Metric Learning for Multi-atlas based Segmentation of Hippocampus

Automatic and reliable segmentation of hippocampus from MR brain images is of great importance in studies of neurological diseases, such as epilepsy and Alzheimer’s disease. In this paper, we proposed a novel metric learning method to fuse segmentation labels in multi-atlas based image segmentation....

Full description

Saved in:
Bibliographic Details
Published inNeuroinformatics (Totowa, N.J.) Vol. 15; no. 1; pp. 41 - 50
Main Authors Zhu, Hancan, Cheng, Hewei, Yang, Xuesong, Fan, Yong
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1539-2791
1559-0089
1559-0089
DOI10.1007/s12021-016-9312-y

Cover

Loading…
Abstract Automatic and reliable segmentation of hippocampus from MR brain images is of great importance in studies of neurological diseases, such as epilepsy and Alzheimer’s disease. In this paper, we proposed a novel metric learning method to fuse segmentation labels in multi-atlas based image segmentation. Different from current label fusion methods that typically adopt a predefined distance metric model to compute a similarity measure between image patches of atlas images and the image to be segmented, we learn a distance metric model from the atlases to keep image patches of the same structure close to each other while those of different structures are separated. The learned distance metric model is then used to compute the similarity measure between image patches in the label fusion. The proposed method has been validated for segmenting hippocampus based on the EADC-ADNI dataset with manually labelled hippocampus of 100 subjects. The experiment results demonstrated that our method achieved statistically significant improvement in segmentation accuracy, compared with state-of-the-art multi-atlas image segmentation methods.
AbstractList Automatic and reliable segmentation of hippocampus from MR brain images is of great importance in studies of neurological diseases, such as epilepsy and Alzheimer’s disease. In this paper, we proposed a novel metric learning method to fuse segmentation labels in multi-atlas based image segmentation. Different from current label fusion methods that typically adopt a predefined distance metric model to compute a similarity measure between image patches of atlas images and the image to be segmented, we learn a distance metric model from the atlases to keep image patches of the same structure close to each other while those of different structures are separated. The learned distance metric model is then used to compute the similarity measure between image patches in the label fusion. The proposed method has been validated for segmenting hippocampus based on the EADC-ADNI dataset with manually labelled hippocampus of 100 subjects. The experiment results demonstrated that our method achieved statistically significant improvement in segmentation accuracy, compared with state-of-the-art multi-atlas image segmentation methods.
Automatic and reliable segmentation of hippocampus from MR brain images is of great importance in studies of neurological diseases, such as epilepsy and Alzheimer's disease. In this paper, we proposed a novel metric learning method to fuse segmentation labels in multi-atlas based image segmentation. Different from current label fusion methods that typically adopt a predefined distance metric model to compute a similarity measure between image patches of atlas images and the image to be segmented, we learn a distance metric model from the atlases to keep image patches of the same structure close to each other while those of different structures are separated. The learned distance metric model is then used to compute the similarity measure between image patches in the label fusion. The proposed method has been validated for segmenting hippocampus based on the EADC-ADNI dataset with manually labelled hippocampus of 100 subjects. The experiment results demonstrated that our method achieved statistically significant improvement in segmentation accuracy, compared with state-of-the-art multi-atlas image segmentation methods.Automatic and reliable segmentation of hippocampus from MR brain images is of great importance in studies of neurological diseases, such as epilepsy and Alzheimer's disease. In this paper, we proposed a novel metric learning method to fuse segmentation labels in multi-atlas based image segmentation. Different from current label fusion methods that typically adopt a predefined distance metric model to compute a similarity measure between image patches of atlas images and the image to be segmented, we learn a distance metric model from the atlases to keep image patches of the same structure close to each other while those of different structures are separated. The learned distance metric model is then used to compute the similarity measure between image patches in the label fusion. The proposed method has been validated for segmenting hippocampus based on the EADC-ADNI dataset with manually labelled hippocampus of 100 subjects. The experiment results demonstrated that our method achieved statistically significant improvement in segmentation accuracy, compared with state-of-the-art multi-atlas image segmentation methods.
Author Zhu, Hancan
Cheng, Hewei
Fan, Yong
Yang, Xuesong
AuthorAffiliation 4 Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
1 School of Mathematics Physics and Information, Shaoxing University, Shaoxing, 312000, China
2 Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
3 National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
AuthorAffiliation_xml – name: 2 Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
– name: 1 School of Mathematics Physics and Information, Shaoxing University, Shaoxing, 312000, China
– name: 4 Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
– name: 3 National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
Author_xml – sequence: 1
  givenname: Hancan
  surname: Zhu
  fullname: Zhu, Hancan
  organization: School of Mathematics Physics and Information, Shaoxing University
– sequence: 2
  givenname: Hewei
  surname: Cheng
  fullname: Cheng, Hewei
  organization: Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications
– sequence: 3
  givenname: Xuesong
  surname: Yang
  fullname: Yang, Xuesong
  organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
– sequence: 4
  givenname: Yong
  surname: Fan
  fullname: Fan, Yong
  email: yong.fan@ieee.org
  organization: Department of Radiology, Perelman School of Medicine, University of Pennsylvania
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27638650$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFrFTEUhYNUbPv0B7iRATduojfJZJJshFLUCq900e5DXl7yTJlJxmSm8P69eUwrtWDpKhfyncs595yio5iiQ-g9gc8EQHwphAIlGEiHFSMU71-hE8K5wgBSHR1mpjAVihyj01JuAWgnAN6gYyo6JjsOJ-js0k052GbtTI4h7hqfcnM591PAZupNaTamuG1z7XaDi5OZQopN8s1FGMdkzTDO5S167U1f3Lv7d4Vuvn-7Ob_A66sfP8_P1thyYBP21pOuOhDUK0qIcXLT8o1v-dZQbloGzEklgFhhqHKSAAcloQXFtsR5wlbo67J2nDeD29rqJptejzkMJu91MkH_-xPDL71Ld5q3TMqad4U-3S_I6ffsyqSHUKzrexNdmosmUgjJREvZC1DGOYjaQUU_PkFv05xjPUSlOqFo19UIK_Thsfm_rh96qIBYAJtTKdl5bcNy7Zol9JqAPjSul8Z1bVwfGtf7qiRPlA_Ln9PQRVMqG3cuPzL9X9EfGUC8KQ
CitedBy_id crossref_primary_10_1007_s11517_023_02836_9
crossref_primary_10_3389_fninf_2018_00069
crossref_primary_10_1016_j_amc_2017_10_033
crossref_primary_10_1007_s11517_017_1735_6
crossref_primary_10_1007_s00330_022_09081_y
crossref_primary_10_1007_s12021_019_09417_y
crossref_primary_10_1007_s12021_019_09448_5
crossref_primary_10_1016_j_cmpb_2021_106197
crossref_primary_10_1049_cje_2021_06_002
crossref_primary_10_1007_s12094_018_1903_7
crossref_primary_10_1109_TMI_2019_2906727
crossref_primary_10_1007_s10278_022_00613_y
crossref_primary_10_1016_j_ejrad_2023_110771
crossref_primary_10_1016_j_nicl_2019_101902
crossref_primary_10_1016_j_imu_2023_101249
crossref_primary_10_1093_comjnl_bxac054
crossref_primary_10_3390_s20133628
crossref_primary_10_1038_s41598_024_66415_0
crossref_primary_10_1049_ipr2_12988
crossref_primary_10_1007_s12021_018_9364_2
crossref_primary_10_1117_1_JMI_6_1_014003
crossref_primary_10_1038_s41598_019_53387_9
crossref_primary_10_1109_ACCESS_2019_2904143
Cites_doi 10.1016/j.media.2014.09.005
10.1016/j.neuroimage.2009.10.026
10.1109/TMI.2014.2308901
10.1109/TMI.2010.2050897
10.1109/TMI.2011.2156806
10.1109/TPAMI.2012.143
10.1016/j.jalz.2014.12.002
10.1118/1.4867855
10.1002/hbm.22359
10.1016/j.media.2007.06.004
10.1016/j.neuroimage.2012.08.067
10.1016/j.media.2015.06.002
10.1016/j.neuroimage.2014.11.025
10.1016/j.media.2015.06.012
10.1109/TMI.2012.2230018
10.1007/s12021-010-9096-4
10.1016/j.neuroimage.2010.09.018
10.1109/TMI.2009.2014372
10.1016/j.neuroimage.2006.05.061
10.1016/j.neuroimage.2015.07.076
10.1016/j.neuroimage.2010.03.066
10.1016/j.jalz.2013.09.014
10.1109/TMI.2004.828354
10.1016/j.neuroimage.2009.02.018
10.1016/j.neuroimage.2006.10.035
10.1109/TNNLS.2014.2361142
10.1016/j.neuroimage.2005.05.005
10.1109/TCYB.2014.2346394
10.1016/j.media.2015.04.015
10.1016/j.neuroimage.2003.11.010
10.1007/978-3-319-10581-9_32
10.1117/12.911014
10.1016/j.neuroimage.2015.11.073
10.1007/s12021-014-9243-4
10.1145/1961189.1961199
10.1109/ICCV.2009.5459197
10.1117/12.911370
10.1109/ISBI.2014.6867795
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
Neuroinformatics is a copyright of Springer, 2017.
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: Neuroinformatics is a copyright of Springer, 2017.
CorporateAuthor Alzheimer’s Disease Neuroimaging Initiative
CorporateAuthor_xml – name: Alzheimer’s Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88A
88E
88G
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
7QO
8FD
FR3
P64
5PM
DOI 10.1007/s12021-016-9312-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database (ProQuest)
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Engineering Research Database
ProQuest One Psychology

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1559-0089
EndPage 50
ExternalDocumentID PMC5438876
4313378961
27638650
10_1007_s12021_016_9312_y
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Key Basic Research and Development Program
  grantid: 2015CB856404
– fundername: National Natural Science Foundation of China
  grantid: 81271514, 61473296
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Institutes of Health
  grantid: EB022573, AG014971
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: NIBIB NIH HHS
  grantid: R01 EB022573
– fundername: NIA NIH HHS
  grantid: R01 AG014971
– fundername: NCI NIH HHS
  grantid: U24 CA189523
GroupedDBID ---
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
203
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
53G
5VS
67N
6NX
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMCUK
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
LK8
LLZTM
M0L
M1P
M2M
M4Y
M7P
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
OVD
P2P
PF-
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
Q2X
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3A
S3B
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TEORI
TSG
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z83
Z88
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7TK
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
7QO
8FD
FR3
P64
5PM
ID FETCH-LOGICAL-c503t-fcf1600272f9211ae8b45bf45da25a4303e89701c7a29e810509804093d1ef13
IEDL.DBID BENPR
ISSN 1539-2791
1559-0089
IngestDate Thu Aug 21 18:17:07 EDT 2025
Thu Sep 04 17:51:15 EDT 2025
Fri Sep 05 04:05:32 EDT 2025
Fri Jul 25 18:57:59 EDT 2025
Mon Jul 21 05:51:55 EDT 2025
Tue Jul 01 04:24:52 EDT 2025
Thu Apr 24 22:56:15 EDT 2025
Fri Feb 21 02:26:53 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Multi-atlas image segmentation
Hippocampus segmentation
Label fusion
Metric learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-fcf1600272f9211ae8b45bf45da25a4303e89701c7a29e810509804093d1ef13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
OpenAccessLink http://doi.org/10.1007/s12021-016-9312-y
PMID 27638650
PQID 1867926609
PQPubID 54206
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5438876
proquest_miscellaneous_1877837423
proquest_miscellaneous_1835507100
proquest_journals_1867926609
pubmed_primary_27638650
crossref_citationtrail_10_1007_s12021_016_9312_y
crossref_primary_10_1007_s12021_016_9312_y
springer_journals_10_1007_s12021_016_9312_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170100
2017-1-00
2017-01-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 1
  year: 2017
  text: 20170100
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Totowa
PublicationTitle Neuroinformatics (Totowa, N.J.)
PublicationTitleAbbrev Neuroinform
PublicationTitleAlternate Neuroinformatics
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Lötjönen, Wolz, Koikkalainen, Thurfjell, Waldemar, Soininen, Rueckert (CR24) 2010; 49
Bai, Shi, Ledig, Rueckert (CR5) 2015; 19
Jafari-Khouzani, Elisevich, Patel, Soltanian-Zadeh (CR22) 2011; 9
Sabuncu, Yeo, Van Leemput, Fischl, Golland (CR27) 2010; 29
Warfield, Zou, Wells (CR33) 2004; 23
CR18
CR17
Wang, Suh, Das, Pluta, Craige, Yushkevich (CR30) 2013; 35
CR39
CR16
Wu, Kim, Sanroma, Wang, Munsell, Shen, Initiative (CR37) 2015; 106
CR14
Yan, Cao, Yuan, Turkbey, Choyke (CR40) 2015; 45
CR13
Weinberger, Saul (CR34) 2009; 10
CR31
Akhondi-Asl, Jafari-Khouzani, Elisevich, Soltanian-Zadeh (CR1) 2011; 54
Wolz, Schwarz, Yu, Cole, Rueckert, Jack, Raunig, Hill (CR35) 2014; 10
Boccardi, Bocchetta, Morency, Collins, Nishikawa, Ganzola, Grothe, Wolf, Redolfi, Pievani (CR6) 2015; 11
Artaechevarria, Munoz-Barrutia, Ortiz-de-Solorzano (CR3) 2009; 28
Heckemann, Hajnal, Aljabar, Rueckert, Hammers (CR20) 2006; 33
CR8
Aljabar, Heckemann, Hammers, Hajnal, Rueckert (CR2) 2009; 46
Carmichael, Aizenstein, Davis, Becker, Thompson, Meltzer, Liu (CR7) 2005; 27
CR9
Rohlfing, Brandt, Menzel, Maurer (CR25) 2004; 21
Xie, Ruan (CR38) 2014; 41
Wu, Liu, Huang, Guo, Jiang, Yang, Chen, Feng (CR36) 2014; 33
Chupin, Mukuna-Bantumbakulu, Hasboun, Bardinet, Baillet, Kinkingnéhun, Lemieux, Dubois, Garnero (CR10) 2007; 34
Coupé, Manjón, Fonov, Pruessner, Robles, Collins (CR11) 2011; 54
Rousseau, Habas, Studholme (CR26) 2011; 30
Wang, Zuo, Zhang, Meng, Zhang (CR32) 2015; 26
CR41
Tong, Wolz, Wang, Gao, Misawa, Fujiwara, Mori, Hajnal, Rueckert (CR29) 2015; 23
Liao, Gao, Lian, Shen (CR23) 2013; 32
Giraud, Ta, Papadakis, Manjón, Collins, Coupé, Initiative (CR15) 2016; 124
Hao, Wang, Zhang, Duan, Yu, Jiang, Fan (CR19) 2014; 35
Avants, Epstein, Grossman, Gee (CR4) 2008; 12
den Heijer, van der Lijn, Vernooij, de Groot, Koudstaal, van der Lugt, Krestin, Hofman, Niessen, Breteler (CR12) 2012; 63
Sanroma, Wu, Gao, Thung, Guo, Shen (CR28) 2015; 24
Iglesias, Sabuncu (CR21) 2015; 24
9312_CR14
W Bai (9312_CR5) 2015; 19
S Liao (9312_CR23) 2013; 32
SK Warfield (9312_CR33) 2004; 23
9312_CR13
Y Hao (9312_CR19) 2014; 35
Q Xie (9312_CR38) 2014; 41
G Wu (9312_CR37) 2015; 106
9312_CR31
T Rohlfing (9312_CR25) 2004; 21
R Giraud (9312_CR15) 2016; 124
9312_CR18
F Rousseau (9312_CR26) 2011; 30
OT Carmichael (9312_CR7) 2005; 27
9312_CR16
9312_CR17
9312_CR39
P-g Yan (9312_CR40) 2015; 45
X Artaechevarria (9312_CR3) 2009; 28
R Wolz (9312_CR35) 2014; 10
F Wang (9312_CR32) 2015; 26
Y Wu (9312_CR36) 2014; 33
G Sanroma (9312_CR28) 2015; 24
KQ Weinberger (9312_CR34) 2009; 10
M Boccardi (9312_CR6) 2015; 11
JE Iglesias (9312_CR21) 2015; 24
K Jafari-Khouzani (9312_CR22) 2011; 9
M Chupin (9312_CR10) 2007; 34
JMP Lötjönen (9312_CR24) 2010; 49
9312_CR41
A Akhondi-Asl (9312_CR1) 2011; 54
MR Sabuncu (9312_CR27) 2010; 29
T Tong (9312_CR29) 2015; 23
RA Heckemann (9312_CR20) 2006; 33
9312_CR9
9312_CR8
BB Avants (9312_CR4) 2008; 12
H Wang (9312_CR30) 2013; 35
P Aljabar (9312_CR2) 2009; 46
P Coupé (9312_CR11) 2011; 54
T den Heijer (9312_CR12) 2012; 63
References_xml – volume: 19
  start-page: 98
  year: 2015
  end-page: 109
  ident: CR5
  article-title: Multi-atlas segmentation with augmented features for cardiac MR images
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2014.09.005
– ident: CR18
– volume: 49
  start-page: 2352
  year: 2010
  end-page: 2365
  ident: CR24
  article-title: Fast and robust multi-atlas segmentation of brain magnetic resonance images
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.026
– volume: 33
  start-page: 1290
  year: 2014
  end-page: 1303
  ident: CR36
  article-title: Prostate segmentation based on variant scale patch and local independent projection
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2014.2308901
– ident: CR14
– volume: 29
  start-page: 1714
  year: 2010
  end-page: 1729
  ident: CR27
  article-title: A generative model for image segmentation based on label fusion
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2010.2050897
– ident: CR39
– ident: CR16
– volume: 30
  start-page: 1852
  year: 2011
  end-page: 1862
  ident: CR26
  article-title: A supervised patch-based approach for human brain labeling
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2011.2156806
– volume: 35
  start-page: 611
  year: 2013
  end-page: 623
  ident: CR30
  article-title: Multi-atlas segmentation with joint label fusion
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2012.143
– volume: 11
  start-page: 175
  year: 2015
  end-page: 183
  ident: CR6
  article-title: Training labels for hippocampal segmentation based on the EADC-ADNI harmonized hippocampal protocol
  publication-title: Alzheimer's & Dementia
  doi: 10.1016/j.jalz.2014.12.002
– volume: 41
  start-page: 041909
  year: 2014
  ident: CR38
  article-title: Low-complexity atlas-based prostate segmentation by combining global, regional, and local metrics
  publication-title: Medical Physics
  doi: 10.1118/1.4867855
– volume: 35
  start-page: 2674
  year: 2014
  end-page: 2697
  ident: CR19
  article-title: Local label learning (LLL) for subcortical structure segmentation: Application to hippocampus segmentation
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.22359
– volume: 10
  start-page: 207
  year: 2009
  end-page: 244
  ident: CR34
  article-title: Distance metric learning for large margin nearest neighbor classification
  publication-title: Journal of Machine Learning Research
– ident: CR8
– volume: 12
  start-page: 26
  year: 2008
  end-page: 41
  ident: CR4
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2007.06.004
– volume: 63
  start-page: 1782
  year: 2012
  end-page: 1789
  ident: CR12
  article-title: Structural and diffusion MRI measures of the hippocampus and memory performance
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.08.067
– volume: 24
  start-page: 135
  year: 2015
  end-page: 148
  ident: CR28
  article-title: A transversal approach for patch-based label fusion via matrix completion
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2015.06.002
– volume: 106
  start-page: 34
  year: 2015
  end-page: 46
  ident: CR37
  article-title: Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.11.025
– volume: 24
  start-page: 205
  year: 2015
  end-page: 219
  ident: CR21
  article-title: Multi-atlas segmentation of biomedical images: A survey
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2015.06.012
– volume: 32
  start-page: 419
  year: 2013
  end-page: 434
  ident: CR23
  article-title: Sparse patch-based label propagation for accurate prostate localization in CT images
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2012.2230018
– volume: 9
  start-page: 335
  year: 2011
  end-page: 346
  ident: CR22
  article-title: Dataset of magnetic resonance images of nonepileptic subjects and temporal lobe epilepsy patients for validation of hippocampal segmentation techniques
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-010-9096-4
– volume: 54
  start-page: 940
  year: 2011
  end-page: 954
  ident: CR11
  article-title: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.09.018
– volume: 28
  start-page: 1266
  year: 2009
  end-page: 1277
  ident: CR3
  article-title: Combination strategies in multi-atlas image segmentation: Application to brain MR data
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2009.2014372
– volume: 33
  start-page: 115
  year: 2006
  end-page: 126
  ident: CR20
  article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.05.061
– volume: 124
  start-page: 770
  year: 2016
  end-page: 782
  ident: CR15
  article-title: An Optimized PatchMatch for multi-scale and multi-feature label fusion
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.07.076
– ident: CR17
– ident: CR31
– volume: 54
  start-page: S218
  year: 2011
  end-page: S226
  ident: CR1
  article-title: Hippocampal volumetry for lateralization of temporal lobe epilepsy: automated versus manual methods
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.03.066
– ident: CR13
– volume: 10
  start-page: 430
  year: 2014
  end-page: 438
  ident: CR35
  article-title: Robustness of automated hippocampal volumetry across magnetic resonance field strengths and repeat images.
  publication-title: Alzheimer's & Dementia
  doi: 10.1016/j.jalz.2013.09.014
– ident: CR9
– volume: 23
  start-page: 903
  year: 2004
  end-page: 921
  ident: CR33
  article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2004.828354
– volume: 46
  start-page: 726
  year: 2009
  end-page: 738
  ident: CR2
  article-title: Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.02.018
– volume: 34
  start-page: 996
  year: 2007
  end-page: 1019
  ident: CR10
  article-title: Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: method and validation on controls and patients with Alzheimer’s disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.10.035
– volume: 26
  start-page: 1950
  year: 2015
  end-page: 1962
  ident: CR32
  article-title: A kernel classification framework for metric learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2014.2361142
– volume: 27
  start-page: 979
  year: 2005
  end-page: 990
  ident: CR7
  article-title: Atlas-based hippocampus segmentation in Alzheimer’s disease and mild cognitive impairment.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.05.005
– ident: CR41
– volume: 45
  start-page: 1158
  year: 2015
  end-page: 1168
  ident: CR40
  article-title: Label Image Constrained Multiatlas Selection
  publication-title: IEEE transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2346394
– volume: 23
  start-page: 92
  year: 2015
  end-page: 104
  ident: CR29
  article-title: Discriminative dictionary learning for abdominal multi-organ segmentation
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2015.04.015
– volume: 21
  start-page: 1428
  year: 2004
  end-page: 1442
  ident: CR25
  article-title: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.11.010
– volume: 28
  start-page: 1266
  year: 2009
  ident: 9312_CR3
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2009.2014372
– volume: 29
  start-page: 1714
  year: 2010
  ident: 9312_CR27
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2010.2050897
– volume: 23
  start-page: 92
  year: 2015
  ident: 9312_CR29
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2015.04.015
– volume: 10
  start-page: 430
  year: 2014
  ident: 9312_CR35
  publication-title: Alzheimer's & Dementia
  doi: 10.1016/j.jalz.2013.09.014
– volume: 45
  start-page: 1158
  year: 2015
  ident: 9312_CR40
  publication-title: IEEE transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2346394
– ident: 9312_CR41
– volume: 24
  start-page: 205
  year: 2015
  ident: 9312_CR21
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2015.06.012
– volume: 12
  start-page: 26
  year: 2008
  ident: 9312_CR4
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2007.06.004
– ident: 9312_CR39
– volume: 23
  start-page: 903
  year: 2004
  ident: 9312_CR33
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2004.828354
– volume: 35
  start-page: 611
  year: 2013
  ident: 9312_CR30
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2012.143
– volume: 9
  start-page: 335
  year: 2011
  ident: 9312_CR22
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-010-9096-4
– volume: 124
  start-page: 770
  year: 2016
  ident: 9312_CR15
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.07.076
– ident: 9312_CR31
  doi: 10.1007/978-3-319-10581-9_32
– volume: 32
  start-page: 419
  year: 2013
  ident: 9312_CR23
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2012.2230018
– volume: 21
  start-page: 1428
  year: 2004
  ident: 9312_CR25
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.11.010
– ident: 9312_CR18
  doi: 10.1117/12.911014
– volume: 41
  start-page: 041909
  year: 2014
  ident: 9312_CR38
  publication-title: Medical Physics
  doi: 10.1118/1.4867855
– ident: 9312_CR14
  doi: 10.1016/j.neuroimage.2015.11.073
– ident: 9312_CR13
  doi: 10.1007/s12021-014-9243-4
– volume: 46
  start-page: 726
  year: 2009
  ident: 9312_CR2
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.02.018
– volume: 49
  start-page: 2352
  year: 2010
  ident: 9312_CR24
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.026
– volume: 10
  start-page: 207
  year: 2009
  ident: 9312_CR34
  publication-title: Journal of Machine Learning Research
– ident: 9312_CR8
  doi: 10.1145/1961189.1961199
– volume: 30
  start-page: 1852
  year: 2011
  ident: 9312_CR26
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2011.2156806
– volume: 106
  start-page: 34
  year: 2015
  ident: 9312_CR37
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.11.025
– volume: 26
  start-page: 1950
  year: 2015
  ident: 9312_CR32
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2014.2361142
– volume: 35
  start-page: 2674
  year: 2014
  ident: 9312_CR19
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.22359
– ident: 9312_CR16
  doi: 10.1109/ICCV.2009.5459197
– volume: 34
  start-page: 996
  year: 2007
  ident: 9312_CR10
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.10.035
– volume: 54
  start-page: S218
  year: 2011
  ident: 9312_CR1
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.03.066
– volume: 54
  start-page: 940
  year: 2011
  ident: 9312_CR11
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.09.018
– volume: 33
  start-page: 115
  year: 2006
  ident: 9312_CR20
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.05.061
– volume: 19
  start-page: 98
  year: 2015
  ident: 9312_CR5
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2014.09.005
– volume: 11
  start-page: 175
  year: 2015
  ident: 9312_CR6
  publication-title: Alzheimer's & Dementia
  doi: 10.1016/j.jalz.2014.12.002
– volume: 63
  start-page: 1782
  year: 2012
  ident: 9312_CR12
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.08.067
– volume: 24
  start-page: 135
  year: 2015
  ident: 9312_CR28
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2015.06.002
– volume: 27
  start-page: 979
  year: 2005
  ident: 9312_CR7
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.05.005
– ident: 9312_CR17
  doi: 10.1117/12.911370
– ident: 9312_CR9
  doi: 10.1109/ISBI.2014.6867795
– volume: 33
  start-page: 1290
  year: 2014
  ident: 9312_CR36
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2014.2308901
SSID ssj0026700
Score 2.276034
Snippet Automatic and reliable segmentation of hippocampus from MR brain images is of great importance in studies of neurological diseases, such as epilepsy and...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 41
SubjectTerms Aged
Aged, 80 and over
Algorithms
Atlases as Topic
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Female
Hippocampus - cytology
Hippocampus - pathology
Humans
Image Processing, Computer-Assisted - methods
Machine Learning
Magnetic Resonance Imaging - methods
Male
Neurology
Neurosciences
Original Article
Software
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XLyIb-uLCOJBCTRpuk2OiyiLoBcVvJW0SVRwu4u7e9h_7yTbVtcXeG2mIc10Ml8yM18ATpgTzjqboQY6jgrNS6qlKWiZalbqmBsTyJ5vbju9B3H9mD7WddyjJtu9CUmGlfqj2I37dAKEKFQljNPpIiyn-Mjn8T3wbrvLqutO0JIV5ZliTSjzpy7mndE3hPk9UfJLtDQ4oas1WK3RI-nO1L0OC7bagM1uhTvn_pSckpDPGQ7KN6F74y_LKknNoPpEEJ6SUG9L9RgxM_EOzJA7-9Sv648qMnCk9zIcon_rDyejLbi_ury_6NH6wgSc2jgZU1c65uNsGXcKN3baykKkhROp0TzVAr2VlSqLWZlprqxknvtFohWrxDDrWLINS9WgsrtAYs2kRmhkjeqIWBqlsQdTGGnQvg0XEcTNxOVlTSbu77R4zT9okP1c5z6BzM91Po3grH1lOGPS-Ev4oNFGXhvVKPfcewoBRawiOG6b0Rx8jENXdjDxMolnaMNe_5LJMtyXI5CMYGem4HZEHNdbiag1gmxO9a2Ap-Oeb6lengMtdyoSXLE7EZw3P8mnof_2oXv_kt6HFe5hRTgCOoCl8dvEHiIoGhdHwQjeAf0eBBA
  priority: 102
  providerName: Springer Nature
Title Metric Learning for Multi-atlas based Segmentation of Hippocampus
URI https://link.springer.com/article/10.1007/s12021-016-9312-y
https://www.ncbi.nlm.nih.gov/pubmed/27638650
https://www.proquest.com/docview/1867926609
https://www.proquest.com/docview/1835507100
https://www.proquest.com/docview/1877837423
https://pubmed.ncbi.nlm.nih.gov/PMC5438876
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6x9oUXBIwfYaMyEuIBZBE7SW0_oYA6KtAmBJtUniIntrdJNA1r-9D_nnPqZJSJvsaOlfh8d5995-8AXjOXOuusQAmMHU01r6iWpqRVplmlY25MS_Z8ejaeXqRfZtksHLgtQ1plZxNbQ20WlT8jf--J1xR6k1h9aH5TXzXKR1dDCY0DGKIJltkAhh8nZ9--91uucAkF1VpRLhTr4prt5Tnu0xMQ8lCVME43u57pDty8mzX5T-i09UgnD-FBgJIk38r-Edyz9WM4zGvcRs835A1pkzvbU_NDyE995ayKBDrVS4JYlbSXb6leIYAm3psZ8sNezsNlpJosHJleNw06u3mzXj6B85PJ-acpDdUTcJ7jZEVd5ZgPugnuFO7ytJVlmpUuzYzmmU7RdVmpRMwqobmyknkiGIkqrRLDrGPJUxjUi9o-BxJrJjXiJGvUOI2lURpHMKWRBpXd8DSCuJu4ogrM4r7Axa_ilhPZz3Xhs8n8XBebCN72rzRbWo19nY87aRRBw5bF7XqI4FXfjLrhAx66tou175N4ujYcdV8fIXCTjqgygmdbAfdfxNH4SoSwEYgd0fcdPDf3bkt9fdVydGdpguZ7HMG7bpH89en_-9EX-3_0CO5zDyraA6BjGKxu1vYlQqJVOYIDMRMjGOaff36djIIW4NMLnv8BktQL-Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a2wEuCBgfgQFGAg4ga7GTNPYBoQKbOrZWCIq0W-TE9phE00Bbof5R_I-8lyYZZaK3neO6id_Xz37PvwfwXPjYO-9SlEDP89jIghtlc14kRhQmlNbWZM_DUW_wNf54mpxuwe_2LgyVVbY-sXbUdlrQGfk-Ea9pjCahflv94NQ1irKrbQuNlVocu-Uv3LLN3hx9QPm-kPLwYPx-wJuuAvj_YTTnvvCCklGp9Bp3P8apPE5yHyfWyMTE6NKd0mkoitRI7ZQgghSFqq4jK5wXEU57DXYQZWg0op13B6NPn7sdXnPnBb2I5jLVok2j1nf1JFVDIMLiOhKSL9cD4SV0e7lI859MbR0AD2_BzQa5sv5K1W7DlivvwG6_xF37ZMlesrqWtD6k34X-kBp1Faxhbz1jCI1ZfdeXmznidUbB07Iv7mzS3H0q2dSzwXlVYWydVIvZXRhfxbLeg-1yWroHwEIjlEFY5qzuxaGy2uAMNrfKom-xMg4gbBcuKxoic-qn8T27oGCmtc6oeI3WOlsG8Kr7SbVi8dg0eK-VRtYY9Cy7UL8AnnWP0RQpv2JKN13QmIjY4XDWTWPSVEWUHg_g_krA3RtJ9PUKEXMA6ZrouwFEBb7-pDz_VlOCJ3GE0aIXwOtWSf569f996MPNH_oUrg_Gw5Ps5Gh0_AhuSMIz9dnTHmzPfy7cY0Rj8_xJYwMMsiu2uj_XKULS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTkK8IGDAMgYYCXgAWYudpLEfECpsVcdYNcGQ9hY5sT0mrWmgrVA_Gt-OuzTpKBN923Mcy_b9te_udwAvhY-98y5FCnQ9j40suFE250ViRGFCaW0N9nw87A6-xZ_OkrMN-N3WwlBaZasTa0VtxwW9ke8R8JpGaxLqPd-kRZzs999XPzh1kKJIa9tOY8EiR27-C69vk3eH-0jrV1L2D04_DnjTYQDXEkZT7gsvKDCVSq_xJmScyuMk93FijUxMjOrdKZ2GokiN1E4JAktRyPY6ssJ5EeG0t2AzRaOoOrD54WB48mV522vqX1CjaC5TLdqQal23JykzAr0triMh-XzVKF7zdK8nbP4Tta2NYf8e3G28WNZbsN192HDlA9jqlXiDH83Za1bnldYP9lvQO6amXQVrkFzPGbrJrK775WaKvjsjQ2rZV3c-auqgSjb2bHBRVWhnR9Vs8hBOb-JYH0GnHJduG1hohDLoojmru3GorDY4g82tsqhnrIwDCNuDy4oG1Jx6a1xmV3DMdNYZJbLRWWfzAN4sf6kWiB7rBu-21Mga4Z5kV6wYwIvlZxRLirWY0o1nNCYipDicdd2YNFURhcoDeLwg8HJFEvW-Qu85gHSF9MsBBAu--qW8-F7DgydxhJajG8Dblkn-Wvr_NrqzfqPP4TZKW_b5cHj0BO5Icm3qZ6hd6Ex_ztxTdMym-bNGBBhkNyx0fwD4REb-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metric+Learning+for+Multi-atlas+based+Segmentation+of+Hippocampus&rft.jtitle=Neuroinformatics+%28Totowa%2C+N.J.%29&rft.au=Zhu%2C+Hancan&rft.au=Cheng%2C+Hewei&rft.au=Yang%2C+Xuesong&rft.au=Fan%2C+Yong&rft.date=2017-01-01&rft.issn=1539-2791&rft.eissn=1559-0089&rft.volume=15&rft.issue=1&rft.spage=41&rft.epage=50&rft_id=info:doi/10.1007%2Fs12021-016-9312-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12021_016_9312_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-2791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-2791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-2791&client=summon