Facial Emotion Recognition Based on Biorthogonal Wavelet Entropy, Fuzzy Support Vector Machine, and Stratified Cross Validation
Emotion recognition represents the position and motion of facial muscles. It contributes significantly in many fields. Current approaches have not obtained good results. This paper aimed to propose a new emotion recognition system based on facial expression images. We enrolled 20 subjects and let ea...
Saved in:
Published in | IEEE Access Vol. 4; pp. 8375 - 8385 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2016
Institute of Electrical and Electronics Engineers (IEEE) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Emotion recognition represents the position and motion of facial muscles. It contributes significantly in many fields. Current approaches have not obtained good results. This paper aimed to propose a new emotion recognition system based on facial expression images. We enrolled 20 subjects and let each subject pose seven different emotions: happy, sadness, surprise, anger, disgust, fear, and neutral. Afterward, we employed biorthogonal wavelet entropy to extract multiscale features, and used fuzzy multiclass support vector machine to be the classifier. The stratified cross validation was employed as a strict validation model. The statistical analysis showed our method achieved an overall accuracy of 96.77±0.10%. Besides, our method is superior to three state-of-the-art methods. In all, this proposed method is efficient. |
---|---|
AbstractList | Emotion recognition represents the position and motion of facial muscles. It contributes significantly in many fields. Current approaches have not obtained good results. This paper aimed to propose a new emotion recognition system based on facial expression images. We enrolled 20 subjects and let each subject pose seven different emotions: happy, sadness, surprise, anger, disgust, fear, and neutral. Afterward, we employed biorthogonal wavelet entropy to extract multiscale features, and used fuzzy multiclass support vector machine to be the classifier. The stratified cross validation was employed as a strict validation model. The statistical analysis showed our method achieved an overall accuracy of 96.77±0.10%. Besides, our method is superior to three state-of-the-art methods. In all, this proposed method is efficient. |
Author | Shui-Hua Wang Yu-Dong Zhang Phillips, Preetha Hui-Min Lu Qing-Ming Liu Xing-Xing Zhou Zhang-Jing Yang |
Author_xml | – sequence: 1 surname: Yu-Dong Zhang fullname: Yu-Dong Zhang email: zhangyudong@njnu.edu.cn organization: Sch. of Technol., Nanjing Audit Univ., Nanjing, China – sequence: 2 surname: Zhang-Jing Yang fullname: Zhang-Jing Yang email: yzzjjj@126.com organization: Sch. of Technol., Nanjing Audit Univ., Nanjing, China – sequence: 3 surname: Hui-Min Lu fullname: Hui-Min Lu organization: Dept. of Mech. & Control Eng., Kyushu Inst. of Technol., Fukuoka, Japan – sequence: 4 surname: Xing-Xing Zhou fullname: Xing-Xing Zhou organization: Sch. of Comput. Sci. & Technol., Nanjing Normal Univ., Nanjing, China – sequence: 5 givenname: Preetha surname: Phillips fullname: Phillips, Preetha organization: Sch. of Natural Sci. & Math., Shepherd Univ., Shepherdstown, WV, USA – sequence: 6 surname: Qing-Ming Liu fullname: Qing-Ming Liu organization: Sch. of Psychol., Nanjing Normal Univ., Nanjing, China – sequence: 7 surname: Shui-Hua Wang fullname: Shui-Hua Wang email: wangshuihua@njnu.edu.cn organization: Sch. of Comput. Sci. & Technol., Nanjing Normal Univ., Nanjing, China |
BackLink | https://cir.nii.ac.jp/crid/1870583642594545792$$DView record in CiNii |
BookMark | eNqFUctuEzEUtVCRKKVf0I0lWDbB78eyjBKoVIREoCwt47FTR9Px4HEqpRt-HU-mqhAbvLi-ujrn3Md5DU761HsALjBaYoz0-6umWW02S4KwWBJBFEPyBTglWOgF5VSc_JW_AufjuEP1qVri8hT8XlsXbQdX96nE1MOv3qVtH4_5Bzv6Fk5JTLncpW3qK_KHffCdL3DVl5yGwyVc7x8fD3CzH4aKgrfelZThZ-vuYu8voe1buCnZlhhiVWtyGkd4a7vY2qnJG_Ay2G7050__Gfi-Xn1rPi1uvny8bq5uFo4jWhaBIYq5Y85RhLhwmiunWsJ-Kom1rpFTFKjFrW-dCEFpZ1smlReISsxcoGfgetZtk92ZIcd7mw8m2WiOhZS3xuYSXecN585yKbxsvWDIKyuDq3JcB8yZsKhqvZ21hpx-7f1YzC7tc73NaAjjXNfGQlQUnVFuWjn78NwVIzMZZ2bjzGSceTKusvQ_LBfL8VL1hrH7D_fdzO1jrLQpYiURV1QwUsfijEtNKuxihkXv_fNQUnIiFaF_APsYs1M |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1061_JTEPBS_TEENG_7802 crossref_primary_10_3390_app142310788 crossref_primary_10_1007_s11554_022_01224_0 crossref_primary_10_1016_j_neucom_2017_04_054 crossref_primary_10_1371_journal_pone_0193721 crossref_primary_10_1007_s11042_022_13638_w crossref_primary_10_1016_j_ijcce_2021_05_001 crossref_primary_10_1007_s00371_021_02260_w crossref_primary_10_1093_comjnl_bxab088 crossref_primary_10_1007_s40815_019_00703_0 crossref_primary_10_1016_j_eswa_2023_120348 crossref_primary_10_1109_ACCESS_2017_2694446 crossref_primary_10_1109_ACCESS_2019_2913428 crossref_primary_10_3390_s19051040 crossref_primary_10_1007_s11042_018_6954_9 crossref_primary_10_1007_s11042_017_4830_7 crossref_primary_10_1016_j_future_2017_10_033 crossref_primary_10_3233_JAD_170069 crossref_primary_10_1016_j_compbiomed_2019_103348 crossref_primary_10_1016_j_chb_2018_12_029 crossref_primary_10_1109_TCSVT_2019_2904463 crossref_primary_10_1109_ACCESS_2018_2844540 crossref_primary_10_1109_ACCESS_2024_3436556 crossref_primary_10_1007_s11517_021_02358_2 crossref_primary_10_1016_j_susoc_2021_11_001 crossref_primary_10_1016_j_eswa_2020_114516 crossref_primary_10_1016_j_measurement_2019_106886 crossref_primary_10_1016_j_cosrev_2023_100545 crossref_primary_10_1016_j_ijcce_2021_09_002 crossref_primary_10_15302_J_QB_021_0267 crossref_primary_10_1080_10589759_2022_2159961 crossref_primary_10_1109_ACCESS_2018_2808218 crossref_primary_10_1109_ACCESS_2017_2692248 crossref_primary_10_1088_1742_6596_1230_1_012008 crossref_primary_10_1109_ACCESS_2019_2909297 crossref_primary_10_3390_app13095436 crossref_primary_10_1007_s10916_018_0932_7 crossref_primary_10_1109_LSENS_2021_3070419 crossref_primary_10_1155_2018_9801308 crossref_primary_10_3390_s18072074 crossref_primary_10_1109_ACCESS_2024_3375361 crossref_primary_10_1007_s00521_019_04537_7 crossref_primary_10_1016_j_bspc_2023_104928 crossref_primary_10_1016_j_ijcce_2021_02_002 crossref_primary_10_1109_ACCESS_2021_3052246 crossref_primary_10_1007_s00530_021_00774_w crossref_primary_10_1109_TCSS_2024_3392569 crossref_primary_10_3390_informatics7010006 crossref_primary_10_1002_cpe_5610 crossref_primary_10_1142_S0218488525500072 crossref_primary_10_1007_s11042_024_19467_3 crossref_primary_10_1016_j_neucom_2017_08_015 crossref_primary_10_1109_ACCESS_2019_2931136 crossref_primary_10_1002_mp_14942 crossref_primary_10_1145_3538385 crossref_primary_10_3233_IDT_218149 crossref_primary_10_1016_j_ins_2018_09_006 crossref_primary_10_1109_ACCESS_2022_3203053 crossref_primary_10_3390_math9222976 crossref_primary_10_1371_journal_pone_0196902 crossref_primary_10_1145_3309545 crossref_primary_10_3390_app9214678 crossref_primary_10_1049_ipr2_12118 crossref_primary_10_3390_a17070285 crossref_primary_10_3390_mi13122065 crossref_primary_10_3390_app13063413 crossref_primary_10_1080_03772063_2019_1583610 crossref_primary_10_1088_2057_1976_ac107c crossref_primary_10_1038_s41598_023_29453_8 crossref_primary_10_1007_s00500_020_05550_y crossref_primary_10_3390_sym10110627 crossref_primary_10_3390_bioengineering9110688 crossref_primary_10_1007_s11042_017_5485_0 crossref_primary_10_1007_s11042_018_6533_0 crossref_primary_10_1109_TIM_2021_3060564 crossref_primary_10_1145_3494566 crossref_primary_10_3390_technologies6010017 crossref_primary_10_1007_s00500_019_04380_x crossref_primary_10_1007_s10586_023_04133_4 crossref_primary_10_1109_ACCESS_2019_2893497 crossref_primary_10_3390_s20123491 crossref_primary_10_3390_cancers11060756 crossref_primary_10_1088_1742_6596_2129_1_012069 crossref_primary_10_1049_bme2_12012 crossref_primary_10_1109_ACCESS_2024_3424933 crossref_primary_10_1177_09544062211057499 crossref_primary_10_1007_s11042_017_4703_0 crossref_primary_10_1016_j_neucom_2018_09_003 crossref_primary_10_1016_j_inffus_2023_102019 crossref_primary_10_1016_j_ins_2021_10_005 crossref_primary_10_1007_s11042_017_4554_8 crossref_primary_10_1016_j_imavis_2021_104318 crossref_primary_10_1007_s00170_018_2089_4 crossref_primary_10_1049_ipr2_12035 crossref_primary_10_32604_cmes_2023_030677 crossref_primary_10_1155_2018_3198184 crossref_primary_10_1016_j_knosys_2021_107867 crossref_primary_10_1111_exsy_13517 crossref_primary_10_1631_FITEE_1800101 crossref_primary_10_3390_app8122574 crossref_primary_10_1088_1742_6596_1998_1_012001 crossref_primary_10_1007_s41870_022_00915_y crossref_primary_10_1016_j_jafr_2023_100756 crossref_primary_10_3390_s20082384 crossref_primary_10_1016_j_neucom_2020_02_085 crossref_primary_10_4108_eetiot_v7i28_685 crossref_primary_10_3390_s19245350 crossref_primary_10_1109_TIM_2023_3243661 crossref_primary_10_1016_j_neunet_2023_11_033 crossref_primary_10_1007_s13042_019_01028_y crossref_primary_10_1016_j_ijmedinf_2024_105469 crossref_primary_10_1142_S0218001421520169 crossref_primary_10_1155_2021_7819011 crossref_primary_10_1016_j_inffus_2020_01_011 crossref_primary_10_1007_s11042_023_14682_w crossref_primary_10_32604_csse_2023_025972 crossref_primary_10_1109_ACCESS_2017_2698419 crossref_primary_10_3389_fnbot_2019_00037 crossref_primary_10_1007_s11042_022_13653_x crossref_primary_10_1080_13682199_2020_1738741 crossref_primary_10_3390_a12010011 crossref_primary_10_1007_s10278_020_00333_1 crossref_primary_10_1007_s11042_017_4383_9 |
Cites_doi | 10.1109/TLA.2016.7483498 10.3233/BME-151426 10.1007/s10586-016-0535-3 10.1109/MSP.2014.2368586 10.1016/j.neucom.2016.03.033 10.1177/0031512516660781 10.7717/peerj.1251 10.1001/jamapsychiatry.2014.179 10.3390/s90907516 10.3233/JAD-150988 10.1080/17470218.2015.1086393 10.1166/jmihi.2015.1527 10.1007/s00422-016-0684-8 10.1109/ICCIC.2012.6510279 10.1007/978-3-540-73281-5_44 10.1109/TIP.2015.2496279 10.2528/PIER12061410 10.1016/j.future.2015.12.001 10.1109/TAFFC.2014.2339834 10.1017/S104161021600034X 10.3390/e17106663 10.3390/s110504721 10.2528/PIER13121310 10.1097/WAD.0b013e318064f445 10.1371/journal.pone.0160329 10.2528/PIER11031709 10.1016/j.chb.2015.09.033 10.1007/978-3-319-28658-7_6 10.1016/j.asoc.2016.06.003 10.1016/j.isatra.2016.03.004 10.1016/j.bspc.2015.05.014 10.1016/j.physa.2016.06.087 10.1109/TCSII.2015.2503704 10.3390/s120912489 10.1016/j.eswa.2011.02.012 10.1016/j.psychres.2016.06.026 10.1007/978-3-319-28658-7_1 10.1007/s12293-016-0187-0 10.1142/S0219691312500543 10.1109/TVT.2015.2414936 10.3233/JAD-150848 10.1109/MNET.2014.6863132 10.1007/s10707-016-0260-3 10.1109/TSC.2016.2592520 10.1002/cav.1714 10.1155/2013/528069 10.1109/TCSVT.2016.2615444 10.1109/CSNT.2015.124 10.1109/TLA.2014.6868861 10.1007/978-3-319-19312-0_11 10.1177/0037549716666962 10.1016/j.neuroimage.2014.01.048 10.1016/j.psyneuen.2016.07.002 10.1016/j.partic.2012.02.005 10.1038/srep24594 10.1109/ICCIC.2015.7435630 10.5935/0100-4042.20160045 10.1016/j.cub.2013.11.064 10.1016/j.ins.2003.03.002 10.1109/VCIP.2014.7051590 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E ESBDL RIA RIE RYH AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2016.2628407 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CiNii Complete CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 8385 |
ExternalDocumentID | oai_doaj_org_article_55ca576e7de640e8a7fccad59f1546a0 10_1109_ACCESS_2016_2628407 7752782 |
Genre | orig-research |
GrantInformation_xml | – fundername: Open Project Program of the State Key Laboratory of CAD&CG, Zhejiang University grantid: A1616 funderid: 10.13039/501100004835 – fundername: Open Research Fund of Key Laboratory of Network Crime Investigation of Hunan Provincial Colleges grantid: 2015HNWLFZ058 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20150983; BK20161580 funderid: 10.13039/501100004608 – fundername: Program of Natural Science Research of Jiangsu Higher Education Institutions grantid: 16KJB520025; 16KJB520020; 15KJB470010; 15KJB520018; 2KJA63001 – fundername: NSFC grantid: 61602250; 61503195; 61462064; 61203243; 61402231; 61603192; 61272077 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS RIG RYH AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c503t-f40315c4cc30056c958c8d24b87199b87530f3a1dedc6ff89cad478e603714cf3 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:30:32 EDT 2025 Mon Jun 30 02:26:27 EDT 2025 Thu Apr 24 23:03:39 EDT 2025 Tue Jul 01 04:10:45 EDT 2025 Thu Jun 26 21:31:47 EDT 2025 Tue Aug 26 16:43:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c503t-f40315c4cc30056c958c8d24b87199b87530f3a1dedc6ff89cad478e603714cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2860-1329 0000-0003-2238-6808 0000-0002-4870-1493 |
OpenAccessLink | https://doaj.org/article/55ca576e7de640e8a7fccad59f1546a0 |
PQID | 2455947866 |
PQPubID | 4845423 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_55ca576e7de640e8a7fccad59f1546a0 crossref_primary_10_1109_ACCESS_2016_2628407 proquest_journals_2455947866 ieee_primary_7752782 nii_cinii_1870583642594545792 crossref_citationtrail_10_1109_ACCESS_2016_2628407 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160000 2016-01-01 2016-00-00 20160101 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 20160000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE Access |
PublicationTitleAbbrev | Access |
PublicationYear | 2016 |
Publisher | IEEE Institute of Electrical and Electronics Engineers (IEEE) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers (IEEE) – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref56 ref12 ref15 ref14 ref53 ref11 ref10 ref17 ref16 ref19 ref18 ref50 wu (ref63) 2011; 116 ref46 ref48 ref47 chen (ref20) 2015; 2015 ref42 ref41 ref44 ref43 yuan (ref51) 2015; 9 ref49 ref8 ref7 ref9 ref4 balochian (ref58) 2014 ref3 ref6 ref5 ref40 prakash (ref26) 2015; 42 ref35 ref34 ref36 ref31 ref30 liu (ref54) 2016; 50 ref32 ref2 ref1 ref39 peng (ref57) 2016; 6 zhou (ref33) 2016; 92 agarwal (ref61) 2014 phillips (ref52) 2015; 21 ref70 wu (ref64) 2011; 11 liu (ref38) 2015; 4 wu (ref62) 2011; 38 neggaz (ref65) 2009; 9 ref68 ref24 ref67 ref69 ref25 ref66 ref22 agarwal (ref59) 2016 ref21 ref28 ref27 ref29 phillips (ref55) 2016; 50 chen (ref37) 2015 ref60 sun (ref45) 2015; 26 guo (ref23) 2012; 61 |
References_xml | – ident: ref22 doi: 10.1109/TLA.2016.7483498 – year: 2014 ident: ref58 article-title: Artificial intelligence and its applications publication-title: Mathematical Problems in Engineering – volume: 26 start-page: 1283s year: 2015 ident: ref45 article-title: Pathological brain detection based on wavelet entropy and Hu moment invariants publication-title: Bio-Med Mater Eng doi: 10.3233/BME-151426 – year: 2014 ident: ref61 article-title: Swarm intelligence and its applications 2014 publication-title: Sci World J – ident: ref15 doi: 10.1007/s10586-016-0535-3 – ident: ref17 doi: 10.1109/MSP.2014.2368586 – ident: ref42 doi: 10.1016/j.neucom.2016.03.033 – ident: ref8 doi: 10.1177/0031512516660781 – ident: ref53 doi: 10.7717/peerj.1251 – ident: ref56 doi: 10.1001/jamapsychiatry.2014.179 – volume: 9 start-page: 7516 year: 2009 ident: ref65 article-title: Remote-sensing image classification based on an improved probabilistic neural network publication-title: SENSORS doi: 10.3390/s90907516 – volume: 50 start-page: 1163 year: 2016 ident: ref55 article-title: Three-dimensional eigenbrain for the detection of subjects and brain regions related with Alzheimer's disease publication-title: Alzheimer's Disease doi: 10.3233/JAD-150988 – ident: ref14 doi: 10.1080/17470218.2015.1086393 – ident: ref13 doi: 10.1166/jmihi.2015.1527 – ident: ref34 doi: 10.1007/s00422-016-0684-8 – ident: ref11 doi: 10.1109/ICCIC.2012.6510279 – ident: ref3 doi: 10.1007/978-3-540-73281-5_44 – ident: ref43 doi: 10.1109/TIP.2015.2496279 – ident: ref29 doi: 10.2528/PIER12061410 – start-page: 409 year: 2015 ident: ref37 article-title: Pathological brain detection by wavelet-energy and fuzzy support vector machine publication-title: Proc 5th Int Symp Comput Intell Design (ISCID) – ident: ref67 doi: 10.1016/j.future.2015.12.001 – ident: ref4 doi: 10.1109/TAFFC.2014.2339834 – ident: ref9 doi: 10.1017/S104161021600034X – volume: 4 year: 2015 ident: ref38 article-title: Pathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machine publication-title: SpringerPlus – ident: ref40 doi: 10.3390/e17106663 – volume: 11 start-page: 4721 year: 2011 ident: ref64 article-title: Crop classification by forward neural network with adaptive chaotic particle swarm optimization publication-title: SENSORS doi: 10.3390/s110504721 – ident: ref31 doi: 10.2528/PIER13121310 – ident: ref49 doi: 10.1097/WAD.0b013e318064f445 – ident: ref10 doi: 10.1371/journal.pone.0160329 – volume: 116 start-page: 65 year: 2011 ident: ref63 article-title: Magnetic resonance brain image classification by an improved artificial bee colony algorithm publication-title: Prog Electromagn Res doi: 10.2528/PIER11031709 – ident: ref50 doi: 10.1016/j.chb.2015.09.033 – volume: 9 year: 2015 ident: ref51 article-title: Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning publication-title: Frontiers Comput Neurosci – ident: ref47 doi: 10.1007/978-3-319-28658-7_6 – ident: ref32 doi: 10.1016/j.asoc.2016.06.003 – volume: 2015 year: 2015 ident: ref20 article-title: Detection of dendritic spines using wavelet-based conditional symmetric analysis and regularized morphological shared-weight neural networks publication-title: Comput Math Methods Med – ident: ref39 doi: 10.1016/j.isatra.2016.03.004 – volume: 21 start-page: 58 year: 2015 ident: ref52 article-title: Detection of Alzheimer's disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2015.05.014 – ident: ref27 doi: 10.1016/j.physa.2016.06.087 – ident: ref36 doi: 10.1109/TCSII.2015.2503704 – ident: ref35 doi: 10.3390/s120912489 – volume: 38 start-page: 10049 year: 2011 ident: ref62 article-title: A hybrid method for MRI brain image classification publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.02.012 – ident: ref7 doi: 10.1016/j.psychres.2016.06.026 – year: 2016 ident: ref59 article-title: Artificial intelligence and its applications 2014 publication-title: Mathe-matical Problems in Engineering – ident: ref48 doi: 10.1007/978-3-319-28658-7_1 – ident: ref41 doi: 10.1007/s12293-016-0187-0 – ident: ref24 doi: 10.1142/S0219691312500543 – ident: ref21 doi: 10.1109/TVT.2015.2414936 – volume: 50 start-page: 233 year: 2016 ident: ref54 article-title: Detection of Alzheimer's disease by three-dimensional displacement field estimation in structural magnetic resonance imaging publication-title: Journal of Alzheimers Disease doi: 10.3233/JAD-150848 – ident: ref69 doi: 10.1109/MNET.2014.6863132 – ident: ref30 doi: 10.1007/s10707-016-0260-3 – ident: ref66 doi: 10.1109/TSC.2016.2592520 – ident: ref5 doi: 10.1002/cav.1714 – ident: ref60 doi: 10.1155/2013/528069 – ident: ref44 doi: 10.1109/TCSVT.2016.2615444 – volume: 61 year: 2012 ident: ref23 article-title: Orthogonal wavelet transform weighted multi-modulus blind equalization algorithm based on quantum particle swarm optimization publication-title: Acta Phys Sin – volume: 42 start-page: 783 year: 2015 ident: ref26 article-title: Tracking of moving object using energy of biorthogonal wavelet transform publication-title: Chiang Mai J Sci – ident: ref12 doi: 10.1109/CSNT.2015.124 – ident: ref18 doi: 10.1109/TLA.2014.6868861 – ident: ref68 doi: 10.1007/978-3-319-19312-0_11 – volume: 92 start-page: 861 year: 2016 ident: ref33 article-title: Comparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection: Decision tree, k-nearest neighbors, and support vector machine publication-title: Simulation doi: 10.1177/0037549716666962 – ident: ref2 doi: 10.1016/j.neuroimage.2014.01.048 – volume: 6 year: 2016 ident: ref57 article-title: Image processing methods to elucidate spatial characteristics of retinal microglia after optic nerve transection publication-title: Sci Rep – ident: ref1 doi: 10.1016/j.psyneuen.2016.07.002 – ident: ref25 doi: 10.1016/j.partic.2012.02.005 – ident: ref70 doi: 10.1038/srep24594 – ident: ref6 doi: 10.1109/ICCIC.2015.7435630 – ident: ref28 doi: 10.5935/0100-4042.20160045 – ident: ref46 doi: 10.1016/j.cub.2013.11.064 – ident: ref16 doi: 10.1016/j.ins.2003.03.002 – ident: ref19 doi: 10.1109/VCIP.2014.7051590 |
SSID | ssj0000816957 |
Score | 2.4804587 |
Snippet | Emotion recognition represents the position and motion of facial muscles. It contributes significantly in many fields. Current approaches have not obtained... |
SourceID | doaj proquest crossref nii ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8375 |
SubjectTerms | biorthogonal wavelet entropy Electrical engineering. Electronics. Nuclear engineering Emotion recognition Emotions Entropy Face recognition Facial emotion recognition facial expression Feature extraction Fuzzy logic Low-pass filters Muscles Object recognition Statistical analysis support vector machine Support vector machines TK1-9971 Wavelet transforms |
SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELa2PcEDvwaisCE_8Nh0aWo78eNWtZqQygNiY2-Rcz6jCpROI31YX_jXuXPcaAKEeIms1I2c3Pl8dz5_nxDvyQttaAJi1qhpTN2ozOXaZYBV1RSqBK35NPLqo7m8Uh9u9M2BGA9nYRAxFp_hhJtxL99vYMupsrOy1AWtaIfikAK3_qzWkE9hAgmrywQsNM3t2fl8Tu_A1VtmUhgyw0wZ-2DxiRj9iVSFVpZ2vf7DHsdFZvlUrPbD62tLvk22XTOB3W_Ijf87_mfiSfI25XmvHs_FAbYvxOMHGITH4ufScdZcLno-H_lpX1FE7Qta4rzkxpq3dzZf2W2XXxyTVXRywUXut_djudzudveS-UGpl7yO-wByFas0cSxd62XEwF0HcnflnL-MvCb3v2dzeimulovP88sssTJkoPNZlwXFxBCgABjp3oDVFVS-UA2FXtY2HP_kYeamHj2YECoLzquyQhPBASHMXomjdtPiayHBOmcD2RRwjfLKWQse0CCEnIHscCSKvbhqSJDlzJzxvY6hS27rXsY1y7hOMh6J8fCn2x6x49_dL1gPhq4Mtx1vkOTqNHtrrcFRYIalR6NyrFwZSPO9toE8UOPykThmaQ8PSYIeiVPSKho6X6dkGXU1o3hPW0V-a2np95O9vtXJdPyoC0VBHn0wY978_alvxSN-gT4PdCKOurstnpJn1DXv4pT4BaFeCVw priority: 102 providerName: IEEE |
Title | Facial Emotion Recognition Based on Biorthogonal Wavelet Entropy, Fuzzy Support Vector Machine, and Stratified Cross Validation |
URI | https://ieeexplore.ieee.org/document/7752782 https://cir.nii.ac.jp/crid/1870583642594545792 https://www.proquest.com/docview/2455947866 https://doaj.org/article/55ca576e7de640e8a7fccad59f1546a0 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-wwFA7iShdyfVyc64MsXE617SRpstRhBhF0Ib52IT1JZECq6MxCN_51z0k7w8AF3bgppU3bJOf0PNLT72PsCKPQGl_AkNWiSEs3InO5dBkEretSVCAl_Y18eaXOb8XFg3xYovqimrAWHriduBMpwWFMHCoflMiDdlXEh3ppIjp_5VK2jj5vKZlKNlgXysiqgxkqcnNyOhziiKiWSx2XCo0yEcguuaKE2N9RrKCfaSaT_6xzcjnjP2yjixX5advHTbYSmi22voQguM0-x47WvPmoZePh1_N6INw_QwflOe1M6OPM8yMF3fzeEdXElI-oRP3lvc_Hs4-Pd07sntiK36VVfH6ZaixDn7vG84RgO4kYrPIhjYTfYfDecjHtsNvx6GZ4nnWcChnIfDDNoiBaBxAAhFOvwEgN2peixsTJmJqylzwOXOGDBxWjNjjXotJBJWg_iIO_bLV5bsIu42CcMxEtArhaeOGMAQ9BBYg5wdCFHivn02uhAxwn3osnmxKP3NhWJpZkYjuZ9Fh_cdFLi7fxffMzktuiKYFlpwOoQrZTIfuTCvXYNkl9cZOqkiUGTj12gFqAXadtgXZN6gFma9IIjDorg-f35_phuxf_zZYCUzScMKX-_UbX9tgaDbdd89lnq9PXWTjAKGhaHyaFP0w_LH4BmHYBtA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfGOMAO42Mgug_wgWPTpantxMetalVg3QFtYzfLebanCpROIz2sF_71veek0QQIcYms1I3ivGe_Dz__fox9RC-0xAnok1IMY-pGJDaVNgFfFGUmcpCSTiPPz9XsUny-ltdbrN-dhfHex-IzP6Bm3Mt3S1hRquw4z2WGFu0Je4p2X2bNaa0uo0IUElrmLbTQMNXHJ-MxjoLqt9QgU7gQE2nsI_MTUfpbWhW0LdVi8ceKHM3M9AWbb16wqS75PljV5QDWv2E3_u8IXrLd1t_kJ42CvGJbvnrNdh6hEO6xX1NLeXM-aRh9-NdNTRG2T9HIOU6NBW3wLG_IceffLNFV1HxCZe63930-Xa3X95wYQrEXv4o7AXwe6zR9n9vK8YiCuwjo8PIxfRl-hQFAw-f0hl1OJxfjWdLyMiQg01GdBEHUECAACOtegZYFFC4TJQZfWpcUAaVhZIfOO1AhFBqsE3nhVYQHhDB6y7arZeXfMQ7aWh1wVQFbCies1uDAKw8hJSg732PZRlwGWtBy4s74YWLwkmrTyNiQjE0r4x7rd3-6bTA7_t39lPSg60qA2_EGSs6089dICRZDM587r0TqC5sH1H0ndUAfVNm0x_ZI2t1DWkH32BFqFb46XYe4NspihBGf1AI1ONf4--FG30y7ePw0GSq3xg-m1P7fn_qBPZtdzM_M2afzLwfsOQ2myQodsu36buWP0E-qy_dxejwAmcUMpg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facial+Emotion+Recognition+Based+on+Biorthogonal+Wavelet+Entropy%2C+Fuzzy+Support+Vector+Machine%2C+and+Stratified+Cross+Validation&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Yu-Dong&rft.au=Yang%2C+Zhang-Jing&rft.au=Lu%2C+Hui-Min&rft.au=Zhou%2C+Xing-Xing&rft.date=2016&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=4&rft.spage=8375&rft.epage=8385&rft_id=info:doi/10.1109%2FACCESS.2016.2628407&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2016_2628407 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |