The multiparameter remote measurement of rainfall
The measurement of rainfall by remote sensors is investigated. One parameter radar rainfall measurement is limited because both reflectivity and rain rate are dependent on at least two parameters of the drop size distribution (DSD), i.e., representative raindrop size and number concentration. A gene...
Saved in:
Published in | Radio science Vol. 19; no. 1; pp. 3 - 22 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Legacy CDMS
Blackwell Publishing Ltd
01.01.1984
|
Subjects | |
Online Access | Get full text |
ISSN | 0048-6604 1944-799X |
DOI | 10.1029/RS019i001p00003 |
Cover
Abstract | The measurement of rainfall by remote sensors is investigated. One parameter radar rainfall measurement is limited because both reflectivity and rain rate are dependent on at least two parameters of the drop size distribution (DSD), i.e., representative raindrop size and number concentration. A generating rain parameter diagram is developed which includes a third distribution parameter, the breadth of the DSD, to better specify rain rate and all possible remote variables. Simulations show the improvement in accuracy attainable through the use of combinations of two and three remote measurables. The spectrum of remote measurables is reviewed. These include path integrated techniques of radiometry and of microwave and optical attenuation. Previously announced in STAR as N82-33947 |
---|---|
AbstractList | This paper is a critical survey of the measurement of rainfall by remote sensors. It is shown that single‐parameter radar rainfall measurements are limited because both reflectivity and rain rate are dependent on at least two parameters of the drop size distribution, viz., representative raindrop size and number concentration. Simulations are presented which use experimental raindrop size spectra and show the improvement in accuracy attainable through the use of combinations of two and three remote measurables. The spectrum of remote measurables is then reviewed. These include path integrated techniques of radiometry and of microwave and optical attenuation. A carefully designed short‐path microwave attenuation experiment which employs these techniques is sufficiently persuasive to show that the disappointing results achieved in many others was due largely to a combination of rain sampling problems and vertical air motions between the path and the gages. Other experiments reviewed show that when paths are colinear, attenuation deduced from radar and radiometry is in good agreement with that measured directly. Several dual‐wavelength radar methods are described which were aimed at improved measurements in small range increments but have produced generally disappointing results. However, when the total path attenuation estimated in this way, or by radiometry, is used as a constraint on the retrieval of rain profiles from the radar, the results are more promising. Selected experiments involving combinations of two or more of the three measurables, radar reflectivity Z, attenuation, and/or radiometry, show considerable promise when adequate account is taken of the sampling and air motion problems. The best results in gate‐by‐gate measurements have been achieved with dual polarization or differential reflectivity (ZDR). However, even these are subject to potentially large errors when the rainfall does not behave according to a priori assumptions embodied in the technique. An accompanying paper in this issue shows that the use of a third remote parameter in addition to Z and ZDR offers great promise. With a growing appreciation of the needs and the capabilities of the various techniques, the future of highly improved remote rainfall measurements seems bright. This paper is a critical survey of rainfall measurement by remote sensors. It is shown that single-parameter radar rainfall measurements are limited because both reflectivity and rain rate are dependent upon at least two parameters of the drop size distribution: representative raindrop size and number concentration. Simulations are presented which use experimental raindrop size spectra and show the improvement in accuracy attainable through the use of combinations of two and three remote measurables. The spectrum of remote measurables is then reviewed. These include path-integrated techniques of radiometry and of microwave and optical attenuation. A carefully designed short-path microwave attenuation experiment that uses these techniques is sufficiently persuasive to show that the disappointing results achieved by many others was due largely to a combination of rain sampling problems and vertical air motions between the path and the gages. Other experiments reviewed show that, when paths are colinear, attenuation deduced from radar and radiometry is in good agreement with that measured directly. Several dual-wavelength radar methods are described which were aimed at improved measurements in small-range increments but have produced generally disappointing results. However, when the total path attenuation estimated in this way, or by radiometry, is used as a constraint on the retrieval of rain profiles from the radar, the results are more promising. Selected experiments involving combinations of two or more of the three measurables, radar reflectivity Z, attenuation, and/or radiometry, show considerable promise when adequate account is taken of the sampling and air motion problems. The best results in gate-by-gate measurements have been achieved with dual polarization or differential reflectivity (Z sub(D) sub(R) ). However, even these are subject to potentially large errors when the rainfall does not behave according to a priori assumptions embodied in the technique. An accompanying paper in this issue shows that the use of a third remote parameter in addition to Z and Z sub(D) sub(R) offers great promise. With a growing appreciation of the needs and the capabilities of the various techniques, the future of highly improved remote rainfall measurements seems bright. The measurement of rainfall by remote sensors is investigated. One parameter radar rainfall measurement is limited because both reflectivity and rain rate are dependent on at least two parameters of the drop size distribution (DSD), i.e., representative raindrop size and number concentration. A generating rain parameter diagram is developed which includes a third distribution parameter, the breadth of the DSD, to better specify rain rate and all possible remote variables. Simulations show the improvement in accuracy attainable through the use of combinations of two and three remote measurables. The spectrum of remote measurables is reviewed. These include path integrated techniques of radiometry and of microwave and optical attenuation. Previously announced in STAR as N82-33947 This paper is a critical survey of the measurement of rainfall by remote sensors. It is shown that single‐parameter radar rainfall measurements are limited because both reflectivity and rain rate are dependent on at least two parameters of the drop size distribution, viz., representative raindrop size and number concentration. Simulations are presented which use experimental raindrop size spectra and show the improvement in accuracy attainable through the use of combinations of two and three remote measurables. The spectrum of remote measurables is then reviewed. These include path integrated techniques of radiometry and of microwave and optical attenuation. A carefully designed short‐path microwave attenuation experiment which employs these techniques is sufficiently persuasive to show that the disappointing results achieved in many others was due largely to a combination of rain sampling problems and vertical air motions between the path and the gages. Other experiments reviewed show that when paths are colinear, attenuation deduced from radar and radiometry is in good agreement with that measured directly. Several dual‐wavelength radar methods are described which were aimed at improved measurements in small range increments but have produced generally disappointing results. However, when the total path attenuation estimated in this way, or by radiometry, is used as a constraint on the retrieval of rain profiles from the radar, the results are more promising. Selected experiments involving combinations of two or more of the three measurables, radar reflectivity Z , attenuation, and/or radiometry, show considerable promise when adequate account is taken of the sampling and air motion problems. The best results in gate‐by‐gate measurements have been achieved with dual polarization or differential reflectivity ( Z DR ). However, even these are subject to potentially large errors when the rainfall does not behave according to a priori assumptions embodied in the technique. An accompanying paper in this issue shows that the use of a third remote parameter in addition to Z and Z DR offers great promise. With a growing appreciation of the needs and the capabilities of the various techniques, the future of highly improved remote rainfall measurements seems bright. This paper is a critical survey of the measurement of rainfall by remote sensors. It is shown that single-parameter radar rainfall measurements are limited because both reflectivity and rain rate are dependent on at least two parameters of the drop size distribution, viz., representative raindrop size and number concentration. Simulations are presented which use experimental raindrop size spectra and show the improvement in accuracy attainable through the use of combinations of two and three remote measurables. The spectrum of remote measurables is then reviewed. These include path integrated techniques of radiometry and of microwave and optical attenuation. A carefully designed short-path microwave attenuation experiment which employs these techniques is sufficiently persuasive to show that the disappointing results achieved in many others was due largely to a combination of rain sampling problems and vertical air motions between the path and the gages. Other experiments reviewed show that when paths are colinear, attenuation deduced from radar and radiometry is in good agreement with that measured directly. Several dual-wavelength radar methods are described which were aimed at improved measurements in small range increments but have produced generally disappointing results. However, when the total path attenuation estimated in this way, or by radiometry, is used as a constraint on the retrieval of rain profiles from the radar, the results are more promising. Selected experiments involving combinations of two or more of the three measurables, radar reflectivity Z, attenuation, and/or radiometry, show considerable promise when adequate account is taken of the sampling and air motion problems. The best results in gate-by-gate measurements have been achieved with dual polarization or differential reflectivity (Z sub(DR)). However, even these are subject to potentially large errors when the rainfall does not behave according to a priori assumptions embodied in the technique. An accompanying paper in this issue shows that the use of a third remote parameter in addition to Z and Z sub(DR) offers great promise. With a growing appreciation of the needs and the capabilities of the various techniques, the future of highly improved remote rainfall measurements seems bright. |
Audience | PUBLIC |
Author | Meneghini, R. Atlas, D. Ulbrich, C. W. |
Author_xml | – sequence: 1 givenname: D. surname: Atlas fullname: Atlas, D. organization: NASA Goddard Space Flight Center – sequence: 2 givenname: R. surname: Meneghini fullname: Meneghini, R. organization: NASA Goddard Space Flight Center – sequence: 3 givenname: C. W. surname: Ulbrich fullname: Ulbrich, C. W. organization: Clemson University |
BookMark | eNqFkD1PHDEQhq2ISDkgdZoUV0U0C_Z6bK_L6AgH0kEk7iLSWV7vrGKyHxfbp8C_x2gRxRXgZqzx88xY7yE5GMYBCfnC6CmjpT67XVOmPaVsS_PhH8iMaYBCaf37gMwohaqQksInchjjfcZASJgRtvmD837XJb-1wfaYMMwD9mPKXbRxl-84pPnYzoP1Q2u77ph8zCXi55d6RH5d_NgsLovVz-XV4vuqcIICLRpbA9UaG2xLtArRNVJXApumFU2jKwdlpetaVrYEAa6toXZCOs0aLqxTNT8i36a52zD-22FMpvfRYdfZAcddNCWAYJLDuyCrONdSqQyevA0KDpVQuWT0bEJdGGMM2Jpt8L0Nj4ZR8xy32Ys7G2LPcD7Z5Mch5eS6NzyYvP--w8f31pjb83VZAs3a10kbbLQm78jf1xVkRGn5nEkxPfuY8OF1qg1_jVRcCXN3szR8cXl3cb1cmgV_Ap6UrVc |
CitedBy_id | crossref_primary_10_1029_93RS01631 crossref_primary_10_1109_LGRS_2024_3434650 crossref_primary_10_2208_jscej_1994_491_15 crossref_primary_10_1109_TGRS_2002_1006324 crossref_primary_10_1029_JD095iD03p02161 crossref_primary_10_1029_RS019i001p00238 crossref_primary_10_1049_ip_map_20030616 crossref_primary_10_1109_8_56989 crossref_primary_10_1029_2005RG000182 crossref_primary_10_3390_atmos10010030 crossref_primary_10_1175_JAS_D_14_0206_1 crossref_primary_10_2151_jmsj_83_871 crossref_primary_10_1109_36_83983 crossref_primary_10_1175_JAS_D_13_0228_1 crossref_primary_10_1007_BF03391552 crossref_primary_10_1007_s10310_003_0067_6 crossref_primary_10_1029_RS019i001p00049 crossref_primary_10_1175_1520_0469_2004_061_2349_MFFROR_2_0_CO_2 crossref_primary_10_1175_2008JAMC1755_1 crossref_primary_10_1080_00107518608211028 crossref_primary_10_1007_s00024_019_02370_6 crossref_primary_10_2151_jmsj1965_68_5_509 crossref_primary_10_1109_TGRS_1986_289712 crossref_primary_10_1029_RS024i001p00065 crossref_primary_10_5194_hess_15_943_2011 crossref_primary_10_3390_rs16213985 crossref_primary_10_1029_JC091iC02p02510 |
Cites_doi | 10.1109/TGRS.1983.350528 10.1175/1520-0450(1973)012<0847:ADWRHD>2.0.CO;2 10.1175/1520-0450(1982)021<0252:CODPRM>2.0.CO;2 10.1002/j.1538-7305.1970.tb01824.x 10.1038/2111081a0 10.1029/RS016i005p00781 10.1002/qj.49709640807 10.1029/RS009i004p00439 10.1002/j.1538-7305.1968.tb00058.x 10.1175/1520-0450(1968)007<0901:RSDIHC>2.0.CO;2 10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2 10.1049/el:19720066 10.1029/RS019i001p00023 10.1049/piee.1967.0035 10.1109/TAP.1972.1140301 10.1175/1520-0477(1979)060<1048:RMORS>2.0.CO;2 10.1002/qj.49708034603 10.1002/qj.49708737407 10.1109/TGE.1979.294650 10.1029/RS019i001p00157 10.1109/PROC.1975.9940 10.1029/RS016i005p00745 10.1029/JC083iC03p01319 10.1109/TGE.1979.294649 10.1175/1520-0450(1979)018<0654:PAMORR>2.0.CO;2 10.1364/CLEO.1982.FV4 10.1029/RS016i005p00691 10.1029/RS019i001p00049 10.1002/j.1538-7305.1969.tb01151.x 10.1175/1520-0450(1966)005<0229:AZRRFM>2.0.CO;2 10.1029/RS019i001p00201 10.1109/PROC.1971.8124 10.1029/RS016i005p00731 10.1109/TAP.1975.1141159 10.1175/1520-0450(1971)010<1252:XBAALW>2.0.CO;2 10.1016/S0065-2687(08)60009-6 10.1175/1520-0450(1969)008<0815:AMFERR>2.0.CO;2 10.1175/1520-0469(1974)031<1067:TJORS>2.0.CO;2 10.1175/1520-0469(1969)026<0566:RSDASS>2.0.CO;2 10.1049/piee.1974.0050 10.1007/BF03003488 10.1175/1520-0450(1982)021<0022:HPRACD>2.0.CO;2 10.1029/RS016i005p00761 10.1175/1520-0450(1981)020<1362:APSOCM>2.0.CO;2 10.1088/0034-4885/41/5/003 10.1109/TAP.1976.1141423 10.1029/RS019i001p00193 10.1029/RS013i002p00271 10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2 10.1109/TAP.1965.1138472 10.1175/1520-0450(1982)021<0257:RAR>2.0.CO;2 10.1175/1520-0477-28.4.159 10.1175/1520-0450(1977)016<1322:PAAIRM>2.0.CO;2 |
ContentType | Journal Article |
Copyright | This paper is not subject to U.S. copyright. Published in 1984 by the American Geophysical Union. |
Copyright_xml | – notice: This paper is not subject to U.S. copyright. Published in 1984 by the American Geophysical Union. |
DBID | BSCLL CYE CYI AAYXX CITATION 7TG KL. 8FD H8D L7M |
DOI | 10.1029/RS019i001p00003 |
DatabaseName | Istex NASA Scientific and Technical Information NASA Technical Reports Server CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic CrossRef Technology Research Database Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Engineering |
EISSN | 1944-799X |
EndPage | 22 |
ExternalDocumentID | 10_1029_RS019i001p00003 RDS2240 19840037964 ark_67375_WNG_3CHWFMGG_C |
Genre | article |
GrantInformation | NAG5-232 |
GroupedDBID | -~X 05W 0R~ 123 186 1OB 1OC 24P 29P 31~ 33P 3V. 50Y 6IK 6TJ 8-1 88I 8FE 8FG 8FH 8G5 8R4 8R5 A00 AAESR AAHHS AAIHA AAJGR AANLZ AASGY AAXRX AAZKR ABCUV ABDPE ABJNI ABTAH ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFFPM AFGKR AFKRA AFPWT AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ARAPS ASPBG AVWKF AZFZN AZQEC AZVAB BDRZF BEFXN BENPR BFFAM BFHJK BGLVJ BGNUA BHPHI BKEBE BKSAR BMXJE BPEOZ BPHCQ BRXPI BSCLL CCPQU CS3 D1K DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD FEDTE G-S GNUQQ GODZA GUQSH HCIFZ HGLYW HVGLF HZ~ H~9 IPLJI JAVBF K6- LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2O M2P M7R MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OCL OHT OK1 P-X P2P P2W P62 PCBAR PQQKQ PROAC Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TN5 UHW UQL VOH WBKPD WIN WXSBR WYJ XOL YNT ZY4 ZZTAW ~02 ~OA ~~A AANHP ABAZT ABVLG ACRPL ACYXJ ADMLS ADNMO AEYWJ AGQPQ CYE CYI 02 0R 31 A AAPBV ABFLS ABHUG ADAWD ADDAD AEUQT AFVGU AGJLS FH7 G8K HZ IPNFZ MRJOP MY OA PADUT PQEST PQUKI PRINS RIG X AAHQN AAMNL AAYCA AAYXX AEUYN AFWVQ AGHNM AGYGG ALVPJ CITATION PHGZM PHGZT 7TG KL. 8FD H8D L7M |
ID | FETCH-LOGICAL-c5040-dab4099edef2ea7eecd6985eddf5dd98c4289bb68a2454cfb4bc56c91d35ac7b3 |
ISSN | 0048-6604 |
IngestDate | Fri Sep 05 03:16:00 EDT 2025 Thu Sep 04 17:35:59 EDT 2025 Fri Sep 05 05:17:09 EDT 2025 Thu Apr 24 22:56:09 EDT 2025 Tue Jul 01 04:07:08 EDT 2025 Fri Apr 02 05:00:51 EDT 2021 Fri Aug 15 15:30:16 EDT 2025 Wed Oct 30 09:53:04 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5040-dab4099edef2ea7eecd6985eddf5dd98c4289bb68a2454cfb4bc56c91d35ac7b3 |
Notes | ark:/67375/WNG-3CHWFMGG-C istex:BE35DADD5BD6ECE4D3ABBE3597C1219DD1506609 ArticleID:3S0897 CDMS Legacy CDMS ISSN: 0048-6604 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 SourceType-Scholarly Journals-2 ObjectType-Conference Paper-1 SourceType-Conference Papers & Proceedings-1 ObjectType-Article-3 |
PQID | 1534857153 |
PQPubID | 23462 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_24451634 proquest_miscellaneous_18339677 proquest_miscellaneous_1534857153 crossref_primary_10_1029_RS019i001p00003 crossref_citationtrail_10_1029_RS019i001p00003 wiley_primary_10_1029_RS019i001p00003_RDS2240 nasa_ntrs_19840037964 istex_primary_ark_67375_WNG_3CHWFMGG_C |
ProviderPackageCode | ~~A A00 RJQFR MRJOP ADOZA BFHJK LYRES DCZOG LUTES ALUQN AAZKR MSFUL P-X ACAHQ AIURR LEEKS AFGKR 50Y AEUQT AZVAB MEWTI WYJ ABHUG ACXQS BMXJE R.K MXFUL P2W WBKPD WIN BDRZF ADMGS MSSTM DPXWK 1OB 1OC BRXPI AFVGU ADZMN G-S 24P ABCUV ~OA ADEOM MY~ LATKE ZZTAW ADDAD SUPJJ DRSTM 8-1 AFPWT AGJLS LITHE SAMSI ACPOU MXSTM ALXUD DRFUL 05W AAESR LOXES ADAWD CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | January-February 1984 |
PublicationDateYYYYMMDD | 1984-01-01 |
PublicationDate_xml | – month: 01 year: 1984 text: January-February 1984 |
PublicationDecade | 1980 |
PublicationPlace | Legacy CDMS |
PublicationPlace_xml | – name: Legacy CDMS |
PublicationTitle | Radio science |
PublicationTitleAlternate | Radio Sci |
PublicationYear | 1984 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Atlas, D., The estimation of cloud parameters by radar, J. Atmos. Sci., 11, 309-317, 1954. Battan, L. J., Radar Observation of the Atmosphere, 324, University of Chicago Press, Chicago, Ill., 1973. Wilson, R. W., A. A. Penzias, Effect of precipitation on transmission through the atmosphere at 10 microns, Nature, 211, 1081, 1966. Zavody, A. M., Effect of scattering by rain on radiometric measurements at millimeter wavelenths, Proc. Inst. Electr. Eng., 121, 257-263, 1974. Eccles, P. J., E. A. Mueller, X-band attenuation and liquid water content estimation by a dual-wavelength radar, J. Appl. Meteorol., 10, 1252-1259, 1971. Gunn, K. L. S., T. W. R. East, The microwave properties of precipitation particles, Q. J. R. Meteorol. Soc., 80, 522-545, 1954. Cataneo, R., G. E. Stout, Raindrop-size distributions in humid continental climates, and associated rainfall rate-radar reflectivity relationships, J. Appl. Meteorol., 7, 901-907, 1968. Browning, K. A., Meteorological aspects of radar, Rep. Prog. Phys., 41, 761-806, 1978. Seliga, T. A., V. N. Bringi, Differential reflectivity and differential phase shift: Applications in radar meteorology, Radio Sci., 13, 271-275, 1978. Ulbrich, C. W., D. Atlas, The rain parameter diagram: Methods and applications, J. Geophys. Res., 83, 1319-1325, 1978. Bringi, V. N., T. A. Seliga, andW. A. Cooper, Analysis of aircraft hydrometeor spectra and differential reflectivity (ZDR) radar measurements during the cooperative convective precipitation experiment,Radio Sci.1911984. Jameson, A. R., K. V. Beard, Raindrop axial ratios, J. Appl. Meteorol., 21, 257-259, 1982. Atlas, D., F. Ludlam, Multi-wavelength radar reflectivity of hailstorms, Q. J. R. Meteorol. Soc., 87, 523-534, 1961. Wilson, J. W., E. A. Brandes, Radar measurement of rainfall-A summary, Bull. Am. Meteorol. Soc., 60, 1048-1058, 1979. Ulbrich, C. W., D. Atlas, Hail parameter relations: A comprehensive survey, J. Appl. Meteorol., 21, 22-43, 1982. Wexler, R., D. Swingle, Radar storm detection, Bull. Am. Meteorol. Soc., 28, 159-167, 1947. Fedi, F., Prediction of attenuation due to rainfall on terrestrial links, Radio Sci., 16, 731-744, 1981. Joss, J., R. Cavalli, R. K. Crane, Good agreement between theory and experiment for attenuation data, J. Rech. Atmos., 8, 299-318, 1974. Goddard, J. W. F., S. M. Cherry, V. N. Bringi, Comparison of dual-polarization radar measurements of rain with ground-based disdrometer measurements, J. Appl. Meteorol., 21, 252-256, 1982. Goldhirsh, J., Attenuation of propagation through rain for an earth-satellite path correlated with predicted values using radar, IEEE Trans. Antennas Propag., AP-24, 800-866, 1976. Rogers, R. R., A review of multiparameter radar observations of precipitation,Radio Sci.1911984. Anderson, L. J., J. P. Day, C. H. Freres, A. P. D. Stokes, Attenuation of 1.25-centimeter radiation through rain, Proc. IEEE, 35, 351-354, 1947. Lu, D.-R., L. Hai, Comparisons of radar and microwave radiometer in precipitation measurements and their combined use, in Chinese, Acta Atmos. Sin., 1, , 1980. Hogg, D. C., T. S. Chu, The role of rain in satellite communications, Proc. IEEE, 63, 1308-1331, 1975. Marshall, J. S., R. C. Langille, W. M. K. Palmer, Measurement of rainfall by radar, J. Atmos. Sci., 4, 186-192, 1947. Strickland, J. I., The measurement of slant path attenuation using radar, radiometers, and satellite beacons, J. Rech. Atmos., 8, 347-358, 1974. McCormick, K. S., A comparison of precipitation attenuation and radar backscatter along earth-space paths, IEEE Trans. Antennas Propag., AP-20, 747-755, 1972. Eccles, P. J., Comparison of remote measurements by single- and dual-wavelength meteorological radars, IEEE Trans. Geosci. Electron., GE-17, 205-218, 1979. Goldhirsh, J., I. Katz, Estimation of raindrop size distribution using multiple wavelength radar systems, Radio Sci., 9, 439-446, 1974. Krehbiel, P. R., M. Brook, A broad-band noise technique for fast scanning radar observations of clouds and clutter targets, IEEE Trans. Geosci. Electron., GE-17, 196-204, 1979. Berjulev, G. P., V. V. Kostarev, Dual wavelength radar measurements of 8 mm radiowave attenuation by atmospheric precipitation and clouds, J. Rech. Atmos., 8, 358-363, 1974. Seliga, T. A., V. N. Bringi, H. H. Al-Khatib, A preliminary study of comparative measurement of rainfall rate using the differential reflectivity radar technique and a raingage network, J. Appl. Meteorol., 20, 1362-1368, 1981. Hitschfeld, W., J. Bordan, Errors inherent in the radar measurement of rainfall at attenuating wavelengths, J. Atmos. Sci., 11, 58-67, 1954. Meneghini, R., J. Eckerman, D. Atlas, Determination of rain rate from a spaceborne radar using measurements of total attenuation, IEEE Trans. Geosci. Remote Sensing, GE-21, 34-43, 1983. Ulbrich, C. W., D. Atlas, A method for measuring precipitation parameters using radar reflectivity and optical extinction, Ann. Telecommun., 32, 415-421, 1977. Penzias, A. A., First result from 15.3 GHz earth-space propagation study, Bell Syst. Tech. J., 49, 1242-1244, 1970. Atlas, D., C. W. Ulbrich, The physical basis for attenuation-rainfall relationships and the measurement of rainfall parameters by combined attenuation and radar methods, J. Rech. Atmos., 8, 275-298, 1974. Oguchi, T., Scattering from hydrometeors: A survey, Radio Sci., 16, 691-730, 1981. Atlas, D., Advances in radar meteorology, Adv. Geophys., 10, 317-478, 1964. Austin, P. M., Measurement of approximate raindrop size by microwave attenuation, J. Atmos. Sci., 4, 121-124, 1947. Foote, G. B., A Z-R relation for mountain thunderstorms, J. Appl. Meteorol., 2, 229-231, 1966. Godard, S., Propriétés de l'atténuation par la pluie des ondes radioélectriques dans la bande 0.86 cm, J. Rech. Atmos., 2, 121-167, 1965. Pruppacher, H. R., K. V. Beard, A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air, Q. J. R. Meteorol. Soc., 96, 247-256, 1970. Seliga, T. A., V. N. Bringi, Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation, J. Appl. Meteorol., 15, 69-76, 1976. Wang, T., K. B. Earnshaw, R. S. Lawrence, Path-averaged measurements of rain rate and raindrop size distribution using a fast-response optical sensor, J. Appl. Meteorol., 18, 654-660, 1979. Cox, D. C., Depolarization of radio waves by atmospheric hydrometeors in earth-space paths: A review, Radio Sci., 16, 781-812, 1981. Goldhirsh, J., Improved error analysis in estimation of raindrop spectra, rain rate and liquid water content using multiple wavelength radars, IEEE Trans. Antennas Propag., AP-23, 718-720, 1975. Cataneo, R., A method for estimating rainfall rate-radar reflectivity relationships, J. Appl. Meteorol., 8, 815-819, 1969. Goddard, J. W. F., andS. M. Cherry, The ability of dual-polarization radar (copolar linear) to predict rainfall rate and microwave attenuation,Radio Sci.1911984. Atlas, D., Optical extinction by rainfall, J. Atmos. Sci., 10, 486-488, 1953. Donnadieu, G., Observation de deux changements des spectres des gouttes de pluie dans une averse de nuages stratiformes, J. Rech. Atmos., 14, 439-455, 1982. Semplak, R. A., R. H. Turrin, Some measurements of attenuation by rainfall at 18.5 GHz, Bell Syst. Tech. J., 48, 1767-1788, 1969. Eccles, P. J., D. Atlas, A dual-wavelength radar hail detector, J. Appl. Meteorol., 12, 847-856, 1973. Twomey, S., On the measurement of precipitation intensity by radar, J. Atmos. Sci., 10, 66-67, 1953. Blanchard, D. C., Raindrop size distributions in Hawaiian rains, J. Atmos. Sci., 10, 457-473, 1953. Brussaard, G., Prediction of attenuation due to rainfall on earth-space links, Radio Sci., 16, 745-760, 1981. Norbury, J. R., W. J. K. White, Microwave attenuation at 35.8 GHz due to rainfall, Electron. Lett., 8, 91-92, 1972. Atlas, D., C. W. Ulbrich, Path- and area-integrated rainfall measurement by microwave attenuation in the 1-3 cm band, J. Appl. Meteorol., 16, 1322-1331, 1977. Olsen, R. L., Cross polarization during precipitation on terrestrial links: A review, Radio Sci., 16, 761-780, 1981. Fujita, T. T., Tornadoes and downbursts in the context of generalized planetary scales, J. Atmos. Sci., 8, 1511-1534, 1981. Marshall, J. S., W. M. K. Palmer, The distribution of raindrops with size, J. Atmos. Sci., 5, 165-166, 1948. Harrold, T. W., The attenuation of 8.6 mm wavelength radiation in rain, Proc. Inst. Electr. Eng., 114, 201-203, 1967. Waldvogel, A., The N0 jump of raindrop spectra, J. Atmos. Sci., 31, 1067-1078, 1974. Torlaschi, E., R. G. Humphries, andB. L. Barge, Circular polarization for precipitation measurement,Radio Sci.1911984. Ippolito, L. J., Effects of precipitation on 15.3 and 31.6 GHz earth-space transmissions with the ATS-V satellite, Proc. IEEE, 59, 189-205, 1971. Chu, T. S., D. C. Hogg, Effects of precipitation on propagation at 0.63, 3.5, and 10.6 microns, Bell Syst. Tech. J., 47, 723-759, 1968. Srivastava, R. C., A. R. Jameson, Radar detection of hail, Meteorol. Monogr., 38, 269-277, 1977. Medhurst, R. G., Rainfall attenuation of centimeter waves: Comparison of theory and experiment, IEEE Trans. Antennas Propag., AP-13, 550-563, 1965. Ulbrich, C. W., andD. Atlas, Assessment of the contribution of differential polarization to improved rainfall measurements,Radio Sci.1911984. 1968; 7 1954; 80 1982; 14 1979; GE‐17 1973; 12 1976 1975 1973 1967; 114 1972 1971 1970 1983; GE‐21 1976; AP‐24 1975; AP‐23 1974; 9 1974; 8 1979 1972; AP‐20 1978 1977 1969; 8 1965; 2 1971; 10 1948; 5 1947; 35 1954; 11 1977; 38 1982; 21 1971; 59 1941 1982 1984; 19 1969; 48 1977; 32 1981 1961; 87 1980 1948 1947 1979; 60 1946 1965; AP‐13 1968; 47 1966; 2 1979; 18 1972; 8 1966; 211 1974; 31 1947; 4 1947; 28 1952 1951 1981; 8 1970; 96 1978; 13 1974; 121 1953; 10 1957 1981; 20 1956 1977; 16 1978; 41 1980; 1 1978; 83 1964; 10 1981; 16 1961 1975; 63 1976; 15 1970; 49 1968 e_1_2_1_81_1 Ryde J. W. (e_1_2_1_75_1) 1946 Austin P. M. (e_1_2_1_13_1) 1947; 4 e_1_2_1_20_1 e_1_2_1_66_1 e_1_2_1_89_1 e_1_2_1_24_1 Atlas D. (e_1_2_1_5_1) 1953; 10 e_1_2_1_43_1 e_1_2_1_28_1 Anderson L. J. (e_1_2_1_2_1) 1947; 35 Donnadieu G. (e_1_2_1_29_1) 1982; 14 Marshall J. S. (e_1_2_1_62_1) 1947; 4 e_1_2_1_92_1 e_1_2_1_103_1 e_1_2_1_31_1 e_1_2_1_77_1 Strickland J. I. (e_1_2_1_85_1) 1974; 8 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_50_1 e_1_2_1_73_1 e_1_2_1_96_1 e_1_2_1_4_1 Collis R. T. H. (e_1_2_1_27_1) 1961 e_1_2_1_39_1 Atlas D. (e_1_2_1_11_1) 1977; 16 e_1_2_1_58_1 Srivastava R. C. (e_1_2_1_82_1) 1977; 38 Carbone R. E. (e_1_2_1_22_1) 1972 e_1_2_1_40_1 e_1_2_1_67_1 Twomey S. (e_1_2_1_88_1) 1953; 10 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_63_1 e_1_2_1_86_1 e_1_2_1_25_1 e_1_2_1_48_1 e_1_2_1_93_1 e_1_2_1_70_1 e_1_2_1_102_1 e_1_2_1_7_1 e_1_2_1_55_1 e_1_2_1_78_1 e_1_2_1_3_1 e_1_2_1_51_1 e_1_2_1_97_1 e_1_2_1_32_1 e_1_2_1_74_1 Lu D.‐R. (e_1_2_1_60_1) 1980; 1 Wexler R. (e_1_2_1_98_1) 1947; 28 e_1_2_1_36_1 e_1_2_1_59_1 e_1_2_1_41_1 e_1_2_1_87_1 e_1_2_1_68_1 e_1_2_1_45_1 e_1_2_1_83_1 Berjulev G. P. (e_1_2_1_17_1) 1974; 8 e_1_2_1_64_1 Godard S. (e_1_2_1_37_1) 1965; 2 e_1_2_1_49_1 Atlas D. (e_1_2_1_8_1) 1957 e_1_2_1_26_1 e_1_2_1_101_1 Joss J. (e_1_2_1_54_1) 1974; 8 e_1_2_1_71_1 e_1_2_1_90_1 e_1_2_1_56_1 e_1_2_1_79_1 e_1_2_1_33_1 e_1_2_1_52_1 e_1_2_1_94_1 e_1_2_1_14_1 e_1_2_1_80_1 e_1_2_1_42_1 e_1_2_1_65_1 Blanchard D. C. (e_1_2_1_18_1) 1953; 10 e_1_2_1_23_1 e_1_2_1_46_1 e_1_2_1_84_1 e_1_2_1_69_1 e_1_2_1_100_1 Marshall J. S. (e_1_2_1_61_1) 1948; 5 Battan L. J. (e_1_2_1_16_1) 1973 Hitschfeld W. (e_1_2_1_47_1) 1954; 11 Atlas D. (e_1_2_1_10_1) 1974; 8 e_1_2_1_30_1 e_1_2_1_76_1 e_1_2_1_57_1 e_1_2_1_99_1 e_1_2_1_34_1 e_1_2_1_72_1 e_1_2_1_53_1 e_1_2_1_95_1 Atlas D. (e_1_2_1_6_1) 1954; 11 e_1_2_1_38_1 Ulbrich C. W. (e_1_2_1_91_1) 1977; 32 e_1_2_1_15_1 e_1_2_1_9_1 e_1_2_1_19_1 |
References_xml | – reference: Brussaard, G., Prediction of attenuation due to rainfall on earth-space links, Radio Sci., 16, 745-760, 1981. – reference: Olsen, R. L., Cross polarization during precipitation on terrestrial links: A review, Radio Sci., 16, 761-780, 1981. – reference: Fedi, F., Prediction of attenuation due to rainfall on terrestrial links, Radio Sci., 16, 731-744, 1981. – reference: Foote, G. B., A Z-R relation for mountain thunderstorms, J. Appl. Meteorol., 2, 229-231, 1966. – reference: Atlas, D., Advances in radar meteorology, Adv. Geophys., 10, 317-478, 1964. – reference: Waldvogel, A., The N0 jump of raindrop spectra, J. Atmos. Sci., 31, 1067-1078, 1974. – reference: Rogers, R. R., A review of multiparameter radar observations of precipitation,Radio Sci.1911984. – reference: Battan, L. J., Radar Observation of the Atmosphere, 324, University of Chicago Press, Chicago, Ill., 1973. – reference: Atlas, D., The estimation of cloud parameters by radar, J. Atmos. Sci., 11, 309-317, 1954. – reference: Ulbrich, C. W., D. Atlas, The rain parameter diagram: Methods and applications, J. Geophys. Res., 83, 1319-1325, 1978. – reference: Goldhirsh, J., I. Katz, Estimation of raindrop size distribution using multiple wavelength radar systems, Radio Sci., 9, 439-446, 1974. – reference: Hitschfeld, W., J. Bordan, Errors inherent in the radar measurement of rainfall at attenuating wavelengths, J. Atmos. Sci., 11, 58-67, 1954. – reference: Eccles, P. J., D. Atlas, A dual-wavelength radar hail detector, J. Appl. Meteorol., 12, 847-856, 1973. – reference: Strickland, J. I., The measurement of slant path attenuation using radar, radiometers, and satellite beacons, J. Rech. Atmos., 8, 347-358, 1974. – reference: Atlas, D., Optical extinction by rainfall, J. Atmos. Sci., 10, 486-488, 1953. – reference: Twomey, S., On the measurement of precipitation intensity by radar, J. Atmos. Sci., 10, 66-67, 1953. – reference: Wilson, J. W., E. A. Brandes, Radar measurement of rainfall-A summary, Bull. Am. Meteorol. Soc., 60, 1048-1058, 1979. – reference: Zavody, A. M., Effect of scattering by rain on radiometric measurements at millimeter wavelenths, Proc. Inst. Electr. Eng., 121, 257-263, 1974. – reference: Browning, K. A., Meteorological aspects of radar, Rep. Prog. Phys., 41, 761-806, 1978. – reference: Hogg, D. C., T. S. Chu, The role of rain in satellite communications, Proc. IEEE, 63, 1308-1331, 1975. – reference: Marshall, J. S., R. C. Langille, W. M. K. Palmer, Measurement of rainfall by radar, J. Atmos. Sci., 4, 186-192, 1947. – reference: Gunn, K. L. S., T. W. R. East, The microwave properties of precipitation particles, Q. J. R. Meteorol. Soc., 80, 522-545, 1954. – reference: Medhurst, R. G., Rainfall attenuation of centimeter waves: Comparison of theory and experiment, IEEE Trans. Antennas Propag., AP-13, 550-563, 1965. – reference: Eccles, P. J., Comparison of remote measurements by single- and dual-wavelength meteorological radars, IEEE Trans. Geosci. Electron., GE-17, 205-218, 1979. – reference: Marshall, J. S., W. M. K. Palmer, The distribution of raindrops with size, J. Atmos. Sci., 5, 165-166, 1948. – reference: Seliga, T. A., V. N. Bringi, H. H. Al-Khatib, A preliminary study of comparative measurement of rainfall rate using the differential reflectivity radar technique and a raingage network, J. Appl. Meteorol., 20, 1362-1368, 1981. – reference: Goldhirsh, J., Improved error analysis in estimation of raindrop spectra, rain rate and liquid water content using multiple wavelength radars, IEEE Trans. Antennas Propag., AP-23, 718-720, 1975. – reference: Godard, S., Propriétés de l'atténuation par la pluie des ondes radioélectriques dans la bande 0.86 cm, J. Rech. Atmos., 2, 121-167, 1965. – reference: Goldhirsh, J., Attenuation of propagation through rain for an earth-satellite path correlated with predicted values using radar, IEEE Trans. Antennas Propag., AP-24, 800-866, 1976. – reference: Goddard, J. W. F., andS. M. Cherry, The ability of dual-polarization radar (copolar linear) to predict rainfall rate and microwave attenuation,Radio Sci.1911984. – reference: Wilson, R. W., A. A. Penzias, Effect of precipitation on transmission through the atmosphere at 10 microns, Nature, 211, 1081, 1966. – reference: Lu, D.-R., L. Hai, Comparisons of radar and microwave radiometer in precipitation measurements and their combined use, in Chinese, Acta Atmos. Sin., 1, , 1980. – reference: Oguchi, T., Scattering from hydrometeors: A survey, Radio Sci., 16, 691-730, 1981. – reference: Seliga, T. A., V. N. Bringi, Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation, J. Appl. Meteorol., 15, 69-76, 1976. – reference: Wang, T., K. B. Earnshaw, R. S. Lawrence, Path-averaged measurements of rain rate and raindrop size distribution using a fast-response optical sensor, J. Appl. Meteorol., 18, 654-660, 1979. – reference: Meneghini, R., J. Eckerman, D. Atlas, Determination of rain rate from a spaceborne radar using measurements of total attenuation, IEEE Trans. Geosci. Remote Sensing, GE-21, 34-43, 1983. – reference: Ulbrich, C. W., andD. Atlas, Assessment of the contribution of differential polarization to improved rainfall measurements,Radio Sci.1911984. – reference: Semplak, R. A., R. H. Turrin, Some measurements of attenuation by rainfall at 18.5 GHz, Bell Syst. Tech. J., 48, 1767-1788, 1969. – reference: Anderson, L. J., J. P. Day, C. H. Freres, A. P. D. Stokes, Attenuation of 1.25-centimeter radiation through rain, Proc. IEEE, 35, 351-354, 1947. – reference: Ippolito, L. J., Effects of precipitation on 15.3 and 31.6 GHz earth-space transmissions with the ATS-V satellite, Proc. IEEE, 59, 189-205, 1971. – reference: Ulbrich, C. W., D. Atlas, A method for measuring precipitation parameters using radar reflectivity and optical extinction, Ann. Telecommun., 32, 415-421, 1977. – reference: Atlas, D., C. W. Ulbrich, Path- and area-integrated rainfall measurement by microwave attenuation in the 1-3 cm band, J. Appl. Meteorol., 16, 1322-1331, 1977. – reference: Donnadieu, G., Observation de deux changements des spectres des gouttes de pluie dans une averse de nuages stratiformes, J. Rech. Atmos., 14, 439-455, 1982. – reference: Seliga, T. A., V. N. Bringi, Differential reflectivity and differential phase shift: Applications in radar meteorology, Radio Sci., 13, 271-275, 1978. – reference: Wexler, R., D. Swingle, Radar storm detection, Bull. Am. Meteorol. Soc., 28, 159-167, 1947. – reference: Atlas, D., C. W. Ulbrich, The physical basis for attenuation-rainfall relationships and the measurement of rainfall parameters by combined attenuation and radar methods, J. Rech. Atmos., 8, 275-298, 1974. – reference: Cataneo, R., G. E. Stout, Raindrop-size distributions in humid continental climates, and associated rainfall rate-radar reflectivity relationships, J. Appl. Meteorol., 7, 901-907, 1968. – reference: Torlaschi, E., R. G. Humphries, andB. L. Barge, Circular polarization for precipitation measurement,Radio Sci.1911984. – reference: Fujita, T. T., Tornadoes and downbursts in the context of generalized planetary scales, J. Atmos. Sci., 8, 1511-1534, 1981. – reference: Srivastava, R. C., A. R. Jameson, Radar detection of hail, Meteorol. Monogr., 38, 269-277, 1977. – reference: Joss, J., R. Cavalli, R. K. Crane, Good agreement between theory and experiment for attenuation data, J. Rech. Atmos., 8, 299-318, 1974. – reference: Blanchard, D. C., Raindrop size distributions in Hawaiian rains, J. Atmos. Sci., 10, 457-473, 1953. – reference: Norbury, J. R., W. J. K. White, Microwave attenuation at 35.8 GHz due to rainfall, Electron. Lett., 8, 91-92, 1972. – reference: Krehbiel, P. R., M. Brook, A broad-band noise technique for fast scanning radar observations of clouds and clutter targets, IEEE Trans. Geosci. Electron., GE-17, 196-204, 1979. – reference: Cox, D. C., Depolarization of radio waves by atmospheric hydrometeors in earth-space paths: A review, Radio Sci., 16, 781-812, 1981. – reference: Pruppacher, H. R., K. V. Beard, A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air, Q. J. R. Meteorol. Soc., 96, 247-256, 1970. – reference: Jameson, A. R., K. V. Beard, Raindrop axial ratios, J. Appl. Meteorol., 21, 257-259, 1982. – reference: McCormick, K. S., A comparison of precipitation attenuation and radar backscatter along earth-space paths, IEEE Trans. Antennas Propag., AP-20, 747-755, 1972. – reference: Penzias, A. A., First result from 15.3 GHz earth-space propagation study, Bell Syst. Tech. J., 49, 1242-1244, 1970. – reference: Atlas, D., F. Ludlam, Multi-wavelength radar reflectivity of hailstorms, Q. J. R. Meteorol. Soc., 87, 523-534, 1961. – reference: Berjulev, G. P., V. V. Kostarev, Dual wavelength radar measurements of 8 mm radiowave attenuation by atmospheric precipitation and clouds, J. Rech. Atmos., 8, 358-363, 1974. – reference: Bringi, V. N., T. A. Seliga, andW. A. Cooper, Analysis of aircraft hydrometeor spectra and differential reflectivity (ZDR) radar measurements during the cooperative convective precipitation experiment,Radio Sci.1911984. – reference: Chu, T. S., D. C. Hogg, Effects of precipitation on propagation at 0.63, 3.5, and 10.6 microns, Bell Syst. Tech. J., 47, 723-759, 1968. – reference: Eccles, P. J., E. A. Mueller, X-band attenuation and liquid water content estimation by a dual-wavelength radar, J. Appl. Meteorol., 10, 1252-1259, 1971. – reference: Goddard, J. W. F., S. M. Cherry, V. N. Bringi, Comparison of dual-polarization radar measurements of rain with ground-based disdrometer measurements, J. Appl. Meteorol., 21, 252-256, 1982. – reference: Austin, P. M., Measurement of approximate raindrop size by microwave attenuation, J. Atmos. Sci., 4, 121-124, 1947. – reference: Harrold, T. W., The attenuation of 8.6 mm wavelength radiation in rain, Proc. Inst. Electr. Eng., 114, 201-203, 1967. – reference: Cataneo, R., A method for estimating rainfall rate-radar reflectivity relationships, J. Appl. Meteorol., 8, 815-819, 1969. – reference: Ulbrich, C. W., D. Atlas, Hail parameter relations: A comprehensive survey, J. Appl. Meteorol., 21, 22-43, 1982. – start-page: 238 year: 1981 end-page: 287 – volume: AP‐20 start-page: 747 year: 1972 end-page: 755 article-title: A comparison of precipitation attenuation and radar backscatter along earth‐space paths publication-title: IEEE Trans. Antennas Propag. – start-page: 371 year: 1961 – volume: 20 start-page: 1362 year: 1981 end-page: 1368 article-title: A preliminary study of comparative measurement of rainfall rate using the differential reflectivity radar technique and a raingage network publication-title: J. Appl. Meteorol. – year: 1956 – year: 1981 – volume: 16 start-page: 1322 year: 1977 end-page: 1331 article-title: Path‐ and area‐integrated rainfall measurement by microwave attenuation in the 1–3 cm band publication-title: J. Appl. Meteorol. – volume: 21 start-page: 257 year: 1982 end-page: 259 article-title: Raindrop axial ratios publication-title: J. Appl. Meteorol. – volume: 10 start-page: 317 year: 1964 end-page: 478 article-title: Advances in radar meteorology publication-title: Adv. Geophys. – volume: 10 start-page: 457 year: 1953 end-page: 473 article-title: Raindrop size distributions in Hawaiian rains publication-title: J. Atmos. Sci. – volume: 16 start-page: 745 year: 1981 end-page: 760 article-title: Prediction of attenuation due to rainfall on earth‐space links publication-title: Radio Sci. – volume: 4 start-page: 121 year: 1947 end-page: 124 article-title: Measurement of approximate raindrop size by microwave attenuation publication-title: J. Atmos. Sci. – volume: AP‐24 start-page: 800 year: 1976 end-page: 866 article-title: Attenuation of propagation through rain for an earth‐satellite path correlated with predicted values using radar publication-title: IEEE Trans. Antennas Propag. – volume: GE‐17 start-page: 196 year: 1979 end-page: 204 article-title: A broad‐band noise technique for fast scanning radar observations of clouds and clutter targets publication-title: IEEE Trans. Geosci. Electron. – volume: 8 start-page: 1511 year: 1981 end-page: 1534 article-title: Tornadoes and downbursts in the context of generalized planetary scales publication-title: J. Atmos. Sci. – year: 1975 – volume: 8 start-page: 347 year: 1974 end-page: 358 article-title: The measurement of slant path attenuation using radar, radiometers, and satellite beacons publication-title: J. Rech. Atmos. – start-page: 169 year: 1946 end-page: 188 – volume: 19 issue: 1 year: 1984 article-title: Assessment of the contribution of differential polarization to improved rainfall measurements publication-title: Radio Sci. – year: 1971 – year: 1952 – volume: 41 start-page: 761 year: 1978 end-page: 806 article-title: Meteorological aspects of radar publication-title: Rep. Prog. Phys. – year: 1979 – volume: 5 start-page: 165 year: 1948 end-page: 166 article-title: The distribution of raindrops with size publication-title: J. Atmos. Sci. – volume: AP‐23 start-page: 718 year: 1975 end-page: 720 article-title: Improved error analysis in estimation of raindrop spectra, rain rate and liquid water content using multiple wavelength radars publication-title: IEEE Trans. Antennas Propag. – volume: 211 start-page: 1081 year: 1966 article-title: Effect of precipitation on transmission through the atmosphere at 10 microns publication-title: Nature – volume: 19 issue: 1 year: 1984 article-title: A review of multiparameter radar observations of precipitation publication-title: Radio Sci. – volume: 18 start-page: 654 year: 1979 end-page: 660 article-title: Path‐averaged measurements of rain rate and raindrop size distribution using a fast‐response optical sensor publication-title: J. Appl. Meteorol. – year: 1982 – volume: 48 start-page: 1767 year: 1969 end-page: 1788 article-title: Some measurements of attenuation by rainfall at 18.5 GHz publication-title: Bell Syst. Tech. J. – volume: 11 start-page: 309 year: 1954 end-page: 317 article-title: The estimation of cloud parameters by radar publication-title: J. Atmos. Sci. – volume: 15 start-page: 69 year: 1976 end-page: 76 article-title: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation publication-title: J. Appl. Meteorol. – volume: 10 start-page: 486 year: 1953 end-page: 488 article-title: Optical extinction by rainfall publication-title: J. Atmos. Sci. – year: 1951 – start-page: 7 year: 1972 end-page: 12 – year: 1976 – volume: 28 start-page: 159 year: 1947 end-page: 167 article-title: Radar storm detection publication-title: Bull. Am. Meteorol. Soc. – volume: 8 start-page: 358 year: 1974 end-page: 363 article-title: Dual wavelength radar measurements of 8 mm radiowave attenuation by atmospheric precipitation and clouds publication-title: J. Rech. Atmos. – volume: 8 start-page: 299 year: 1974 end-page: 318 article-title: Good agreement between theory and experiment for attenuation data publication-title: J. Rech. Atmos. – volume: 47 start-page: 723 year: 1968 end-page: 759 article-title: Effects of precipitation on propagation at 0.63, 3.5, and 10.6 microns publication-title: Bell Syst. Tech. J. – volume: 121 start-page: 257 year: 1974 end-page: 263 article-title: Effect of scattering by rain on radiometric measurements at millimeter wavelenths publication-title: Proc. Inst. Electr. Eng. – volume: 87 start-page: 523 year: 1961 end-page: 534 article-title: Multi‐wavelength radar reflectivity of hailstorms publication-title: Q. J. R. Meteorol. Soc. – volume: 14 start-page: 439 year: 1982 end-page: 455 article-title: Observation de deux changements des spectres des gouttes de pluie dans une averse de nuages stratiformes publication-title: J. Rech. Atmos. – volume: 1 year: 1980 article-title: Comparisons of radar and microwave radiometer in precipitation measurements and their combined use publication-title: Acta Atmos. Sin. – volume: 83 start-page: 1319 year: 1978 end-page: 1325 article-title: The rain parameter diagram: Methods and applications publication-title: J. Geophys. Res. – volume: 7 start-page: 901 year: 1968 end-page: 907 article-title: Raindrop‐size distributions in humid continental climates, and associated rainfall rate‐radar reflectivity relationships publication-title: J. Appl. Meteorol. – volume: 16 start-page: 761 year: 1981 end-page: 780 article-title: Cross polarization during precipitation on terrestrial links: A review publication-title: Radio Sci. – year: 1941 – volume: GE‐21 start-page: 34 year: 1983 end-page: 43 article-title: Determination of rain rate from a spaceborne radar using measurements of total attenuation publication-title: IEEE Trans. Geosci. Remote Sensing – volume: 13 start-page: 271 year: 1978 end-page: 275 article-title: Differential reflectivity and differential phase shift: Applications in radar meteorology publication-title: Radio Sci. – volume: 12 start-page: 847 year: 1973 end-page: 856 article-title: A dual‐wavelength radar hail detector publication-title: J. Appl. Meteorol. – volume: 21 start-page: 22 year: 1982 end-page: 43 article-title: Hail parameter relations: A comprehensive survey publication-title: J. Appl. Meteorol. – year: 1968 – volume: 63 start-page: 1308 year: 1975 end-page: 1331 article-title: The role of rain in satellite communications publication-title: Proc. IEEE – volume: 80 start-page: 522 year: 1954 end-page: 545 article-title: The microwave properties of precipitation particles publication-title: Q. J. R. Meteorol. Soc. – volume: 59 start-page: 189 year: 1971 end-page: 205 article-title: Effects of precipitation on 15.3 and 31.6 GHz earth‐space transmissions with the ATS‐V satellite publication-title: Proc. IEEE – volume: 49 start-page: 1242 year: 1970 end-page: 1244 article-title: First result from 15.3 GHz earth‐space propagation study publication-title: Bell Syst. Tech. J. – year: 1948 – year: 1973 – volume: GE‐17 start-page: 205 year: 1979 end-page: 218 article-title: Comparison of remote measurements by single‐ and dual‐wavelength meteorological radars publication-title: IEEE Trans. Geosci. Electron. – volume: 8 start-page: 91 year: 1972 end-page: 92 article-title: Microwave attenuation at 35.8 GHz due to rainfall publication-title: Electron. Lett. – volume: 19 issue: 1 year: 1984 article-title: The ability of dual‐polarization radar (copolar linear) to predict rainfall rate and microwave attenuation publication-title: Radio Sci. – volume: 38 start-page: 269 year: 1977 end-page: 277 article-title: Radar detection of hail publication-title: Meteorol. Monogr. – volume: 16 start-page: 731 year: 1981 end-page: 744 article-title: Prediction of attenuation due to rainfall on terrestrial links publication-title: Radio Sci. – volume: 2 start-page: 229 year: 1966 end-page: 231 article-title: A relation for mountain thunderstorms publication-title: J. Appl. Meteorol. – start-page: 21 year: 1957 end-page: 30 – year: 1977 – volume: 4 start-page: 186 year: 1947 end-page: 192 article-title: Measurement of rainfall by radar publication-title: J. Atmos. Sci. – volume: 19 issue: 1 year: 1984 article-title: Circular polarization for precipitation measurement publication-title: Radio Sci. – volume: 60 start-page: 1048 year: 1979 end-page: 1058 article-title: Radar measurement of rainfall—A summary publication-title: Bull. Am. Meteorol. Soc. – volume: 2 start-page: 121 year: 1965 end-page: 167 article-title: Propriétés de l'atténuation par la pluie des ondes radioélectriques dans la bande 0.86 cm publication-title: J. Rech. Atmos. – volume: 31 start-page: 1067 year: 1974 end-page: 1078 article-title: The jump of raindrop spectra publication-title: J. Atmos. Sci. – volume: 8 start-page: 275 year: 1974 end-page: 298 article-title: The physical basis for attenuation‐rainfall relationships and the measurement of rainfall parameters by combined attenuation and radar methods publication-title: J. Rech. Atmos. – volume: 10 start-page: 1252 year: 1971 end-page: 1259 article-title: ‐band attenuation and liquid water content estimation by a dual‐wavelength radar publication-title: J. Appl. Meteorol. – volume: 10 start-page: 66 year: 1953 end-page: 67 article-title: On the measurement of precipitation intensity by radar publication-title: J. Atmos. Sci. – year: 1980 – volume: 9 start-page: 439 year: 1974 end-page: 446 article-title: Estimation of raindrop size distribution using multiple wavelength radar systems publication-title: Radio Sci. – volume: AP‐13 start-page: 550 year: 1965 end-page: 563 article-title: Rainfall attenuation of centimeter waves: Comparison of theory and experiment publication-title: IEEE Trans. Antennas Propag. – volume: 11 start-page: 58 year: 1954 end-page: 67 article-title: Errors inherent in the radar measurement of rainfall at attenuating wavelengths publication-title: J. Atmos. Sci. – year: 1947 – volume: 19 issue: 1 year: 1984 article-title: Analysis of aircraft hydrometeor spectra and differential reflectivity ( ) radar measurements during the cooperative convective precipitation experiment publication-title: Radio Sci. – volume: 32 start-page: 415 year: 1977 end-page: 421 article-title: A method for measuring precipitation parameters using radar reflectivity and optical extinction publication-title: Ann. Telecommun. – volume: 21 start-page: 252 year: 1982 end-page: 256 article-title: Comparison of dual‐polarization radar measurements of rain with ground‐based disdrometer measurements publication-title: J. Appl. Meteorol. – year: 1970 – volume: 16 start-page: 781 year: 1981 end-page: 812 article-title: Depolarization of radio waves by atmospheric hydrometeors in earth‐space paths: A review publication-title: Radio Sci. – volume: 16 start-page: 691 year: 1981 end-page: 730 article-title: Scattering from hydrometeors: A survey publication-title: Radio Sci. – volume: 96 start-page: 247 year: 1970 end-page: 256 article-title: A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air publication-title: Q. J. R. Meteorol. Soc. – volume: 8 start-page: 815 year: 1969 end-page: 819 article-title: A method for estimating rainfall rate‐radar reflectivity relationships publication-title: J. Appl. Meteorol. – year: 1978 – volume: 35 start-page: 351 year: 1947 end-page: 354 article-title: Attenuation of 1.25‐centimeter radiation through rain publication-title: Proc. IEEE – volume: 114 start-page: 201 year: 1967 end-page: 203 article-title: The attenuation of 8.6 mm wavelength radiation in rain publication-title: Proc. Inst. Electr. Eng. – volume: 11 start-page: 58 year: 1954 ident: e_1_2_1_47_1 article-title: Errors inherent in the radar measurement of rainfall at attenuating wavelengths publication-title: J. Atmos. Sci. – ident: e_1_2_1_66_1 doi: 10.1109/TGRS.1983.350528 – ident: e_1_2_1_31_1 doi: 10.1175/1520-0450(1973)012<0847:ADWRHD>2.0.CO;2 – ident: e_1_2_1_39_1 doi: 10.1175/1520-0450(1982)021<0252:CODPRM>2.0.CO;2 – ident: e_1_2_1_70_1 doi: 10.1002/j.1538-7305.1970.tb01824.x – ident: e_1_2_1_51_1 – ident: e_1_2_1_100_1 doi: 10.1038/2111081a0 – ident: e_1_2_1_28_1 doi: 10.1029/RS016i005p00781 – ident: e_1_2_1_71_1 doi: 10.1002/qj.49709640807 – ident: e_1_2_1_42_1 doi: 10.1029/RS009i004p00439 – ident: e_1_2_1_81_1 – volume: 38 start-page: 269 year: 1977 ident: e_1_2_1_82_1 article-title: Radar detection of hail publication-title: Meteorol. Monogr. – ident: e_1_2_1_83_1 – ident: e_1_2_1_26_1 doi: 10.1002/j.1538-7305.1968.tb00058.x – ident: e_1_2_1_24_1 doi: 10.1175/1520-0450(1968)007<0901:RSDIHC>2.0.CO;2 – ident: e_1_2_1_76_1 doi: 10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2 – ident: e_1_2_1_67_1 doi: 10.1049/el:19720066 – ident: e_1_2_1_73_1 doi: 10.1029/RS019i001p00023 – ident: e_1_2_1_78_1 – ident: e_1_2_1_46_1 doi: 10.1049/piee.1967.0035 – ident: e_1_2_1_97_1 – volume: 11 start-page: 309 year: 1954 ident: e_1_2_1_6_1 article-title: The estimation of cloud parameters by radar publication-title: J. Atmos. Sci. – ident: e_1_2_1_64_1 doi: 10.1109/TAP.1972.1140301 – ident: e_1_2_1_99_1 doi: 10.1175/1520-0477(1979)060<1048:RMORS>2.0.CO;2 – ident: e_1_2_1_43_1 doi: 10.1002/qj.49708034603 – volume: 8 start-page: 299 year: 1974 ident: e_1_2_1_54_1 article-title: Good agreement between theory and experiment for attenuation data publication-title: J. Rech. Atmos. – volume: 4 start-page: 121 year: 1947 ident: e_1_2_1_13_1 article-title: Measurement of approximate raindrop size by microwave attenuation publication-title: J. Atmos. Sci. – ident: e_1_2_1_9_1 doi: 10.1002/qj.49708737407 – volume: 8 start-page: 347 year: 1974 ident: e_1_2_1_85_1 article-title: The measurement of slant path attenuation using radar, radiometers, and satellite beacons publication-title: J. Rech. Atmos. – volume: 4 start-page: 186 year: 1947 ident: e_1_2_1_62_1 article-title: Measurement of rainfall by radar publication-title: J. Atmos. Sci. – ident: e_1_2_1_15_1 – ident: e_1_2_1_30_1 doi: 10.1109/TGE.1979.294650 – ident: e_1_2_1_19_1 doi: 10.1029/RS019i001p00157 – volume: 10 start-page: 486 year: 1953 ident: e_1_2_1_5_1 article-title: Optical extinction by rainfall publication-title: J. Atmos. Sci. – ident: e_1_2_1_25_1 – start-page: 371 volume-title: Proceedings, 9th Weather Radar Conference year: 1961 ident: e_1_2_1_27_1 – ident: e_1_2_1_48_1 doi: 10.1109/PROC.1975.9940 – ident: e_1_2_1_21_1 doi: 10.1029/RS016i005p00745 – ident: e_1_2_1_92_1 doi: 10.1029/JC083iC03p01319 – volume: 8 start-page: 358 year: 1974 ident: e_1_2_1_17_1 article-title: Dual wavelength radar measurements of 8 mm radiowave attenuation by atmospheric precipitation and clouds publication-title: J. Rech. Atmos. – ident: e_1_2_1_44_1 – ident: e_1_2_1_58_1 doi: 10.1109/TGE.1979.294649 – ident: e_1_2_1_96_1 doi: 10.1175/1520-0450(1979)018<0654:PAMORR>2.0.CO;2 – ident: e_1_2_1_101_1 doi: 10.1364/CLEO.1982.FV4 – ident: e_1_2_1_68_1 doi: 10.1029/RS016i005p00691 – ident: e_1_2_1_94_1 doi: 10.1029/RS019i001p00049 – volume: 35 start-page: 351 year: 1947 ident: e_1_2_1_2_1 article-title: Attenuation of 1.25‐centimeter radiation through rain publication-title: Proc. IEEE – ident: e_1_2_1_80_1 doi: 10.1002/j.1538-7305.1969.tb01151.x – ident: e_1_2_1_35_1 doi: 10.1175/1520-0450(1966)005<0229:AZRRFM>2.0.CO;2 – ident: e_1_2_1_38_1 doi: 10.1029/RS019i001p00201 – ident: e_1_2_1_49_1 doi: 10.1109/PROC.1971.8124 – ident: e_1_2_1_63_1 – ident: e_1_2_1_34_1 doi: 10.1029/RS016i005p00731 – ident: e_1_2_1_74_1 – ident: e_1_2_1_40_1 doi: 10.1109/TAP.1975.1141159 – ident: e_1_2_1_32_1 doi: 10.1175/1520-0450(1971)010<1252:XBAALW>2.0.CO;2 – ident: e_1_2_1_7_1 doi: 10.1016/S0065-2687(08)60009-6 – ident: e_1_2_1_23_1 doi: 10.1175/1520-0450(1969)008<0815:AMFERR>2.0.CO;2 – ident: e_1_2_1_12_1 – ident: e_1_2_1_57_1 – ident: e_1_2_1_4_1 – volume: 14 start-page: 439 year: 1982 ident: e_1_2_1_29_1 article-title: Observation de deux changements des spectres des gouttes de pluie dans une averse de nuages stratiformes publication-title: J. Rech. Atmos. – start-page: 21 volume-title: Proceedings, Sixth Weather Radar Conference year: 1957 ident: e_1_2_1_8_1 – ident: e_1_2_1_59_1 – ident: e_1_2_1_45_1 – ident: e_1_2_1_72_1 – ident: e_1_2_1_95_1 doi: 10.1175/1520-0469(1974)031<1067:TJORS>2.0.CO;2 – ident: e_1_2_1_53_1 doi: 10.1175/1520-0469(1969)026<0566:RSDASS>2.0.CO;2 – ident: e_1_2_1_56_1 – volume: 8 start-page: 275 year: 1974 ident: e_1_2_1_10_1 article-title: The physical basis for attenuation‐rainfall relationships and the measurement of rainfall parameters by combined attenuation and radar methods publication-title: J. Rech. Atmos. – volume-title: Radar Observation of the Atmosphere year: 1973 ident: e_1_2_1_16_1 – ident: e_1_2_1_86_1 – ident: e_1_2_1_103_1 doi: 10.1049/piee.1974.0050 – volume: 32 start-page: 415 year: 1977 ident: e_1_2_1_91_1 article-title: A method for measuring precipitation parameters using radar reflectivity and optical extinction publication-title: Ann. Telecommun. doi: 10.1007/BF03003488 – ident: e_1_2_1_93_1 doi: 10.1175/1520-0450(1982)021<0022:HPRACD>2.0.CO;2 – volume: 1 year: 1980 ident: e_1_2_1_60_1 article-title: Comparisons of radar and microwave radiometer in precipitation measurements and their combined use publication-title: Acta Atmos. Sin. – ident: e_1_2_1_69_1 doi: 10.1029/RS016i005p00761 – ident: e_1_2_1_89_1 – start-page: 7 volume-title: Proceedings, 15th Conference on Radar Meteorology year: 1972 ident: e_1_2_1_22_1 – start-page: 169 volume-title: Meteorolgical Factors in Radio Wave Propagation year: 1946 ident: e_1_2_1_75_1 – ident: e_1_2_1_79_1 doi: 10.1175/1520-0450(1981)020<1362:APSOCM>2.0.CO;2 – ident: e_1_2_1_20_1 doi: 10.1088/0034-4885/41/5/003 – volume: 10 start-page: 457 year: 1953 ident: e_1_2_1_18_1 article-title: Raindrop size distributions in Hawaiian rains publication-title: J. Atmos. Sci. – ident: e_1_2_1_41_1 doi: 10.1109/TAP.1976.1141423 – ident: e_1_2_1_102_1 – ident: e_1_2_1_84_1 – ident: e_1_2_1_14_1 – ident: e_1_2_1_87_1 doi: 10.1029/RS019i001p00193 – ident: e_1_2_1_77_1 doi: 10.1029/RS013i002p00271 – ident: e_1_2_1_36_1 doi: 10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2 – ident: e_1_2_1_65_1 doi: 10.1109/TAP.1965.1138472 – ident: e_1_2_1_3_1 – ident: e_1_2_1_50_1 doi: 10.1175/1520-0450(1982)021<0257:RAR>2.0.CO;2 – volume: 5 start-page: 165 year: 1948 ident: e_1_2_1_61_1 article-title: The distribution of raindrops with size publication-title: J. Atmos. Sci. – volume: 28 start-page: 159 year: 1947 ident: e_1_2_1_98_1 article-title: Radar storm detection publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477-28.4.159 – ident: e_1_2_1_33_1 – ident: e_1_2_1_90_1 – volume: 2 start-page: 121 year: 1965 ident: e_1_2_1_37_1 article-title: Propriétés de l'atténuation par la pluie des ondes radioélectriques dans la bande 0.86 cm publication-title: J. Rech. Atmos. – ident: e_1_2_1_55_1 – volume: 16 start-page: 1322 year: 1977 ident: e_1_2_1_11_1 article-title: Path‐ and area‐integrated rainfall measurement by microwave attenuation in the 1–3 cm band publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(1977)016<1322:PAAIRM>2.0.CO;2 – ident: e_1_2_1_52_1 – volume: 10 start-page: 66 year: 1953 ident: e_1_2_1_88_1 article-title: On the measurement of precipitation intensity by radar publication-title: J. Atmos. Sci. |
SSID | ssj0014564 |
Score | 1.3388722 |
Snippet | The measurement of rainfall by remote sensors is investigated. One parameter radar rainfall measurement is limited because both reflectivity and rain rate are... This paper is a critical survey of the measurement of rainfall by remote sensors. It is shown that single‐parameter radar rainfall measurements are limited... This paper is a critical survey of the measurement of rainfall by remote sensors. It is shown that single-parameter radar rainfall measurements are limited... This paper is a critical survey of rainfall measurement by remote sensors. It is shown that single-parameter radar rainfall measurements are limited because... |
SourceID | proquest crossref wiley nasa istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3 |
SubjectTerms | Meteorology And Climatology |
Title | The multiparameter remote measurement of rainfall |
URI | https://api.istex.fr/ark:/67375/WNG-3CHWFMGG-C/fulltext.pdf https://ntrs.nasa.gov/citations/19840037964 https://onlinelibrary.wiley.com/doi/abs/10.1029/RS019i001p00003 https://www.proquest.com/docview/1534857153 https://www.proquest.com/docview/18339677 https://www.proquest.com/docview/24451634 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaAvsADgjFEuAYJTUhVxhrf4gcepm7thNoi9aL1zfKtrCJrp14kxK_nOEnTlFENeEnbyK0bf_a52Od8B6EPGMxanSgbcWImEYkdrLnYiEiB89zAjFjjsmiLHrsYkS9jOt6W4MyyS1b62Pz8Y17J_6AK9wBXnyX7D8iWPwo34D3gC1dAGK5_hXGWPevJu699UEt94WDcXf16u-3nTUFfA2Ki0rRqhvaVnc7rhfYrMV-leXZXJc59_XmUahCVV0VwiK9BXS-3ZbogKL9dTbOqUEWM9nYXoSESUtlFKCQjSSLG8lLApWQUt2ZALuZwRV_macW3JPFJ7IlMF0swIaegCm-8YsRbpbM5aO99la1RpyOH5-PhfVSLOfeH7bXTs25nUJ4GecqbPFIg_48lRZP49FsHO9ZFzS-UH6BrZ2qpdjyIqh-SGRLDJ-hx4QGEpzmcT9E9NztAjyq8kAco6AKe80V24hEehc10Cn5F9ukZinZBD3PQwwro4XwSbkA_RKPW-bB5ERU1LyJDfXCnVRo8buGsm8ROceeMZSKhztoJtVYkBtxFoTVLVEwoLC9NtKHMiIbFVBmu8XN43PnMvUCh1p5tL9aGuIQQ6unrXYK5wfyEGYVpgI43YyVNQQjv65KkMgtMiIXsD3YGN0Afyy_c5Fwo-5seZYNftlOL7z6EkFN52WtL3Ly4bHXbbdkM0KFHR0LPS-knpidEEowE6P0GLgkCz59iqZmbr6ERxSShHF4C9G5fmwRjwTjf3yL2xHwMQz9RNhfueiDZPxt46_flnX2-Qg-3C-w1erBarN0bMFxX-m0xr38BiWCVwg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiparameter+remote+measurement+of+rainfall&rft.jtitle=Radio+science&rft.au=Atlas%2C+David&rft.au=Ulbrich%2C+Carlton+W&rft.au=Meneghini%2C+Robert&rft.date=1984-01-01&rft.issn=0048-6604&rft.volume=19&rft.issue=1&rft.spage=3&rft.epage=22&rft_id=info:doi/10.1029%2Frs019i001p00003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-6604&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-6604&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-6604&client=summon |