Event-related changes in neuromagnetic activity associated with syncopation and synchronization timing tasks
For low rhythmic rates (1.0 to ∼2.0 Hz), subjects are able to successfully coordinate finger flexion with an external metronome in either a syncopated (between the beats) or synchronized (on each beat) fashion. Beyond this rate, however, syncopation becomes unstable and subjects spontaneously switch...
Saved in:
Published in | Human brain mapping Vol. 14; no. 2; pp. 65 - 80 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
John Wiley & Sons, Inc
01.10.2001
Wiley-Liss |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For low rhythmic rates (1.0 to ∼2.0 Hz), subjects are able to successfully coordinate finger flexion with an external metronome in either a syncopated (between the beats) or synchronized (on each beat) fashion. Beyond this rate, however, syncopation becomes unstable and subjects spontaneously switch to synchronization to maintain a 1:1 stimulus/response relationship. We used a whole‐head magnetometer to investigate the spatiotemporal dynamics of neuromagnetic activity (MEG) associated with both coordinative patterns at eight different rates spanning the range 1.0–2.75 Hz. Timing changes in the event‐related fields accompanied transitions from syncopation to synchronization and followed the placement of the motor response within each stimulus/response cycle. Decomposition of event‐related fields into component auditory and motor brain responses revealed that the amplitude of the former decreased with increasing coordination rate whereas the motor contribution remained approximately constant across all rates. Such an interaction may contribute to changes in auditory‐motor integration that cause syncopation to become unstable. Examination of event‐related changes in high frequency bands revealed that MEG signal power in the beta band (15–30 Hz) was significantly lower during syncopated coordination in sensors covering the contralateral sensorimotor area suggesting a dependence of beta rhythm amplitude on task difficulty. Suppression of beta rhythms was also stronger during synchronization preceded by syncopation, e.g., after subjects had switched, when compared with a control condition in which subjects synchronized throughout the entire range of rates. Hum. Brain Mapping 14:65–80, 2001. © 2001 Wiley‐Liss, Inc. |
---|---|
AbstractList | For low rhythmic rates (1.0 to approximately 2.0 Hz), subjects are able to successfully coordinate finger flexion with an external metronome in either a syncopated (between the beats) or synchronized (on each beat) fashion. Beyond this rate, however, syncopation becomes unstable and subjects spontaneously switch to synchronization to maintain a 1:1 stimulus/response relationship. We used a whole-head magnetometer to investigate the spatiotemporal dynamics of neuromagnetic activity (MEG) associated with both coordinative patterns at eight different rates spanning the range 1.0-2.75 Hz. Timing changes in the event-related fields accompanied transitions from syncopation to synchronization and followed the placement of the motor response within each stimulus/response cycle. Decomposition of event-related fields into component auditory and motor brain responses revealed that the amplitude of the former decreased with increasing coordination rate whereas the motor contribution remained approximately constant across all rates. Such an interaction may contribute to changes in auditory-motor integration that cause syncopation to become unstable. Examination of event-related changes in high frequency bands revealed that MEG signal power in the beta band (15-30 Hz) was significantly lower during syncopated coordination in sensors covering the contralateral sensorimotor area suggesting a dependence of beta rhythm amplitude on task difficulty. Suppression of beta rhythms was also stronger during synchronization preceded by syncopation, e.g., after subjects had switched, when compared with a control condition in which subjects synchronized throughout the entire range of rates. For low rhythmic rates (1.0 to ∼2.0 Hz), subjects are able to successfully coordinate finger flexion with an external metronome in either a syncopated (between the beats) or synchronized (on each beat) fashion. Beyond this rate, however, syncopation becomes unstable and subjects spontaneously switch to synchronization to maintain a 1:1 stimulus/response relationship. We used a whole‐head magnetometer to investigate the spatiotemporal dynamics of neuromagnetic activity (MEG) associated with both coordinative patterns at eight different rates spanning the range 1.0–2.75 Hz. Timing changes in the event‐related fields accompanied transitions from syncopation to synchronization and followed the placement of the motor response within each stimulus/response cycle. Decomposition of event‐related fields into component auditory and motor brain responses revealed that the amplitude of the former decreased with increasing coordination rate whereas the motor contribution remained approximately constant across all rates. Such an interaction may contribute to changes in auditory‐motor integration that cause syncopation to become unstable. Examination of event‐related changes in high frequency bands revealed that MEG signal power in the beta band (15–30 Hz) was significantly lower during syncopated coordination in sensors covering the contralateral sensorimotor area suggesting a dependence of beta rhythm amplitude on task difficulty. Suppression of beta rhythms was also stronger during synchronization preceded by syncopation, e.g., after subjects had switched, when compared with a control condition in which subjects synchronized throughout the entire range of rates. Hum. Brain Mapping 14:65–80, 2001. © 2001 Wiley‐Liss, Inc. For low rhythmic rates (1.0 to similar to 2.0 Hz), subjects are able to successfully coordinate finger flexion with an external metronome in either a syncopated (between the beats) or synchronized (on each beat) fashion. Beyond this rate, however, syncopation becomes unstable and subjects spontaneously switch to synchronization to maintain a 1:1 stimulus/response relationship. We used a whole-head magnetometer to investigate the spatiotemporal dynamics of neuromagnetic activity (MEG) associated with both coordinative patterns at eight different rates spanning the range 1.0-2.75 Hz. Timing changes in the event-related fields accompanied transitions from syncopation to synchronization and followed the placement of the motor response within each stimulus/response cycle. Decomposition of event-related fields into component auditory and motor brain responses revealed that the amplitude of the former decreased with increasing coordination rate whereas the motor contribution remained approximately constant across all rates. Such an interaction may contribute to changes in auditory-motor integration that cause syncopation to become unstable. Examination of event-related changes in high frequency bands revealed that MEG signal power in the beta band (15-30 Hz) was significantly lower during syncopated coordination in sensors covering the contralateral sensorimotor area suggesting a dependence of beta rhythm amplitude on task difficulty. Suppression of beta rhythms was also stronger during synchronization preceded by syncopation, e.g., after subjects had switched, when compared with a control condition in which subjects synchronized throughout the entire range of rates. For low rhythmic rates (1.0 to approximately 2.0 Hz), subjects are able to successfully coordinate finger flexion with an external metronome in either a syncopated (between the beats) or synchronized (on each beat) fashion. Beyond this rate, however, syncopation becomes unstable and subjects spontaneously switch to synchronization to maintain a 1:1 stimulus/response relationship. We used a whole-head magnetometer to investigate the spatiotemporal dynamics of neuromagnetic activity (MEG) associated with both coordinative patterns at eight different rates spanning the range 1.0-2.75 Hz. Timing changes in the event-related fields accompanied transitions from syncopation to synchronization and followed the placement of the motor response within each stimulus/response cycle. Decomposition of event-related fields into component auditory and motor brain responses revealed that the amplitude of the former decreased with increasing coordination rate whereas the motor contribution remained approximately constant across all rates. Such an interaction may contribute to changes in auditory-motor integration that cause syncopation to become unstable. Examination of event-related changes in high frequency bands revealed that MEG signal power in the beta band (15-30 Hz) was significantly lower during syncopated coordination in sensors covering the contralateral sensorimotor area suggesting a dependence of beta rhythm amplitude on task difficulty. Suppression of beta rhythms was also stronger during synchronization preceded by syncopation, e.g., after subjects had switched, when compared with a control condition in which subjects synchronized throughout the entire range of rates.For low rhythmic rates (1.0 to approximately 2.0 Hz), subjects are able to successfully coordinate finger flexion with an external metronome in either a syncopated (between the beats) or synchronized (on each beat) fashion. Beyond this rate, however, syncopation becomes unstable and subjects spontaneously switch to synchronization to maintain a 1:1 stimulus/response relationship. We used a whole-head magnetometer to investigate the spatiotemporal dynamics of neuromagnetic activity (MEG) associated with both coordinative patterns at eight different rates spanning the range 1.0-2.75 Hz. Timing changes in the event-related fields accompanied transitions from syncopation to synchronization and followed the placement of the motor response within each stimulus/response cycle. Decomposition of event-related fields into component auditory and motor brain responses revealed that the amplitude of the former decreased with increasing coordination rate whereas the motor contribution remained approximately constant across all rates. Such an interaction may contribute to changes in auditory-motor integration that cause syncopation to become unstable. Examination of event-related changes in high frequency bands revealed that MEG signal power in the beta band (15-30 Hz) was significantly lower during syncopated coordination in sensors covering the contralateral sensorimotor area suggesting a dependence of beta rhythm amplitude on task difficulty. Suppression of beta rhythms was also stronger during synchronization preceded by syncopation, e.g., after subjects had switched, when compared with a control condition in which subjects synchronized throughout the entire range of rates. |
Author | Mayville, Justine M. Deecke, Lüder Fuchs, Armin Ding, Mingzhou Cheyne, Douglas Kelso, J.A. Scott |
AuthorAffiliation | 3 Department of Clinical Neurology, University of Vienna and General Hospital, Vienna, Austria 2 Simon Fraser University, Vancouver, BC, Canada 1 Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida |
AuthorAffiliation_xml | – name: 1 Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida – name: 3 Department of Clinical Neurology, University of Vienna and General Hospital, Vienna, Austria – name: 2 Simon Fraser University, Vancouver, BC, Canada |
Author_xml | – sequence: 1 givenname: Justine M. surname: Mayville fullname: Mayville, Justine M. organization: Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida – sequence: 2 givenname: Armin surname: Fuchs fullname: Fuchs, Armin email: afuchs@fau.edu organization: Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida – sequence: 3 givenname: Mingzhou surname: Ding fullname: Ding, Mingzhou organization: Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida – sequence: 4 givenname: Douglas surname: Cheyne fullname: Cheyne, Douglas organization: Simon Fraser University, Vancouver, BC, Canada – sequence: 5 givenname: Lüder surname: Deecke fullname: Deecke, Lüder organization: Department of Clinical Neurology, University of Vienna and General Hospital, Vienna, Austria – sequence: 6 givenname: J.A. Scott surname: Kelso fullname: Kelso, J.A. Scott organization: Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1111570$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/11500991$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl2L1DAUhoOsuB8K_gLphYg3XZM0bZobYV32Q1i_QBG8CadpOo3bJmOSmd3x15vOjMOuIpKLc5I85-W8yTlEe9ZZjdBTgo8JxvRV34wpYfQBOiBY8BwTUexNeVXmgnGyjw5D-I4xISUmj9D-FLEQ5AANZ0ttY-71AFG3merBznTIjM2sXng3wszqaFQGKpqliasMQnDKrOEbE_ssrKxyc4jG2Qxsu9733lnzc3MWzWjsLIsQrsNj9LCDIegn23iEvpyffT69zK8-XLw9PbnKVZlM5AQqpVRJaqqBCQaCCsZaopquhJZBgzkrNG_KssEV7ahoBKNlxQkhVdnqti2O0OuN7nzRjLpVyaGHQc69GcGvpAMj799Y08uZW8qq5hQXLAm82Ap492OhQ5SjCUoPA1jtFkFygmtRV_V_QVKnRcUEPrvb0q6X3z-RgOdbAIKCofNglQl3uERynLDjDaa8C8HrTioT1y-djJhBEiyniZBpIuQ0Eang5R8FO8m_0XyD3phBr_7Jycs37-7zJkR9u-PBX8uKF7yUX99fyLriH-mnb0TS4hd55dXS |
CitedBy_id | crossref_primary_10_1037_0096_1523_28_4_776 crossref_primary_10_3758_BF03206433 crossref_primary_10_1007_s00422_005_0558_y crossref_primary_10_3389_fnhum_2017_00582 crossref_primary_10_1073_pnas_0401300101 crossref_primary_10_1007_s00221_012_3103_y crossref_primary_10_1016_j_brainres_2007_03_063 crossref_primary_10_1016_j_neulet_2010_06_054 crossref_primary_10_1007_s00221_018_5343_y crossref_primary_10_1002_hbm_10065 crossref_primary_10_1016_j_neuroimage_2009_09_064 crossref_primary_10_1016_S0167_9457_03_00048_4 crossref_primary_10_1002_mds_22535 crossref_primary_10_1371_journal_pone_0094446 crossref_primary_10_1016_j_neubiorev_2014_10_003 crossref_primary_10_1073_pnas_162114799 crossref_primary_10_1016_j_pneurobio_2007_02_003 crossref_primary_10_1007_s00221_005_0205_9 crossref_primary_10_1016_S0001_6918_02_00033_1 crossref_primary_10_1007_s00422_021_00890_w crossref_primary_10_1016_j_neulet_2010_07_074 crossref_primary_10_1007_s00221_009_1943_x crossref_primary_10_1111_j_1749_6632_2009_04579_x crossref_primary_10_1525_mp_2007_25_1_43 crossref_primary_10_1016_j_neulet_2019_134331 crossref_primary_10_1093_cercor_bhq008 crossref_primary_10_1016_S0304_3940_02_00956_4 crossref_primary_10_1016_S1388_2457_01_00626_5 crossref_primary_10_1016_j_brainres_2006_06_039 crossref_primary_10_1016_j_neuroimage_2011_08_010 crossref_primary_10_1016_j_brainres_2009_06_099 crossref_primary_10_1016_S0001_6918_02_00031_8 crossref_primary_10_3389_fresc_2021_783259 crossref_primary_10_1371_journal_pone_0005248 crossref_primary_10_1111_j_1469_8986_2010_01053_x crossref_primary_10_1016_j_brainres_2016_09_011 crossref_primary_10_1007_s00422_004_0539_6 crossref_primary_10_1016_S1388_2457_02_00299_7 crossref_primary_10_1016_j_neuroimage_2008_03_023 crossref_primary_10_1016_S1053_8119_03_00351_3 crossref_primary_10_3389_fneur_2015_00185 crossref_primary_10_1016_j_neuroimage_2004_12_029 crossref_primary_10_1098_rspb_2001_1620 crossref_primary_10_1155_2016_2073454 crossref_primary_10_1162_jocn_2008_21182 crossref_primary_10_3389_fpsyg_2014_01111 crossref_primary_10_1046_j_1460_9568_2002_02190_x crossref_primary_10_1016_j_tics_2004_10_005 crossref_primary_10_1016_j_neuroimage_2004_11_007 crossref_primary_10_1016_j_neubiorev_2013_08_003 crossref_primary_10_1007_s00221_005_2354_2 crossref_primary_10_1016_j_ridd_2013_11_002 |
Cites_doi | 10.1016/0013-4694(81)90139-5 10.1098/rspb.1999.0715 10.1016/0306-4522(94)90263-1 10.1097/00001756-199309150-00001 10.1111/j.1469-8986.1987.tb00311.x 10.1016/0013-4694(94)90166-X 10.1016/0167-2789(95)00056-A 10.1016/0013-4694(70)90138-0 10.1016/0013-4694(95)00258-8 10.1038/33922 10.1016/S0924-980X(97)00070-2 10.1016/S0306-4522(98)00521-1 10.1016/S0168-5597(96)96051-7 10.1152/jn.1998.79.3.1567 10.1016/0013-4694(82)90041-4 10.1038/338334a0 10.1016/S0375-9601(99)00908-1 10.1037/0096-1523.25.6.1579 10.1016/S0167-9457(96)00031-0 10.1007/978-3-642-79570-1 10.1016/0013-4694(91)90044-5 10.1016/S1364-6613(97)01059-0 10.1016/S1388-2457(99)00141-8 10.1016/S0924-980X(97)00074-X 10.1097/00001756-199212000-00006 10.1016/0013-4694(77)90235-8 10.1016/0168-5597(95)00048-W 10.1016/0167-2789(96)00059-0 10.1016/S0167-8760(97)00755-1 10.1007/s002210050805 10.1016/B978-0-12-213562-0.50010-3 10.1073/pnas.89.12.5670 10.1016/0375-9601(92)90583-8 10.1006/nimg.2000.0589 10.1016/S0375-9601(99)00909-3 10.1142/S0218127492000537 10.1016/0013-4694(89)90250-2 10.1097/00001756-199808030-00047 |
ContentType | Journal Article |
Copyright | Copyright © 2001 Wiley‐Liss, Inc. 2001 INIST-CNRS Copyright 2001 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2001 Wiley‐Liss, Inc. – notice: 2001 INIST-CNRS – notice: Copyright 2001 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1002/hbm.1042 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Neurosciences Abstracts CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | MEG and Syncopated/Synchronized Coordination |
EISSN | 1097-0193 |
EndPage | 80 |
ExternalDocumentID | PMC6872034 11500991 1111570 10_1002_hbm_1042 HBM1042 ark_67375_WNG_867P2QZ1_2 |
Genre | article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: National Institutes of Mental Health funderid: MH42900; MH01386 – fundername: Human Frontier Science Program – fundername: National Institute of Neurological Disorders and Stroke funderid: NS39845 – fundername: NIMH NIH HHS grantid: MH42900 – fundername: NIMH NIH HHS grantid: MH01386 – fundername: NINDS NIH HHS grantid: NS39845 – fundername: National Institutes of Mental Health grantid: MH42900; MH01386 – fundername: National Institute of Neurological Disorders and Stroke grantid: NS39845 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACGFS ACIWK ACPOU ACPRK ACSCC ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAMMB AANHP AAYCA ACCMX ACRPL ACYXJ ADNMO AEFGJ AFPKN AGQPQ AGXDD AIDQK AIDYY PHGZM PHGZT AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c5042-1a6ccc5182ea494a92944d1cbf5ad4ab0743e7b55b062f29b94256711165dedd3 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 |
IngestDate | Thu Aug 21 14:06:26 EDT 2025 Fri Jul 11 09:10:29 EDT 2025 Fri Jul 11 02:19:47 EDT 2025 Wed Feb 19 01:23:12 EST 2025 Mon Jul 21 09:16:08 EDT 2025 Thu Apr 24 23:13:26 EDT 2025 Tue Jul 01 04:25:49 EDT 2025 Tue Jul 15 06:20:24 EDT 2025 Wed Oct 30 09:52:07 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Human Electrodiagnosis Nervous system diseases Coordination Syncope Consciousness impairment Central nervous system Exploration Neurological disorder Synchronization Event evoked potential |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright 2001 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5042-1a6ccc5182ea494a92944d1cbf5ad4ab0743e7b55b062f29b94256711165dedd3 |
Notes | istex:7DE003C3684BA3B86591616E99A8041C6C024871 National Institute of Neurological Disorders and Stroke - No. NS39845 ark:/67375/WNG-867P2QZ1-2 Human Frontier Science Program National Institutes of Mental Health - No. MH42900; No. MH01386 ArticleID:HBM1042 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6872034 |
PMID | 11500991 |
PQID | 18181298 |
PQPubID | 23462 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6872034 proquest_miscellaneous_71089868 proquest_miscellaneous_18181298 pubmed_primary_11500991 pascalfrancis_primary_1111570 crossref_citationtrail_10_1002_hbm_1042 crossref_primary_10_1002_hbm_1042 wiley_primary_10_1002_hbm_1042_HBM1042 istex_primary_ark_67375_WNG_867P2QZ1_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2001 |
PublicationDateYYYYMMDD | 2001-10-01 |
PublicationDate_xml | – month: 10 year: 2001 text: October 2001 |
PublicationDecade | 2000 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: New York, NY – name: United States |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum. Brain Mapp |
PublicationYear | 2001 |
Publisher | John Wiley & Sons, Inc Wiley-Liss |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-Liss |
References | Mayville JM, Bressler SL, Fuchs A, Kelso JAS. 1999. Spatiotemporal reorganization of electrical activity in the human brain associated with a timing transition in rhythmic auditory-motor coordination. Exp Brain Res 127: 371-381. Carson RG, Chua R, Byblow WD, Poon P, Smethurst CJ. 1999. Changes in posture alter the attentional demands of voluntary movement. Proc R Soc Lond B 266: 853-857. Daffertshofer A, Peper CE, Beek PJ. 2000. Spectral analyses of event-related encephalographic signals. Phys Lett A 266: 290-302. Fuchs A, Kelso JAS, Haken H. 1992. Phase transitions in the human brain: spatial mode dynamics. Int J Bif Chaos 2: 917-939. Kelso JAS. 1995. Dynamic patterns: the self-organization of human brain and behavior. Cambridge, MA: MIT Press. Temprado JJ, Zanone PG, Monno A, Laurent M. 1999. Attentional load associated with performing and stabilizing preferred bimanual patterns. J Exp Psychol Hum Percept Perform 25: 1579-1594. Kelso JAS, Bressler SL, Buchanan S, DeGuzman GC, Ding M, Fuchs A, Holroyd T. 1992. A phase transition in human brain and behavior. Phys Lett A 169: 134-144. Friedrich R, Uhl C. 1996. Spatiotemporal analysis of human electroencephalograms: Petit-Mal epilepsy. Physica D 98: 171-182. Lins OG, Picton TW. 1995. Auditory steady-state responses to multiple simultaneous stimuli. Electroencephalogr Clin Neurophysiol 96: 420-432. Leocani L, Toro C, Manganotti P, Zhuang P, Hallett M. 1997. Event-related coherence and event-related desynchronization/synchronization in the 10 Hz and 20 Hz EEG during self-paced movements. Electroencephalogr Clin Neurophysiol 104: 199-206. Engström DA, Kelso JAS, Holroyd T. 1996. Reaction-anticipation transitions in human perception-action patterns. Hum Mov Sci 15: 809-832. Lopes da Silva FH, van Rotterdam A, Storm van Leeuwen W, Tielen AM. 1970. Dynamic characteristics of visual evoked potentials in the dog. II. Beta frequency selectivity in evoked potentials and background activity. Electroencephalogr Clin Neurophysiol 29: 260-268. Pfurtscheller G. 1981. Central beta rhythm during sensory motor activities in man. Electroencephalogr Clin Neurophysiol 51: 253-264. Haken H. 1996. Principles of brain functioning. Berlin: Springer. Hari R, Kaila K, Katila T, Tuomisto T, Varpula T. 1982. Interstimulus interval dependence of the auditory vertex response and its magnetic counterpart: implications for their neural generation. Electroencephalogr Clin Neurophysiol 54: 561-569. Pfurtscheller G, Neuper C. 1992. Simultaneous EEG 10 Hz desynchronization and 40 Hz synchronization during finger movements. NeuroReport 3: 1057-1060. Lopes da Silva FH. 1991. Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr Clin Neurophysiol 79: 81-93. Gray CM, König P, Engel AK, Singer W. 1989. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338: 334-337. Bendat JS, Piersol AG. 1986. Random data: analysis and measurement procedures (2nd edition). New York: Wiley and Sons. Kelso JAS, Fuchs A, Lancaster R, Holroyd T, Cheyne D, Weinberg H. 1998. Dynamic cortical activity in the human brain reveals motor equivalence. Nature 392: 814-818. Nashmi R, Mendonça AJ, MacKay WA. 1994. EEG rhythms of the sensorimotor region during hand movements. Electroencephalogr Clinical Neurophysiol 91: 456-467. Fuchs A, Mayville JM, Cheyne D, Weinberg H, Deecke L, Kelso JAS. 2000b. Spatiotemporal analysis of neuromagnetic events underlying the emergence of coordinative instabilities. Neuroimage 12: 71-84. Fuchs A, Deecke L, Kelso JAS. 2000a. Phase transitions in the human brain revealed by large SQuID arrays: response to Daffertshofer, Peper and Beek. Phys Lett A 266: 303-308. MacKay WA. 1997. Synchronized neuronal oscillations and their role in motor processes. Trends Cogn Sci 1: 176-183. Näätänen R, Picton T. 1987. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24: 375-425. Pfurtscheller G, Aranibar A. 1977. Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr Clin Neurophysiol 2: 817-826. Pfurtscheller G, Zalaudek K, Neuper C. 1998. Event-related beta synchronization after wrist, finger and thumb movement. Electroencephalogr Clin Neurophysiol 109: 154-160. Pfurtscheller G, Lopes da Silva FH. 1999. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110: 1842-1857. Pfurtscheller G, Berghold A. 1989. Patterns of cortical activation during planning of voluntary movement. Electroencephalogr Clin Neurophysiol 72: 250-258. Kristeva-Feige R, Feige B, Makeig S, Ross B, Elbert T. 1993. Oscillatory brain activity during a motor task. NeuroReport 4: 1291-1294. Hari R, Salmelin R, Mäkelä JP, Salenius S, Helle M. 1997. Magnetoencephalographic cortical rhythms. Int J Psychophysiol 26: 51-62. Vanni S, Portin K, Virsu V, Hari R. 1999. Mu rhythm modulation during changes of visual percepts. Neuroscience 91: 21-31. Liu L, Ioannides AA, Taylor JG. 1998. Observation of quantization effects in human auditory cortex. NeuroReport 9: 2679-2690. Salmelin R, Hari R. 1994. Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience 60: 537-550. Wallenstein GV, Kelso JAS, Bressler SL. 1995. Phase transitions in spatiotemporal patterns of brain activity and behavior. Physica D 20: 626-634. Manganotti P, Gerloff C, Toro C, Katsuta H, Sadato N, Zhuang P, Leocani L, Hallet M. 1998. Task-related coherence and task-related spectral power changes during sequential finger movements. Electroencephalogr Clin Neurophysiol 109: 50-62. Pfurtscheller G, Stancák A Jr, Neuper C. 1996. Post-movement beta synchronization. A correlate of an idling motor area? Electroencephalogr Clin Neurophysiol 98: 281-293. Classen J, Gerloff C, Honda M, Hallett M. 1998. Integrative visuomotor behavior is associated with interregionally coherent oscillations in the human brain. J Neurophysiol 79: 1567-1573. Murthy VN, Fetz EE. 1992. Coherent 25-30 Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc Natl Acad Sci USA 89: 5670-5674. 1995; 96 1989; 338 1991; 79 1997; 26 1982; 54 1992; 169 1999; 25 1996 1995 1997; 1 1999; 266 1991 1996; 15 1999; 127 1994; 60 1996; 98 1998; 392 1993; 4 1999 2000b; 12 1987; 24 1995; 20 1997; 104 1989; 72 1990 2000a; 266 1986 1999; 110 1998; 109 1977; 2 1982 2000; 266 1994; 91 1970; 29 1999; 91 1992; 89 1981; 51 1992; 2 1992; 3 1998; 9 1998; 79 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_29_1 Kelso JAS (e_1_2_5_18_1) 1991 Bendat JS (e_1_2_5_2_1) 1986 e_1_2_5_42_1 e_1_2_5_41_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 Holroyd T (e_1_2_5_16_1) 1999 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 Kelso JAS (e_1_2_5_20_1) 1995 e_1_2_5_19_1 Kelso JAS (e_1_2_5_17_1) 1990 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – reference: Leocani L, Toro C, Manganotti P, Zhuang P, Hallett M. 1997. Event-related coherence and event-related desynchronization/synchronization in the 10 Hz and 20 Hz EEG during self-paced movements. Electroencephalogr Clin Neurophysiol 104: 199-206. – reference: Hari R, Kaila K, Katila T, Tuomisto T, Varpula T. 1982. Interstimulus interval dependence of the auditory vertex response and its magnetic counterpart: implications for their neural generation. Electroencephalogr Clin Neurophysiol 54: 561-569. – reference: Manganotti P, Gerloff C, Toro C, Katsuta H, Sadato N, Zhuang P, Leocani L, Hallet M. 1998. Task-related coherence and task-related spectral power changes during sequential finger movements. Electroencephalogr Clin Neurophysiol 109: 50-62. – reference: Carson RG, Chua R, Byblow WD, Poon P, Smethurst CJ. 1999. Changes in posture alter the attentional demands of voluntary movement. Proc R Soc Lond B 266: 853-857. – reference: Liu L, Ioannides AA, Taylor JG. 1998. Observation of quantization effects in human auditory cortex. NeuroReport 9: 2679-2690. – reference: Pfurtscheller G, Zalaudek K, Neuper C. 1998. Event-related beta synchronization after wrist, finger and thumb movement. Electroencephalogr Clin Neurophysiol 109: 154-160. – reference: Lopes da Silva FH, van Rotterdam A, Storm van Leeuwen W, Tielen AM. 1970. Dynamic characteristics of visual evoked potentials in the dog. II. Beta frequency selectivity in evoked potentials and background activity. Electroencephalogr Clin Neurophysiol 29: 260-268. – reference: Pfurtscheller G, Lopes da Silva FH. 1999. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110: 1842-1857. – reference: Nashmi R, Mendonça AJ, MacKay WA. 1994. EEG rhythms of the sensorimotor region during hand movements. Electroencephalogr Clinical Neurophysiol 91: 456-467. – reference: Engström DA, Kelso JAS, Holroyd T. 1996. Reaction-anticipation transitions in human perception-action patterns. Hum Mov Sci 15: 809-832. – reference: Salmelin R, Hari R. 1994. Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience 60: 537-550. – reference: MacKay WA. 1997. Synchronized neuronal oscillations and their role in motor processes. Trends Cogn Sci 1: 176-183. – reference: Pfurtscheller G, Stancák A Jr, Neuper C. 1996. Post-movement beta synchronization. A correlate of an idling motor area? Electroencephalogr Clin Neurophysiol 98: 281-293. – reference: Wallenstein GV, Kelso JAS, Bressler SL. 1995. Phase transitions in spatiotemporal patterns of brain activity and behavior. Physica D 20: 626-634. – reference: Haken H. 1996. Principles of brain functioning. Berlin: Springer. – reference: Murthy VN, Fetz EE. 1992. Coherent 25-30 Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc Natl Acad Sci USA 89: 5670-5674. – reference: Lins OG, Picton TW. 1995. Auditory steady-state responses to multiple simultaneous stimuli. Electroencephalogr Clin Neurophysiol 96: 420-432. – reference: Pfurtscheller G, Aranibar A. 1977. Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr Clin Neurophysiol 2: 817-826. – reference: Fuchs A, Kelso JAS, Haken H. 1992. Phase transitions in the human brain: spatial mode dynamics. Int J Bif Chaos 2: 917-939. – reference: Vanni S, Portin K, Virsu V, Hari R. 1999. Mu rhythm modulation during changes of visual percepts. Neuroscience 91: 21-31. – reference: Daffertshofer A, Peper CE, Beek PJ. 2000. Spectral analyses of event-related encephalographic signals. Phys Lett A 266: 290-302. – reference: Friedrich R, Uhl C. 1996. Spatiotemporal analysis of human electroencephalograms: Petit-Mal epilepsy. Physica D 98: 171-182. – reference: Pfurtscheller G. 1981. Central beta rhythm during sensory motor activities in man. Electroencephalogr Clin Neurophysiol 51: 253-264. – reference: Gray CM, König P, Engel AK, Singer W. 1989. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338: 334-337. – reference: Kelso JAS, Fuchs A, Lancaster R, Holroyd T, Cheyne D, Weinberg H. 1998. Dynamic cortical activity in the human brain reveals motor equivalence. Nature 392: 814-818. – reference: Kelso JAS. 1995. Dynamic patterns: the self-organization of human brain and behavior. Cambridge, MA: MIT Press. – reference: Kelso JAS, Bressler SL, Buchanan S, DeGuzman GC, Ding M, Fuchs A, Holroyd T. 1992. A phase transition in human brain and behavior. Phys Lett A 169: 134-144. – reference: Temprado JJ, Zanone PG, Monno A, Laurent M. 1999. Attentional load associated with performing and stabilizing preferred bimanual patterns. J Exp Psychol Hum Percept Perform 25: 1579-1594. – reference: Kristeva-Feige R, Feige B, Makeig S, Ross B, Elbert T. 1993. Oscillatory brain activity during a motor task. NeuroReport 4: 1291-1294. – reference: Lopes da Silva FH. 1991. Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr Clin Neurophysiol 79: 81-93. – reference: Classen J, Gerloff C, Honda M, Hallett M. 1998. Integrative visuomotor behavior is associated with interregionally coherent oscillations in the human brain. J Neurophysiol 79: 1567-1573. – reference: Fuchs A, Deecke L, Kelso JAS. 2000a. Phase transitions in the human brain revealed by large SQuID arrays: response to Daffertshofer, Peper and Beek. Phys Lett A 266: 303-308. – reference: Näätänen R, Picton T. 1987. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24: 375-425. – reference: Hari R, Salmelin R, Mäkelä JP, Salenius S, Helle M. 1997. Magnetoencephalographic cortical rhythms. Int J Psychophysiol 26: 51-62. – reference: Pfurtscheller G, Neuper C. 1992. Simultaneous EEG 10 Hz desynchronization and 40 Hz synchronization during finger movements. NeuroReport 3: 1057-1060. – reference: Fuchs A, Mayville JM, Cheyne D, Weinberg H, Deecke L, Kelso JAS. 2000b. Spatiotemporal analysis of neuromagnetic events underlying the emergence of coordinative instabilities. Neuroimage 12: 71-84. – reference: Bendat JS, Piersol AG. 1986. Random data: analysis and measurement procedures (2nd edition). New York: Wiley and Sons. – reference: Mayville JM, Bressler SL, Fuchs A, Kelso JAS. 1999. Spatiotemporal reorganization of electrical activity in the human brain associated with a timing transition in rhythmic auditory-motor coordination. Exp Brain Res 127: 371-381. – reference: Pfurtscheller G, Berghold A. 1989. Patterns of cortical activation during planning of voluntary movement. Electroencephalogr Clin Neurophysiol 72: 250-258. – volume: 72 start-page: 250 year: 1989 end-page: 258 article-title: Patterns of cortical activation during planning of voluntary movement publication-title: Electroencephalogr Clin Neurophysiol – volume: 15 start-page: 809 year: 1996 end-page: 832 article-title: Reaction‐anticipation transitions in human perception‐action patterns publication-title: Hum Mov Sci – volume: 79 start-page: 81 year: 1991 end-page: 93 article-title: Neural mechanisms underlying brain waves: from neural membranes to networks publication-title: Electroencephalogr Clin Neurophysiol – volume: 3 start-page: 1057 year: 1992 end-page: 1060 article-title: Simultaneous EEG 10 Hz desynchronization and 40 Hz synchronization during finger movements publication-title: NeuroReport – start-page: 446 year: 1999 end-page: 449 – volume: 266 start-page: 853 year: 1999 end-page: 857 article-title: Changes in posture alter the attentional demands of voluntary movement publication-title: Proc R Soc Lond B – volume: 91 start-page: 21 year: 1999 end-page: 31 article-title: Mu rhythm modulation during changes of visual percepts publication-title: Neuroscience – volume: 392 start-page: 814 year: 1998 end-page: 818 article-title: Dynamic cortical activity in the human brain reveals motor equivalence publication-title: Nature – volume: 25 start-page: 1579 year: 1999 end-page: 1594 article-title: Attentional load associated with performing and stabilizing preferred bimanual patterns publication-title: J Exp Psychol Hum Percept Perform – volume: 20 start-page: 626 year: 1995 end-page: 634 article-title: Phase transitions in spatiotemporal patterns of brain activity and behavior publication-title: Physica D – volume: 79 start-page: 1567 year: 1998 end-page: 1573 article-title: Integrative visuomotor behavior is associated with interregionally coherent oscillations in the human brain publication-title: J Neurophysiol – volume: 266 start-page: 303 year: 2000a end-page: 308 article-title: Phase transitions in the human brain revealed by large SQuID arrays: response to Daffertshofer, Peper and Beek publication-title: Phys Lett A – year: 1996 – volume: 4 start-page: 1291 year: 1993 end-page: 1294 article-title: Oscillatory brain activity during a motor task publication-title: NeuroReport – volume: 51 start-page: 253 year: 1981 end-page: 264 article-title: Central beta rhythm during sensory motor activities in man publication-title: Electroencephalogr Clin Neurophysiol – start-page: 149 year: 1982 end-page: 180 – volume: 1 start-page: 176 year: 1997 end-page: 183 article-title: Synchronized neuronal oscillations and their role in motor processes publication-title: Trends Cogn Sci – volume: 91 start-page: 456 year: 1994 end-page: 467 article-title: EEG rhythms of the sensorimotor region during hand movements publication-title: Electroencephalogr Clinical Neurophysiol – volume: 98 start-page: 171 year: 1996 end-page: 182 article-title: Spatiotemporal analysis of human electroencephalograms: Petit‐Mal epilepsy publication-title: Physica D – volume: 9 start-page: 2679 year: 1998 end-page: 2690 article-title: Observation of quantization effects in human auditory cortex publication-title: NeuroReport – volume: 266 start-page: 290 year: 2000 end-page: 302 article-title: Spectral analyses of event‐related encephalographic signals publication-title: Phys Lett A – volume: 26 start-page: 51 year: 1997 end-page: 62 article-title: Magnetoencephalographic cortical rhythms publication-title: Int J Psychophysiol – volume: 110 start-page: 1842 year: 1999 end-page: 1857 article-title: Event‐related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin Neurophysiol – volume: 98 start-page: 281 year: 1996 end-page: 293 article-title: Post‐movement beta synchronization. A correlate of an idling motor area? publication-title: Electroencephalogr Clin Neurophysiol – volume: 60 start-page: 537 year: 1994 end-page: 550 article-title: Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement publication-title: Neuroscience – year: 1986 – volume: 12 start-page: 71 year: 2000b end-page: 84 article-title: Spatiotemporal analysis of neuromagnetic events underlying the emergence of coordinative instabilities publication-title: Neuroimage – volume: 109 start-page: 50 year: 1998 end-page: 62 article-title: Task‐related coherence and task‐related spectral power changes during sequential finger movements publication-title: Electroencephalogr Clin Neurophysiol – volume: 96 start-page: 420 year: 1995 end-page: 432 article-title: Auditory steady‐state responses to multiple simultaneous stimuli publication-title: Electroencephalogr Clin Neurophysiol – volume: 127 start-page: 371 year: 1999 end-page: 381 article-title: Spatiotemporal reorganization of electrical activity in the human brain associated with a timing transition in rhythmic auditory‐motor coordination publication-title: Exp Brain Res – volume: 169 start-page: 134 year: 1992 end-page: 144 article-title: A phase transition in human brain and behavior publication-title: Phys Lett A – volume: 54 start-page: 561 year: 1982 end-page: 569 article-title: Interstimulus interval dependence of the auditory vertex response and its magnetic counterpart: implications for their neural generation publication-title: Electroencephalogr Clin Neurophysiol – volume: 104 start-page: 199 year: 1997 end-page: 206 article-title: Event‐related coherence and event‐related desynchronization/synchronization in the 10 Hz and 20 Hz EEG during self‐paced movements publication-title: Electroencephalogr Clin Neurophysiol – start-page: 97 year: 1991 end-page: 112 – volume: 2 start-page: 817 year: 1977 end-page: 826 article-title: Event‐related cortical desynchronization detected by power measurements of scalp EEG publication-title: Electroencephalogr Clin Neurophysiol – year: 1995 – volume: 338 start-page: 334 year: 1989 end-page: 337 article-title: Oscillatory responses in cat visual cortex exhibit inter‐columnar synchronization which reflects global stimulus properties publication-title: Nature – volume: 24 start-page: 375 year: 1987 end-page: 425 article-title: The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure publication-title: Psychophysiology – volume: 109 start-page: 154 year: 1998 end-page: 160 article-title: Event‐related beta synchronization after wrist, finger and thumb movement publication-title: Electroencephalogr Clin Neurophysiol – volume: 2 start-page: 917 year: 1992 end-page: 939 article-title: Phase transitions in the human brain: spatial mode dynamics publication-title: Int J Bif Chaos – volume: 89 start-page: 5670 year: 1992 end-page: 5674 article-title: Coherent 25–30 Hz oscillations in the sensorimotor cortex of awake behaving monkeys publication-title: Proc Natl Acad Sci USA – start-page: 139 year: 1990 end-page: 169 – volume: 29 start-page: 260 year: 1970 end-page: 268 article-title: Dynamic characteristics of visual evoked potentials in the dog. II. Beta frequency selectivity in evoked potentials and background activity publication-title: Electroencephalogr Clin Neurophysiol – ident: e_1_2_5_35_1 doi: 10.1016/0013-4694(81)90139-5 – ident: e_1_2_5_3_1 doi: 10.1098/rspb.1999.0715 – ident: e_1_2_5_41_1 doi: 10.1016/0306-4522(94)90263-1 – ident: e_1_2_5_22_1 doi: 10.1097/00001756-199309150-00001 – ident: e_1_2_5_32_1 doi: 10.1111/j.1469-8986.1987.tb00311.x – ident: e_1_2_5_33_1 doi: 10.1016/0013-4694(94)90166-X – ident: e_1_2_5_44_1 doi: 10.1016/0167-2789(95)00056-A – ident: e_1_2_5_26_1 doi: 10.1016/0013-4694(70)90138-0 – ident: e_1_2_5_38_1 doi: 10.1016/0013-4694(95)00258-8 – start-page: 139 volume-title: Attention and performance XIII year: 1990 ident: e_1_2_5_17_1 – ident: e_1_2_5_21_1 doi: 10.1038/33922 – ident: e_1_2_5_39_1 doi: 10.1016/S0924-980X(97)00070-2 – ident: e_1_2_5_43_1 doi: 10.1016/S0306-4522(98)00521-1 – ident: e_1_2_5_23_1 doi: 10.1016/S0168-5597(96)96051-7 – volume-title: Random data: analysis and measurement procedures year: 1986 ident: e_1_2_5_2_1 – ident: e_1_2_5_4_1 doi: 10.1152/jn.1998.79.3.1567 – ident: e_1_2_5_14_1 doi: 10.1016/0013-4694(82)90041-4 – ident: e_1_2_5_12_1 doi: 10.1038/338334a0 – ident: e_1_2_5_5_1 doi: 10.1016/S0375-9601(99)00908-1 – ident: e_1_2_5_42_1 doi: 10.1037/0096-1523.25.6.1579 – ident: e_1_2_5_6_1 doi: 10.1016/S0167-9457(96)00031-0 – ident: e_1_2_5_13_1 doi: 10.1007/978-3-642-79570-1 – ident: e_1_2_5_27_1 doi: 10.1016/0013-4694(91)90044-5 – ident: e_1_2_5_28_1 doi: 10.1016/S1364-6613(97)01059-0 – ident: e_1_2_5_40_1 doi: 10.1016/S1388-2457(99)00141-8 – volume-title: Dynamic patterns: the self‐organization of human brain and behavior year: 1995 ident: e_1_2_5_20_1 – start-page: 446 volume-title: Recent advances in biomagnetism: Proceedings of the 11th International Conference on Biomagnetism year: 1999 ident: e_1_2_5_16_1 – start-page: 97 volume-title: Measuring chaos in the human brain year: 1991 ident: e_1_2_5_18_1 – ident: e_1_2_5_29_1 doi: 10.1016/S0924-980X(97)00074-X – ident: e_1_2_5_37_1 doi: 10.1097/00001756-199212000-00006 – ident: e_1_2_5_34_1 doi: 10.1016/0013-4694(77)90235-8 – ident: e_1_2_5_24_1 doi: 10.1016/0168-5597(95)00048-W – ident: e_1_2_5_8_1 doi: 10.1016/0167-2789(96)00059-0 – ident: e_1_2_5_15_1 doi: 10.1016/S0167-8760(97)00755-1 – ident: e_1_2_5_30_1 doi: 10.1007/s002210050805 – ident: e_1_2_5_7_1 doi: 10.1016/B978-0-12-213562-0.50010-3 – ident: e_1_2_5_31_1 doi: 10.1073/pnas.89.12.5670 – ident: e_1_2_5_19_1 doi: 10.1016/0375-9601(92)90583-8 – ident: e_1_2_5_11_1 doi: 10.1006/nimg.2000.0589 – ident: e_1_2_5_10_1 doi: 10.1016/S0375-9601(99)00909-3 – ident: e_1_2_5_9_1 doi: 10.1142/S0218127492000537 – ident: e_1_2_5_36_1 doi: 10.1016/0013-4694(89)90250-2 – ident: e_1_2_5_25_1 doi: 10.1097/00001756-199808030-00047 |
SSID | ssj0011501 |
Score | 1.9222139 |
Snippet | For low rhythmic rates (1.0 to ∼2.0 Hz), subjects are able to successfully coordinate finger flexion with an external metronome in either a syncopated (between... For low rhythmic rates (1.0 to approximately 2.0 Hz), subjects are able to successfully coordinate finger flexion with an external metronome in either a... For low rhythmic rates (1.0 to similar to 2.0 Hz), subjects are able to successfully coordinate finger flexion with an external metronome in either a... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 65 |
SubjectTerms | Acoustic Stimulation Adult auditory Auditory Cortex - anatomy & histology Auditory Cortex - physiology Auditory Perception - physiology Beta Rhythm Biological and medical sciences Brain Mapping Cerebral Cortex - physiology Cortical Synchronization Electrodiagnosis. Electric activity recording Evoked Potentials - physiology Female Functional Laterality - physiology Humans Investigative techniques, diagnostic techniques (general aspects) Magnetoencephalography Male Medical sciences MEG motor Motor Cortex - anatomy & histology Motor Cortex - physiology Motor Skills - physiology Movement - physiology Nervous system Original Periodicity phase transition Reaction Time - physiology sensorimotor coordination Time Factors Time Perception - physiology |
Title | Event-related changes in neuromagnetic activity associated with syncopation and synchronization timing tasks |
URI | https://api.istex.fr/ark:/67375/WNG-867P2QZ1-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.1042 https://www.ncbi.nlm.nih.gov/pubmed/11500991 https://www.proquest.com/docview/18181298 https://www.proquest.com/docview/71089868 https://pubmed.ncbi.nlm.nih.gov/PMC6872034 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA5SQXzx0qpdtTWC1Kdp55K55LGW1kVoUbFY9CHkNm1ZNyudWbA--RP8jf4Sz0lmpl1tQXxalv12IGdOki_Jd74Q8sIA5S-tlBEkg46YznTE49RErE6YspmBSdMLZA-K8SF7c5QfdapKrIUJ_hDDhhv2DD9eYweXqtm6MA09UVM8oMThF6VayIfeD85RyHP8Wgtm2IjDANz7zsbpVv_HhZnoJgb1GyojZQPBqcOtFlfRzr_Vk5dZrZ-W9u6Sz32Dghplsjlv1ab-_ofX4_-1-B6507FVuh3S6z65Yd0yWdl2sFKfntMN6vWjfmN-mdza747pV4jbRRXlrx8_faWMNTSUFzf01FFvoDmVxw6rJymWVeDtFVR2aQJg3BqmzbnTs6D2ptIZ_937-IayUdribWTHtJXNpHlADvd2P-yMo-5ih0jnWA6UyEJrncPSxkrGmQSKxphJtKpzaZhUSGtsqfJcxUVap1xxGFmKMkGrIGONyR6SJTdzdpXQjLM8loBAJpUYrkxW2yxNVMYl0Bc5Ii_7lyx053qOl298EcGvORUQVYFRHZHnA_JrcPq4ArPh82QAyLMJKuPKXHw8eC2qonybvvuUCACuLSTSxRMTdDeKR-RZn1gC-jMe0khnZ_NGAOMCzsWr6xHACSteFYB4FBLx0sNzZPzJiJQLKToA0Et88Rd3euI9xYsKz-MZNNBn4LUREONX-_j5-F-BT8htL9vz-senZKk9m9s14HGtWvc99jdcA0g5 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFLVKKwEbHi2PAKVGgrKaNjPjeS1YFNqS0iYC1IqKjfErbRXioM5EEFZ8Av_Br_AVfAn3eh5toJXYdMEqGuXKmrHvtY_tc88l5LEGyJ8YITxwBuUxFSovawfaY32fSRNqWDQdQbYXd_bYq_1of4b8qHNhSn2I5sANI8PN1xjgeCC9eqIaeiiHeEMZVIzKbTP5DPu1_NnWOgzukyDY3Nh90fGqkgKeijARxRexUioCUG0Ey5gAcMCY9pXsR0IzIXFBNYmMItmOg36QyQx8Ok58FKnRRusQ2r1E5rCAOAr1r79ttKoQWbndHazpXgZTfq102w5W6zedWvvmcBi_IBdT5DAc_bKOxllA92--5mkc7RbCzevkZ92FJf9lsDIu5Ir6-oe65H_SxzfItQqQ07Uygm6SGWPnycKaFcVoOKHL1FFk3d3DPLncrZgIC8RuIFH017fvLhnIaFpmUOf0yFKnEToUBxYTRClmjmCBDiqqSABjPP2m-cSqUUlop8Jq9-ykisvMWFpgwbUDWoh8kN8iexfSCbfJrB1Zc5fQMGNRW4AFgkVfZ1KHfRMGvgwzAQhNtMjT2qu4qoTdsb7IR15KUgccRpHjKLbIo8byUylmcobNsnPMxkAcD5D8l0T8Xe8lT-PkdfDmvc_BcHHKc09a9FHAqd0iS7Unc5iy8B5KWDMa5xxAJcDKLD3fAmBvmqUxWNwpPf9U4xFuavwWSaZiojFAufTpf-zRoZNNj1OkHDD4QOfy5_YA7zzv4u-9fzVcIlc6u90dvrPV275PrjqWoqN7PiCzxfHYLAJsLeRDN11Q8uGiY-c321ulQw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxELZKK1Vc-Gn5CVBqJCinbffHuxsfOBTSkFIaFURFxcXYa29bhThVdyMoJx6B5-BVeAuehBnvbtpAK3HpgVO0yshKPDP25_U33xDyWAPkT42UHgRD5rEsyjzuh9pjecCUiTRsmo4g2096u-zVXrw3Q340tTCVPsTkhRtmhluvMcGPdL52Khp6oIZ4QRnWhMotc_IZjmvFs80O-PZJGHY33r3oeXVHAS-LsQ4lkEmWZTFgaiMZZxKwAWM6yFQeS82kwv3UpCqOlZ-EecgVh5BO0gA1arTROoJxr5A5lvgc20R03k6kqhBYucMdbOkehxW_Ebr1w7Xml05tfXPoxS9IxZQFeCOv2mich3P_pmuehdFuH-xeJz-bGazoL4PVcalWs69_iEv-H1N8g1yr4Thdr_LnJpkxdoEsrltZjoYndIU6gqy7eVgg89s1D2GR2A2kif769t2VAhlNq_rpgh5a6hRCh3LfYnkoxboRbM9BZZ0HYIzvvmlxYrNRRWen0mr37ISKq7pYWmK7tX1aymJQ3CK7lzIJt8msHVlzl9CIs9iXYIFQMdBc6Sg3URioiEvAZ7JFnjZBJbJa1h27i3wSlSB1KMCLAr3YIo8mlkeVlMk5NisuLicG8niA1L80Fu_7L0U7SXfCNx8CAYZLU4F7OmKA8k1-iyw3gSxgwcJbKGnNaFwIgJQAKnn7YgsAvW3eTsDiThX4ZwaP8UgTtEg6lRITAxRLn_7GHh440fSkjYQDBn_QRfyFMyB6z7fx896_Gi6T-Z1OV7ze7G_dJ1cdRdFxPR-Q2fJ4bJYAs5bqoVssKPl42anzG0mfo_I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event%E2%80%90related+changes+in+neuromagnetic+activity+associated+with+syncopation+and+synchronization+timing+tasks&rft.jtitle=Human+brain+mapping&rft.au=Mayville%2C+Justine+M.&rft.au=Fuchs%2C+Armin&rft.au=Ding%2C+Mingzhou&rft.au=Cheyne%2C+Douglas&rft.date=2001-10-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=14&rft.issue=2&rft.spage=65&rft.epage=80&rft_id=info:doi/10.1002%2Fhbm.1042&rft.externalDBID=10.1002%252Fhbm.1042&rft.externalDocID=HBM1042 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |