Facial Emotion Recognition Based on Biorthogonal Wavelet Entropy, Fuzzy Support Vector Machine, and Stratified Cross Validation

Emotion recognition represents the position and motion of facial muscles. It contributes significantly in many fields. Current approaches have not obtained good results. This paper aimed to propose a new emotion recognition system based on facial expression images. We enrolled 20 subjects and let ea...

Full description

Saved in:
Bibliographic Details
Published inIEEE Access Vol. 4; pp. 8375 - 8385
Main Authors Yu-Dong Zhang, Zhang-Jing Yang, Hui-Min Lu, Xing-Xing Zhou, Phillips, Preetha, Qing-Ming Liu, Shui-Hua Wang
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2016
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Emotion recognition represents the position and motion of facial muscles. It contributes significantly in many fields. Current approaches have not obtained good results. This paper aimed to propose a new emotion recognition system based on facial expression images. We enrolled 20 subjects and let each subject pose seven different emotions: happy, sadness, surprise, anger, disgust, fear, and neutral. Afterward, we employed biorthogonal wavelet entropy to extract multiscale features, and used fuzzy multiclass support vector machine to be the classifier. The stratified cross validation was employed as a strict validation model. The statistical analysis showed our method achieved an overall accuracy of 96.77±0.10%. Besides, our method is superior to three state-of-the-art methods. In all, this proposed method is efficient.
AbstractList Emotion recognition represents the position and motion of facial muscles. It contributes significantly in many fields. Current approaches have not obtained good results. This paper aimed to propose a new emotion recognition system based on facial expression images. We enrolled 20 subjects and let each subject pose seven different emotions: happy, sadness, surprise, anger, disgust, fear, and neutral. Afterward, we employed biorthogonal wavelet entropy to extract multiscale features, and used fuzzy multiclass support vector machine to be the classifier. The stratified cross validation was employed as a strict validation model. The statistical analysis showed our method achieved an overall accuracy of 96.77±0.10%. Besides, our method is superior to three state-of-the-art methods. In all, this proposed method is efficient.
Author Shui-Hua Wang
Yu-Dong Zhang
Phillips, Preetha
Hui-Min Lu
Qing-Ming Liu
Xing-Xing Zhou
Zhang-Jing Yang
Author_xml – sequence: 1
  surname: Yu-Dong Zhang
  fullname: Yu-Dong Zhang
  email: zhangyudong@njnu.edu.cn
  organization: Sch. of Technol., Nanjing Audit Univ., Nanjing, China
– sequence: 2
  surname: Zhang-Jing Yang
  fullname: Zhang-Jing Yang
  email: yzzjjj@126.com
  organization: Sch. of Technol., Nanjing Audit Univ., Nanjing, China
– sequence: 3
  surname: Hui-Min Lu
  fullname: Hui-Min Lu
  organization: Dept. of Mech. & Control Eng., Kyushu Inst. of Technol., Fukuoka, Japan
– sequence: 4
  surname: Xing-Xing Zhou
  fullname: Xing-Xing Zhou
  organization: Sch. of Comput. Sci. & Technol., Nanjing Normal Univ., Nanjing, China
– sequence: 5
  givenname: Preetha
  surname: Phillips
  fullname: Phillips, Preetha
  organization: Sch. of Natural Sci. & Math., Shepherd Univ., Shepherdstown, WV, USA
– sequence: 6
  surname: Qing-Ming Liu
  fullname: Qing-Ming Liu
  organization: Sch. of Psychol., Nanjing Normal Univ., Nanjing, China
– sequence: 7
  surname: Shui-Hua Wang
  fullname: Shui-Hua Wang
  email: wangshuihua@njnu.edu.cn
  organization: Sch. of Comput. Sci. & Technol., Nanjing Normal Univ., Nanjing, China
BackLink https://cir.nii.ac.jp/crid/1870583642594545792$$DView record in CiNii
BookMark eNqFUctuEzEUtVCRKKVf0I0lWDbB78eyjBKoVIREoCwt47FTR9Px4HEqpRt-HU-mqhAbvLi-ujrn3Md5DU761HsALjBaYoz0-6umWW02S4KwWBJBFEPyBTglWOgF5VSc_JW_AufjuEP1qVri8hT8XlsXbQdX96nE1MOv3qVtH4_5Bzv6Fk5JTLncpW3qK_KHffCdL3DVl5yGwyVc7x8fD3CzH4aKgrfelZThZ-vuYu8voe1buCnZlhhiVWtyGkd4a7vY2qnJG_Ay2G7050__Gfi-Xn1rPi1uvny8bq5uFo4jWhaBIYq5Y85RhLhwmiunWsJ-Kom1rpFTFKjFrW-dCEFpZ1smlReISsxcoGfgetZtk92ZIcd7mw8m2WiOhZS3xuYSXecN585yKbxsvWDIKyuDq3JcB8yZsKhqvZ21hpx-7f1YzC7tc73NaAjjXNfGQlQUnVFuWjn78NwVIzMZZ2bjzGSceTKusvQ_LBfL8VL1hrH7D_fdzO1jrLQpYiURV1QwUsfijEtNKuxihkXv_fNQUnIiFaF_APsYs1M
CODEN IAECCG
CitedBy_id crossref_primary_10_1061_JTEPBS_TEENG_7802
crossref_primary_10_3390_app142310788
crossref_primary_10_1007_s11554_022_01224_0
crossref_primary_10_1016_j_neucom_2017_04_054
crossref_primary_10_1371_journal_pone_0193721
crossref_primary_10_1007_s11042_022_13638_w
crossref_primary_10_1016_j_ijcce_2021_05_001
crossref_primary_10_1007_s00371_021_02260_w
crossref_primary_10_1093_comjnl_bxab088
crossref_primary_10_1007_s40815_019_00703_0
crossref_primary_10_1016_j_eswa_2023_120348
crossref_primary_10_1109_ACCESS_2017_2694446
crossref_primary_10_1109_ACCESS_2019_2913428
crossref_primary_10_3390_s19051040
crossref_primary_10_1007_s11042_018_6954_9
crossref_primary_10_1007_s11042_017_4830_7
crossref_primary_10_1016_j_future_2017_10_033
crossref_primary_10_3233_JAD_170069
crossref_primary_10_1016_j_compbiomed_2019_103348
crossref_primary_10_1016_j_chb_2018_12_029
crossref_primary_10_1109_TCSVT_2019_2904463
crossref_primary_10_1109_ACCESS_2018_2844540
crossref_primary_10_1109_ACCESS_2024_3436556
crossref_primary_10_1007_s11517_021_02358_2
crossref_primary_10_1016_j_susoc_2021_11_001
crossref_primary_10_1016_j_eswa_2020_114516
crossref_primary_10_1016_j_measurement_2019_106886
crossref_primary_10_1016_j_cosrev_2023_100545
crossref_primary_10_1016_j_ijcce_2021_09_002
crossref_primary_10_15302_J_QB_021_0267
crossref_primary_10_1080_10589759_2022_2159961
crossref_primary_10_1109_ACCESS_2018_2808218
crossref_primary_10_1109_ACCESS_2017_2692248
crossref_primary_10_1088_1742_6596_1230_1_012008
crossref_primary_10_1109_ACCESS_2019_2909297
crossref_primary_10_3390_app13095436
crossref_primary_10_1007_s10916_018_0932_7
crossref_primary_10_1109_LSENS_2021_3070419
crossref_primary_10_1155_2018_9801308
crossref_primary_10_3390_s18072074
crossref_primary_10_1109_ACCESS_2024_3375361
crossref_primary_10_1007_s00521_019_04537_7
crossref_primary_10_1016_j_bspc_2023_104928
crossref_primary_10_1016_j_ijcce_2021_02_002
crossref_primary_10_1109_ACCESS_2021_3052246
crossref_primary_10_1007_s00530_021_00774_w
crossref_primary_10_1109_TCSS_2024_3392569
crossref_primary_10_3390_informatics7010006
crossref_primary_10_1002_cpe_5610
crossref_primary_10_1142_S0218488525500072
crossref_primary_10_1007_s11042_024_19467_3
crossref_primary_10_1016_j_neucom_2017_08_015
crossref_primary_10_1109_ACCESS_2019_2931136
crossref_primary_10_1002_mp_14942
crossref_primary_10_1145_3538385
crossref_primary_10_3233_IDT_218149
crossref_primary_10_1016_j_ins_2018_09_006
crossref_primary_10_1109_ACCESS_2022_3203053
crossref_primary_10_3390_math9222976
crossref_primary_10_1371_journal_pone_0196902
crossref_primary_10_1145_3309545
crossref_primary_10_3390_app9214678
crossref_primary_10_1049_ipr2_12118
crossref_primary_10_3390_a17070285
crossref_primary_10_3390_mi13122065
crossref_primary_10_3390_app13063413
crossref_primary_10_1080_03772063_2019_1583610
crossref_primary_10_1088_2057_1976_ac107c
crossref_primary_10_1038_s41598_023_29453_8
crossref_primary_10_1007_s00500_020_05550_y
crossref_primary_10_3390_sym10110627
crossref_primary_10_3390_bioengineering9110688
crossref_primary_10_1007_s11042_017_5485_0
crossref_primary_10_1007_s11042_018_6533_0
crossref_primary_10_1109_TIM_2021_3060564
crossref_primary_10_1145_3494566
crossref_primary_10_3390_technologies6010017
crossref_primary_10_1007_s00500_019_04380_x
crossref_primary_10_1007_s10586_023_04133_4
crossref_primary_10_1109_ACCESS_2019_2893497
crossref_primary_10_3390_s20123491
crossref_primary_10_3390_cancers11060756
crossref_primary_10_1088_1742_6596_2129_1_012069
crossref_primary_10_1049_bme2_12012
crossref_primary_10_1109_ACCESS_2024_3424933
crossref_primary_10_1177_09544062211057499
crossref_primary_10_1007_s11042_017_4703_0
crossref_primary_10_1016_j_neucom_2018_09_003
crossref_primary_10_1016_j_inffus_2023_102019
crossref_primary_10_1016_j_ins_2021_10_005
crossref_primary_10_1007_s11042_017_4554_8
crossref_primary_10_1016_j_imavis_2021_104318
crossref_primary_10_1007_s00170_018_2089_4
crossref_primary_10_1049_ipr2_12035
crossref_primary_10_32604_cmes_2023_030677
crossref_primary_10_1155_2018_3198184
crossref_primary_10_1016_j_knosys_2021_107867
crossref_primary_10_1111_exsy_13517
crossref_primary_10_1631_FITEE_1800101
crossref_primary_10_3390_app8122574
crossref_primary_10_1088_1742_6596_1998_1_012001
crossref_primary_10_1007_s41870_022_00915_y
crossref_primary_10_1016_j_jafr_2023_100756
crossref_primary_10_3390_s20082384
crossref_primary_10_1016_j_neucom_2020_02_085
crossref_primary_10_4108_eetiot_v7i28_685
crossref_primary_10_3390_s19245350
crossref_primary_10_1109_TIM_2023_3243661
crossref_primary_10_1016_j_neunet_2023_11_033
crossref_primary_10_1007_s13042_019_01028_y
crossref_primary_10_1016_j_ijmedinf_2024_105469
crossref_primary_10_1142_S0218001421520169
crossref_primary_10_1155_2021_7819011
crossref_primary_10_1016_j_inffus_2020_01_011
crossref_primary_10_1007_s11042_023_14682_w
crossref_primary_10_32604_csse_2023_025972
crossref_primary_10_1109_ACCESS_2017_2698419
crossref_primary_10_3389_fnbot_2019_00037
crossref_primary_10_1007_s11042_022_13653_x
crossref_primary_10_1080_13682199_2020_1738741
crossref_primary_10_3390_a12010011
crossref_primary_10_1007_s10278_020_00333_1
crossref_primary_10_1007_s11042_017_4383_9
Cites_doi 10.1109/TLA.2016.7483498
10.3233/BME-151426
10.1007/s10586-016-0535-3
10.1109/MSP.2014.2368586
10.1016/j.neucom.2016.03.033
10.1177/0031512516660781
10.7717/peerj.1251
10.1001/jamapsychiatry.2014.179
10.3390/s90907516
10.3233/JAD-150988
10.1080/17470218.2015.1086393
10.1166/jmihi.2015.1527
10.1007/s00422-016-0684-8
10.1109/ICCIC.2012.6510279
10.1007/978-3-540-73281-5_44
10.1109/TIP.2015.2496279
10.2528/PIER12061410
10.1016/j.future.2015.12.001
10.1109/TAFFC.2014.2339834
10.1017/S104161021600034X
10.3390/e17106663
10.3390/s110504721
10.2528/PIER13121310
10.1097/WAD.0b013e318064f445
10.1371/journal.pone.0160329
10.2528/PIER11031709
10.1016/j.chb.2015.09.033
10.1007/978-3-319-28658-7_6
10.1016/j.asoc.2016.06.003
10.1016/j.isatra.2016.03.004
10.1016/j.bspc.2015.05.014
10.1016/j.physa.2016.06.087
10.1109/TCSII.2015.2503704
10.3390/s120912489
10.1016/j.eswa.2011.02.012
10.1016/j.psychres.2016.06.026
10.1007/978-3-319-28658-7_1
10.1007/s12293-016-0187-0
10.1142/S0219691312500543
10.1109/TVT.2015.2414936
10.3233/JAD-150848
10.1109/MNET.2014.6863132
10.1007/s10707-016-0260-3
10.1109/TSC.2016.2592520
10.1002/cav.1714
10.1155/2013/528069
10.1109/TCSVT.2016.2615444
10.1109/CSNT.2015.124
10.1109/TLA.2014.6868861
10.1007/978-3-319-19312-0_11
10.1177/0037549716666962
10.1016/j.neuroimage.2014.01.048
10.1016/j.psyneuen.2016.07.002
10.1016/j.partic.2012.02.005
10.1038/srep24594
10.1109/ICCIC.2015.7435630
10.5935/0100-4042.20160045
10.1016/j.cub.2013.11.064
10.1016/j.ins.2003.03.002
10.1109/VCIP.2014.7051590
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
ESBDL
RIA
RIE
RYH
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2016.2628407
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CiNii Complete
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 8385
ExternalDocumentID oai_doaj_org_article_55ca576e7de640e8a7fccad59f1546a0
10_1109_ACCESS_2016_2628407
7752782
Genre orig-research
GrantInformation_xml – fundername: Open Project Program of the State Key Laboratory of CAD&CG, Zhejiang University
  grantid: A1616
  funderid: 10.13039/501100004835
– fundername: Open Research Fund of Key Laboratory of Network Crime Investigation of Hunan Provincial Colleges
  grantid: 2015HNWLFZ058
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20150983; BK20161580
  funderid: 10.13039/501100004608
– fundername: Program of Natural Science Research of Jiangsu Higher Education Institutions
  grantid: 16KJB520025; 16KJB520020; 15KJB470010; 15KJB520018; 2KJA63001
– fundername: NSFC
  grantid: 61602250; 61503195; 61462064; 61203243; 61402231; 61603192; 61272077
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
RIG
RYH
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c503t-f40315c4cc30056c958c8d24b87199b87530f3a1dedc6ff89cad478e603714cf3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:30:32 EDT 2025
Mon Jun 30 02:26:27 EDT 2025
Thu Apr 24 23:03:39 EDT 2025
Tue Jul 01 04:10:45 EDT 2025
Thu Jun 26 21:31:47 EDT 2025
Tue Aug 26 16:43:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-f40315c4cc30056c958c8d24b87199b87530f3a1dedc6ff89cad478e603714cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2860-1329
0000-0003-2238-6808
0000-0002-4870-1493
OpenAccessLink https://doaj.org/article/55ca576e7de640e8a7fccad59f1546a0
PQID 2455947866
PQPubID 4845423
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_55ca576e7de640e8a7fccad59f1546a0
crossref_primary_10_1109_ACCESS_2016_2628407
proquest_journals_2455947866
ieee_primary_7752782
nii_cinii_1870583642594545792
crossref_citationtrail_10_1109_ACCESS_2016_2628407
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160000
2016-01-01
2016-00-00
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 20160000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE Access
PublicationTitleAbbrev Access
PublicationYear 2016
Publisher IEEE
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers (IEEE)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref15
ref14
ref53
ref11
ref10
ref17
ref16
ref19
ref18
ref50
wu (ref63) 2011; 116
ref46
ref48
ref47
chen (ref20) 2015; 2015
ref42
ref41
ref44
ref43
yuan (ref51) 2015; 9
ref49
ref8
ref7
ref9
ref4
balochian (ref58) 2014
ref3
ref6
ref5
ref40
prakash (ref26) 2015; 42
ref35
ref34
ref36
ref31
ref30
liu (ref54) 2016; 50
ref32
ref2
ref1
ref39
peng (ref57) 2016; 6
zhou (ref33) 2016; 92
agarwal (ref61) 2014
phillips (ref52) 2015; 21
ref70
wu (ref64) 2011; 11
liu (ref38) 2015; 4
wu (ref62) 2011; 38
neggaz (ref65) 2009; 9
ref68
ref24
ref67
ref69
ref25
ref66
ref22
agarwal (ref59) 2016
ref21
ref28
ref27
ref29
phillips (ref55) 2016; 50
chen (ref37) 2015
ref60
sun (ref45) 2015; 26
guo (ref23) 2012; 61
References_xml – ident: ref22
  doi: 10.1109/TLA.2016.7483498
– year: 2014
  ident: ref58
  article-title: Artificial intelligence and its applications
  publication-title: Mathematical Problems in Engineering
– volume: 26
  start-page: 1283s
  year: 2015
  ident: ref45
  article-title: Pathological brain detection based on wavelet entropy and Hu moment invariants
  publication-title: Bio-Med Mater Eng
  doi: 10.3233/BME-151426
– year: 2014
  ident: ref61
  article-title: Swarm intelligence and its applications 2014
  publication-title: Sci World J
– ident: ref15
  doi: 10.1007/s10586-016-0535-3
– ident: ref17
  doi: 10.1109/MSP.2014.2368586
– ident: ref42
  doi: 10.1016/j.neucom.2016.03.033
– ident: ref8
  doi: 10.1177/0031512516660781
– ident: ref53
  doi: 10.7717/peerj.1251
– ident: ref56
  doi: 10.1001/jamapsychiatry.2014.179
– volume: 9
  start-page: 7516
  year: 2009
  ident: ref65
  article-title: Remote-sensing image classification based on an improved probabilistic neural network
  publication-title: SENSORS
  doi: 10.3390/s90907516
– volume: 50
  start-page: 1163
  year: 2016
  ident: ref55
  article-title: Three-dimensional eigenbrain for the detection of subjects and brain regions related with Alzheimer's disease
  publication-title: Alzheimer's Disease
  doi: 10.3233/JAD-150988
– ident: ref14
  doi: 10.1080/17470218.2015.1086393
– ident: ref13
  doi: 10.1166/jmihi.2015.1527
– ident: ref34
  doi: 10.1007/s00422-016-0684-8
– ident: ref11
  doi: 10.1109/ICCIC.2012.6510279
– ident: ref3
  doi: 10.1007/978-3-540-73281-5_44
– ident: ref43
  doi: 10.1109/TIP.2015.2496279
– ident: ref29
  doi: 10.2528/PIER12061410
– start-page: 409
  year: 2015
  ident: ref37
  article-title: Pathological brain detection by wavelet-energy and fuzzy support vector machine
  publication-title: Proc 5th Int Symp Comput Intell Design (ISCID)
– ident: ref67
  doi: 10.1016/j.future.2015.12.001
– ident: ref4
  doi: 10.1109/TAFFC.2014.2339834
– ident: ref9
  doi: 10.1017/S104161021600034X
– volume: 4
  year: 2015
  ident: ref38
  article-title: Pathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machine
  publication-title: SpringerPlus
– ident: ref40
  doi: 10.3390/e17106663
– volume: 11
  start-page: 4721
  year: 2011
  ident: ref64
  article-title: Crop classification by forward neural network with adaptive chaotic particle swarm optimization
  publication-title: SENSORS
  doi: 10.3390/s110504721
– ident: ref31
  doi: 10.2528/PIER13121310
– ident: ref49
  doi: 10.1097/WAD.0b013e318064f445
– ident: ref10
  doi: 10.1371/journal.pone.0160329
– volume: 116
  start-page: 65
  year: 2011
  ident: ref63
  article-title: Magnetic resonance brain image classification by an improved artificial bee colony algorithm
  publication-title: Prog Electromagn Res
  doi: 10.2528/PIER11031709
– ident: ref50
  doi: 10.1016/j.chb.2015.09.033
– volume: 9
  year: 2015
  ident: ref51
  article-title: Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning
  publication-title: Frontiers Comput Neurosci
– ident: ref47
  doi: 10.1007/978-3-319-28658-7_6
– ident: ref32
  doi: 10.1016/j.asoc.2016.06.003
– volume: 2015
  year: 2015
  ident: ref20
  article-title: Detection of dendritic spines using wavelet-based conditional symmetric analysis and regularized morphological shared-weight neural networks
  publication-title: Comput Math Methods Med
– ident: ref39
  doi: 10.1016/j.isatra.2016.03.004
– volume: 21
  start-page: 58
  year: 2015
  ident: ref52
  article-title: Detection of Alzheimer's disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2015.05.014
– ident: ref27
  doi: 10.1016/j.physa.2016.06.087
– ident: ref36
  doi: 10.1109/TCSII.2015.2503704
– ident: ref35
  doi: 10.3390/s120912489
– volume: 38
  start-page: 10049
  year: 2011
  ident: ref62
  article-title: A hybrid method for MRI brain image classification
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.02.012
– ident: ref7
  doi: 10.1016/j.psychres.2016.06.026
– year: 2016
  ident: ref59
  article-title: Artificial intelligence and its applications 2014
  publication-title: Mathe-matical Problems in Engineering
– ident: ref48
  doi: 10.1007/978-3-319-28658-7_1
– ident: ref41
  doi: 10.1007/s12293-016-0187-0
– ident: ref24
  doi: 10.1142/S0219691312500543
– ident: ref21
  doi: 10.1109/TVT.2015.2414936
– volume: 50
  start-page: 233
  year: 2016
  ident: ref54
  article-title: Detection of Alzheimer's disease by three-dimensional displacement field estimation in structural magnetic resonance imaging
  publication-title: Journal of Alzheimers Disease
  doi: 10.3233/JAD-150848
– ident: ref69
  doi: 10.1109/MNET.2014.6863132
– ident: ref30
  doi: 10.1007/s10707-016-0260-3
– ident: ref66
  doi: 10.1109/TSC.2016.2592520
– ident: ref5
  doi: 10.1002/cav.1714
– ident: ref60
  doi: 10.1155/2013/528069
– ident: ref44
  doi: 10.1109/TCSVT.2016.2615444
– volume: 61
  year: 2012
  ident: ref23
  article-title: Orthogonal wavelet transform weighted multi-modulus blind equalization algorithm based on quantum particle swarm optimization
  publication-title: Acta Phys Sin
– volume: 42
  start-page: 783
  year: 2015
  ident: ref26
  article-title: Tracking of moving object using energy of biorthogonal wavelet transform
  publication-title: Chiang Mai J Sci
– ident: ref12
  doi: 10.1109/CSNT.2015.124
– ident: ref18
  doi: 10.1109/TLA.2014.6868861
– ident: ref68
  doi: 10.1007/978-3-319-19312-0_11
– volume: 92
  start-page: 861
  year: 2016
  ident: ref33
  article-title: Comparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection: Decision tree, k-nearest neighbors, and support vector machine
  publication-title: Simulation
  doi: 10.1177/0037549716666962
– ident: ref2
  doi: 10.1016/j.neuroimage.2014.01.048
– volume: 6
  year: 2016
  ident: ref57
  article-title: Image processing methods to elucidate spatial characteristics of retinal microglia after optic nerve transection
  publication-title: Sci Rep
– ident: ref1
  doi: 10.1016/j.psyneuen.2016.07.002
– ident: ref25
  doi: 10.1016/j.partic.2012.02.005
– ident: ref70
  doi: 10.1038/srep24594
– ident: ref6
  doi: 10.1109/ICCIC.2015.7435630
– ident: ref28
  doi: 10.5935/0100-4042.20160045
– ident: ref46
  doi: 10.1016/j.cub.2013.11.064
– ident: ref16
  doi: 10.1016/j.ins.2003.03.002
– ident: ref19
  doi: 10.1109/VCIP.2014.7051590
SSID ssj0000816957
Score 2.4804587
Snippet Emotion recognition represents the position and motion of facial muscles. It contributes significantly in many fields. Current approaches have not obtained...
SourceID doaj
proquest
crossref
nii
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8375
SubjectTerms biorthogonal wavelet entropy
Electrical engineering. Electronics. Nuclear engineering
Emotion recognition
Emotions
Entropy
Face recognition
Facial emotion recognition
facial expression
Feature extraction
Fuzzy logic
Low-pass filters
Muscles
Object recognition
Statistical analysis
support vector machine
Support vector machines
TK1-9971
Wavelet transforms
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELa2PcEDvwaisCE_8Nh0aWo78eNWtZqQygNiY2-Rcz6jCpROI31YX_jXuXPcaAKEeIms1I2c3Pl8dz5_nxDvyQttaAJi1qhpTN2ozOXaZYBV1RSqBK35NPLqo7m8Uh9u9M2BGA9nYRAxFp_hhJtxL99vYMupsrOy1AWtaIfikAK3_qzWkE9hAgmrywQsNM3t2fl8Tu_A1VtmUhgyw0wZ-2DxiRj9iVSFVpZ2vf7DHsdFZvlUrPbD62tLvk22XTOB3W_Ijf87_mfiSfI25XmvHs_FAbYvxOMHGITH4ufScdZcLno-H_lpX1FE7Qta4rzkxpq3dzZf2W2XXxyTVXRywUXut_djudzudveS-UGpl7yO-wByFas0cSxd62XEwF0HcnflnL-MvCb3v2dzeimulovP88sssTJkoPNZlwXFxBCgABjp3oDVFVS-UA2FXtY2HP_kYeamHj2YECoLzquyQhPBASHMXomjdtPiayHBOmcD2RRwjfLKWQse0CCEnIHscCSKvbhqSJDlzJzxvY6hS27rXsY1y7hOMh6J8fCn2x6x49_dL1gPhq4Mtx1vkOTqNHtrrcFRYIalR6NyrFwZSPO9toE8UOPykThmaQ8PSYIeiVPSKho6X6dkGXU1o3hPW0V-a2np95O9vtXJdPyoC0VBHn0wY978_alvxSN-gT4PdCKOurstnpJn1DXv4pT4BaFeCVw
  priority: 102
  providerName: IEEE
Title Facial Emotion Recognition Based on Biorthogonal Wavelet Entropy, Fuzzy Support Vector Machine, and Stratified Cross Validation
URI https://ieeexplore.ieee.org/document/7752782
https://cir.nii.ac.jp/crid/1870583642594545792
https://www.proquest.com/docview/2455947866
https://doaj.org/article/55ca576e7de640e8a7fccad59f1546a0
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-wwFA7iShdyfVyc64MsXE617SRpstRhBhF0Ib52IT1JZECq6MxCN_51z0k7w8AF3bgppU3bJOf0PNLT72PsCKPQGl_AkNWiSEs3InO5dBkEretSVCAl_Y18eaXOb8XFg3xYovqimrAWHriduBMpwWFMHCoflMiDdlXEh3ppIjp_5VK2jj5vKZlKNlgXysiqgxkqcnNyOhziiKiWSx2XCo0yEcguuaKE2N9RrKCfaSaT_6xzcjnjP2yjixX5advHTbYSmi22voQguM0-x47WvPmoZePh1_N6INw_QwflOe1M6OPM8yMF3fzeEdXElI-oRP3lvc_Hs4-Pd07sntiK36VVfH6ZaixDn7vG84RgO4kYrPIhjYTfYfDecjHtsNvx6GZ4nnWcChnIfDDNoiBaBxAAhFOvwEgN2peixsTJmJqylzwOXOGDBxWjNjjXotJBJWg_iIO_bLV5bsIu42CcMxEtArhaeOGMAQ9BBYg5wdCFHivn02uhAxwn3osnmxKP3NhWJpZkYjuZ9Fh_cdFLi7fxffMzktuiKYFlpwOoQrZTIfuTCvXYNkl9cZOqkiUGTj12gFqAXadtgXZN6gFma9IIjDorg-f35_phuxf_zZYCUzScMKX-_UbX9tgaDbdd89lnq9PXWTjAKGhaHyaFP0w_LH4BmHYBtA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfGOMAO42Mgug_wgWPTpantxMetalVg3QFtYzfLebanCpROIz2sF_71veek0QQIcYms1I3ivGe_Dz__fox9RC-0xAnok1IMY-pGJDaVNgFfFGUmcpCSTiPPz9XsUny-ltdbrN-dhfHex-IzP6Bm3Mt3S1hRquw4z2WGFu0Je4p2X2bNaa0uo0IUElrmLbTQMNXHJ-MxjoLqt9QgU7gQE2nsI_MTUfpbWhW0LdVi8ceKHM3M9AWbb16wqS75PljV5QDWv2E3_u8IXrLd1t_kJ42CvGJbvnrNdh6hEO6xX1NLeXM-aRh9-NdNTRG2T9HIOU6NBW3wLG_IceffLNFV1HxCZe63930-Xa3X95wYQrEXv4o7AXwe6zR9n9vK8YiCuwjo8PIxfRl-hQFAw-f0hl1OJxfjWdLyMiQg01GdBEHUECAACOtegZYFFC4TJQZfWpcUAaVhZIfOO1AhFBqsE3nhVYQHhDB6y7arZeXfMQ7aWh1wVQFbCies1uDAKw8hJSg732PZRlwGWtBy4s74YWLwkmrTyNiQjE0r4x7rd3-6bTA7_t39lPSg60qA2_EGSs6089dICRZDM587r0TqC5sH1H0ndUAfVNm0x_ZI2t1DWkH32BFqFb46XYe4NspihBGf1AI1ONf4--FG30y7ePw0GSq3xg-m1P7fn_qBPZtdzM_M2afzLwfsOQ2myQodsu36buWP0E-qy_dxejwAmcUMpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facial+Emotion+Recognition+Based+on+Biorthogonal+Wavelet+Entropy%2C+Fuzzy+Support+Vector+Machine%2C+and+Stratified+Cross+Validation&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Yu-Dong&rft.au=Yang%2C+Zhang-Jing&rft.au=Lu%2C+Hui-Min&rft.au=Zhou%2C+Xing-Xing&rft.date=2016&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=4&rft.spage=8375&rft.epage=8385&rft_id=info:doi/10.1109%2FACCESS.2016.2628407&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2016_2628407
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon