Toward enhanced activity of a graphitic carbon nitride-based electrocatalyst in oxygen reduction and hydrogen evolution reactions via atomic sulfur doping

Atomic doping has always been demonstrated as a feasible way to effectively alter the catalytic properties of metal-free electrocatalysts. Herein, we report the first experimental and theoretical investigation regarding the influence of sulfur doping on the activity of a carbon nitride (C 3 N 4 )-ba...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 4; no. 31; pp. 12205 - 12211
Main Authors Pei, Zengxia, Zhao, Jingxiang, Huang, Yan, Huang, Yang, Zhu, Minshen, Wang, Zifeng, Chen, Zhongfang, Zhi, Chunyi
Format Journal Article
LanguageEnglish
Published 2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Atomic doping has always been demonstrated as a feasible way to effectively alter the catalytic properties of metal-free electrocatalysts. Herein, we report the first experimental and theoretical investigation regarding the influence of sulfur doping on the activity of a carbon nitride (C 3 N 4 )-based electrocatalyst in the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). It is found that the sulfur dopant within the mesoporous carbon-supported C 3 N 4 motif can remarkably boost its ORR activity, which rivals that of commercial Pt/C yet with better cross-over tolerance and durability, while the HER performance of the composite catalyst is superior than most other reported metal-free electrocatalysts and is even comparable to the most active non-noble metal-based HER materials. Theoretical calculations further reveal that the excellent activity of the doped composite stems from the high charge and spin densities in the C 3 N 4 motif as well as altered competent adsorption energies of reaction intermediates via the atomic sulfur doping. The results in this work feature a facile and effective approach for engineering a high performance C 3 N 4 -based electrocatalyst, which may also enlighten the designing and fabrication of other metal-free materials as next-generation electrocatalysts.
AbstractList Atomic doping has always been demonstrated as a feasible way to effectively alter the catalytic properties of metal-free electrocatalysts. Herein, we report the first experimental and theoretical investigation regarding the influence of sulfur doping on the activity of a carbon nitride (C3N4)-based electrocatalyst in the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). It is found that the sulfur dopant within the mesoporous carbon-supported C3N4 motif can remarkably boost its ORR activity, which rivals that of commercial Pt/C yet with better cross-over tolerance and durability, while the HER performance of the composite catalyst is superior than most other reported metal-free electrocatalysts and is even comparable to the most active non-noble metal-based HER materials. Theoretical calculations further reveal that the excellent activity of the doped composite stems from the high charge and spin densities in the C3N4 motif as well as altered competent adsorption energies of reaction intermediates via the atomic sulfur doping. The results in this work feature a facile and effective approach for engineering a high performance C3N4-based electrocatalyst, which may also enlighten the designing and fabrication of other metal-free materials as next-generation electrocatalysts.
Atomic doping has always been demonstrated as a feasible way to effectively alter the catalytic properties of metal-free electrocatalysts. Herein, we report the first experimental and theoretical investigation regarding the influence of sulfur doping on the activity of a carbon nitride (C 3 N 4 )-based electrocatalyst in the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). It is found that the sulfur dopant within the mesoporous carbon-supported C 3 N 4 motif can remarkably boost its ORR activity, which rivals that of commercial Pt/C yet with better cross-over tolerance and durability, while the HER performance of the composite catalyst is superior than most other reported metal-free electrocatalysts and is even comparable to the most active non-noble metal-based HER materials. Theoretical calculations further reveal that the excellent activity of the doped composite stems from the high charge and spin densities in the C 3 N 4 motif as well as altered competent adsorption energies of reaction intermediates via the atomic sulfur doping. The results in this work feature a facile and effective approach for engineering a high performance C 3 N 4 -based electrocatalyst, which may also enlighten the designing and fabrication of other metal-free materials as next-generation electrocatalysts.
Atomic doping has always been demonstrated as a feasible way to effectively alter the catalytic properties of metal-free electrocatalysts. Herein, we report the first experimental and theoretical investigation regarding the influence of sulfur doping on the activity of a carbon nitride (C₃N₄)-based electrocatalyst in the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). It is found that the sulfur dopant within the mesoporous carbon-supported C₃N₄ motif can remarkably boost its ORR activity, which rivals that of commercial Pt/C yet with better cross-over tolerance and durability, while the HER performance of the composite catalyst is superior than most other reported metal-free electrocatalysts and is even comparable to the most active non-noble metal-based HER materials. Theoretical calculations further reveal that the excellent activity of the doped composite stems from the high charge and spin densities in the C₃N₄ motif as well as altered competent adsorption energies of reaction intermediates via the atomic sulfur doping. The results in this work feature a facile and effective approach for engineering a high performance C₃N₄-based electrocatalyst, which may also enlighten the designing and fabrication of other metal-free materials as next-generation electrocatalysts.
Author Zhu, Minshen
Zhi, Chunyi
Huang, Yang
Zhao, Jingxiang
Huang, Yan
Pei, Zengxia
Wang, Zifeng
Chen, Zhongfang
Author_xml – sequence: 1
  givenname: Zengxia
  surname: Pei
  fullname: Pei, Zengxia
  organization: Department of Physics and Materials Science, City University of Hong Kong, Kowloon, China
– sequence: 2
  givenname: Jingxiang
  surname: Zhao
  fullname: Zhao, Jingxiang
  organization: Department of Chemistry, The Institute for Functional Nanomaterials, University of Puerto Rico, Rio Piedras Campus, San Juan
– sequence: 3
  givenname: Yan
  surname: Huang
  fullname: Huang, Yan
  organization: Department of Physics and Materials Science, City University of Hong Kong, Kowloon, China
– sequence: 4
  givenname: Yang
  surname: Huang
  fullname: Huang, Yang
  organization: Department of Physics and Materials Science, City University of Hong Kong, Kowloon, China
– sequence: 5
  givenname: Minshen
  surname: Zhu
  fullname: Zhu, Minshen
  organization: Department of Physics and Materials Science, City University of Hong Kong, Kowloon, China
– sequence: 6
  givenname: Zifeng
  surname: Wang
  fullname: Wang, Zifeng
  organization: Department of Physics and Materials Science, City University of Hong Kong, Kowloon, China
– sequence: 7
  givenname: Zhongfang
  surname: Chen
  fullname: Chen, Zhongfang
  organization: Department of Chemistry, The Institute for Functional Nanomaterials, University of Puerto Rico, Rio Piedras Campus, San Juan
– sequence: 8
  givenname: Chunyi
  surname: Zhi
  fullname: Zhi, Chunyi
  organization: Department of Physics and Materials Science, City University of Hong Kong, Kowloon, China, Shenzhen Research Institute
BookMark eNqNkcGO1DAMhiO0SCzLXniCHBFSIWnTxD2uBhaQVuIynCs3cWeCOsmQpAN9FZ6Wzi4CCSGBL7bs77cl_0_ZRYiBGHsuxSspmu71Rm9vRNMCvHnELmvRisqoTl_8qgGesOucP4s1QAjddZfs-zZ-xeQ4hT0GS46jLf7ky8LjyJHvEh73vnjLLaYhBh58Sd5RNWBeYZrIlhQtFpyWXLgPPH5bdhR4Ijevm1YFBsf3i0vx3KZTnOb7diK8n2d-8sixxMN6JM_TOCfu4tGH3TP2eMQp0_XPfMU-3b7dbt5Xdx_ffdjc3FW2FU2pRqWGwbTGGTeC1NgObiAL1AxqBAChLIy1cbJ1ShnramMMiboFU4PGTrnmir142HtM8ctMufQHny1NEwaKc-7r2kgQUmn1T1RC02rdCC3-A5USQHZCrujLB9SmmHOisT8mf8C09FL0Z2f7386usPgDtr7g-ZMloZ_-JvkB49KqYg
CitedBy_id crossref_primary_10_1039_C9CP00618D
crossref_primary_10_1016_j_nanoen_2023_108718
crossref_primary_10_1016_j_jcis_2019_05_020
crossref_primary_10_1021_acs_chemrev_9b00248
crossref_primary_10_1039_D0RA07495K
crossref_primary_10_1039_C8CY02210K
crossref_primary_10_1007_s13738_019_01722_2
crossref_primary_10_1016_j_ensm_2020_02_033
crossref_primary_10_1016_j_ccr_2024_215899
crossref_primary_10_1021_acs_chemrev_7b00335
crossref_primary_10_1038_s41598_017_09283_1
crossref_primary_10_1039_C8CP00644J
crossref_primary_10_1002_EXP_20220174
crossref_primary_10_1016_j_carbon_2018_01_055
crossref_primary_10_1002_cssc_202101282
crossref_primary_10_1016_j_ijhydene_2022_07_269
crossref_primary_10_1016_j_electacta_2024_143916
crossref_primary_10_1002_aenm_202101202
crossref_primary_10_1002_slct_202200876
crossref_primary_10_1039_D1CP05249G
crossref_primary_10_1016_j_colsurfa_2021_126162
crossref_primary_10_1039_D3TA05901D
crossref_primary_10_1021_acsanm_8b01381
crossref_primary_10_1016_j_matchemphys_2024_129993
crossref_primary_10_1016_j_chphma_2022_04_004
crossref_primary_10_1039_D0EE01856B
crossref_primary_10_1039_C9TA02220A
crossref_primary_10_1002_cptc_201800256
crossref_primary_10_1002_adma_201707319
crossref_primary_10_1007_s12274_018_2034_8
crossref_primary_10_1016_j_enchem_2021_100055
crossref_primary_10_1002_adma_201805252
crossref_primary_10_1016_j_cej_2017_12_064
crossref_primary_10_1016_S1872_5805_21_60045_8
crossref_primary_10_1039_C6EE03265F
crossref_primary_10_1039_C8DT02250J
crossref_primary_10_1016_j_apsusc_2021_152006
crossref_primary_10_1021_acsnano_7b01908
crossref_primary_10_1016_j_ijhydene_2017_06_122
crossref_primary_10_1039_D0NJ04169F
crossref_primary_10_1039_D1CY00364J
crossref_primary_10_1002_chem_201604231
crossref_primary_10_1002_ange_201802472
crossref_primary_10_1002_ente_202301197
crossref_primary_10_1016_j_jallcom_2017_03_190
crossref_primary_10_1016_j_jcis_2018_08_103
crossref_primary_10_1016_j_mtcata_2023_100003
crossref_primary_10_1016_S1872_2067_24_60007_0
crossref_primary_10_1039_D2QI01608G
crossref_primary_10_1016_j_cej_2023_144708
crossref_primary_10_1016_j_jclepro_2021_128693
crossref_primary_10_1016_j_jcis_2023_04_034
crossref_primary_10_1039_C7MH00358G
crossref_primary_10_1002_adfm_202009853
crossref_primary_10_1016_j_mtphys_2019_100176
crossref_primary_10_1021_acssuschemeng_9b00126
crossref_primary_10_1039_D0NJ00499E
crossref_primary_10_1039_C9QI01368G
crossref_primary_10_1016_j_ijhydene_2023_01_214
crossref_primary_10_1016_j_apcatb_2018_01_065
crossref_primary_10_1016_j_mtchem_2023_101523
crossref_primary_10_1016_j_snb_2018_11_031
crossref_primary_10_1021_acsaem_9b01445
crossref_primary_10_1039_D0TA08704A
crossref_primary_10_1002_fuce_202100004
crossref_primary_10_1021_acsami_0c11381
crossref_primary_10_1021_acssuschemeng_7b01312
crossref_primary_10_1016_j_jcis_2020_12_031
crossref_primary_10_1039_C7TA07608H
crossref_primary_10_1021_acscatal_8b02595
crossref_primary_10_1021_acs_energyfuels_0c00953
crossref_primary_10_1039_C8CP02038H
crossref_primary_10_1021_acssuschemeng_7b02926
crossref_primary_10_1016_j_jpowsour_2024_234856
crossref_primary_10_1039_C7TA01318C
crossref_primary_10_1016_j_chphi_2023_100408
crossref_primary_10_1002_asia_201800245
crossref_primary_10_1002_adma_201806403
crossref_primary_10_1016_j_jelechem_2022_116942
crossref_primary_10_1021_acsnano_7b09064
crossref_primary_10_1038_s41598_018_22507_2
crossref_primary_10_1039_C8TA01078A
crossref_primary_10_3390_nano9040568
crossref_primary_10_1016_j_catcom_2024_106882
crossref_primary_10_1016_S1872_5805_22_60575_4
crossref_primary_10_1016_j_chemosphere_2022_135477
crossref_primary_10_1016_j_est_2019_101032
crossref_primary_10_1002_adma_201803800
crossref_primary_10_1002_anie_201802472
crossref_primary_10_1016_j_dyepig_2019_04_065
crossref_primary_10_1039_D2RA05594E
crossref_primary_10_1007_s10853_017_1818_7
crossref_primary_10_1021_acssuschemeng_7b01576
crossref_primary_10_1021_acssuschemeng_9b07621
crossref_primary_10_1039_C7TA09254G
crossref_primary_10_1021_acsami_0c03823
crossref_primary_10_1021_acscatal_1c05728
crossref_primary_10_1149_1945_7111_ac4458
crossref_primary_10_1039_D1CS00219H
crossref_primary_10_1016_j_mtener_2018_10_014
crossref_primary_10_1039_C9EE00717B
crossref_primary_10_1002_smsc_202300036
crossref_primary_10_1002_cphc_201800899
crossref_primary_10_1039_D0NR00818D
crossref_primary_10_1016_j_jcis_2022_11_001
Cites_doi 10.1002/ange.201206554
10.1021/ja209206c
10.1038/ncomms8992
10.1021/nn501434a
10.1021/ja211637p
10.1002/anie.201107981
10.1002/smll.201402472
10.1039/C4CS00448E
10.1002/anie.201209017
10.1021/acscatal.5b02302
10.1021/ja504099w
10.1039/C5CC05644F
10.1021/cr5003563
10.1126/science.1168049
10.1002/adfm.201403657
10.1002/cctc.201500262
10.1002/anie.201409080
10.1002/cctc.201500701
10.1002/anie.201501616
10.1039/C5NR00013K
10.1021/ja310566z
10.1002/anie.201410050
10.1002/adma.201301870
10.1039/C0EE00418A
10.1002/anie.201400358
10.1038/ncomms5973
10.1039/C5TA02656C
10.1016/j.nanoen.2015.07.008
10.1002/adma.201302685
10.1039/C4CC00440J
10.1002/adma.201505131
10.1038/ncomms4783
10.1002/anie.201500569
10.1021/nl2020476
10.1002/anie.201100170
10.1039/C4TA06149G
10.1002/anie.201206720
10.1038/nmat3087
10.1021/ja103798k
10.1149/1.1856988
10.1142/S1793292011002536
10.1021/nn103584t
ContentType Journal Article
DBID AAYXX
CITATION
7ST
C1K
SOI
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
DOI 10.1039/C6TA03588D
DatabaseName CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
CrossRef
Environment Abstracts
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 12211
ExternalDocumentID 10_1039_C6TA03588D
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
7ST
C1K
SOI
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c503t-f44bb757d7df816a5bdbec8e3b4f88804c8f27d15d447cd2777e02587286a94d3
ISSN 2050-7488
2050-7496
IngestDate Thu Jul 10 18:03:59 EDT 2025
Fri Jul 11 08:31:42 EDT 2025
Fri Jul 11 00:05:36 EDT 2025
Tue Jul 01 03:13:30 EDT 2025
Thu Apr 24 23:08:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 31
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c503t-f44bb757d7df816a5bdbec8e3b4f88804c8f27d15d447cd2777e02587286a94d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1811881901
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_2271801464
proquest_miscellaneous_1835663060
proquest_miscellaneous_1811881901
crossref_primary_10_1039_C6TA03588D
crossref_citationtrail_10_1039_C6TA03588D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-00-00
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016-00-00
PublicationDecade 2010
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2016
References Yang (C6TA03588D-(cit5)/*[position()=1]) 2011; 6
Ito (C6TA03588D-(cit25)/*[position()=1]) 2015; 54
Shinde (C6TA03588D-(cit39)/*[position()=1]) 2015; 3
Dai (C6TA03588D-(cit2)/*[position()=1]) 2015; 115
Zou (C6TA03588D-(cit3)/*[position()=1]) 2015; 44
Liang (C6TA03588D-(cit8)/*[position()=1]) 2011; 10
Lin (C6TA03588D-(cit30)/*[position()=1]) 2013; 52
Liang (C6TA03588D-(cit4)/*[position()=1]) 2015; 6
Wang (C6TA03588D-(cit19)/*[position()=1]) 2014; 50
Zheng (C6TA03588D-(cit20)/*[position()=1]) 2011; 133
Nørskov (C6TA03588D-(cit42)/*[position()=1]) 2005; 152
Shinde (C6TA03588D-(cit12)/*[position()=1]) 2015; 51
Faber (C6TA03588D-(cit11)/*[position()=1]) 2014; 136
Zhang (C6TA03588D-(cit17)/*[position()=1]) 2013; 25
Wang (C6TA03588D-(cit22)/*[position()=1]) 2015; 7
Jiang (C6TA03588D-(cit13)/*[position()=1]) 2015; 54
Sheng (C6TA03588D-(cit23)/*[position()=1]) 2011; 5
Lu (C6TA03588D-(cit38)/*[position()=1]) 2016; 6
Zhang (C6TA03588D-(cit29)/*[position()=1]) 2011; 4
Liu (C6TA03588D-(cit28)/*[position()=1]) 2010; 132
Zheng (C6TA03588D-(cit14)/*[position()=1]) 2014; 5
Xu (C6TA03588D-(cit34)/*[position()=1]) 2016; 28
Xie (C6TA03588D-(cit10)/*[position()=1]) 2013; 25
Liang (C6TA03588D-(cit35)/*[position()=1]) 2014; 5
Shinde (C6TA03588D-(cit40)/*[position()=1]) 2015; 7
Liang (C6TA03588D-(cit16)/*[position()=1]) 2012; 51
Zhao (C6TA03588D-(cit27)/*[position()=1]) 2014; 53
Liang (C6TA03588D-(cit6)/*[position()=1]) 2012; 51
Du (C6TA03588D-(cit41)/*[position()=1]) 2012; 134
Zheng (C6TA03588D-(cit24)/*[position()=1]) 2014; 8
Liu (C6TA03588D-(cit15)/*[position()=1]) 2015; 7
Hou (C6TA03588D-(cit36)/*[position()=1]) 2015; 25
Zhao (C6TA03588D-(cit33)/*[position()=1]) 2012; 124
Masa (C6TA03588D-(cit21)/*[position()=1]) 2015; 54
Zhao (C6TA03588D-(cit18)/*[position()=1]) 2013; 135
Yang (C6TA03588D-(cit26)/*[position()=1]) 2011; 50
Hu (C6TA03588D-(cit7)/*[position()=1]) 2014; 53
Gong (C6TA03588D-(cit1)/*[position()=1]) 2009; 323
Zhou (C6TA03588D-(cit37)/*[position()=1]) 2015; 16
Xu (C6TA03588D-(cit31)/*[position()=1]) 2015; 3
Chen (C6TA03588D-(cit32)/*[position()=1]) 2015; 11
Chen (C6TA03588D-(cit9)/*[position()=1]) 2011; 11
References_xml – volume: 124
  start-page: 11533
  year: 2012
  ident: C6TA03588D-(cit33)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201206554
– volume: 133
  start-page: 20116
  year: 2011
  ident: C6TA03588D-(cit20)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja209206c
– volume: 6
  start-page: 7992
  year: 2015
  ident: C6TA03588D-(cit4)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8992
– volume: 8
  start-page: 5290
  year: 2014
  ident: C6TA03588D-(cit24)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn501434a
– volume: 134
  start-page: 4393
  year: 2012
  ident: C6TA03588D-(cit41)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211637p
– volume: 51
  start-page: 3892
  year: 2012
  ident: C6TA03588D-(cit6)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201107981
– volume: 11
  start-page: 1423
  year: 2015
  ident: C6TA03588D-(cit32)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201402472
– volume: 44
  start-page: 5148
  year: 2015
  ident: C6TA03588D-(cit3)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00448E
– volume: 52
  start-page: 1735
  year: 2013
  ident: C6TA03588D-(cit30)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201209017
– volume: 6
  start-page: 1045
  year: 2016
  ident: C6TA03588D-(cit38)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02302
– volume: 136
  start-page: 10053
  year: 2014
  ident: C6TA03588D-(cit11)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja504099w
– volume: 51
  start-page: 15716
  year: 2015
  ident: C6TA03588D-(cit12)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC05644F
– volume: 115
  start-page: 4823
  year: 2015
  ident: C6TA03588D-(cit2)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr5003563
– volume: 323
  start-page: 760
  year: 2009
  ident: C6TA03588D-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1168049
– volume: 25
  start-page: 872
  year: 2015
  ident: C6TA03588D-(cit36)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201403657
– volume: 7
  start-page: 1650
  year: 2015
  ident: C6TA03588D-(cit22)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201500262
– volume: 53
  start-page: 13934
  year: 2014
  ident: C6TA03588D-(cit27)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201409080
– volume: 7
  start-page: 3873
  year: 2015
  ident: C6TA03588D-(cit40)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201500701
– volume: 54
  start-page: 6251
  year: 2015
  ident: C6TA03588D-(cit13)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201501616
– volume: 7
  start-page: 6136
  year: 2015
  ident: C6TA03588D-(cit15)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR00013K
– volume: 135
  start-page: 1201
  year: 2013
  ident: C6TA03588D-(cit18)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja310566z
– volume: 54
  start-page: 2131
  year: 2015
  ident: C6TA03588D-(cit25)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201410050
– volume: 25
  start-page: 4932
  year: 2013
  ident: C6TA03588D-(cit17)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301870
– volume: 4
  start-page: 675
  year: 2011
  ident: C6TA03588D-(cit29)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C0EE00418A
– volume: 53
  start-page: 3675
  year: 2014
  ident: C6TA03588D-(cit7)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201400358
– volume: 5
  start-page: 4973
  year: 2014
  ident: C6TA03588D-(cit35)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5973
– volume: 3
  start-page: 12810
  year: 2015
  ident: C6TA03588D-(cit39)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA02656C
– volume: 16
  start-page: 357
  year: 2015
  ident: C6TA03588D-(cit37)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.07.008
– volume: 25
  start-page: 5807
  year: 2013
  ident: C6TA03588D-(cit10)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302685
– volume: 50
  start-page: 4839
  year: 2014
  ident: C6TA03588D-(cit19)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC00440J
– volume: 28
  start-page: 1981
  year: 2016
  ident: C6TA03588D-(cit34)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505131
– volume: 5
  start-page: 3783
  year: 2014
  ident: C6TA03588D-(cit14)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4783
– volume: 54
  start-page: 10102
  year: 2015
  ident: C6TA03588D-(cit21)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201500569
– volume: 11
  start-page: 4168
  year: 2011
  ident: C6TA03588D-(cit9)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl2020476
– volume: 50
  start-page: 5339
  year: 2011
  ident: C6TA03588D-(cit26)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201100170
– volume: 3
  start-page: 1841
  year: 2015
  ident: C6TA03588D-(cit31)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06149G
– volume: 51
  start-page: 11496
  year: 2012
  ident: C6TA03588D-(cit16)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201206720
– volume: 10
  start-page: 780
  year: 2011
  ident: C6TA03588D-(cit8)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3087
– volume: 132
  start-page: 11642
  year: 2010
  ident: C6TA03588D-(cit28)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja103798k
– volume: 152
  start-page: J23
  year: 2005
  ident: C6TA03588D-(cit42)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1856988
– volume: 6
  start-page: 205
  year: 2011
  ident: C6TA03588D-(cit5)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1142/S1793292011002536
– volume: 5
  start-page: 4350
  year: 2011
  ident: C6TA03588D-(cit23)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn103584t
SSID ssj0000800699
Score 2.481875
Snippet Atomic doping has always been demonstrated as a feasible way to effectively alter the catalytic properties of metal-free electrocatalysts. Herein, we report...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 12205
SubjectTerms adsorption
carbon nitride
Catalysts
Doping
durability
Electrocatalysts
electrochemistry
engineering
graphene
Hydrogen evolution
hydrogen production
Oxygen
porous media
Reduction
Stems
Sulfur
Title Toward enhanced activity of a graphitic carbon nitride-based electrocatalyst in oxygen reduction and hydrogen evolution reactions via atomic sulfur doping
URI https://www.proquest.com/docview/1811881901
https://www.proquest.com/docview/1835663060
https://www.proquest.com/docview/2271801464
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK9wIPiE8xBsgIXlCUkcRO4jxWY2gg4KmTxl6qxHbWSihFbVqt-1P4D_kvOPviJN0HGrxEydVJE9_Pd2f7Pgh5G8aq0AEMJNB1zOehKEAO6swXJgtqFuc6tk40X78lR8f880l8Mhj87nktrepiX15cG1fyP1wFGvDVRMn-A2fbhwIBzoG_cAQOw_F2PLY-r56upriPb4IU1o2PRe7ZXNTGuc2kny6AyzB6FzOlfaO54C4sgGPXbzZLWylgfr6B__IWJp1r7fyUpxu1mBuyXjcfAw0wHGLprU1MV20im42fe7laeMpGYN1g84J5jP3iSVdobt8bYcyQ-8XmIMeIRLuo7yK8jBPvppPk1gvhVFdn57NWs5xOc9xImlly8xoWtM2y-PduMPRpZ_3FD4zKROkYBXFgEqGi8NZ9GpbIdeKd91DcKByU1aGJMe4pfrhGuX9FqwTMJGU9SMajgMVCfOh0p_MXuKRSW0dHu8XPskl37x2yE8GMJhqSndHh-NOXdkHQmO6JrXfafppLp8uy990Dtg2obfvBGkXjB-R-w1k6Qmg-JANdPSL3ejkuH5NfCFLqQEodSOm8pDltQUoRpHQLpPQSSOmsoghS2oKUAkqoAyltQUpbkFIAKUWQUgQpRZA-IccfD8cHR35TEMSXccBqv-S8KNI4VakqRZjkcQGCRgrNCl4KUERcijJKFcgfzlOpoJ9TDTa9SCOR5BlX7CkZVvNKPyO0jLjkLBJpFkiYs8sMOiDIGVe5TDMV5rvknevliWyy5ZuiLT8mV1m6S960bX9ijphrW712zJrAADP7cnml56vlBIzsUFjL_G9tGEy8YH4f3NwmisDQNMmg-PNbvdEeuWvGFC4oviDDerHSL8HErotXDTj_ABmL2-w
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+enhanced+activity+of+a+graphitic+carbon+nitride-based+electrocatalyst+in+oxygen+reduction+and+hydrogen+evolution+reactions+via+atomic+sulfur+doping&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Pei%2C+Zengxia&rft.au=Zhao%2C+Jingxiang&rft.au=Huang%2C+Yan&rft.au=Huang%2C+Yang&rft.date=2016&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=4&rft.issue=31&rft.spage=12205&rft.epage=12211&rft_id=info:doi/10.1039%2FC6TA03588D&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C6TA03588D
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon