5_20_1
– start-page: 446
  volume-title: Recent advances in biomagnetism: Proceedings of the 11th International Conference on Biomagnetism
  year: 1999
  ident: e_1_2_5_16_1
– start-page: 97
  volume-title: Measuring chaos in the human brain
  year: 1991
  ident: e_1_2_5_18_1
– ident: e_1_2_5_29_1
  doi: 10.1016/S0924-980X(97)00074-X
– ident: e_1_2_5_37_1
  doi: 10.1097/00001756-199212000-00006
– ident: e_1_2_5_34_1
  doi: 10.1016/0013-4694(77)90235-8
– ident: e_1_2_5_24_1
  doi: 10.1016/0168-5597(95)00048-W
– ident: e_1_2_5_8_1
  doi: 10.1016/0167-2789(96)00059-0
– ident: e_1_2_5_15_1
  doi: 10.1016/S0167-8760(97)00755-1
– ident: e_1_2_5_30_1
  doi: 10.1007/s002210050805
– ident: e_1_2_5_7_1
  doi: 10.1016/B978-0-12-213562-0.50010-3
– ident: e_1_2_5_31_1
  doi: 10.1073/pnas.89.12.5670
– ident: e_1_2_5_19_1
  doi: 10.1016/0375-9601(92)90583-8
– ident: e_1_2_5_11_1
  doi: 10.1006/nimg.2000.0589
– ident: e_1_2_5_10_1
  doi: 10.1016/S0375-9601(99)00909-3
– ident: e_1_2_5_9_1
  doi: 10.1142/S0218127492000537
– ident: e_1_2_5_36_1
  doi: 10.1016/0013-4694(89)90250-2
– ident: e_1_2_5_25_1
  doi: 10.1097/00001756-199808030-00047
SSID ssj0011501
Score 1.9222139
Snippet For low rhythmic rates (1.0 to ∼2.0 Hz), subjects are able to successfully coordinate finger flexion with an external metronome in either a syncopated (between...
For low rhythmic rates (1.0 to approximately 2.0 Hz), subjects are able to successfully coordinate finger flexion with an external metronome in either a...
For low rhythmic rates (1.0 to similar to 2.0 Hz), subjects are able to successfully coordinate finger flexion with an external metronome in either a...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 65
SubjectTerms Acoustic Stimulation
Adult
auditory
Auditory Cortex - anatomy & histology
Auditory Cortex - physiology
Auditory Perception - physiology
Beta Rhythm
Biological and medical sciences
Brain Mapping
Cerebral Cortex - physiology
Cortical Synchronization
Electrodiagnosis. Electric activity recording
Evoked Potentials - physiology
Female
Functional Laterality - physiology
Humans
Investigative techniques, diagnostic techniques (general aspects)
Magnetoencephalography
Male
Medical sciences
MEG
motor
Motor Cortex - anatomy & histology
Motor Cortex - physiology
Motor Skills - physiology
Movement - physiology
Nervous system
Original
Periodicity
phase transition
Reaction Time - physiology
sensorimotor coordination
Time Factors
Time Perception - physiology
Title Event-related changes in neuromagnetic activity associated with syncopation and synchronization timing tasks
URI https://api.istex.fr/ark:/67375/WNG-867P2QZ1-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.1042
https://www.ncbi.nlm.nih.gov/pubmed/11500991
https://www.proquest.com/docview/18181298
https://www.proquest.com/docview/71089868
https://pubmed.ncbi.nlm.nih.gov/PMC6872034
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA5SQXzx0qpdtTWC1Kdp55K55LGW1kVoUbFY9CHkNm1ZNyudWbA--RP8jf4Sz0lmpl1tQXxalv12IGdOki_Jd74Q8sIA5S-tlBEkg46YznTE49RErE6YspmBSdMLZA-K8SF7c5QfdapKrIUJ_hDDhhv2DD9eYweXqtm6MA09UVM8oMThF6VayIfeD85RyHP8Wgtm2IjDANz7zsbpVv_HhZnoJgb1GyojZQPBqcOtFlfRzr_Vk5dZrZ-W9u6Sz32Dghplsjlv1ab-_ofX4_-1-B6507FVuh3S6z65Yd0yWdl2sFKfntMN6vWjfmN-mdza747pV4jbRRXlrx8_faWMNTSUFzf01FFvoDmVxw6rJymWVeDtFVR2aQJg3BqmzbnTs6D2ptIZ_937-IayUdribWTHtJXNpHlADvd2P-yMo-5ih0jnWA6UyEJrncPSxkrGmQSKxphJtKpzaZhUSGtsqfJcxUVap1xxGFmKMkGrIGONyR6SJTdzdpXQjLM8loBAJpUYrkxW2yxNVMYl0Bc5Ii_7lyx053qOl298EcGvORUQVYFRHZHnA_JrcPq4ArPh82QAyLMJKuPKXHw8eC2qonybvvuUCACuLSTSxRMTdDeKR-RZn1gC-jMe0khnZ_NGAOMCzsWr6xHACSteFYB4FBLx0sNzZPzJiJQLKToA0Et88Rd3euI9xYsKz-MZNNBn4LUREONX-_j5-F-BT8htL9vz-senZKk9m9s14HGtWvc99jdcA0g5
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFLVKKwEbHi2PAKVGgrKaNjPjeS1YFNqS0iYC1IqKjfErbRXioM5EEFZ8Av_Br_AVfAn3eh5toJXYdMEqGuXKmrHvtY_tc88l5LEGyJ8YITxwBuUxFSovawfaY32fSRNqWDQdQbYXd_bYq_1of4b8qHNhSn2I5sANI8PN1xjgeCC9eqIaeiiHeEMZVIzKbTP5DPu1_NnWOgzukyDY3Nh90fGqkgKeijARxRexUioCUG0Ey5gAcMCY9pXsR0IzIXFBNYmMItmOg36QyQx8Ok58FKnRRusQ2r1E5rCAOAr1r79ttKoQWbndHazpXgZTfq102w5W6zedWvvmcBi_IBdT5DAc_bKOxllA92--5mkc7RbCzevkZ92FJf9lsDIu5Ir6-oe65H_SxzfItQqQ07Uygm6SGWPnycKaFcVoOKHL1FFk3d3DPLncrZgIC8RuIFH017fvLhnIaFpmUOf0yFKnEToUBxYTRClmjmCBDiqqSABjPP2m-cSqUUlop8Jq9-ykisvMWFpgwbUDWoh8kN8iexfSCbfJrB1Zc5fQMGNRW4AFgkVfZ1KHfRMGvgwzAQhNtMjT2qu4qoTdsb7IR15KUgccRpHjKLbIo8byUylmcobNsnPMxkAcD5D8l0T8Xe8lT-PkdfDmvc_BcHHKc09a9FHAqd0iS7Unc5iy8B5KWDMa5xxAJcDKLD3fAmBvmqUxWNwpPf9U4xFuavwWSaZiojFAufTpf-zRoZNNj1OkHDD4QOfy5_YA7zzv4u-9fzVcIlc6u90dvrPV275PrjqWoqN7PiCzxfHYLAJsLeRDN11Q8uGiY-c321ulQw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxELZKK1Vc-Gn5CVBqJCinbffHuxsfOBTSkFIaFURFxcXYa29bhThVdyMoJx6B5-BVeAuehBnvbtpAK3HpgVO0yshKPDP25_U33xDyWAPkT42UHgRD5rEsyjzuh9pjecCUiTRsmo4g2096u-zVXrw3Q340tTCVPsTkhRtmhluvMcGPdL52Khp6oIZ4QRnWhMotc_IZjmvFs80O-PZJGHY33r3oeXVHAS-LsQ4lkEmWZTFgaiMZZxKwAWM6yFQeS82kwv3UpCqOlZ-EecgVh5BO0gA1arTROoJxr5A5lvgc20R03k6kqhBYucMdbOkehxW_Ebr1w7Xml05tfXPoxS9IxZQFeCOv2mich3P_pmuehdFuH-xeJz-bGazoL4PVcalWs69_iEv-H1N8g1yr4Thdr_LnJpkxdoEsrltZjoYndIU6gqy7eVgg89s1D2GR2A2kif769t2VAhlNq_rpgh5a6hRCh3LfYnkoxboRbM9BZZ0HYIzvvmlxYrNRRWen0mr37ISKq7pYWmK7tX1aymJQ3CK7lzIJt8msHVlzl9CIs9iXYIFQMdBc6Sg3URioiEvAZ7JFnjZBJbJa1h27i3wSlSB1KMCLAr3YIo8mlkeVlMk5NisuLicG8niA1L80Fu_7L0U7SXfCNx8CAYZLU4F7OmKA8k1-iyw3gSxgwcJbKGnNaFwIgJQAKnn7YgsAvW3eTsDiThX4ZwaP8UgTtEg6lRITAxRLn_7GHh440fSkjYQDBn_QRfyFMyB6z7fx896_Gi6T-Z1OV7ze7G_dJ1cdRdFxPR-Q2fJ4bJYAs5bqoVssKPl42anzG0mfo_I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event%E2%80%90related+changes+in+neuromagnetic+activity+associated+with+syncopation+and+synchronization+timing+tasks&rft.jtitle=Human+brain+mapping&rft.au=Mayville%2C+Justine+M.&rft.au=Fuchs%2C+Armin&rft.au=Ding%2C+Mingzhou&rft.au=Cheyne%2C+Douglas&rft.date=2001-10-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=14&rft.issue=2&rft.spage=65&rft.epage=80&rft_id=info:doi/10.1002%2Fhbm.1042&rft.externalDBID=10.1002%252Fhbm.1042&rft.externalDocID=HBM1042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon