The multiparameter remote measurement of rainfall

The measurement of rainfall by remote sensors is investigated. One parameter radar rainfall measurement is limited because both reflectivity and rain rate are dependent on at least two parameters of the drop size distribution (DSD), i.e., representative raindrop size and number concentration. A gene...

Full description

Saved in:
Bibliographic Details
Published inRadio science Vol. 19; no. 1; pp. 3 - 22
Main Authors Atlas, D., Meneghini, R., Ulbrich, C. W.
Format Journal Article
LanguageEnglish
Published Legacy CDMS Blackwell Publishing Ltd 01.01.1984
Subjects
Online AccessGet full text
ISSN0048-6604
1944-799X
DOI10.1029/RS019i001p00003

Cover

Abstract The measurement of rainfall by remote sensors is investigated. One parameter radar rainfall measurement is limited because both reflectivity and rain rate are dependent on at least two parameters of the drop size distribution (DSD), i.e., representative raindrop size and number concentration. A generating rain parameter diagram is developed which includes a third distribution parameter, the breadth of the DSD, to better specify rain rate and all possible remote variables. Simulations show the improvement in accuracy attainable through the use of combinations of two and three remote measurables. The spectrum of remote measurables is reviewed. These include path integrated techniques of radiometry and of microwave and optical attenuation. Previously announced in STAR as N82-33947
AbstractList This paper is a critical survey of the measurement of rainfall by remote sensors. It is shown that single‐parameter radar rainfall measurements are limited because both reflectivity and rain rate are dependent on at least two parameters of the drop size distribution, viz., representative raindrop size and number concentration. Simulations are presented which use experimental raindrop size spectra and show the improvement in accuracy attainable through the use of combinations of two and three remote measurables. The spectrum of remote measurables is then reviewed. These include path integrated techniques of radiometry and of microwave and optical attenuation. A carefully designed short‐path microwave attenuation experiment which employs these techniques is sufficiently persuasive to show that the disappointing results achieved in many others was due largely to a combination of rain sampling problems and vertical air motions between the path and the gages. Other experiments reviewed show that when paths are colinear, attenuation deduced from radar and radiometry is in good agreement with that measured directly. Several dual‐wavelength radar methods are described which were aimed at improved measurements in small range increments but have produced generally disappointing results. However, when the total path attenuation estimated in this way, or by radiometry, is used as a constraint on the retrieval of rain profiles from the radar, the results are more promising. Selected experiments involving combinations of two or more of the three measurables, radar reflectivity Z, attenuation, and/or radiometry, show considerable promise when adequate account is taken of the sampling and air motion problems. The best results in gate‐by‐gate measurements have been achieved with dual polarization or differential reflectivity (ZDR). However, even these are subject to potentially large errors when the rainfall does not behave according to a priori assumptions embodied in the technique. An accompanying paper in this issue shows that the use of a third remote parameter in addition to Z and ZDR offers great promise. With a growing appreciation of the needs and the capabilities of the various techniques, the future of highly improved remote rainfall measurements seems bright.
This paper is a critical survey of rainfall measurement by remote sensors. It is shown that single-parameter radar rainfall measurements are limited because both reflectivity and rain rate are dependent upon at least two parameters of the drop size distribution: representative raindrop size and number concentration. Simulations are presented which use experimental raindrop size spectra and show the improvement in accuracy attainable through the use of combinations of two and three remote measurables. The spectrum of remote measurables is then reviewed. These include path-integrated techniques of radiometry and of microwave and optical attenuation. A carefully designed short-path microwave attenuation experiment that uses these techniques is sufficiently persuasive to show that the disappointing results achieved by many others was due largely to a combination of rain sampling problems and vertical air motions between the path and the gages. Other experiments reviewed show that, when paths are colinear, attenuation deduced from radar and radiometry is in good agreement with that measured directly. Several dual-wavelength radar methods are described which were aimed at improved measurements in small-range increments but have produced generally disappointing results. However, when the total path attenuation estimated in this way, or by radiometry, is used as a constraint on the retrieval of rain profiles from the radar, the results are more promising. Selected experiments involving combinations of two or more of the three measurables, radar reflectivity Z, attenuation, and/or radiometry, show considerable promise when adequate account is taken of the sampling and air motion problems. The best results in gate-by-gate measurements have been achieved with dual polarization or differential reflectivity (Z sub(D) sub(R) ). However, even these are subject to potentially large errors when the rainfall does not behave according to a priori assumptions embodied in the technique. An accompanying paper in this issue shows that the use of a third remote parameter in addition to Z and Z sub(D) sub(R) offers great promise. With a growing appreciation of the needs and the capabilities of the various techniques, the future of highly improved remote rainfall measurements seems bright.
The measurement of rainfall by remote sensors is investigated. One parameter radar rainfall measurement is limited because both reflectivity and rain rate are dependent on at least two parameters of the drop size distribution (DSD), i.e., representative raindrop size and number concentration. A generating rain parameter diagram is developed which includes a third distribution parameter, the breadth of the DSD, to better specify rain rate and all possible remote variables. Simulations show the improvement in accuracy attainable through the use of combinations of two and three remote measurables. The spectrum of remote measurables is reviewed. These include path integrated techniques of radiometry and of microwave and optical attenuation. Previously announced in STAR as N82-33947
This paper is a critical survey of the measurement of rainfall by remote sensors. It is shown that single‐parameter radar rainfall measurements are limited because both reflectivity and rain rate are dependent on at least two parameters of the drop size distribution, viz., representative raindrop size and number concentration. Simulations are presented which use experimental raindrop size spectra and show the improvement in accuracy attainable through the use of combinations of two and three remote measurables. The spectrum of remote measurables is then reviewed. These include path integrated techniques of radiometry and of microwave and optical attenuation. A carefully designed short‐path microwave attenuation experiment which employs these techniques is sufficiently persuasive to show that the disappointing results achieved in many others was due largely to a combination of rain sampling problems and vertical air motions between the path and the gages. Other experiments reviewed show that when paths are colinear, attenuation deduced from radar and radiometry is in good agreement with that measured directly. Several dual‐wavelength radar methods are described which were aimed at improved measurements in small range increments but have produced generally disappointing results. However, when the total path attenuation estimated in this way, or by radiometry, is used as a constraint on the retrieval of rain profiles from the radar, the results are more promising. Selected experiments involving combinations of two or more of the three measurables, radar reflectivity Z , attenuation, and/or radiometry, show considerable promise when adequate account is taken of the sampling and air motion problems. The best results in gate‐by‐gate measurements have been achieved with dual polarization or differential reflectivity ( Z DR ). However, even these are subject to potentially large errors when the rainfall does not behave according to a priori assumptions embodied in the technique. An accompanying paper in this issue shows that the use of a third remote parameter in addition to Z and Z DR offers great promise. With a growing appreciation of the needs and the capabilities of the various techniques, the future of highly improved remote rainfall measurements seems bright.
This paper is a critical survey of the measurement of rainfall by remote sensors. It is shown that single-parameter radar rainfall measurements are limited because both reflectivity and rain rate are dependent on at least two parameters of the drop size distribution, viz., representative raindrop size and number concentration. Simulations are presented which use experimental raindrop size spectra and show the improvement in accuracy attainable through the use of combinations of two and three remote measurables. The spectrum of remote measurables is then reviewed. These include path integrated techniques of radiometry and of microwave and optical attenuation. A carefully designed short-path microwave attenuation experiment which employs these techniques is sufficiently persuasive to show that the disappointing results achieved in many others was due largely to a combination of rain sampling problems and vertical air motions between the path and the gages. Other experiments reviewed show that when paths are colinear, attenuation deduced from radar and radiometry is in good agreement with that measured directly. Several dual-wavelength radar methods are described which were aimed at improved measurements in small range increments but have produced generally disappointing results. However, when the total path attenuation estimated in this way, or by radiometry, is used as a constraint on the retrieval of rain profiles from the radar, the results are more promising. Selected experiments involving combinations of two or more of the three measurables, radar reflectivity Z, attenuation, and/or radiometry, show considerable promise when adequate account is taken of the sampling and air motion problems. The best results in gate-by-gate measurements have been achieved with dual polarization or differential reflectivity (Z sub(DR)). However, even these are subject to potentially large errors when the rainfall does not behave according to a priori assumptions embodied in the technique. An accompanying paper in this issue shows that the use of a third remote parameter in addition to Z and Z sub(DR) offers great promise. With a growing appreciation of the needs and the capabilities of the various techniques, the future of highly improved remote rainfall measurements seems bright.
Audience PUBLIC
Author Meneghini, R.
Atlas, D.
Ulbrich, C. W.
Author_xml – sequence: 1
  givenname: D.
  surname: Atlas
  fullname: Atlas, D.
  organization: NASA Goddard Space Flight Center
– sequence: 2
  givenname: R.
  surname: Meneghini
  fullname: Meneghini, R.
  organization: NASA Goddard Space Flight Center
– sequence: 3
  givenname: C. W.
  surname: Ulbrich
  fullname: Ulbrich, C. W.
  organization: Clemson University
BookMark eNqFkD1PHDEQhq2ISDkgdZoUV0U0C_Z6bK_L6AgH0kEk7iLSWV7vrGKyHxfbp8C_x2gRxRXgZqzx88xY7yE5GMYBCfnC6CmjpT67XVOmPaVsS_PhH8iMaYBCaf37gMwohaqQksInchjjfcZASJgRtvmD837XJb-1wfaYMMwD9mPKXbRxl-84pPnYzoP1Q2u77ph8zCXi55d6RH5d_NgsLovVz-XV4vuqcIICLRpbA9UaG2xLtArRNVJXApumFU2jKwdlpetaVrYEAa6toXZCOs0aLqxTNT8i36a52zD-22FMpvfRYdfZAcddNCWAYJLDuyCrONdSqQyevA0KDpVQuWT0bEJdGGMM2Jpt8L0Nj4ZR8xy32Ys7G2LPcD7Z5Mch5eS6NzyYvP--w8f31pjb83VZAs3a10kbbLQm78jf1xVkRGn5nEkxPfuY8OF1qg1_jVRcCXN3szR8cXl3cb1cmgV_Ap6UrVc
CitedBy_id crossref_primary_10_1029_93RS01631
crossref_primary_10_1109_LGRS_2024_3434650
crossref_primary_10_2208_jscej_1994_491_15
crossref_primary_10_1109_TGRS_2002_1006324
crossref_primary_10_1029_JD095iD03p02161
crossref_primary_10_1029_RS019i001p00238
crossref_primary_10_1049_ip_map_20030616
crossref_primary_10_1109_8_56989
crossref_primary_10_1029_2005RG000182
crossref_primary_10_3390_atmos10010030
crossref_primary_10_1175_JAS_D_14_0206_1
crossref_primary_10_2151_jmsj_83_871
crossref_primary_10_1109_36_83983
crossref_primary_10_1175_JAS_D_13_0228_1
crossref_primary_10_1007_BF03391552
crossref_primary_10_1007_s10310_003_0067_6
crossref_primary_10_1029_RS019i001p00049
crossref_primary_10_1175_1520_0469_2004_061_2349_MFFROR_2_0_CO_2
crossref_primary_10_1175_2008JAMC1755_1
crossref_primary_10_1080_00107518608211028
crossref_primary_10_1007_s00024_019_02370_6
crossref_primary_10_2151_jmsj1965_68_5_509
crossref_primary_10_1109_TGRS_1986_289712
crossref_primary_10_1029_RS024i001p00065
crossref_primary_10_5194_hess_15_943_2011
crossref_primary_10_3390_rs16213985
crossref_primary_10_1029_JC091iC02p02510
Cites_doi 10.1109/TGRS.1983.350528
10.1175/1520-0450(1973)012<0847:ADWRHD>2.0.CO;2
10.1175/1520-0450(1982)021<0252:CODPRM>2.0.CO;2
10.1002/j.1538-7305.1970.tb01824.x
10.1038/2111081a0
10.1029/RS016i005p00781
10.1002/qj.49709640807
10.1029/RS009i004p00439
10.1002/j.1538-7305.1968.tb00058.x
10.1175/1520-0450(1968)007<0901:RSDIHC>2.0.CO;2
10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2
10.1049/el:19720066
10.1029/RS019i001p00023
10.1049/piee.1967.0035
10.1109/TAP.1972.1140301
10.1175/1520-0477(1979)060<1048:RMORS>2.0.CO;2
10.1002/qj.49708034603
10.1002/qj.49708737407
10.1109/TGE.1979.294650
10.1029/RS019i001p00157
10.1109/PROC.1975.9940
10.1029/RS016i005p00745
10.1029/JC083iC03p01319
10.1109/TGE.1979.294649
10.1175/1520-0450(1979)018<0654:PAMORR>2.0.CO;2
10.1364/CLEO.1982.FV4
10.1029/RS016i005p00691
10.1029/RS019i001p00049
10.1002/j.1538-7305.1969.tb01151.x
10.1175/1520-0450(1966)005<0229:AZRRFM>2.0.CO;2
10.1029/RS019i001p00201
10.1109/PROC.1971.8124
10.1029/RS016i005p00731
10.1109/TAP.1975.1141159
10.1175/1520-0450(1971)010<1252:XBAALW>2.0.CO;2
10.1016/S0065-2687(08)60009-6
10.1175/1520-0450(1969)008<0815:AMFERR>2.0.CO;2
10.1175/1520-0469(1974)031<1067:TJORS>2.0.CO;2
10.1175/1520-0469(1969)026<0566:RSDASS>2.0.CO;2
10.1049/piee.1974.0050
10.1007/BF03003488
10.1175/1520-0450(1982)021<0022:HPRACD>2.0.CO;2
10.1029/RS016i005p00761
10.1175/1520-0450(1981)020<1362:APSOCM>2.0.CO;2
10.1088/0034-4885/41/5/003
10.1109/TAP.1976.1141423
10.1029/RS019i001p00193
10.1029/RS013i002p00271
10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2
10.1109/TAP.1965.1138472
10.1175/1520-0450(1982)021<0257:RAR>2.0.CO;2
10.1175/1520-0477-28.4.159
10.1175/1520-0450(1977)016<1322:PAAIRM>2.0.CO;2
ContentType Journal Article
Copyright This paper is not subject to U.S. copyright. Published in 1984 by the American Geophysical Union.
Copyright_xml – notice: This paper is not subject to U.S. copyright. Published in 1984 by the American Geophysical Union.
DBID BSCLL
CYE
CYI
AAYXX
CITATION
7TG
KL.
8FD
H8D
L7M
DOI 10.1029/RS019i001p00003
DatabaseName Istex
NASA Scientific and Technical Information
NASA Technical Reports Server
CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Meteorological & Geoastrophysical Abstracts - Academic

CrossRef
Technology Research Database
Meteorological & Geoastrophysical Abstracts - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Engineering
EISSN 1944-799X
EndPage 22
ExternalDocumentID 10_1029_RS019i001p00003
RDS2240
19840037964
ark_67375_WNG_3CHWFMGG_C
Genre article
GrantInformation NAG5-232
GroupedDBID -~X
05W
0R~
123
186
1OB
1OC
24P
29P
31~
33P
3V.
50Y
6IK
6TJ
8-1
88I
8FE
8FG
8FH
8G5
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AAJGR
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABDPE
ABJNI
ABTAH
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFKRA
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ARAPS
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BEFXN
BENPR
BFFAM
BFHJK
BGLVJ
BGNUA
BHPHI
BKEBE
BKSAR
BMXJE
BPEOZ
BPHCQ
BRXPI
BSCLL
CCPQU
CS3
D1K
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
FEDTE
G-S
GNUQQ
GODZA
GUQSH
HCIFZ
HGLYW
HVGLF
HZ~
H~9
IPLJI
JAVBF
K6-
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2O
M2P
M7R
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OCL
OHT
OK1
P-X
P2P
P2W
P62
PCBAR
PQQKQ
PROAC
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TN5
UHW
UQL
VOH
WBKPD
WIN
WXSBR
WYJ
XOL
YNT
ZY4
ZZTAW
~02
~OA
~~A
AANHP
ABAZT
ABVLG
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGQPQ
CYE
CYI
02
0R
31
A
AAPBV
ABFLS
ABHUG
ADAWD
ADDAD
AEUQT
AFVGU
AGJLS
FH7
G8K
HZ
IPNFZ
MRJOP
MY
OA
PADUT
PQEST
PQUKI
PRINS
RIG
X
AAHQN
AAMNL
AAYCA
AAYXX
AEUYN
AFWVQ
AGHNM
AGYGG
ALVPJ
CITATION
PHGZM
PHGZT
7TG
KL.
8FD
H8D
L7M
ID FETCH-LOGICAL-c5040-dab4099edef2ea7eecd6985eddf5dd98c4289bb68a2454cfb4bc56c91d35ac7b3
ISSN 0048-6604
IngestDate Fri Sep 05 03:16:00 EDT 2025
Thu Sep 04 17:35:59 EDT 2025
Fri Sep 05 05:17:09 EDT 2025
Thu Apr 24 22:56:09 EDT 2025
Tue Jul 01 04:07:08 EDT 2025
Fri Apr 02 05:00:51 EDT 2021
Fri Aug 15 15:30:16 EDT 2025
Wed Oct 30 09:53:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5040-dab4099edef2ea7eecd6985eddf5dd98c4289bb68a2454cfb4bc56c91d35ac7b3
Notes ark:/67375/WNG-3CHWFMGG-C
istex:BE35DADD5BD6ECE4D3ABBE3597C1219DD1506609
ArticleID:3S0897
CDMS
Legacy CDMS
ISSN: 0048-6604
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
SourceType-Scholarly Journals-2
ObjectType-Conference Paper-1
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
PQID 1534857153
PQPubID 23462
PageCount 20
ParticipantIDs proquest_miscellaneous_24451634
proquest_miscellaneous_18339677
proquest_miscellaneous_1534857153
crossref_primary_10_1029_RS019i001p00003
crossref_citationtrail_10_1029_RS019i001p00003
wiley_primary_10_1029_RS019i001p00003_RDS2240
nasa_ntrs_19840037964
istex_primary_ark_67375_WNG_3CHWFMGG_C
ProviderPackageCode ~~A
A00
RJQFR
MRJOP
ADOZA
BFHJK
LYRES
DCZOG
LUTES
ALUQN
AAZKR
MSFUL
P-X
ACAHQ
AIURR
LEEKS
AFGKR
50Y
AEUQT
AZVAB
MEWTI
WYJ
ABHUG
ACXQS
BMXJE
R.K
MXFUL
P2W
WBKPD
WIN
BDRZF
ADMGS
MSSTM
DPXWK
1OB
1OC
BRXPI
AFVGU
ADZMN
G-S
24P
ABCUV
~OA
ADEOM
MY~
LATKE
ZZTAW
ADDAD
SUPJJ
DRSTM
8-1
AFPWT
AGJLS
LITHE
SAMSI
ACPOU
MXSTM
ALXUD
DRFUL
05W
AAESR
LOXES
ADAWD
CITATION
AAYXX
PublicationCentury 1900
PublicationDate January-February 1984
PublicationDateYYYYMMDD 1984-01-01
PublicationDate_xml – month: 01
  year: 1984
  text: January-February 1984
PublicationDecade 1980
PublicationPlace Legacy CDMS
PublicationPlace_xml – name: Legacy CDMS
PublicationTitle Radio science
PublicationTitleAlternate Radio Sci
PublicationYear 1984
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Atlas, D., The estimation of cloud parameters by radar, J. Atmos. Sci., 11, 309-317, 1954.
Battan, L. J., Radar Observation of the Atmosphere, 324, University of Chicago Press, Chicago, Ill., 1973.
Wilson, R. W., A. A. Penzias, Effect of precipitation on transmission through the atmosphere at 10 microns, Nature, 211, 1081, 1966.
Zavody, A. M., Effect of scattering by rain on radiometric measurements at millimeter wavelenths, Proc. Inst. Electr. Eng., 121, 257-263, 1974.
Eccles, P. J., E. A. Mueller, X-band attenuation and liquid water content estimation by a dual-wavelength radar, J. Appl. Meteorol., 10, 1252-1259, 1971.
Gunn, K. L. S., T. W. R. East, The microwave properties of precipitation particles, Q. J. R. Meteorol. Soc., 80, 522-545, 1954.
Cataneo, R., G. E. Stout, Raindrop-size distributions in humid continental climates, and associated rainfall rate-radar reflectivity relationships, J. Appl. Meteorol., 7, 901-907, 1968.
Browning, K. A., Meteorological aspects of radar, Rep. Prog. Phys., 41, 761-806, 1978.
Seliga, T. A., V. N. Bringi, Differential reflectivity and differential phase shift: Applications in radar meteorology, Radio Sci., 13, 271-275, 1978.
Ulbrich, C. W., D. Atlas, The rain parameter diagram: Methods and applications, J. Geophys. Res., 83, 1319-1325, 1978.
Bringi, V. N., T. A. Seliga, andW. A. Cooper, Analysis of aircraft hydrometeor spectra and differential reflectivity (ZDR) radar measurements during the cooperative convective precipitation experiment,Radio Sci.1911984.
Jameson, A. R., K. V. Beard, Raindrop axial ratios, J. Appl. Meteorol., 21, 257-259, 1982.
Atlas, D., F. Ludlam, Multi-wavelength radar reflectivity of hailstorms, Q. J. R. Meteorol. Soc., 87, 523-534, 1961.
Wilson, J. W., E. A. Brandes, Radar measurement of rainfall-A summary, Bull. Am. Meteorol. Soc., 60, 1048-1058, 1979.
Ulbrich, C. W., D. Atlas, Hail parameter relations: A comprehensive survey, J. Appl. Meteorol., 21, 22-43, 1982.
Wexler, R., D. Swingle, Radar storm detection, Bull. Am. Meteorol. Soc., 28, 159-167, 1947.
Fedi, F., Prediction of attenuation due to rainfall on terrestrial links, Radio Sci., 16, 731-744, 1981.
Joss, J., R. Cavalli, R. K. Crane, Good agreement between theory and experiment for attenuation data, J. Rech. Atmos., 8, 299-318, 1974.
Goddard, J. W. F., S. M. Cherry, V. N. Bringi, Comparison of dual-polarization radar measurements of rain with ground-based disdrometer measurements, J. Appl. Meteorol., 21, 252-256, 1982.
Goldhirsh, J., Attenuation of propagation through rain for an earth-satellite path correlated with predicted values using radar, IEEE Trans. Antennas Propag., AP-24, 800-866, 1976.
Rogers, R. R., A review of multiparameter radar observations of precipitation,Radio Sci.1911984.
Anderson, L. J., J. P. Day, C. H. Freres, A. P. D. Stokes, Attenuation of 1.25-centimeter radiation through rain, Proc. IEEE, 35, 351-354, 1947.
Lu, D.-R., L. Hai, Comparisons of radar and microwave radiometer in precipitation measurements and their combined use, in Chinese, Acta Atmos. Sin., 1, , 1980.
Hogg, D. C., T. S. Chu, The role of rain in satellite communications, Proc. IEEE, 63, 1308-1331, 1975.
Marshall, J. S., R. C. Langille, W. M. K. Palmer, Measurement of rainfall by radar, J. Atmos. Sci., 4, 186-192, 1947.
Strickland, J. I., The measurement of slant path attenuation using radar, radiometers, and satellite beacons, J. Rech. Atmos., 8, 347-358, 1974.
McCormick, K. S., A comparison of precipitation attenuation and radar backscatter along earth-space paths, IEEE Trans. Antennas Propag., AP-20, 747-755, 1972.
Eccles, P. J., Comparison of remote measurements by single- and dual-wavelength meteorological radars, IEEE Trans. Geosci. Electron., GE-17, 205-218, 1979.
Goldhirsh, J., I. Katz, Estimation of raindrop size distribution using multiple wavelength radar systems, Radio Sci., 9, 439-446, 1974.
Krehbiel, P. R., M. Brook, A broad-band noise technique for fast scanning radar observations of clouds and clutter targets, IEEE Trans. Geosci. Electron., GE-17, 196-204, 1979.
Berjulev, G. P., V. V. Kostarev, Dual wavelength radar measurements of 8 mm radiowave attenuation by atmospheric precipitation and clouds, J. Rech. Atmos., 8, 358-363, 1974.
Seliga, T. A., V. N. Bringi, H. H. Al-Khatib, A preliminary study of comparative measurement of rainfall rate using the differential reflectivity radar technique and a raingage network, J. Appl. Meteorol., 20, 1362-1368, 1981.
Hitschfeld, W., J. Bordan, Errors inherent in the radar measurement of rainfall at attenuating wavelengths, J. Atmos. Sci., 11, 58-67, 1954.
Meneghini, R., J. Eckerman, D. Atlas, Determination of rain rate from a spaceborne radar using measurements of total attenuation, IEEE Trans. Geosci. Remote Sensing, GE-21, 34-43, 1983.
Ulbrich, C. W., D. Atlas, A method for measuring precipitation parameters using radar reflectivity and optical extinction, Ann. Telecommun., 32, 415-421, 1977.
Penzias, A. A., First result from 15.3 GHz earth-space propagation study, Bell Syst. Tech. J., 49, 1242-1244, 1970.
Atlas, D., C. W. Ulbrich, The physical basis for attenuation-rainfall relationships and the measurement of rainfall parameters by combined attenuation and radar methods, J. Rech. Atmos., 8, 275-298, 1974.
Oguchi, T., Scattering from hydrometeors: A survey, Radio Sci., 16, 691-730, 1981.
Atlas, D., Advances in radar meteorology, Adv. Geophys., 10, 317-478, 1964.
Austin, P. M., Measurement of approximate raindrop size by microwave attenuation, J. Atmos. Sci., 4, 121-124, 1947.
Foote, G. B., A Z-R relation for mountain thunderstorms, J. Appl. Meteorol., 2, 229-231, 1966.
Godard, S., Propriétés de l'atténuation par la pluie des ondes radioélectriques dans la bande 0.86 cm, J. Rech. Atmos., 2, 121-167, 1965.
Pruppacher, H. R., K. V. Beard, A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air, Q. J. R. Meteorol. Soc., 96, 247-256, 1970.
Seliga, T. A., V. N. Bringi, Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation, J. Appl. Meteorol., 15, 69-76, 1976.
Wang, T., K. B. Earnshaw, R. S. Lawrence, Path-averaged measurements of rain rate and raindrop size distribution using a fast-response optical sensor, J. Appl. Meteorol., 18, 654-660, 1979.
Cox, D. C., Depolarization of radio waves by atmospheric hydrometeors in earth-space paths: A review, Radio Sci., 16, 781-812, 1981.
Goldhirsh, J., Improved error analysis in estimation of raindrop spectra, rain rate and liquid water content using multiple wavelength radars, IEEE Trans. Antennas Propag., AP-23, 718-720, 1975.
Cataneo, R., A method for estimating rainfall rate-radar reflectivity relationships, J. Appl. Meteorol., 8, 815-819, 1969.
Goddard, J. W. F., andS. M. Cherry, The ability of dual-polarization radar (copolar linear) to predict rainfall rate and microwave attenuation,Radio Sci.1911984.
Atlas, D., Optical extinction by rainfall, J. Atmos. Sci., 10, 486-488, 1953.
Donnadieu, G., Observation de deux changements des spectres des gouttes de pluie dans une averse de nuages stratiformes, J. Rech. Atmos., 14, 439-455, 1982.
Semplak, R. A., R. H. Turrin, Some measurements of attenuation by rainfall at 18.5 GHz, Bell Syst. Tech. J., 48, 1767-1788, 1969.
Eccles, P. J., D. Atlas, A dual-wavelength radar hail detector, J. Appl. Meteorol., 12, 847-856, 1973.
Twomey, S., On the measurement of precipitation intensity by radar, J. Atmos. Sci., 10, 66-67, 1953.
Blanchard, D. C., Raindrop size distributions in Hawaiian rains, J. Atmos. Sci., 10, 457-473, 1953.
Brussaard, G., Prediction of attenuation due to rainfall on earth-space links, Radio Sci., 16, 745-760, 1981.
Norbury, J. R., W. J. K. White, Microwave attenuation at 35.8 GHz due to rainfall, Electron. Lett., 8, 91-92, 1972.
Atlas, D., C. W. Ulbrich, Path- and area-integrated rainfall measurement by microwave attenuation in the 1-3 cm band, J. Appl. Meteorol., 16, 1322-1331, 1977.
Olsen, R. L., Cross polarization during precipitation on terrestrial links: A review, Radio Sci., 16, 761-780, 1981.
Fujita, T. T., Tornadoes and downbursts in the context of generalized planetary scales, J. Atmos. Sci., 8, 1511-1534, 1981.
Marshall, J. S., W. M. K. Palmer, The distribution of raindrops with size, J. Atmos. Sci., 5, 165-166, 1948.
Harrold, T. W., The attenuation of 8.6 mm wavelength radiation in rain, Proc. Inst. Electr. Eng., 114, 201-203, 1967.
Waldvogel, A., The N0 jump of raindrop spectra, J. Atmos. Sci., 31, 1067-1078, 1974.
Torlaschi, E., R. G. Humphries, andB. L. Barge, Circular polarization for precipitation measurement,Radio Sci.1911984.
Ippolito, L. J., Effects of precipitation on 15.3 and 31.6 GHz earth-space transmissions with the ATS-V satellite, Proc. IEEE, 59, 189-205, 1971.
Chu, T. S., D. C. Hogg, Effects of precipitation on propagation at 0.63, 3.5, and 10.6 microns, Bell Syst. Tech. J., 47, 723-759, 1968.
Srivastava, R. C., A. R. Jameson, Radar detection of hail, Meteorol. Monogr., 38, 269-277, 1977.
Medhurst, R. G., Rainfall attenuation of centimeter waves: Comparison of theory and experiment, IEEE Trans. Antennas Propag., AP-13, 550-563, 1965.
Ulbrich, C. W., andD. Atlas, Assessment of the contribution of differential polarization to improved rainfall measurements,Radio Sci.1911984.
1968; 7
1954; 80
1982; 14
1979; GE‐17
1973; 12
1976
1975
1973
1967; 114
1972
1971
1970
1983; GE‐21
1976; AP‐24
1975; AP‐23
1974; 9
1974; 8
1979
1972; AP‐20
1978
1977
1969; 8
1965; 2
1971; 10
1948; 5
1947; 35
1954; 11
1977; 38
1982; 21
1971; 59
1941
1982
1984; 19
1969; 48
1977; 32
1981
1961; 87
1980
1948
1947
1979; 60
1946
1965; AP‐13
1968; 47
1966; 2
1979; 18
1972; 8
1966; 211
1974; 31
1947; 4
1947; 28
1952
1951
1981; 8
1970; 96
1978; 13
1974; 121
1953; 10
1957
1981; 20
1956
1977; 16
1978; 41
1980; 1
1978; 83
1964; 10
1981; 16
1961
1975; 63
1976; 15
1970; 49
1968
e_1_2_1_81_1
Ryde J. W. (e_1_2_1_75_1) 1946
Austin P. M. (e_1_2_1_13_1) 1947; 4
e_1_2_1_20_1
e_1_2_1_66_1
e_1_2_1_89_1
e_1_2_1_24_1
Atlas D. (e_1_2_1_5_1) 1953; 10
e_1_2_1_43_1
e_1_2_1_28_1
Anderson L. J. (e_1_2_1_2_1) 1947; 35
Donnadieu G. (e_1_2_1_29_1) 1982; 14
Marshall J. S. (e_1_2_1_62_1) 1947; 4
e_1_2_1_92_1
e_1_2_1_103_1
e_1_2_1_31_1
e_1_2_1_77_1
Strickland J. I. (e_1_2_1_85_1) 1974; 8
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_50_1
e_1_2_1_73_1
e_1_2_1_96_1
e_1_2_1_4_1
Collis R. T. H. (e_1_2_1_27_1) 1961
e_1_2_1_39_1
Atlas D. (e_1_2_1_11_1) 1977; 16
e_1_2_1_58_1
Srivastava R. C. (e_1_2_1_82_1) 1977; 38
Carbone R. E. (e_1_2_1_22_1) 1972
e_1_2_1_40_1
e_1_2_1_67_1
Twomey S. (e_1_2_1_88_1) 1953; 10
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_63_1
e_1_2_1_86_1
e_1_2_1_25_1
e_1_2_1_48_1
e_1_2_1_93_1
e_1_2_1_70_1
e_1_2_1_102_1
e_1_2_1_7_1
e_1_2_1_55_1
e_1_2_1_78_1
e_1_2_1_3_1
e_1_2_1_51_1
e_1_2_1_97_1
e_1_2_1_32_1
e_1_2_1_74_1
Lu D.‐R. (e_1_2_1_60_1) 1980; 1
Wexler R. (e_1_2_1_98_1) 1947; 28
e_1_2_1_36_1
e_1_2_1_59_1
e_1_2_1_41_1
e_1_2_1_87_1
e_1_2_1_68_1
e_1_2_1_45_1
e_1_2_1_83_1
Berjulev G. P. (e_1_2_1_17_1) 1974; 8
e_1_2_1_64_1
Godard S. (e_1_2_1_37_1) 1965; 2
e_1_2_1_49_1
Atlas D. (e_1_2_1_8_1) 1957
e_1_2_1_26_1
e_1_2_1_101_1
Joss J. (e_1_2_1_54_1) 1974; 8
e_1_2_1_71_1
e_1_2_1_90_1
e_1_2_1_56_1
e_1_2_1_79_1
e_1_2_1_33_1
e_1_2_1_52_1
e_1_2_1_94_1
e_1_2_1_14_1
e_1_2_1_80_1
e_1_2_1_42_1
e_1_2_1_65_1
Blanchard D. C. (e_1_2_1_18_1) 1953; 10
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_84_1
e_1_2_1_69_1
e_1_2_1_100_1
Marshall J. S. (e_1_2_1_61_1) 1948; 5
Battan L. J. (e_1_2_1_16_1) 1973
Hitschfeld W. (e_1_2_1_47_1) 1954; 11
Atlas D. (e_1_2_1_10_1) 1974; 8
e_1_2_1_30_1
e_1_2_1_76_1
e_1_2_1_57_1
e_1_2_1_99_1
e_1_2_1_34_1
e_1_2_1_72_1
e_1_2_1_53_1
e_1_2_1_95_1
Atlas D. (e_1_2_1_6_1) 1954; 11
e_1_2_1_38_1
Ulbrich C. W. (e_1_2_1_91_1) 1977; 32
e_1_2_1_15_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – reference: Brussaard, G., Prediction of attenuation due to rainfall on earth-space links, Radio Sci., 16, 745-760, 1981.
– reference: Olsen, R. L., Cross polarization during precipitation on terrestrial links: A review, Radio Sci., 16, 761-780, 1981.
– reference: Fedi, F., Prediction of attenuation due to rainfall on terrestrial links, Radio Sci., 16, 731-744, 1981.
– reference: Foote, G. B., A Z-R relation for mountain thunderstorms, J. Appl. Meteorol., 2, 229-231, 1966.
– reference: Atlas, D., Advances in radar meteorology, Adv. Geophys., 10, 317-478, 1964.
– reference: Waldvogel, A., The N0 jump of raindrop spectra, J. Atmos. Sci., 31, 1067-1078, 1974.
– reference: Rogers, R. R., A review of multiparameter radar observations of precipitation,Radio Sci.1911984.
– reference: Battan, L. J., Radar Observation of the Atmosphere, 324, University of Chicago Press, Chicago, Ill., 1973.
– reference: Atlas, D., The estimation of cloud parameters by radar, J. Atmos. Sci., 11, 309-317, 1954.
– reference: Ulbrich, C. W., D. Atlas, The rain parameter diagram: Methods and applications, J. Geophys. Res., 83, 1319-1325, 1978.
– reference: Goldhirsh, J., I. Katz, Estimation of raindrop size distribution using multiple wavelength radar systems, Radio Sci., 9, 439-446, 1974.
– reference: Hitschfeld, W., J. Bordan, Errors inherent in the radar measurement of rainfall at attenuating wavelengths, J. Atmos. Sci., 11, 58-67, 1954.
– reference: Eccles, P. J., D. Atlas, A dual-wavelength radar hail detector, J. Appl. Meteorol., 12, 847-856, 1973.
– reference: Strickland, J. I., The measurement of slant path attenuation using radar, radiometers, and satellite beacons, J. Rech. Atmos., 8, 347-358, 1974.
– reference: Atlas, D., Optical extinction by rainfall, J. Atmos. Sci., 10, 486-488, 1953.
– reference: Twomey, S., On the measurement of precipitation intensity by radar, J. Atmos. Sci., 10, 66-67, 1953.
– reference: Wilson, J. W., E. A. Brandes, Radar measurement of rainfall-A summary, Bull. Am. Meteorol. Soc., 60, 1048-1058, 1979.
– reference: Zavody, A. M., Effect of scattering by rain on radiometric measurements at millimeter wavelenths, Proc. Inst. Electr. Eng., 121, 257-263, 1974.
– reference: Browning, K. A., Meteorological aspects of radar, Rep. Prog. Phys., 41, 761-806, 1978.
– reference: Hogg, D. C., T. S. Chu, The role of rain in satellite communications, Proc. IEEE, 63, 1308-1331, 1975.
– reference: Marshall, J. S., R. C. Langille, W. M. K. Palmer, Measurement of rainfall by radar, J. Atmos. Sci., 4, 186-192, 1947.
– reference: Gunn, K. L. S., T. W. R. East, The microwave properties of precipitation particles, Q. J. R. Meteorol. Soc., 80, 522-545, 1954.
– reference: Medhurst, R. G., Rainfall attenuation of centimeter waves: Comparison of theory and experiment, IEEE Trans. Antennas Propag., AP-13, 550-563, 1965.
– reference: Eccles, P. J., Comparison of remote measurements by single- and dual-wavelength meteorological radars, IEEE Trans. Geosci. Electron., GE-17, 205-218, 1979.
– reference: Marshall, J. S., W. M. K. Palmer, The distribution of raindrops with size, J. Atmos. Sci., 5, 165-166, 1948.
– reference: Seliga, T. A., V. N. Bringi, H. H. Al-Khatib, A preliminary study of comparative measurement of rainfall rate using the differential reflectivity radar technique and a raingage network, J. Appl. Meteorol., 20, 1362-1368, 1981.
– reference: Goldhirsh, J., Improved error analysis in estimation of raindrop spectra, rain rate and liquid water content using multiple wavelength radars, IEEE Trans. Antennas Propag., AP-23, 718-720, 1975.
– reference: Godard, S., Propriétés de l'atténuation par la pluie des ondes radioélectriques dans la bande 0.86 cm, J. Rech. Atmos., 2, 121-167, 1965.
– reference: Goldhirsh, J., Attenuation of propagation through rain for an earth-satellite path correlated with predicted values using radar, IEEE Trans. Antennas Propag., AP-24, 800-866, 1976.
– reference: Goddard, J. W. F., andS. M. Cherry, The ability of dual-polarization radar (copolar linear) to predict rainfall rate and microwave attenuation,Radio Sci.1911984.
– reference: Wilson, R. W., A. A. Penzias, Effect of precipitation on transmission through the atmosphere at 10 microns, Nature, 211, 1081, 1966.
– reference: Lu, D.-R., L. Hai, Comparisons of radar and microwave radiometer in precipitation measurements and their combined use, in Chinese, Acta Atmos. Sin., 1, , 1980.
– reference: Oguchi, T., Scattering from hydrometeors: A survey, Radio Sci., 16, 691-730, 1981.
– reference: Seliga, T. A., V. N. Bringi, Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation, J. Appl. Meteorol., 15, 69-76, 1976.
– reference: Wang, T., K. B. Earnshaw, R. S. Lawrence, Path-averaged measurements of rain rate and raindrop size distribution using a fast-response optical sensor, J. Appl. Meteorol., 18, 654-660, 1979.
– reference: Meneghini, R., J. Eckerman, D. Atlas, Determination of rain rate from a spaceborne radar using measurements of total attenuation, IEEE Trans. Geosci. Remote Sensing, GE-21, 34-43, 1983.
– reference: Ulbrich, C. W., andD. Atlas, Assessment of the contribution of differential polarization to improved rainfall measurements,Radio Sci.1911984.
– reference: Semplak, R. A., R. H. Turrin, Some measurements of attenuation by rainfall at 18.5 GHz, Bell Syst. Tech. J., 48, 1767-1788, 1969.
– reference: Anderson, L. J., J. P. Day, C. H. Freres, A. P. D. Stokes, Attenuation of 1.25-centimeter radiation through rain, Proc. IEEE, 35, 351-354, 1947.
– reference: Ippolito, L. J., Effects of precipitation on 15.3 and 31.6 GHz earth-space transmissions with the ATS-V satellite, Proc. IEEE, 59, 189-205, 1971.
– reference: Ulbrich, C. W., D. Atlas, A method for measuring precipitation parameters using radar reflectivity and optical extinction, Ann. Telecommun., 32, 415-421, 1977.
– reference: Atlas, D., C. W. Ulbrich, Path- and area-integrated rainfall measurement by microwave attenuation in the 1-3 cm band, J. Appl. Meteorol., 16, 1322-1331, 1977.
– reference: Donnadieu, G., Observation de deux changements des spectres des gouttes de pluie dans une averse de nuages stratiformes, J. Rech. Atmos., 14, 439-455, 1982.
– reference: Seliga, T. A., V. N. Bringi, Differential reflectivity and differential phase shift: Applications in radar meteorology, Radio Sci., 13, 271-275, 1978.
– reference: Wexler, R., D. Swingle, Radar storm detection, Bull. Am. Meteorol. Soc., 28, 159-167, 1947.
– reference: Atlas, D., C. W. Ulbrich, The physical basis for attenuation-rainfall relationships and the measurement of rainfall parameters by combined attenuation and radar methods, J. Rech. Atmos., 8, 275-298, 1974.
– reference: Cataneo, R., G. E. Stout, Raindrop-size distributions in humid continental climates, and associated rainfall rate-radar reflectivity relationships, J. Appl. Meteorol., 7, 901-907, 1968.
– reference: Torlaschi, E., R. G. Humphries, andB. L. Barge, Circular polarization for precipitation measurement,Radio Sci.1911984.
– reference: Fujita, T. T., Tornadoes and downbursts in the context of generalized planetary scales, J. Atmos. Sci., 8, 1511-1534, 1981.
– reference: Srivastava, R. C., A. R. Jameson, Radar detection of hail, Meteorol. Monogr., 38, 269-277, 1977.
– reference: Joss, J., R. Cavalli, R. K. Crane, Good agreement between theory and experiment for attenuation data, J. Rech. Atmos., 8, 299-318, 1974.
– reference: Blanchard, D. C., Raindrop size distributions in Hawaiian rains, J. Atmos. Sci., 10, 457-473, 1953.
– reference: Norbury, J. R., W. J. K. White, Microwave attenuation at 35.8 GHz due to rainfall, Electron. Lett., 8, 91-92, 1972.
– reference: Krehbiel, P. R., M. Brook, A broad-band noise technique for fast scanning radar observations of clouds and clutter targets, IEEE Trans. Geosci. Electron., GE-17, 196-204, 1979.
– reference: Cox, D. C., Depolarization of radio waves by atmospheric hydrometeors in earth-space paths: A review, Radio Sci., 16, 781-812, 1981.
– reference: Pruppacher, H. R., K. V. Beard, A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air, Q. J. R. Meteorol. Soc., 96, 247-256, 1970.
– reference: Jameson, A. R., K. V. Beard, Raindrop axial ratios, J. Appl. Meteorol., 21, 257-259, 1982.
– reference: McCormick, K. S., A comparison of precipitation attenuation and radar backscatter along earth-space paths, IEEE Trans. Antennas Propag., AP-20, 747-755, 1972.
– reference: Penzias, A. A., First result from 15.3 GHz earth-space propagation study, Bell Syst. Tech. J., 49, 1242-1244, 1970.
– reference: Atlas, D., F. Ludlam, Multi-wavelength radar reflectivity of hailstorms, Q. J. R. Meteorol. Soc., 87, 523-534, 1961.
– reference: Berjulev, G. P., V. V. Kostarev, Dual wavelength radar measurements of 8 mm radiowave attenuation by atmospheric precipitation and clouds, J. Rech. Atmos., 8, 358-363, 1974.
– reference: Bringi, V. N., T. A. Seliga, andW. A. Cooper, Analysis of aircraft hydrometeor spectra and differential reflectivity (ZDR) radar measurements during the cooperative convective precipitation experiment,Radio Sci.1911984.
– reference: Chu, T. S., D. C. Hogg, Effects of precipitation on propagation at 0.63, 3.5, and 10.6 microns, Bell Syst. Tech. J., 47, 723-759, 1968.
– reference: Eccles, P. J., E. A. Mueller, X-band attenuation and liquid water content estimation by a dual-wavelength radar, J. Appl. Meteorol., 10, 1252-1259, 1971.
– reference: Goddard, J. W. F., S. M. Cherry, V. N. Bringi, Comparison of dual-polarization radar measurements of rain with ground-based disdrometer measurements, J. Appl. Meteorol., 21, 252-256, 1982.
– reference: Austin, P. M., Measurement of approximate raindrop size by microwave attenuation, J. Atmos. Sci., 4, 121-124, 1947.
– reference: Harrold, T. W., The attenuation of 8.6 mm wavelength radiation in rain, Proc. Inst. Electr. Eng., 114, 201-203, 1967.
– reference: Cataneo, R., A method for estimating rainfall rate-radar reflectivity relationships, J. Appl. Meteorol., 8, 815-819, 1969.
– reference: Ulbrich, C. W., D. Atlas, Hail parameter relations: A comprehensive survey, J. Appl. Meteorol., 21, 22-43, 1982.
– start-page: 238
  year: 1981
  end-page: 287
– volume: AP‐20
  start-page: 747
  year: 1972
  end-page: 755
  article-title: A comparison of precipitation attenuation and radar backscatter along earth‐space paths
  publication-title: IEEE Trans. Antennas Propag.
– start-page: 371
  year: 1961
– volume: 20
  start-page: 1362
  year: 1981
  end-page: 1368
  article-title: A preliminary study of comparative measurement of rainfall rate using the differential reflectivity radar technique and a raingage network
  publication-title: J. Appl. Meteorol.
– year: 1956
– year: 1981
– volume: 16
  start-page: 1322
  year: 1977
  end-page: 1331
  article-title: Path‐ and area‐integrated rainfall measurement by microwave attenuation in the 1–3 cm band
  publication-title: J. Appl. Meteorol.
– volume: 21
  start-page: 257
  year: 1982
  end-page: 259
  article-title: Raindrop axial ratios
  publication-title: J. Appl. Meteorol.
– volume: 10
  start-page: 317
  year: 1964
  end-page: 478
  article-title: Advances in radar meteorology
  publication-title: Adv. Geophys.
– volume: 10
  start-page: 457
  year: 1953
  end-page: 473
  article-title: Raindrop size distributions in Hawaiian rains
  publication-title: J. Atmos. Sci.
– volume: 16
  start-page: 745
  year: 1981
  end-page: 760
  article-title: Prediction of attenuation due to rainfall on earth‐space links
  publication-title: Radio Sci.
– volume: 4
  start-page: 121
  year: 1947
  end-page: 124
  article-title: Measurement of approximate raindrop size by microwave attenuation
  publication-title: J. Atmos. Sci.
– volume: AP‐24
  start-page: 800
  year: 1976
  end-page: 866
  article-title: Attenuation of propagation through rain for an earth‐satellite path correlated with predicted values using radar
  publication-title: IEEE Trans. Antennas Propag.
– volume: GE‐17
  start-page: 196
  year: 1979
  end-page: 204
  article-title: A broad‐band noise technique for fast scanning radar observations of clouds and clutter targets
  publication-title: IEEE Trans. Geosci. Electron.
– volume: 8
  start-page: 1511
  year: 1981
  end-page: 1534
  article-title: Tornadoes and downbursts in the context of generalized planetary scales
  publication-title: J. Atmos. Sci.
– year: 1975
– volume: 8
  start-page: 347
  year: 1974
  end-page: 358
  article-title: The measurement of slant path attenuation using radar, radiometers, and satellite beacons
  publication-title: J. Rech. Atmos.
– start-page: 169
  year: 1946
  end-page: 188
– volume: 19
  issue: 1
  year: 1984
  article-title: Assessment of the contribution of differential polarization to improved rainfall measurements
  publication-title: Radio Sci.
– year: 1971
– year: 1952
– volume: 41
  start-page: 761
  year: 1978
  end-page: 806
  article-title: Meteorological aspects of radar
  publication-title: Rep. Prog. Phys.
– year: 1979
– volume: 5
  start-page: 165
  year: 1948
  end-page: 166
  article-title: The distribution of raindrops with size
  publication-title: J. Atmos. Sci.
– volume: AP‐23
  start-page: 718
  year: 1975
  end-page: 720
  article-title: Improved error analysis in estimation of raindrop spectra, rain rate and liquid water content using multiple wavelength radars
  publication-title: IEEE Trans. Antennas Propag.
– volume: 211
  start-page: 1081
  year: 1966
  article-title: Effect of precipitation on transmission through the atmosphere at 10 microns
  publication-title: Nature
– volume: 19
  issue: 1
  year: 1984
  article-title: A review of multiparameter radar observations of precipitation
  publication-title: Radio Sci.
– volume: 18
  start-page: 654
  year: 1979
  end-page: 660
  article-title: Path‐averaged measurements of rain rate and raindrop size distribution using a fast‐response optical sensor
  publication-title: J. Appl. Meteorol.
– year: 1982
– volume: 48
  start-page: 1767
  year: 1969
  end-page: 1788
  article-title: Some measurements of attenuation by rainfall at 18.5 GHz
  publication-title: Bell Syst. Tech. J.
– volume: 11
  start-page: 309
  year: 1954
  end-page: 317
  article-title: The estimation of cloud parameters by radar
  publication-title: J. Atmos. Sci.
– volume: 15
  start-page: 69
  year: 1976
  end-page: 76
  article-title: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation
  publication-title: J. Appl. Meteorol.
– volume: 10
  start-page: 486
  year: 1953
  end-page: 488
  article-title: Optical extinction by rainfall
  publication-title: J. Atmos. Sci.
– year: 1951
– start-page: 7
  year: 1972
  end-page: 12
– year: 1976
– volume: 28
  start-page: 159
  year: 1947
  end-page: 167
  article-title: Radar storm detection
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 8
  start-page: 358
  year: 1974
  end-page: 363
  article-title: Dual wavelength radar measurements of 8 mm radiowave attenuation by atmospheric precipitation and clouds
  publication-title: J. Rech. Atmos.
– volume: 8
  start-page: 299
  year: 1974
  end-page: 318
  article-title: Good agreement between theory and experiment for attenuation data
  publication-title: J. Rech. Atmos.
– volume: 47
  start-page: 723
  year: 1968
  end-page: 759
  article-title: Effects of precipitation on propagation at 0.63, 3.5, and 10.6 microns
  publication-title: Bell Syst. Tech. J.
– volume: 121
  start-page: 257
  year: 1974
  end-page: 263
  article-title: Effect of scattering by rain on radiometric measurements at millimeter wavelenths
  publication-title: Proc. Inst. Electr. Eng.
– volume: 87
  start-page: 523
  year: 1961
  end-page: 534
  article-title: Multi‐wavelength radar reflectivity of hailstorms
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 14
  start-page: 439
  year: 1982
  end-page: 455
  article-title: Observation de deux changements des spectres des gouttes de pluie dans une averse de nuages stratiformes
  publication-title: J. Rech. Atmos.
– volume: 1
  year: 1980
  article-title: Comparisons of radar and microwave radiometer in precipitation measurements and their combined use
  publication-title: Acta Atmos. Sin.
– volume: 83
  start-page: 1319
  year: 1978
  end-page: 1325
  article-title: The rain parameter diagram: Methods and applications
  publication-title: J. Geophys. Res.
– volume: 7
  start-page: 901
  year: 1968
  end-page: 907
  article-title: Raindrop‐size distributions in humid continental climates, and associated rainfall rate‐radar reflectivity relationships
  publication-title: J. Appl. Meteorol.
– volume: 16
  start-page: 761
  year: 1981
  end-page: 780
  article-title: Cross polarization during precipitation on terrestrial links: A review
  publication-title: Radio Sci.
– year: 1941
– volume: GE‐21
  start-page: 34
  year: 1983
  end-page: 43
  article-title: Determination of rain rate from a spaceborne radar using measurements of total attenuation
  publication-title: IEEE Trans. Geosci. Remote Sensing
– volume: 13
  start-page: 271
  year: 1978
  end-page: 275
  article-title: Differential reflectivity and differential phase shift: Applications in radar meteorology
  publication-title: Radio Sci.
– volume: 12
  start-page: 847
  year: 1973
  end-page: 856
  article-title: A dual‐wavelength radar hail detector
  publication-title: J. Appl. Meteorol.
– volume: 21
  start-page: 22
  year: 1982
  end-page: 43
  article-title: Hail parameter relations: A comprehensive survey
  publication-title: J. Appl. Meteorol.
– year: 1968
– volume: 63
  start-page: 1308
  year: 1975
  end-page: 1331
  article-title: The role of rain in satellite communications
  publication-title: Proc. IEEE
– volume: 80
  start-page: 522
  year: 1954
  end-page: 545
  article-title: The microwave properties of precipitation particles
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 59
  start-page: 189
  year: 1971
  end-page: 205
  article-title: Effects of precipitation on 15.3 and 31.6 GHz earth‐space transmissions with the ATS‐V satellite
  publication-title: Proc. IEEE
– volume: 49
  start-page: 1242
  year: 1970
  end-page: 1244
  article-title: First result from 15.3 GHz earth‐space propagation study
  publication-title: Bell Syst. Tech. J.
– year: 1948
– year: 1973
– volume: GE‐17
  start-page: 205
  year: 1979
  end-page: 218
  article-title: Comparison of remote measurements by single‐ and dual‐wavelength meteorological radars
  publication-title: IEEE Trans. Geosci. Electron.
– volume: 8
  start-page: 91
  year: 1972
  end-page: 92
  article-title: Microwave attenuation at 35.8 GHz due to rainfall
  publication-title: Electron. Lett.
– volume: 19
  issue: 1
  year: 1984
  article-title: The ability of dual‐polarization radar (copolar linear) to predict rainfall rate and microwave attenuation
  publication-title: Radio Sci.
– volume: 38
  start-page: 269
  year: 1977
  end-page: 277
  article-title: Radar detection of hail
  publication-title: Meteorol. Monogr.
– volume: 16
  start-page: 731
  year: 1981
  end-page: 744
  article-title: Prediction of attenuation due to rainfall on terrestrial links
  publication-title: Radio Sci.
– volume: 2
  start-page: 229
  year: 1966
  end-page: 231
  article-title: A relation for mountain thunderstorms
  publication-title: J. Appl. Meteorol.
– start-page: 21
  year: 1957
  end-page: 30
– year: 1977
– volume: 4
  start-page: 186
  year: 1947
  end-page: 192
  article-title: Measurement of rainfall by radar
  publication-title: J. Atmos. Sci.
– volume: 19
  issue: 1
  year: 1984
  article-title: Circular polarization for precipitation measurement
  publication-title: Radio Sci.
– volume: 60
  start-page: 1048
  year: 1979
  end-page: 1058
  article-title: Radar measurement of rainfall—A summary
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 2
  start-page: 121
  year: 1965
  end-page: 167
  article-title: Propriétés de l'atténuation par la pluie des ondes radioélectriques dans la bande 0.86 cm
  publication-title: J. Rech. Atmos.
– volume: 31
  start-page: 1067
  year: 1974
  end-page: 1078
  article-title: The jump of raindrop spectra
  publication-title: J. Atmos. Sci.
– volume: 8
  start-page: 275
  year: 1974
  end-page: 298
  article-title: The physical basis for attenuation‐rainfall relationships and the measurement of rainfall parameters by combined attenuation and radar methods
  publication-title: J. Rech. Atmos.
– volume: 10
  start-page: 1252
  year: 1971
  end-page: 1259
  article-title: ‐band attenuation and liquid water content estimation by a dual‐wavelength radar
  publication-title: J. Appl. Meteorol.
– volume: 10
  start-page: 66
  year: 1953
  end-page: 67
  article-title: On the measurement of precipitation intensity by radar
  publication-title: J. Atmos. Sci.
– year: 1980
– volume: 9
  start-page: 439
  year: 1974
  end-page: 446
  article-title: Estimation of raindrop size distribution using multiple wavelength radar systems
  publication-title: Radio Sci.
– volume: AP‐13
  start-page: 550
  year: 1965
  end-page: 563
  article-title: Rainfall attenuation of centimeter waves: Comparison of theory and experiment
  publication-title: IEEE Trans. Antennas Propag.
– volume: 11
  start-page: 58
  year: 1954
  end-page: 67
  article-title: Errors inherent in the radar measurement of rainfall at attenuating wavelengths
  publication-title: J. Atmos. Sci.
– year: 1947
– volume: 19
  issue: 1
  year: 1984
  article-title: Analysis of aircraft hydrometeor spectra and differential reflectivity ( ) radar measurements during the cooperative convective precipitation experiment
  publication-title: Radio Sci.
– volume: 32
  start-page: 415
  year: 1977
  end-page: 421
  article-title: A method for measuring precipitation parameters using radar reflectivity and optical extinction
  publication-title: Ann. Telecommun.
– volume: 21
  start-page: 252
  year: 1982
  end-page: 256
  article-title: Comparison of dual‐polarization radar measurements of rain with ground‐based disdrometer measurements
  publication-title: J. Appl. Meteorol.
– year: 1970
– volume: 16
  start-page: 781
  year: 1981
  end-page: 812
  article-title: Depolarization of radio waves by atmospheric hydrometeors in earth‐space paths: A review
  publication-title: Radio Sci.
– volume: 16
  start-page: 691
  year: 1981
  end-page: 730
  article-title: Scattering from hydrometeors: A survey
  publication-title: Radio Sci.
– volume: 96
  start-page: 247
  year: 1970
  end-page: 256
  article-title: A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 8
  start-page: 815
  year: 1969
  end-page: 819
  article-title: A method for estimating rainfall rate‐radar reflectivity relationships
  publication-title: J. Appl. Meteorol.
– year: 1978
– volume: 35
  start-page: 351
  year: 1947
  end-page: 354
  article-title: Attenuation of 1.25‐centimeter radiation through rain
  publication-title: Proc. IEEE
– volume: 114
  start-page: 201
  year: 1967
  end-page: 203
  article-title: The attenuation of 8.6 mm wavelength radiation in rain
  publication-title: Proc. Inst. Electr. Eng.
– volume: 11
  start-page: 58
  year: 1954
  ident: e_1_2_1_47_1
  article-title: Errors inherent in the radar measurement of rainfall at attenuating wavelengths
  publication-title: J. Atmos. Sci.
– ident: e_1_2_1_66_1
  doi: 10.1109/TGRS.1983.350528
– ident: e_1_2_1_31_1
  doi: 10.1175/1520-0450(1973)012<0847:ADWRHD>2.0.CO;2
– ident: e_1_2_1_39_1
  doi: 10.1175/1520-0450(1982)021<0252:CODPRM>2.0.CO;2
– ident: e_1_2_1_70_1
  doi: 10.1002/j.1538-7305.1970.tb01824.x
– ident: e_1_2_1_51_1
– ident: e_1_2_1_100_1
  doi: 10.1038/2111081a0
– ident: e_1_2_1_28_1
  doi: 10.1029/RS016i005p00781
– ident: e_1_2_1_71_1
  doi: 10.1002/qj.49709640807
– ident: e_1_2_1_42_1
  doi: 10.1029/RS009i004p00439
– ident: e_1_2_1_81_1
– volume: 38
  start-page: 269
  year: 1977
  ident: e_1_2_1_82_1
  article-title: Radar detection of hail
  publication-title: Meteorol. Monogr.
– ident: e_1_2_1_83_1
– ident: e_1_2_1_26_1
  doi: 10.1002/j.1538-7305.1968.tb00058.x
– ident: e_1_2_1_24_1
  doi: 10.1175/1520-0450(1968)007<0901:RSDIHC>2.0.CO;2
– ident: e_1_2_1_76_1
  doi: 10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2
– ident: e_1_2_1_67_1
  doi: 10.1049/el:19720066
– ident: e_1_2_1_73_1
  doi: 10.1029/RS019i001p00023
– ident: e_1_2_1_78_1
– ident: e_1_2_1_46_1
  doi: 10.1049/piee.1967.0035
– ident: e_1_2_1_97_1
– volume: 11
  start-page: 309
  year: 1954
  ident: e_1_2_1_6_1
  article-title: The estimation of cloud parameters by radar
  publication-title: J. Atmos. Sci.
– ident: e_1_2_1_64_1
  doi: 10.1109/TAP.1972.1140301
– ident: e_1_2_1_99_1
  doi: 10.1175/1520-0477(1979)060<1048:RMORS>2.0.CO;2
– ident: e_1_2_1_43_1
  doi: 10.1002/qj.49708034603
– volume: 8
  start-page: 299
  year: 1974
  ident: e_1_2_1_54_1
  article-title: Good agreement between theory and experiment for attenuation data
  publication-title: J. Rech. Atmos.
– volume: 4
  start-page: 121
  year: 1947
  ident: e_1_2_1_13_1
  article-title: Measurement of approximate raindrop size by microwave attenuation
  publication-title: J. Atmos. Sci.
– ident: e_1_2_1_9_1
  doi: 10.1002/qj.49708737407
– volume: 8
  start-page: 347
  year: 1974
  ident: e_1_2_1_85_1
  article-title: The measurement of slant path attenuation using radar, radiometers, and satellite beacons
  publication-title: J. Rech. Atmos.
– volume: 4
  start-page: 186
  year: 1947
  ident: e_1_2_1_62_1
  article-title: Measurement of rainfall by radar
  publication-title: J. Atmos. Sci.
– ident: e_1_2_1_15_1
– ident: e_1_2_1_30_1
  doi: 10.1109/TGE.1979.294650
– ident: e_1_2_1_19_1
  doi: 10.1029/RS019i001p00157
– volume: 10
  start-page: 486
  year: 1953
  ident: e_1_2_1_5_1
  article-title: Optical extinction by rainfall
  publication-title: J. Atmos. Sci.
– ident: e_1_2_1_25_1
– start-page: 371
  volume-title: Proceedings, 9th Weather Radar Conference
  year: 1961
  ident: e_1_2_1_27_1
– ident: e_1_2_1_48_1
  doi: 10.1109/PROC.1975.9940
– ident: e_1_2_1_21_1
  doi: 10.1029/RS016i005p00745
– ident: e_1_2_1_92_1
  doi: 10.1029/JC083iC03p01319
– volume: 8
  start-page: 358
  year: 1974
  ident: e_1_2_1_17_1
  article-title: Dual wavelength radar measurements of 8 mm radiowave attenuation by atmospheric precipitation and clouds
  publication-title: J. Rech. Atmos.
– ident: e_1_2_1_44_1
– ident: e_1_2_1_58_1
  doi: 10.1109/TGE.1979.294649
– ident: e_1_2_1_96_1
  doi: 10.1175/1520-0450(1979)018<0654:PAMORR>2.0.CO;2
– ident: e_1_2_1_101_1
  doi: 10.1364/CLEO.1982.FV4
– ident: e_1_2_1_68_1
  doi: 10.1029/RS016i005p00691
– ident: e_1_2_1_94_1
  doi: 10.1029/RS019i001p00049
– volume: 35
  start-page: 351
  year: 1947
  ident: e_1_2_1_2_1
  article-title: Attenuation of 1.25‐centimeter radiation through rain
  publication-title: Proc. IEEE
– ident: e_1_2_1_80_1
  doi: 10.1002/j.1538-7305.1969.tb01151.x
– ident: e_1_2_1_35_1
  doi: 10.1175/1520-0450(1966)005<0229:AZRRFM>2.0.CO;2
– ident: e_1_2_1_38_1
  doi: 10.1029/RS019i001p00201
– ident: e_1_2_1_49_1
  doi: 10.1109/PROC.1971.8124
– ident: e_1_2_1_63_1
– ident: e_1_2_1_34_1
  doi: 10.1029/RS016i005p00731
– ident: e_1_2_1_74_1
– ident: e_1_2_1_40_1
  doi: 10.1109/TAP.1975.1141159
– ident: e_1_2_1_32_1
  doi: 10.1175/1520-0450(1971)010<1252:XBAALW>2.0.CO;2
– ident: e_1_2_1_7_1
  doi: 10.1016/S0065-2687(08)60009-6
– ident: e_1_2_1_23_1
  doi: 10.1175/1520-0450(1969)008<0815:AMFERR>2.0.CO;2
– ident: e_1_2_1_12_1
– ident: e_1_2_1_57_1
– ident: e_1_2_1_4_1
– volume: 14
  start-page: 439
  year: 1982
  ident: e_1_2_1_29_1
  article-title: Observation de deux changements des spectres des gouttes de pluie dans une averse de nuages stratiformes
  publication-title: J. Rech. Atmos.
– start-page: 21
  volume-title: Proceedings, Sixth Weather Radar Conference
  year: 1957
  ident: e_1_2_1_8_1
– ident: e_1_2_1_59_1
– ident: e_1_2_1_45_1
– ident: e_1_2_1_72_1
– ident: e_1_2_1_95_1
  doi: 10.1175/1520-0469(1974)031<1067:TJORS>2.0.CO;2
– ident: e_1_2_1_53_1
  doi: 10.1175/1520-0469(1969)026<0566:RSDASS>2.0.CO;2
– ident: e_1_2_1_56_1
– volume: 8
  start-page: 275
  year: 1974
  ident: e_1_2_1_10_1
  article-title: The physical basis for attenuation‐rainfall relationships and the measurement of rainfall parameters by combined attenuation and radar methods
  publication-title: J. Rech. Atmos.
– volume-title: Radar Observation of the Atmosphere
  year: 1973
  ident: e_1_2_1_16_1
– ident: e_1_2_1_86_1
– ident: e_1_2_1_103_1
  doi: 10.1049/piee.1974.0050
– volume: 32
  start-page: 415
  year: 1977
  ident: e_1_2_1_91_1
  article-title: A method for measuring precipitation parameters using radar reflectivity and optical extinction
  publication-title: Ann. Telecommun.
  doi: 10.1007/BF03003488
– ident: e_1_2_1_93_1
  doi: 10.1175/1520-0450(1982)021<0022:HPRACD>2.0.CO;2
– volume: 1
  year: 1980
  ident: e_1_2_1_60_1
  article-title: Comparisons of radar and microwave radiometer in precipitation measurements and their combined use
  publication-title: Acta Atmos. Sin.
– ident: e_1_2_1_69_1
  doi: 10.1029/RS016i005p00761
– ident: e_1_2_1_89_1
– start-page: 7
  volume-title: Proceedings, 15th Conference on Radar Meteorology
  year: 1972
  ident: e_1_2_1_22_1
– start-page: 169
  volume-title: Meteorolgical Factors in Radio Wave Propagation
  year: 1946
  ident: e_1_2_1_75_1
– ident: e_1_2_1_79_1
  doi: 10.1175/1520-0450(1981)020<1362:APSOCM>2.0.CO;2
– ident: e_1_2_1_20_1
  doi: 10.1088/0034-4885/41/5/003
– volume: 10
  start-page: 457
  year: 1953
  ident: e_1_2_1_18_1
  article-title: Raindrop size distributions in Hawaiian rains
  publication-title: J. Atmos. Sci.
– ident: e_1_2_1_41_1
  doi: 10.1109/TAP.1976.1141423
– ident: e_1_2_1_102_1
– ident: e_1_2_1_84_1
– ident: e_1_2_1_14_1
– ident: e_1_2_1_87_1
  doi: 10.1029/RS019i001p00193
– ident: e_1_2_1_77_1
  doi: 10.1029/RS013i002p00271
– ident: e_1_2_1_36_1
  doi: 10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2
– ident: e_1_2_1_65_1
  doi: 10.1109/TAP.1965.1138472
– ident: e_1_2_1_3_1
– ident: e_1_2_1_50_1
  doi: 10.1175/1520-0450(1982)021<0257:RAR>2.0.CO;2
– volume: 5
  start-page: 165
  year: 1948
  ident: e_1_2_1_61_1
  article-title: The distribution of raindrops with size
  publication-title: J. Atmos. Sci.
– volume: 28
  start-page: 159
  year: 1947
  ident: e_1_2_1_98_1
  article-title: Radar storm detection
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477-28.4.159
– ident: e_1_2_1_33_1
– ident: e_1_2_1_90_1
– volume: 2
  start-page: 121
  year: 1965
  ident: e_1_2_1_37_1
  article-title: Propriétés de l'atténuation par la pluie des ondes radioélectriques dans la bande 0.86 cm
  publication-title: J. Rech. Atmos.
– ident: e_1_2_1_55_1
– volume: 16
  start-page: 1322
  year: 1977
  ident: e_1_2_1_11_1
  article-title: Path‐ and area‐integrated rainfall measurement by microwave attenuation in the 1–3 cm band
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1977)016<1322:PAAIRM>2.0.CO;2
– ident: e_1_2_1_52_1
– volume: 10
  start-page: 66
  year: 1953
  ident: e_1_2_1_88_1
  article-title: On the measurement of precipitation intensity by radar
  publication-title: J. Atmos. Sci.
SSID ssj0014564
Score 1.3388722
Snippet The measurement of rainfall by remote sensors is investigated. One parameter radar rainfall measurement is limited because both reflectivity and rain rate are...
This paper is a critical survey of the measurement of rainfall by remote sensors. It is shown that single‐parameter radar rainfall measurements are limited...
This paper is a critical survey of the measurement of rainfall by remote sensors. It is shown that single-parameter radar rainfall measurements are limited...
This paper is a critical survey of rainfall measurement by remote sensors. It is shown that single-parameter radar rainfall measurements are limited because...
SourceID proquest
crossref
wiley
nasa
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3
SubjectTerms Meteorology And Climatology
Title The multiparameter remote measurement of rainfall
URI https://api.istex.fr/ark:/67375/WNG-3CHWFMGG-C/fulltext.pdf
https://ntrs.nasa.gov/citations/19840037964
https://onlinelibrary.wiley.com/doi/abs/10.1029/RS019i001p00003
https://www.proquest.com/docview/1534857153
https://www.proquest.com/docview/18339677
https://www.proquest.com/docview/24451634
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaAvsADgjFEuAYJTUhVxhrf4gcepm7thNoi9aL1zfKtrCJrp14kxK_nOEnTlFENeEnbyK0bf_a52Od8B6EPGMxanSgbcWImEYkdrLnYiEiB89zAjFjjsmiLHrsYkS9jOt6W4MyyS1b62Pz8Y17J_6AK9wBXnyX7D8iWPwo34D3gC1dAGK5_hXGWPevJu699UEt94WDcXf16u-3nTUFfA2Ki0rRqhvaVnc7rhfYrMV-leXZXJc59_XmUahCVV0VwiK9BXS-3ZbogKL9dTbOqUEWM9nYXoSESUtlFKCQjSSLG8lLApWQUt2ZALuZwRV_macW3JPFJ7IlMF0swIaegCm-8YsRbpbM5aO99la1RpyOH5-PhfVSLOfeH7bXTs25nUJ4GecqbPFIg_48lRZP49FsHO9ZFzS-UH6BrZ2qpdjyIqh-SGRLDJ-hx4QGEpzmcT9E9NztAjyq8kAco6AKe80V24hEehc10Cn5F9ukZinZBD3PQwwro4XwSbkA_RKPW-bB5ERU1LyJDfXCnVRo8buGsm8ROceeMZSKhztoJtVYkBtxFoTVLVEwoLC9NtKHMiIbFVBmu8XN43PnMvUCh1p5tL9aGuIQQ6unrXYK5wfyEGYVpgI43YyVNQQjv65KkMgtMiIXsD3YGN0Afyy_c5Fwo-5seZYNftlOL7z6EkFN52WtL3Ly4bHXbbdkM0KFHR0LPS-knpidEEowE6P0GLgkCz59iqZmbr6ERxSShHF4C9G5fmwRjwTjf3yL2xHwMQz9RNhfueiDZPxt46_flnX2-Qg-3C-w1erBarN0bMFxX-m0xr38BiWCVwg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiparameter+remote+measurement+of+rainfall&rft.jtitle=Radio+science&rft.au=Atlas%2C+David&rft.au=Ulbrich%2C+Carlton+W&rft.au=Meneghini%2C+Robert&rft.date=1984-01-01&rft.issn=0048-6604&rft.volume=19&rft.issue=1&rft.spage=3&rft.epage=22&rft_id=info:doi/10.1029%2Frs019i001p00003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-6604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-6604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-6604&client=summon