Metric Learning for Multi-atlas based Segmentation of Hippocampus
Automatic and reliable segmentation of hippocampus from MR brain images is of great importance in studies of neurological diseases, such as epilepsy and Alzheimer’s disease. In this paper, we proposed a novel metric learning method to fuse segmentation labels in multi-atlas based image segmentation....
Saved in:
Published in | Neuroinformatics (Totowa, N.J.) Vol. 15; no. 1; pp. 41 - 50 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1539-2791 1559-0089 1559-0089 |
DOI | 10.1007/s12021-016-9312-y |
Cover
Loading…
Abstract | Automatic and reliable segmentation of hippocampus from MR brain images is of great importance in studies of neurological diseases, such as epilepsy and Alzheimer’s disease. In this paper, we proposed a novel metric learning method to fuse segmentation labels in multi-atlas based image segmentation. Different from current label fusion methods that typically adopt a predefined distance metric model to compute a similarity measure between image patches of atlas images and the image to be segmented, we learn a distance metric model from the atlases to keep image patches of the same structure close to each other while those of different structures are separated. The learned distance metric model is then used to compute the similarity measure between image patches in the label fusion. The proposed method has been validated for segmenting hippocampus based on the EADC-ADNI dataset with manually labelled hippocampus of 100 subjects. The experiment results demonstrated that our method achieved statistically significant improvement in segmentation accuracy, compared with state-of-the-art multi-atlas image segmentation methods. |
---|---|
AbstractList | Automatic and reliable segmentation of hippocampus from MR brain images is of great importance in studies of neurological diseases, such as epilepsy and Alzheimer’s disease. In this paper, we proposed a novel metric learning method to fuse segmentation labels in multi-atlas based image segmentation. Different from current label fusion methods that typically adopt a predefined distance metric model to compute a similarity measure between image patches of atlas images and the image to be segmented, we learn a distance metric model from the atlases to keep image patches of the same structure close to each other while those of different structures are separated. The learned distance metric model is then used to compute the similarity measure between image patches in the label fusion. The proposed method has been validated for segmenting hippocampus based on the EADC-ADNI dataset with manually labelled hippocampus of 100 subjects. The experiment results demonstrated that our method achieved statistically significant improvement in segmentation accuracy, compared with state-of-the-art multi-atlas image segmentation methods. Automatic and reliable segmentation of hippocampus from MR brain images is of great importance in studies of neurological diseases, such as epilepsy and Alzheimer's disease. In this paper, we proposed a novel metric learning method to fuse segmentation labels in multi-atlas based image segmentation. Different from current label fusion methods that typically adopt a predefined distance metric model to compute a similarity measure between image patches of atlas images and the image to be segmented, we learn a distance metric model from the atlases to keep image patches of the same structure close to each other while those of different structures are separated. The learned distance metric model is then used to compute the similarity measure between image patches in the label fusion. The proposed method has been validated for segmenting hippocampus based on the EADC-ADNI dataset with manually labelled hippocampus of 100 subjects. The experiment results demonstrated that our method achieved statistically significant improvement in segmentation accuracy, compared with state-of-the-art multi-atlas image segmentation methods.Automatic and reliable segmentation of hippocampus from MR brain images is of great importance in studies of neurological diseases, such as epilepsy and Alzheimer's disease. In this paper, we proposed a novel metric learning method to fuse segmentation labels in multi-atlas based image segmentation. Different from current label fusion methods that typically adopt a predefined distance metric model to compute a similarity measure between image patches of atlas images and the image to be segmented, we learn a distance metric model from the atlases to keep image patches of the same structure close to each other while those of different structures are separated. The learned distance metric model is then used to compute the similarity measure between image patches in the label fusion. The proposed method has been validated for segmenting hippocampus based on the EADC-ADNI dataset with manually labelled hippocampus of 100 subjects. The experiment results demonstrated that our method achieved statistically significant improvement in segmentation accuracy, compared with state-of-the-art multi-atlas image segmentation methods. |
Author | Zhu, Hancan Cheng, Hewei Fan, Yong Yang, Xuesong |
AuthorAffiliation | 4 Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA 1 School of Mathematics Physics and Information, Shaoxing University, Shaoxing, 312000, China 2 Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China 3 National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China |
AuthorAffiliation_xml | – name: 2 Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China – name: 1 School of Mathematics Physics and Information, Shaoxing University, Shaoxing, 312000, China – name: 4 Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA – name: 3 National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China |
Author_xml | – sequence: 1 givenname: Hancan surname: Zhu fullname: Zhu, Hancan organization: School of Mathematics Physics and Information, Shaoxing University – sequence: 2 givenname: Hewei surname: Cheng fullname: Cheng, Hewei organization: Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications – sequence: 3 givenname: Xuesong surname: Yang fullname: Yang, Xuesong organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences – sequence: 4 givenname: Yong surname: Fan fullname: Fan, Yong email: yong.fan@ieee.org organization: Department of Radiology, Perelman School of Medicine, University of Pennsylvania |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27638650$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFrFTEUhYNUbPv0B7iRATduojfJZJJshFLUCq900e5DXl7yTJlJxmSm8P69eUwrtWDpKhfyncs595yio5iiQ-g9gc8EQHwphAIlGEiHFSMU71-hE8K5wgBSHR1mpjAVihyj01JuAWgnAN6gYyo6JjsOJ-js0k052GbtTI4h7hqfcnM591PAZupNaTamuG1z7XaDi5OZQopN8s1FGMdkzTDO5S167U1f3Lv7d4Vuvn-7Ob_A66sfP8_P1thyYBP21pOuOhDUK0qIcXLT8o1v-dZQbloGzEklgFhhqHKSAAcloQXFtsR5wlbo67J2nDeD29rqJptejzkMJu91MkH_-xPDL71Ld5q3TMqad4U-3S_I6ffsyqSHUKzrexNdmosmUgjJREvZC1DGOYjaQUU_PkFv05xjPUSlOqFo19UIK_Thsfm_rh96qIBYAJtTKdl5bcNy7Zol9JqAPjSul8Z1bVwfGtf7qiRPlA_Ln9PQRVMqG3cuPzL9X9EfGUC8KQ |
CitedBy_id | crossref_primary_10_1007_s11517_023_02836_9 crossref_primary_10_3389_fninf_2018_00069 crossref_primary_10_1016_j_amc_2017_10_033 crossref_primary_10_1007_s11517_017_1735_6 crossref_primary_10_1007_s00330_022_09081_y crossref_primary_10_1007_s12021_019_09417_y crossref_primary_10_1007_s12021_019_09448_5 crossref_primary_10_1016_j_cmpb_2021_106197 crossref_primary_10_1049_cje_2021_06_002 crossref_primary_10_1007_s12094_018_1903_7 crossref_primary_10_1109_TMI_2019_2906727 crossref_primary_10_1007_s10278_022_00613_y crossref_primary_10_1016_j_ejrad_2023_110771 crossref_primary_10_1016_j_nicl_2019_101902 crossref_primary_10_1016_j_imu_2023_101249 crossref_primary_10_1093_comjnl_bxac054 crossref_primary_10_3390_s20133628 crossref_primary_10_1038_s41598_024_66415_0 crossref_primary_10_1049_ipr2_12988 crossref_primary_10_1007_s12021_018_9364_2 crossref_primary_10_1117_1_JMI_6_1_014003 crossref_primary_10_1038_s41598_019_53387_9 crossref_primary_10_1109_ACCESS_2019_2904143 |
Cites_doi | 10.1016/j.media.2014.09.005 10.1016/j.neuroimage.2009.10.026 10.1109/TMI.2014.2308901 10.1109/TMI.2010.2050897 10.1109/TMI.2011.2156806 10.1109/TPAMI.2012.143 10.1016/j.jalz.2014.12.002 10.1118/1.4867855 10.1002/hbm.22359 10.1016/j.media.2007.06.004 10.1016/j.neuroimage.2012.08.067 10.1016/j.media.2015.06.002 10.1016/j.neuroimage.2014.11.025 10.1016/j.media.2015.06.012 10.1109/TMI.2012.2230018 10.1007/s12021-010-9096-4 10.1016/j.neuroimage.2010.09.018 10.1109/TMI.2009.2014372 10.1016/j.neuroimage.2006.05.061 10.1016/j.neuroimage.2015.07.076 10.1016/j.neuroimage.2010.03.066 10.1016/j.jalz.2013.09.014 10.1109/TMI.2004.828354 10.1016/j.neuroimage.2009.02.018 10.1016/j.neuroimage.2006.10.035 10.1109/TNNLS.2014.2361142 10.1016/j.neuroimage.2005.05.005 10.1109/TCYB.2014.2346394 10.1016/j.media.2015.04.015 10.1016/j.neuroimage.2003.11.010 10.1007/978-3-319-10581-9_32 10.1117/12.911014 10.1016/j.neuroimage.2015.11.073 10.1007/s12021-014-9243-4 10.1145/1961189.1961199 10.1109/ICCV.2009.5459197 10.1117/12.911370 10.1109/ISBI.2014.6867795 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2016 Neuroinformatics is a copyright of Springer, 2017. |
Copyright_xml | – notice: Springer Science+Business Media New York 2016 – notice: Neuroinformatics is a copyright of Springer, 2017. |
CorporateAuthor | Alzheimer’s Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: Alzheimer’s Disease Neuroimaging Initiative |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88A 88E 88G 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 7QO 8FD FR3 P64 5PM |
DOI | 10.1007/s12021-016-9312-y |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database (ProQuest) Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE Engineering Research Database ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1559-0089 |
EndPage | 50 |
ExternalDocumentID | PMC5438876 4313378961 27638650 10_1007_s12021_016_9312_y |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Key Basic Research and Development Program grantid: 2015CB856404 – fundername: National Natural Science Foundation of China grantid: 81271514, 61473296 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Institutes of Health grantid: EB022573, AG014971 funderid: http://dx.doi.org/10.13039/100000002 – fundername: NIBIB NIH HHS grantid: R01 EB022573 – fundername: NIA NIH HHS grantid: R01 AG014971 – fundername: NCI NIH HHS grantid: U24 CA189523 |
GroupedDBID | --- -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 203 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 53G 5VS 67N 6NX 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACCUX ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AZQEC B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMCUK HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV LK8 LLZTM M0L M1P M2M M4Y M7P MA- NPVJJ NQJWS NU0 O9- O9J OVD P2P PF- PQQKQ PROAC PSQYO PSYQQ PT4 Q2X QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TEORI TSG TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z83 Z88 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7TK 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 7QO 8FD FR3 P64 5PM |
ID | FETCH-LOGICAL-c503t-fcf1600272f9211ae8b45bf45da25a4303e89701c7a29e810509804093d1ef13 |
IEDL.DBID | BENPR |
ISSN | 1539-2791 1559-0089 |
IngestDate | Thu Aug 21 18:17:07 EDT 2025 Thu Sep 04 17:51:15 EDT 2025 Fri Sep 05 04:05:32 EDT 2025 Fri Jul 25 18:57:59 EDT 2025 Mon Jul 21 05:51:55 EDT 2025 Tue Jul 01 04:24:52 EDT 2025 Thu Apr 24 22:56:15 EDT 2025 Fri Feb 21 02:26:53 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Multi-atlas image segmentation Hippocampus segmentation Label fusion Metric learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c503t-fcf1600272f9211ae8b45bf45da25a4303e89701c7a29e810509804093d1ef13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf |
OpenAccessLink | http://doi.org/10.1007/s12021-016-9312-y |
PMID | 27638650 |
PQID | 1867926609 |
PQPubID | 54206 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5438876 proquest_miscellaneous_1877837423 proquest_miscellaneous_1835507100 proquest_journals_1867926609 pubmed_primary_27638650 crossref_citationtrail_10_1007_s12021_016_9312_y crossref_primary_10_1007_s12021_016_9312_y springer_journals_10_1007_s12021_016_9312_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170100 2017-1-00 2017-01-00 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 1 year: 2017 text: 20170100 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Totowa |
PublicationTitle | Neuroinformatics (Totowa, N.J.) |
PublicationTitleAbbrev | Neuroinform |
PublicationTitleAlternate | Neuroinformatics |
PublicationYear | 2017 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Lötjönen, Wolz, Koikkalainen, Thurfjell, Waldemar, Soininen, Rueckert (CR24) 2010; 49 Bai, Shi, Ledig, Rueckert (CR5) 2015; 19 Jafari-Khouzani, Elisevich, Patel, Soltanian-Zadeh (CR22) 2011; 9 Sabuncu, Yeo, Van Leemput, Fischl, Golland (CR27) 2010; 29 Warfield, Zou, Wells (CR33) 2004; 23 CR18 CR17 Wang, Suh, Das, Pluta, Craige, Yushkevich (CR30) 2013; 35 CR39 CR16 Wu, Kim, Sanroma, Wang, Munsell, Shen, Initiative (CR37) 2015; 106 CR14 Yan, Cao, Yuan, Turkbey, Choyke (CR40) 2015; 45 CR13 Weinberger, Saul (CR34) 2009; 10 CR31 Akhondi-Asl, Jafari-Khouzani, Elisevich, Soltanian-Zadeh (CR1) 2011; 54 Wolz, Schwarz, Yu, Cole, Rueckert, Jack, Raunig, Hill (CR35) 2014; 10 Boccardi, Bocchetta, Morency, Collins, Nishikawa, Ganzola, Grothe, Wolf, Redolfi, Pievani (CR6) 2015; 11 Artaechevarria, Munoz-Barrutia, Ortiz-de-Solorzano (CR3) 2009; 28 Heckemann, Hajnal, Aljabar, Rueckert, Hammers (CR20) 2006; 33 CR8 Aljabar, Heckemann, Hammers, Hajnal, Rueckert (CR2) 2009; 46 Carmichael, Aizenstein, Davis, Becker, Thompson, Meltzer, Liu (CR7) 2005; 27 CR9 Rohlfing, Brandt, Menzel, Maurer (CR25) 2004; 21 Xie, Ruan (CR38) 2014; 41 Wu, Liu, Huang, Guo, Jiang, Yang, Chen, Feng (CR36) 2014; 33 Chupin, Mukuna-Bantumbakulu, Hasboun, Bardinet, Baillet, Kinkingnéhun, Lemieux, Dubois, Garnero (CR10) 2007; 34 Coupé, Manjón, Fonov, Pruessner, Robles, Collins (CR11) 2011; 54 Rousseau, Habas, Studholme (CR26) 2011; 30 Wang, Zuo, Zhang, Meng, Zhang (CR32) 2015; 26 CR41 Tong, Wolz, Wang, Gao, Misawa, Fujiwara, Mori, Hajnal, Rueckert (CR29) 2015; 23 Liao, Gao, Lian, Shen (CR23) 2013; 32 Giraud, Ta, Papadakis, Manjón, Collins, Coupé, Initiative (CR15) 2016; 124 Hao, Wang, Zhang, Duan, Yu, Jiang, Fan (CR19) 2014; 35 Avants, Epstein, Grossman, Gee (CR4) 2008; 12 den Heijer, van der Lijn, Vernooij, de Groot, Koudstaal, van der Lugt, Krestin, Hofman, Niessen, Breteler (CR12) 2012; 63 Sanroma, Wu, Gao, Thung, Guo, Shen (CR28) 2015; 24 Iglesias, Sabuncu (CR21) 2015; 24 9312_CR14 W Bai (9312_CR5) 2015; 19 S Liao (9312_CR23) 2013; 32 SK Warfield (9312_CR33) 2004; 23 9312_CR13 Y Hao (9312_CR19) 2014; 35 Q Xie (9312_CR38) 2014; 41 G Wu (9312_CR37) 2015; 106 9312_CR31 T Rohlfing (9312_CR25) 2004; 21 R Giraud (9312_CR15) 2016; 124 9312_CR18 F Rousseau (9312_CR26) 2011; 30 OT Carmichael (9312_CR7) 2005; 27 9312_CR16 9312_CR17 9312_CR39 P-g Yan (9312_CR40) 2015; 45 X Artaechevarria (9312_CR3) 2009; 28 R Wolz (9312_CR35) 2014; 10 F Wang (9312_CR32) 2015; 26 Y Wu (9312_CR36) 2014; 33 G Sanroma (9312_CR28) 2015; 24 KQ Weinberger (9312_CR34) 2009; 10 M Boccardi (9312_CR6) 2015; 11 JE Iglesias (9312_CR21) 2015; 24 K Jafari-Khouzani (9312_CR22) 2011; 9 M Chupin (9312_CR10) 2007; 34 JMP Lötjönen (9312_CR24) 2010; 49 9312_CR41 A Akhondi-Asl (9312_CR1) 2011; 54 MR Sabuncu (9312_CR27) 2010; 29 T Tong (9312_CR29) 2015; 23 RA Heckemann (9312_CR20) 2006; 33 9312_CR9 9312_CR8 BB Avants (9312_CR4) 2008; 12 H Wang (9312_CR30) 2013; 35 P Aljabar (9312_CR2) 2009; 46 P Coupé (9312_CR11) 2011; 54 T den Heijer (9312_CR12) 2012; 63 |
References_xml | – volume: 19 start-page: 98 year: 2015 end-page: 109 ident: CR5 article-title: Multi-atlas segmentation with augmented features for cardiac MR images publication-title: Medical Image Analysis doi: 10.1016/j.media.2014.09.005 – ident: CR18 – volume: 49 start-page: 2352 year: 2010 end-page: 2365 ident: CR24 article-title: Fast and robust multi-atlas segmentation of brain magnetic resonance images publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.026 – volume: 33 start-page: 1290 year: 2014 end-page: 1303 ident: CR36 article-title: Prostate segmentation based on variant scale patch and local independent projection publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2014.2308901 – ident: CR14 – volume: 29 start-page: 1714 year: 2010 end-page: 1729 ident: CR27 article-title: A generative model for image segmentation based on label fusion publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2010.2050897 – ident: CR39 – ident: CR16 – volume: 30 start-page: 1852 year: 2011 end-page: 1862 ident: CR26 article-title: A supervised patch-based approach for human brain labeling publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2011.2156806 – volume: 35 start-page: 611 year: 2013 end-page: 623 ident: CR30 article-title: Multi-atlas segmentation with joint label fusion publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2012.143 – volume: 11 start-page: 175 year: 2015 end-page: 183 ident: CR6 article-title: Training labels for hippocampal segmentation based on the EADC-ADNI harmonized hippocampal protocol publication-title: Alzheimer's & Dementia doi: 10.1016/j.jalz.2014.12.002 – volume: 41 start-page: 041909 year: 2014 ident: CR38 article-title: Low-complexity atlas-based prostate segmentation by combining global, regional, and local metrics publication-title: Medical Physics doi: 10.1118/1.4867855 – volume: 35 start-page: 2674 year: 2014 end-page: 2697 ident: CR19 article-title: Local label learning (LLL) for subcortical structure segmentation: Application to hippocampus segmentation publication-title: Human Brain Mapping doi: 10.1002/hbm.22359 – volume: 10 start-page: 207 year: 2009 end-page: 244 ident: CR34 article-title: Distance metric learning for large margin nearest neighbor classification publication-title: Journal of Machine Learning Research – ident: CR8 – volume: 12 start-page: 26 year: 2008 end-page: 41 ident: CR4 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Medical Image Analysis doi: 10.1016/j.media.2007.06.004 – volume: 63 start-page: 1782 year: 2012 end-page: 1789 ident: CR12 article-title: Structural and diffusion MRI measures of the hippocampus and memory performance publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.08.067 – volume: 24 start-page: 135 year: 2015 end-page: 148 ident: CR28 article-title: A transversal approach for patch-based label fusion via matrix completion publication-title: Medical Image Analysis doi: 10.1016/j.media.2015.06.002 – volume: 106 start-page: 34 year: 2015 end-page: 46 ident: CR37 article-title: Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.11.025 – volume: 24 start-page: 205 year: 2015 end-page: 219 ident: CR21 article-title: Multi-atlas segmentation of biomedical images: A survey publication-title: Medical Image Analysis doi: 10.1016/j.media.2015.06.012 – volume: 32 start-page: 419 year: 2013 end-page: 434 ident: CR23 article-title: Sparse patch-based label propagation for accurate prostate localization in CT images publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2012.2230018 – volume: 9 start-page: 335 year: 2011 end-page: 346 ident: CR22 article-title: Dataset of magnetic resonance images of nonepileptic subjects and temporal lobe epilepsy patients for validation of hippocampal segmentation techniques publication-title: Neuroinformatics doi: 10.1007/s12021-010-9096-4 – volume: 54 start-page: 940 year: 2011 end-page: 954 ident: CR11 article-title: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.09.018 – volume: 28 start-page: 1266 year: 2009 end-page: 1277 ident: CR3 article-title: Combination strategies in multi-atlas image segmentation: Application to brain MR data publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2009.2014372 – volume: 33 start-page: 115 year: 2006 end-page: 126 ident: CR20 article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.05.061 – volume: 124 start-page: 770 year: 2016 end-page: 782 ident: CR15 article-title: An Optimized PatchMatch for multi-scale and multi-feature label fusion publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.07.076 – ident: CR17 – ident: CR31 – volume: 54 start-page: S218 year: 2011 end-page: S226 ident: CR1 article-title: Hippocampal volumetry for lateralization of temporal lobe epilepsy: automated versus manual methods publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.03.066 – ident: CR13 – volume: 10 start-page: 430 year: 2014 end-page: 438 ident: CR35 article-title: Robustness of automated hippocampal volumetry across magnetic resonance field strengths and repeat images. publication-title: Alzheimer's & Dementia doi: 10.1016/j.jalz.2013.09.014 – ident: CR9 – volume: 23 start-page: 903 year: 2004 end-page: 921 ident: CR33 article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2004.828354 – volume: 46 start-page: 726 year: 2009 end-page: 738 ident: CR2 article-title: Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.02.018 – volume: 34 start-page: 996 year: 2007 end-page: 1019 ident: CR10 article-title: Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: method and validation on controls and patients with Alzheimer’s disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.10.035 – volume: 26 start-page: 1950 year: 2015 end-page: 1962 ident: CR32 article-title: A kernel classification framework for metric learning publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2014.2361142 – volume: 27 start-page: 979 year: 2005 end-page: 990 ident: CR7 article-title: Atlas-based hippocampus segmentation in Alzheimer’s disease and mild cognitive impairment. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.05.005 – ident: CR41 – volume: 45 start-page: 1158 year: 2015 end-page: 1168 ident: CR40 article-title: Label Image Constrained Multiatlas Selection publication-title: IEEE transactions on Cybernetics doi: 10.1109/TCYB.2014.2346394 – volume: 23 start-page: 92 year: 2015 end-page: 104 ident: CR29 article-title: Discriminative dictionary learning for abdominal multi-organ segmentation publication-title: Medical Image Analysis doi: 10.1016/j.media.2015.04.015 – volume: 21 start-page: 1428 year: 2004 end-page: 1442 ident: CR25 article-title: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains publication-title: NeuroImage doi: 10.1016/j.neuroimage.2003.11.010 – volume: 28 start-page: 1266 year: 2009 ident: 9312_CR3 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2009.2014372 – volume: 29 start-page: 1714 year: 2010 ident: 9312_CR27 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2010.2050897 – volume: 23 start-page: 92 year: 2015 ident: 9312_CR29 publication-title: Medical Image Analysis doi: 10.1016/j.media.2015.04.015 – volume: 10 start-page: 430 year: 2014 ident: 9312_CR35 publication-title: Alzheimer's & Dementia doi: 10.1016/j.jalz.2013.09.014 – volume: 45 start-page: 1158 year: 2015 ident: 9312_CR40 publication-title: IEEE transactions on Cybernetics doi: 10.1109/TCYB.2014.2346394 – ident: 9312_CR41 – volume: 24 start-page: 205 year: 2015 ident: 9312_CR21 publication-title: Medical Image Analysis doi: 10.1016/j.media.2015.06.012 – volume: 12 start-page: 26 year: 2008 ident: 9312_CR4 publication-title: Medical Image Analysis doi: 10.1016/j.media.2007.06.004 – ident: 9312_CR39 – volume: 23 start-page: 903 year: 2004 ident: 9312_CR33 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2004.828354 – volume: 35 start-page: 611 year: 2013 ident: 9312_CR30 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2012.143 – volume: 9 start-page: 335 year: 2011 ident: 9312_CR22 publication-title: Neuroinformatics doi: 10.1007/s12021-010-9096-4 – volume: 124 start-page: 770 year: 2016 ident: 9312_CR15 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.07.076 – ident: 9312_CR31 doi: 10.1007/978-3-319-10581-9_32 – volume: 32 start-page: 419 year: 2013 ident: 9312_CR23 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2012.2230018 – volume: 21 start-page: 1428 year: 2004 ident: 9312_CR25 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2003.11.010 – ident: 9312_CR18 doi: 10.1117/12.911014 – volume: 41 start-page: 041909 year: 2014 ident: 9312_CR38 publication-title: Medical Physics doi: 10.1118/1.4867855 – ident: 9312_CR14 doi: 10.1016/j.neuroimage.2015.11.073 – ident: 9312_CR13 doi: 10.1007/s12021-014-9243-4 – volume: 46 start-page: 726 year: 2009 ident: 9312_CR2 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.02.018 – volume: 49 start-page: 2352 year: 2010 ident: 9312_CR24 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.026 – volume: 10 start-page: 207 year: 2009 ident: 9312_CR34 publication-title: Journal of Machine Learning Research – ident: 9312_CR8 doi: 10.1145/1961189.1961199 – volume: 30 start-page: 1852 year: 2011 ident: 9312_CR26 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2011.2156806 – volume: 106 start-page: 34 year: 2015 ident: 9312_CR37 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.11.025 – volume: 26 start-page: 1950 year: 2015 ident: 9312_CR32 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2014.2361142 – volume: 35 start-page: 2674 year: 2014 ident: 9312_CR19 publication-title: Human Brain Mapping doi: 10.1002/hbm.22359 – ident: 9312_CR16 doi: 10.1109/ICCV.2009.5459197 – volume: 34 start-page: 996 year: 2007 ident: 9312_CR10 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.10.035 – volume: 54 start-page: S218 year: 2011 ident: 9312_CR1 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.03.066 – volume: 54 start-page: 940 year: 2011 ident: 9312_CR11 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.09.018 – volume: 33 start-page: 115 year: 2006 ident: 9312_CR20 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.05.061 – volume: 19 start-page: 98 year: 2015 ident: 9312_CR5 publication-title: Medical Image Analysis doi: 10.1016/j.media.2014.09.005 – volume: 11 start-page: 175 year: 2015 ident: 9312_CR6 publication-title: Alzheimer's & Dementia doi: 10.1016/j.jalz.2014.12.002 – volume: 63 start-page: 1782 year: 2012 ident: 9312_CR12 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.08.067 – volume: 24 start-page: 135 year: 2015 ident: 9312_CR28 publication-title: Medical Image Analysis doi: 10.1016/j.media.2015.06.002 – volume: 27 start-page: 979 year: 2005 ident: 9312_CR7 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.05.005 – ident: 9312_CR17 doi: 10.1117/12.911370 – ident: 9312_CR9 doi: 10.1109/ISBI.2014.6867795 – volume: 33 start-page: 1290 year: 2014 ident: 9312_CR36 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2014.2308901 |
SSID | ssj0026700 |
Score | 2.276034 |
Snippet | Automatic and reliable segmentation of hippocampus from MR brain images is of great importance in studies of neurological diseases, such as epilepsy and... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 41 |
SubjectTerms | Aged Aged, 80 and over Algorithms Atlases as Topic Bioinformatics Biomedical and Life Sciences Biomedicine Computational Biology/Bioinformatics Computer Appl. in Life Sciences Female Hippocampus - cytology Hippocampus - pathology Humans Image Processing, Computer-Assisted - methods Machine Learning Magnetic Resonance Imaging - methods Male Neurology Neurosciences Original Article Software |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XLyIb-uLCOJBCTRpuk2OiyiLoBcVvJW0SVRwu4u7e9h_7yTbVtcXeG2mIc10Ml8yM18ATpgTzjqboQY6jgrNS6qlKWiZalbqmBsTyJ5vbju9B3H9mD7WddyjJtu9CUmGlfqj2I37dAKEKFQljNPpIiyn-Mjn8T3wbrvLqutO0JIV5ZliTSjzpy7mndE3hPk9UfJLtDQ4oas1WK3RI-nO1L0OC7bagM1uhTvn_pSckpDPGQ7KN6F74y_LKknNoPpEEJ6SUG9L9RgxM_EOzJA7-9Sv648qMnCk9zIcon_rDyejLbi_ury_6NH6wgSc2jgZU1c65uNsGXcKN3baykKkhROp0TzVAr2VlSqLWZlprqxknvtFohWrxDDrWLINS9WgsrtAYs2kRmhkjeqIWBqlsQdTGGnQvg0XEcTNxOVlTSbu77R4zT9okP1c5z6BzM91Po3grH1lOGPS-Ev4oNFGXhvVKPfcewoBRawiOG6b0Rx8jENXdjDxMolnaMNe_5LJMtyXI5CMYGem4HZEHNdbiag1gmxO9a2Ap-Oeb6lengMtdyoSXLE7EZw3P8mnof_2oXv_kt6HFe5hRTgCOoCl8dvEHiIoGhdHwQjeAf0eBBA priority: 102 providerName: Springer Nature |
Title | Metric Learning for Multi-atlas based Segmentation of Hippocampus |
URI | https://link.springer.com/article/10.1007/s12021-016-9312-y https://www.ncbi.nlm.nih.gov/pubmed/27638650 https://www.proquest.com/docview/1867926609 https://www.proquest.com/docview/1835507100 https://www.proquest.com/docview/1877837423 https://pubmed.ncbi.nlm.nih.gov/PMC5438876 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6x9oUXBIwfYaMyEuIBZBE7SW0_oYA6KtAmBJtUniIntrdJNA1r-9D_nnPqZJSJvsaOlfh8d5995-8AXjOXOuusQAmMHU01r6iWpqRVplmlY25MS_Z8ejaeXqRfZtksHLgtQ1plZxNbQ20WlT8jf--J1xR6k1h9aH5TXzXKR1dDCY0DGKIJltkAhh8nZ9--91uucAkF1VpRLhTr4prt5Tnu0xMQ8lCVME43u57pDty8mzX5T-i09UgnD-FBgJIk38r-Edyz9WM4zGvcRs835A1pkzvbU_NDyE995ayKBDrVS4JYlbSXb6leIYAm3psZ8sNezsNlpJosHJleNw06u3mzXj6B85PJ-acpDdUTcJ7jZEVd5ZgPugnuFO7ytJVlmpUuzYzmmU7RdVmpRMwqobmyknkiGIkqrRLDrGPJUxjUi9o-BxJrJjXiJGvUOI2lURpHMKWRBpXd8DSCuJu4ogrM4r7Axa_ilhPZz3Xhs8n8XBebCN72rzRbWo19nY87aRRBw5bF7XqI4FXfjLrhAx66tou175N4ujYcdV8fIXCTjqgygmdbAfdfxNH4SoSwEYgd0fcdPDf3bkt9fdVydGdpguZ7HMG7bpH89en_-9EX-3_0CO5zDyraA6BjGKxu1vYlQqJVOYIDMRMjGOaff36djIIW4NMLnv8BktQL-Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a2wEuCBgfgQFGAg4ga7GTNPYBoQKbOrZWCIq0W-TE9phE00Bbof5R_I-8lyYZZaK3neO6id_Xz37PvwfwXPjYO-9SlEDP89jIghtlc14kRhQmlNbWZM_DUW_wNf54mpxuwe_2LgyVVbY-sXbUdlrQGfk-Ea9pjCahflv94NQ1irKrbQuNlVocu-Uv3LLN3hx9QPm-kPLwYPx-wJuuAvj_YTTnvvCCklGp9Bp3P8apPE5yHyfWyMTE6NKd0mkoitRI7ZQgghSFqq4jK5wXEU57DXYQZWg0op13B6NPn7sdXnPnBb2I5jLVok2j1nf1JFVDIMLiOhKSL9cD4SV0e7lI859MbR0AD2_BzQa5sv5K1W7DlivvwG6_xF37ZMlesrqWtD6k34X-kBp1Faxhbz1jCI1ZfdeXmznidUbB07Iv7mzS3H0q2dSzwXlVYWydVIvZXRhfxbLeg-1yWroHwEIjlEFY5qzuxaGy2uAMNrfKom-xMg4gbBcuKxoic-qn8T27oGCmtc6oeI3WOlsG8Kr7SbVi8dg0eK-VRtYY9Cy7UL8AnnWP0RQpv2JKN13QmIjY4XDWTWPSVEWUHg_g_krA3RtJ9PUKEXMA6ZrouwFEBb7-pDz_VlOCJ3GE0aIXwOtWSf569f996MPNH_oUrg_Gw5Ps5Gh0_AhuSMIz9dnTHmzPfy7cY0Rj8_xJYwMMsiu2uj_XKULS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTkK8IGDAMgYYCXgAWYudpLEfECpsVcdYNcGQ9hY5sT0mrWmgrVA_Gt-OuzTpKBN923Mcy_b9te_udwAvhY-98y5FCnQ9j40suFE250ViRGFCaW0N9nw87A6-xZ_OkrMN-N3WwlBaZasTa0VtxwW9ke8R8JpGaxLqPd-kRZzs999XPzh1kKJIa9tOY8EiR27-C69vk3eH-0jrV1L2D04_DnjTYQDXEkZT7gsvKDCVSq_xJmScyuMk93FijUxMjOrdKZ2GokiN1E4JAktRyPY6ssJ5EeG0t2AzRaOoOrD54WB48mV522vqX1CjaC5TLdqQal23JykzAr0triMh-XzVKF7zdK8nbP4Tta2NYf8e3G28WNZbsN192HDlA9jqlXiDH83Za1bnldYP9lvQO6amXQVrkFzPGbrJrK775WaKvjsjQ2rZV3c-auqgSjb2bHBRVWhnR9Vs8hBOb-JYH0GnHJduG1hohDLoojmru3GorDY4g82tsqhnrIwDCNuDy4oG1Jx6a1xmV3DMdNYZJbLRWWfzAN4sf6kWiB7rBu-21Mga4Z5kV6wYwIvlZxRLirWY0o1nNCYipDicdd2YNFURhcoDeLwg8HJFEvW-Qu85gHSF9MsBBAu--qW8-F7DgydxhJajG8Dblkn-Wvr_NrqzfqPP4TZKW_b5cHj0BO5Icm3qZ6hd6Ex_ztxTdMym-bNGBBhkNyx0fwD4REb- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metric+Learning+for+Multi-atlas+based+Segmentation+of+Hippocampus&rft.jtitle=Neuroinformatics+%28Totowa%2C+N.J.%29&rft.au=Zhu%2C+Hancan&rft.au=Cheng%2C+Hewei&rft.au=Yang%2C+Xuesong&rft.au=Fan%2C+Yong&rft.date=2017-01-01&rft.issn=1539-2791&rft.eissn=1559-0089&rft.volume=15&rft.issue=1&rft.spage=41&rft.epage=50&rft_id=info:doi/10.1007%2Fs12021-016-9312-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12021_016_9312_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-2791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-2791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-2791&client=summon |