Toward enhanced activity of a graphitic carbon nitride-based electrocatalyst in oxygen reduction and hydrogen evolution reactions via atomic sulfur doping
Atomic doping has always been demonstrated as a feasible way to effectively alter the catalytic properties of metal-free electrocatalysts. Herein, we report the first experimental and theoretical investigation regarding the influence of sulfur doping on the activity of a carbon nitride (C 3 N 4 )-ba...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 4; no. 31; pp. 12205 - 12211 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Atomic doping has always been demonstrated as a feasible way to effectively alter the catalytic properties of metal-free electrocatalysts. Herein, we report the first experimental and theoretical investigation regarding the influence of sulfur doping on the activity of a carbon nitride (C
3
N
4
)-based electrocatalyst in the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). It is found that the sulfur dopant within the mesoporous carbon-supported C
3
N
4
motif can remarkably boost its ORR activity, which rivals that of commercial Pt/C yet with better cross-over tolerance and durability, while the HER performance of the composite catalyst is superior than most other reported metal-free electrocatalysts and is even comparable to the most active non-noble metal-based HER materials. Theoretical calculations further reveal that the excellent activity of the doped composite stems from the high charge and spin densities in the C
3
N
4
motif as well as altered competent adsorption energies of reaction intermediates
via
the atomic sulfur doping. The results in this work feature a facile and effective approach for engineering a high performance C
3
N
4
-based electrocatalyst, which may also enlighten the designing and fabrication of other metal-free materials as next-generation electrocatalysts. |
---|---|
AbstractList | Atomic doping has always been demonstrated as a feasible way to effectively alter the catalytic properties of metal-free electrocatalysts. Herein, we report the first experimental and theoretical investigation regarding the influence of sulfur doping on the activity of a carbon nitride (C3N4)-based electrocatalyst in the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). It is found that the sulfur dopant within the mesoporous carbon-supported C3N4 motif can remarkably boost its ORR activity, which rivals that of commercial Pt/C yet with better cross-over tolerance and durability, while the HER performance of the composite catalyst is superior than most other reported metal-free electrocatalysts and is even comparable to the most active non-noble metal-based HER materials. Theoretical calculations further reveal that the excellent activity of the doped composite stems from the high charge and spin densities in the C3N4 motif as well as altered competent adsorption energies of reaction intermediates via the atomic sulfur doping. The results in this work feature a facile and effective approach for engineering a high performance C3N4-based electrocatalyst, which may also enlighten the designing and fabrication of other metal-free materials as next-generation electrocatalysts. Atomic doping has always been demonstrated as a feasible way to effectively alter the catalytic properties of metal-free electrocatalysts. Herein, we report the first experimental and theoretical investigation regarding the influence of sulfur doping on the activity of a carbon nitride (C 3 N 4 )-based electrocatalyst in the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). It is found that the sulfur dopant within the mesoporous carbon-supported C 3 N 4 motif can remarkably boost its ORR activity, which rivals that of commercial Pt/C yet with better cross-over tolerance and durability, while the HER performance of the composite catalyst is superior than most other reported metal-free electrocatalysts and is even comparable to the most active non-noble metal-based HER materials. Theoretical calculations further reveal that the excellent activity of the doped composite stems from the high charge and spin densities in the C 3 N 4 motif as well as altered competent adsorption energies of reaction intermediates via the atomic sulfur doping. The results in this work feature a facile and effective approach for engineering a high performance C 3 N 4 -based electrocatalyst, which may also enlighten the designing and fabrication of other metal-free materials as next-generation electrocatalysts. Atomic doping has always been demonstrated as a feasible way to effectively alter the catalytic properties of metal-free electrocatalysts. Herein, we report the first experimental and theoretical investigation regarding the influence of sulfur doping on the activity of a carbon nitride (C₃N₄)-based electrocatalyst in the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). It is found that the sulfur dopant within the mesoporous carbon-supported C₃N₄ motif can remarkably boost its ORR activity, which rivals that of commercial Pt/C yet with better cross-over tolerance and durability, while the HER performance of the composite catalyst is superior than most other reported metal-free electrocatalysts and is even comparable to the most active non-noble metal-based HER materials. Theoretical calculations further reveal that the excellent activity of the doped composite stems from the high charge and spin densities in the C₃N₄ motif as well as altered competent adsorption energies of reaction intermediates via the atomic sulfur doping. The results in this work feature a facile and effective approach for engineering a high performance C₃N₄-based electrocatalyst, which may also enlighten the designing and fabrication of other metal-free materials as next-generation electrocatalysts. |
Author | Zhu, Minshen Zhi, Chunyi Huang, Yang Zhao, Jingxiang Huang, Yan Pei, Zengxia Wang, Zifeng Chen, Zhongfang |
Author_xml | – sequence: 1 givenname: Zengxia surname: Pei fullname: Pei, Zengxia organization: Department of Physics and Materials Science, City University of Hong Kong, Kowloon, China – sequence: 2 givenname: Jingxiang surname: Zhao fullname: Zhao, Jingxiang organization: Department of Chemistry, The Institute for Functional Nanomaterials, University of Puerto Rico, Rio Piedras Campus, San Juan – sequence: 3 givenname: Yan surname: Huang fullname: Huang, Yan organization: Department of Physics and Materials Science, City University of Hong Kong, Kowloon, China – sequence: 4 givenname: Yang surname: Huang fullname: Huang, Yang organization: Department of Physics and Materials Science, City University of Hong Kong, Kowloon, China – sequence: 5 givenname: Minshen surname: Zhu fullname: Zhu, Minshen organization: Department of Physics and Materials Science, City University of Hong Kong, Kowloon, China – sequence: 6 givenname: Zifeng surname: Wang fullname: Wang, Zifeng organization: Department of Physics and Materials Science, City University of Hong Kong, Kowloon, China – sequence: 7 givenname: Zhongfang surname: Chen fullname: Chen, Zhongfang organization: Department of Chemistry, The Institute for Functional Nanomaterials, University of Puerto Rico, Rio Piedras Campus, San Juan – sequence: 8 givenname: Chunyi surname: Zhi fullname: Zhi, Chunyi organization: Department of Physics and Materials Science, City University of Hong Kong, Kowloon, China, Shenzhen Research Institute |
BookMark | eNqNkcGO1DAMhiO0SCzLXniCHBFSIWnTxD2uBhaQVuIynCs3cWeCOsmQpAN9FZ6Wzi4CCSGBL7bs77cl_0_ZRYiBGHsuxSspmu71Rm9vRNMCvHnELmvRisqoTl_8qgGesOucP4s1QAjddZfs-zZ-xeQ4hT0GS46jLf7ky8LjyJHvEh73vnjLLaYhBh58Sd5RNWBeYZrIlhQtFpyWXLgPPH5bdhR4Ijevm1YFBsf3i0vx3KZTnOb7diK8n2d-8sixxMN6JM_TOCfu4tGH3TP2eMQp0_XPfMU-3b7dbt5Xdx_ffdjc3FW2FU2pRqWGwbTGGTeC1NgObiAL1AxqBAChLIy1cbJ1ShnramMMiboFU4PGTrnmir142HtM8ctMufQHny1NEwaKc-7r2kgQUmn1T1RC02rdCC3-A5USQHZCrujLB9SmmHOisT8mf8C09FL0Z2f7386usPgDtr7g-ZMloZ_-JvkB49KqYg |
CitedBy_id | crossref_primary_10_1039_C9CP00618D crossref_primary_10_1016_j_nanoen_2023_108718 crossref_primary_10_1016_j_jcis_2019_05_020 crossref_primary_10_1021_acs_chemrev_9b00248 crossref_primary_10_1039_D0RA07495K crossref_primary_10_1039_C8CY02210K crossref_primary_10_1007_s13738_019_01722_2 crossref_primary_10_1016_j_ensm_2020_02_033 crossref_primary_10_1016_j_ccr_2024_215899 crossref_primary_10_1021_acs_chemrev_7b00335 crossref_primary_10_1038_s41598_017_09283_1 crossref_primary_10_1039_C8CP00644J crossref_primary_10_1002_EXP_20220174 crossref_primary_10_1016_j_carbon_2018_01_055 crossref_primary_10_1002_cssc_202101282 crossref_primary_10_1016_j_ijhydene_2022_07_269 crossref_primary_10_1016_j_electacta_2024_143916 crossref_primary_10_1002_aenm_202101202 crossref_primary_10_1002_slct_202200876 crossref_primary_10_1039_D1CP05249G crossref_primary_10_1016_j_colsurfa_2021_126162 crossref_primary_10_1039_D3TA05901D crossref_primary_10_1021_acsanm_8b01381 crossref_primary_10_1016_j_matchemphys_2024_129993 crossref_primary_10_1016_j_chphma_2022_04_004 crossref_primary_10_1039_D0EE01856B crossref_primary_10_1039_C9TA02220A crossref_primary_10_1002_cptc_201800256 crossref_primary_10_1002_adma_201707319 crossref_primary_10_1007_s12274_018_2034_8 crossref_primary_10_1016_j_enchem_2021_100055 crossref_primary_10_1002_adma_201805252 crossref_primary_10_1016_j_cej_2017_12_064 crossref_primary_10_1016_S1872_5805_21_60045_8 crossref_primary_10_1039_C6EE03265F crossref_primary_10_1039_C8DT02250J crossref_primary_10_1016_j_apsusc_2021_152006 crossref_primary_10_1021_acsnano_7b01908 crossref_primary_10_1016_j_ijhydene_2017_06_122 crossref_primary_10_1039_D0NJ04169F crossref_primary_10_1039_D1CY00364J crossref_primary_10_1002_chem_201604231 crossref_primary_10_1002_ange_201802472 crossref_primary_10_1002_ente_202301197 crossref_primary_10_1016_j_jallcom_2017_03_190 crossref_primary_10_1016_j_jcis_2018_08_103 crossref_primary_10_1016_j_mtcata_2023_100003 crossref_primary_10_1016_S1872_2067_24_60007_0 crossref_primary_10_1039_D2QI01608G crossref_primary_10_1016_j_cej_2023_144708 crossref_primary_10_1016_j_jclepro_2021_128693 crossref_primary_10_1016_j_jcis_2023_04_034 crossref_primary_10_1039_C7MH00358G crossref_primary_10_1002_adfm_202009853 crossref_primary_10_1016_j_mtphys_2019_100176 crossref_primary_10_1021_acssuschemeng_9b00126 crossref_primary_10_1039_D0NJ00499E crossref_primary_10_1039_C9QI01368G crossref_primary_10_1016_j_ijhydene_2023_01_214 crossref_primary_10_1016_j_apcatb_2018_01_065 crossref_primary_10_1016_j_mtchem_2023_101523 crossref_primary_10_1016_j_snb_2018_11_031 crossref_primary_10_1021_acsaem_9b01445 crossref_primary_10_1039_D0TA08704A crossref_primary_10_1002_fuce_202100004 crossref_primary_10_1021_acsami_0c11381 crossref_primary_10_1021_acssuschemeng_7b01312 crossref_primary_10_1016_j_jcis_2020_12_031 crossref_primary_10_1039_C7TA07608H crossref_primary_10_1021_acscatal_8b02595 crossref_primary_10_1021_acs_energyfuels_0c00953 crossref_primary_10_1039_C8CP02038H crossref_primary_10_1021_acssuschemeng_7b02926 crossref_primary_10_1016_j_jpowsour_2024_234856 crossref_primary_10_1039_C7TA01318C crossref_primary_10_1016_j_chphi_2023_100408 crossref_primary_10_1002_asia_201800245 crossref_primary_10_1002_adma_201806403 crossref_primary_10_1016_j_jelechem_2022_116942 crossref_primary_10_1021_acsnano_7b09064 crossref_primary_10_1038_s41598_018_22507_2 crossref_primary_10_1039_C8TA01078A crossref_primary_10_3390_nano9040568 crossref_primary_10_1016_j_catcom_2024_106882 crossref_primary_10_1016_S1872_5805_22_60575_4 crossref_primary_10_1016_j_chemosphere_2022_135477 crossref_primary_10_1016_j_est_2019_101032 crossref_primary_10_1002_adma_201803800 crossref_primary_10_1002_anie_201802472 crossref_primary_10_1016_j_dyepig_2019_04_065 crossref_primary_10_1039_D2RA05594E crossref_primary_10_1007_s10853_017_1818_7 crossref_primary_10_1021_acssuschemeng_7b01576 crossref_primary_10_1021_acssuschemeng_9b07621 crossref_primary_10_1039_C7TA09254G crossref_primary_10_1021_acsami_0c03823 crossref_primary_10_1021_acscatal_1c05728 crossref_primary_10_1149_1945_7111_ac4458 crossref_primary_10_1039_D1CS00219H crossref_primary_10_1016_j_mtener_2018_10_014 crossref_primary_10_1039_C9EE00717B crossref_primary_10_1002_smsc_202300036 crossref_primary_10_1002_cphc_201800899 crossref_primary_10_1039_D0NR00818D crossref_primary_10_1016_j_jcis_2022_11_001 |
Cites_doi | 10.1002/ange.201206554 10.1021/ja209206c 10.1038/ncomms8992 10.1021/nn501434a 10.1021/ja211637p 10.1002/anie.201107981 10.1002/smll.201402472 10.1039/C4CS00448E 10.1002/anie.201209017 10.1021/acscatal.5b02302 10.1021/ja504099w 10.1039/C5CC05644F 10.1021/cr5003563 10.1126/science.1168049 10.1002/adfm.201403657 10.1002/cctc.201500262 10.1002/anie.201409080 10.1002/cctc.201500701 10.1002/anie.201501616 10.1039/C5NR00013K 10.1021/ja310566z 10.1002/anie.201410050 10.1002/adma.201301870 10.1039/C0EE00418A 10.1002/anie.201400358 10.1038/ncomms5973 10.1039/C5TA02656C 10.1016/j.nanoen.2015.07.008 10.1002/adma.201302685 10.1039/C4CC00440J 10.1002/adma.201505131 10.1038/ncomms4783 10.1002/anie.201500569 10.1021/nl2020476 10.1002/anie.201100170 10.1039/C4TA06149G 10.1002/anie.201206720 10.1038/nmat3087 10.1021/ja103798k 10.1149/1.1856988 10.1142/S1793292011002536 10.1021/nn103584t |
ContentType | Journal Article |
DBID | AAYXX CITATION 7ST C1K SOI 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
DOI | 10.1039/C6TA03588D |
DatabaseName | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database CrossRef Environment Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 12211 |
ExternalDocumentID | 10_1039_C6TA03588D |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3G J3H J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH 7ST C1K SOI 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c503t-f44bb757d7df816a5bdbec8e3b4f88804c8f27d15d447cd2777e02587286a94d3 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Thu Jul 10 18:03:59 EDT 2025 Fri Jul 11 08:31:42 EDT 2025 Fri Jul 11 00:05:36 EDT 2025 Tue Jul 01 03:13:30 EDT 2025 Thu Apr 24 23:08:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c503t-f44bb757d7df816a5bdbec8e3b4f88804c8f27d15d447cd2777e02587286a94d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1811881901 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2271801464 proquest_miscellaneous_1835663060 proquest_miscellaneous_1811881901 crossref_primary_10_1039_C6TA03588D crossref_citationtrail_10_1039_C6TA03588D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-00-00 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016-00-00 |
PublicationDecade | 2010 |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2016 |
References | Yang (C6TA03588D-(cit5)/*[position()=1]) 2011; 6 Ito (C6TA03588D-(cit25)/*[position()=1]) 2015; 54 Shinde (C6TA03588D-(cit39)/*[position()=1]) 2015; 3 Dai (C6TA03588D-(cit2)/*[position()=1]) 2015; 115 Zou (C6TA03588D-(cit3)/*[position()=1]) 2015; 44 Liang (C6TA03588D-(cit8)/*[position()=1]) 2011; 10 Lin (C6TA03588D-(cit30)/*[position()=1]) 2013; 52 Liang (C6TA03588D-(cit4)/*[position()=1]) 2015; 6 Wang (C6TA03588D-(cit19)/*[position()=1]) 2014; 50 Zheng (C6TA03588D-(cit20)/*[position()=1]) 2011; 133 Nørskov (C6TA03588D-(cit42)/*[position()=1]) 2005; 152 Shinde (C6TA03588D-(cit12)/*[position()=1]) 2015; 51 Faber (C6TA03588D-(cit11)/*[position()=1]) 2014; 136 Zhang (C6TA03588D-(cit17)/*[position()=1]) 2013; 25 Wang (C6TA03588D-(cit22)/*[position()=1]) 2015; 7 Jiang (C6TA03588D-(cit13)/*[position()=1]) 2015; 54 Sheng (C6TA03588D-(cit23)/*[position()=1]) 2011; 5 Lu (C6TA03588D-(cit38)/*[position()=1]) 2016; 6 Zhang (C6TA03588D-(cit29)/*[position()=1]) 2011; 4 Liu (C6TA03588D-(cit28)/*[position()=1]) 2010; 132 Zheng (C6TA03588D-(cit14)/*[position()=1]) 2014; 5 Xu (C6TA03588D-(cit34)/*[position()=1]) 2016; 28 Xie (C6TA03588D-(cit10)/*[position()=1]) 2013; 25 Liang (C6TA03588D-(cit35)/*[position()=1]) 2014; 5 Shinde (C6TA03588D-(cit40)/*[position()=1]) 2015; 7 Liang (C6TA03588D-(cit16)/*[position()=1]) 2012; 51 Zhao (C6TA03588D-(cit27)/*[position()=1]) 2014; 53 Liang (C6TA03588D-(cit6)/*[position()=1]) 2012; 51 Du (C6TA03588D-(cit41)/*[position()=1]) 2012; 134 Zheng (C6TA03588D-(cit24)/*[position()=1]) 2014; 8 Liu (C6TA03588D-(cit15)/*[position()=1]) 2015; 7 Hou (C6TA03588D-(cit36)/*[position()=1]) 2015; 25 Zhao (C6TA03588D-(cit33)/*[position()=1]) 2012; 124 Masa (C6TA03588D-(cit21)/*[position()=1]) 2015; 54 Zhao (C6TA03588D-(cit18)/*[position()=1]) 2013; 135 Yang (C6TA03588D-(cit26)/*[position()=1]) 2011; 50 Hu (C6TA03588D-(cit7)/*[position()=1]) 2014; 53 Gong (C6TA03588D-(cit1)/*[position()=1]) 2009; 323 Zhou (C6TA03588D-(cit37)/*[position()=1]) 2015; 16 Xu (C6TA03588D-(cit31)/*[position()=1]) 2015; 3 Chen (C6TA03588D-(cit32)/*[position()=1]) 2015; 11 Chen (C6TA03588D-(cit9)/*[position()=1]) 2011; 11 |
References_xml | – volume: 124 start-page: 11533 year: 2012 ident: C6TA03588D-(cit33)/*[position()=1] publication-title: Angew. Chem. doi: 10.1002/ange.201206554 – volume: 133 start-page: 20116 year: 2011 ident: C6TA03588D-(cit20)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja209206c – volume: 6 start-page: 7992 year: 2015 ident: C6TA03588D-(cit4)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms8992 – volume: 8 start-page: 5290 year: 2014 ident: C6TA03588D-(cit24)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn501434a – volume: 134 start-page: 4393 year: 2012 ident: C6TA03588D-(cit41)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211637p – volume: 51 start-page: 3892 year: 2012 ident: C6TA03588D-(cit6)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201107981 – volume: 11 start-page: 1423 year: 2015 ident: C6TA03588D-(cit32)/*[position()=1] publication-title: Small doi: 10.1002/smll.201402472 – volume: 44 start-page: 5148 year: 2015 ident: C6TA03588D-(cit3)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00448E – volume: 52 start-page: 1735 year: 2013 ident: C6TA03588D-(cit30)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201209017 – volume: 6 start-page: 1045 year: 2016 ident: C6TA03588D-(cit38)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.5b02302 – volume: 136 start-page: 10053 year: 2014 ident: C6TA03588D-(cit11)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja504099w – volume: 51 start-page: 15716 year: 2015 ident: C6TA03588D-(cit12)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC05644F – volume: 115 start-page: 4823 year: 2015 ident: C6TA03588D-(cit2)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr5003563 – volume: 323 start-page: 760 year: 2009 ident: C6TA03588D-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.1168049 – volume: 25 start-page: 872 year: 2015 ident: C6TA03588D-(cit36)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201403657 – volume: 7 start-page: 1650 year: 2015 ident: C6TA03588D-(cit22)/*[position()=1] publication-title: ChemCatChem doi: 10.1002/cctc.201500262 – volume: 53 start-page: 13934 year: 2014 ident: C6TA03588D-(cit27)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201409080 – volume: 7 start-page: 3873 year: 2015 ident: C6TA03588D-(cit40)/*[position()=1] publication-title: ChemCatChem doi: 10.1002/cctc.201500701 – volume: 54 start-page: 6251 year: 2015 ident: C6TA03588D-(cit13)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201501616 – volume: 7 start-page: 6136 year: 2015 ident: C6TA03588D-(cit15)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR00013K – volume: 135 start-page: 1201 year: 2013 ident: C6TA03588D-(cit18)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja310566z – volume: 54 start-page: 2131 year: 2015 ident: C6TA03588D-(cit25)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201410050 – volume: 25 start-page: 4932 year: 2013 ident: C6TA03588D-(cit17)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201301870 – volume: 4 start-page: 675 year: 2011 ident: C6TA03588D-(cit29)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C0EE00418A – volume: 53 start-page: 3675 year: 2014 ident: C6TA03588D-(cit7)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201400358 – volume: 5 start-page: 4973 year: 2014 ident: C6TA03588D-(cit35)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms5973 – volume: 3 start-page: 12810 year: 2015 ident: C6TA03588D-(cit39)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02656C – volume: 16 start-page: 357 year: 2015 ident: C6TA03588D-(cit37)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.07.008 – volume: 25 start-page: 5807 year: 2013 ident: C6TA03588D-(cit10)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201302685 – volume: 50 start-page: 4839 year: 2014 ident: C6TA03588D-(cit19)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC00440J – volume: 28 start-page: 1981 year: 2016 ident: C6TA03588D-(cit34)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201505131 – volume: 5 start-page: 3783 year: 2014 ident: C6TA03588D-(cit14)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms4783 – volume: 54 start-page: 10102 year: 2015 ident: C6TA03588D-(cit21)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201500569 – volume: 11 start-page: 4168 year: 2011 ident: C6TA03588D-(cit9)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl2020476 – volume: 50 start-page: 5339 year: 2011 ident: C6TA03588D-(cit26)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201100170 – volume: 3 start-page: 1841 year: 2015 ident: C6TA03588D-(cit31)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06149G – volume: 51 start-page: 11496 year: 2012 ident: C6TA03588D-(cit16)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201206720 – volume: 10 start-page: 780 year: 2011 ident: C6TA03588D-(cit8)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3087 – volume: 132 start-page: 11642 year: 2010 ident: C6TA03588D-(cit28)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja103798k – volume: 152 start-page: J23 year: 2005 ident: C6TA03588D-(cit42)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.1856988 – volume: 6 start-page: 205 year: 2011 ident: C6TA03588D-(cit5)/*[position()=1] publication-title: ACS Nano doi: 10.1142/S1793292011002536 – volume: 5 start-page: 4350 year: 2011 ident: C6TA03588D-(cit23)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn103584t |
SSID | ssj0000800699 |
Score | 2.481875 |
Snippet | Atomic doping has always been demonstrated as a feasible way to effectively alter the catalytic properties of metal-free electrocatalysts. Herein, we report... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 12205 |
SubjectTerms | adsorption carbon nitride Catalysts Doping durability Electrocatalysts electrochemistry engineering graphene Hydrogen evolution hydrogen production Oxygen porous media Reduction Stems Sulfur |
Title | Toward enhanced activity of a graphitic carbon nitride-based electrocatalyst in oxygen reduction and hydrogen evolution reactions via atomic sulfur doping |
URI | https://www.proquest.com/docview/1811881901 https://www.proquest.com/docview/1835663060 https://www.proquest.com/docview/2271801464 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK9wIPiE8xBsgIXlCUkcRO4jxWY2gg4KmTxl6qxHbWSihFbVqt-1P4D_kvOPviJN0HGrxEydVJE9_Pd2f7Pgh5G8aq0AEMJNB1zOehKEAO6swXJgtqFuc6tk40X78lR8f880l8Mhj87nktrepiX15cG1fyP1wFGvDVRMn-A2fbhwIBzoG_cAQOw_F2PLY-r56upriPb4IU1o2PRe7ZXNTGuc2kny6AyzB6FzOlfaO54C4sgGPXbzZLWylgfr6B__IWJp1r7fyUpxu1mBuyXjcfAw0wHGLprU1MV20im42fe7laeMpGYN1g84J5jP3iSVdobt8bYcyQ-8XmIMeIRLuo7yK8jBPvppPk1gvhVFdn57NWs5xOc9xImlly8xoWtM2y-PduMPRpZ_3FD4zKROkYBXFgEqGi8NZ9GpbIdeKd91DcKByU1aGJMe4pfrhGuX9FqwTMJGU9SMajgMVCfOh0p_MXuKRSW0dHu8XPskl37x2yE8GMJhqSndHh-NOXdkHQmO6JrXfafppLp8uy990Dtg2obfvBGkXjB-R-w1k6Qmg-JANdPSL3ejkuH5NfCFLqQEodSOm8pDltQUoRpHQLpPQSSOmsoghS2oKUAkqoAyltQUpbkFIAKUWQUgQpRZA-IccfD8cHR35TEMSXccBqv-S8KNI4VakqRZjkcQGCRgrNCl4KUERcijJKFcgfzlOpoJ9TDTa9SCOR5BlX7CkZVvNKPyO0jLjkLBJpFkiYs8sMOiDIGVe5TDMV5rvknevliWyy5ZuiLT8mV1m6S960bX9ijphrW712zJrAADP7cnml56vlBIzsUFjL_G9tGEy8YH4f3NwmisDQNMmg-PNbvdEeuWvGFC4oviDDerHSL8HErotXDTj_ABmL2-w |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+enhanced+activity+of+a+graphitic+carbon+nitride-based+electrocatalyst+in+oxygen+reduction+and+hydrogen+evolution+reactions+via+atomic+sulfur+doping&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Pei%2C+Zengxia&rft.au=Zhao%2C+Jingxiang&rft.au=Huang%2C+Yan&rft.au=Huang%2C+Yang&rft.date=2016&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=4&rft.issue=31&rft.spage=12205&rft.epage=12211&rft_id=info:doi/10.1039%2FC6TA03588D&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C6TA03588D |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |