Mapping protein conformational heterogeneity under pressure with site-directed spin labeling and double electron–electron resonance

The dominance of a single native state for most proteins under ambient conditions belies the functional importance of higher-energy conformational states (excited states), which often are too sparsely populated to allow spectroscopic investigation. Application of high hydrostatic pressure increases...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 13; pp. E1201 - E1210
Main Authors Lerch, Michael T., Yang, Zhongyu, Brooks, Evan K., Hubbell, Wayne L.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 01.04.2014
National Acad Sciences
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The dominance of a single native state for most proteins under ambient conditions belies the functional importance of higher-energy conformational states (excited states), which often are too sparsely populated to allow spectroscopic investigation. Application of high hydrostatic pressure increases the population of excited states for study, but structural characterization is not trivial because of the multiplicity of states in the ensemble and rapid (microsecond to millisecond) exchange between them. Site-directed spin labeling in combination with double electron–electron resonance (DEER) provides long-range (20–80 Å) distance distributions with angstrom-level resolution and thus is ideally suited to resolve conformational heterogeneity in an excited state populated under high pressure. DEER currently is performed at cryogenic temperatures. Therefore, a method was developed for rapidly freezing spin-labeled proteins under pressure to kinetically trap the high-pressure conformational ensemble for subsequent DEER data collection at atmospheric pressure. The methodology was evaluated using seven doubly-labeled mutants of myoglobin designed to monitor selected interhelical distances. For holomyoglobin, the distance distributions are narrow and relatively insensitive to pressure. In apomyoglobin, on the other hand, the distributions reveal a striking conformational heterogeneity involving specific helices in the pressure range of 0–3 kbar, where a molten globule state is formed. The data directly reveal the amplitude of helical fluctuations, information unique to the DEER method that complements previous rate determinations. Comparison of the distance distributions for pressure- and pH-populated molten globules shows them to be remarkably similar despite a lower helical content in the latter.
AbstractList The dominance of a single native state for most proteins under ambient conditions belies the functional importance of higher-energy conformational states (excited states), which often are too sparsely populated to allow spectroscopic investigation. Application of high hydrostatic pressure increases the population of excited states for study, but structural characterization is not trivial because of the multiplicity of states in the ensemble and rapid (microsecond to millisecond) exchange between them. Site-directed spin labeling in combination with double electron–electron resonance (DEER) provides long-range (20–80 Å) distance distributions with angstrom-level resolution and thus is ideally suited to resolve conformational heterogeneity in an excited state populated under high pressure. DEER currently is performed at cryogenic temperatures. Therefore, a method was developed for rapidly freezing spin-labeled proteins under pressure to kinetically trap the high-pressure conformational ensemble for subsequent DEER data collection at atmospheric pressure. The methodology was evaluated using seven doubly-labeled mutants of myoglobin designed to monitor selected interhelical distances. For holomyoglobin, the distance distributions are narrow and relatively insensitive to pressure. In apomyoglobin, on the other hand, the distributions reveal a striking conformational heterogeneity involving specific helices in the pressure range of 0–3 kbar, where a molten globule state is formed. The data directly reveal the amplitude of helical fluctuations, information unique to the DEER method that complements previous rate determinations. Comparison of the distance distributions for pressure- and pH-populated molten globules shows them to be remarkably similar despite a lower helical content in the latter.
The dominance of a single native state for most proteins under ambient conditions belies the functional importance of higher-energy conformational states (excited states), which often are too sparsely populated to allow spectroscopic investigation. Application of high hydrostatic pressure increases the population of excited states for study, but structural characterization is not trivial because of the multiplicity of states in the ensemble and rapid (microsecond to millisecond) exchange between them. Site-directed spin labeling in combination with double electron-electron resonance (DEER) provides long-range (20-80 Å) distance distributions with angstrom-level resolution and thus is ideally suited to resolve conformational heterogeneity in an excited state populated under high pressure. DEER currently is performed at cryogenic temperatures. Therefore, a method was developed for rapidly freezing spin-labeled proteins under pressure to kinetically trap the high-pressure conformational ensemble for subsequent DEER data collection at atmospheric pressure. The methodology was evaluated using seven doubly-labeled mutants of myoglobin designed to monitor selected interhelical distances. For holomyoglobin, the distance distributions are narrow and relatively insensitive to pressure. In apomyoglobin, on the other hand, the distributions reveal a striking conformational heterogeneity involving specific helices in the pressure range of 0-3 kbar, where a molten globule state is formed. The data directly reveal the amplitude of helical fluctuations, information unique to the DEER method that complements previous rate determinations. Comparison of the distance distributions for pressure- and pH-populated molten globules shows them to be remarkably similar despite a lower helical content in the latter.The dominance of a single native state for most proteins under ambient conditions belies the functional importance of higher-energy conformational states (excited states), which often are too sparsely populated to allow spectroscopic investigation. Application of high hydrostatic pressure increases the population of excited states for study, but structural characterization is not trivial because of the multiplicity of states in the ensemble and rapid (microsecond to millisecond) exchange between them. Site-directed spin labeling in combination with double electron-electron resonance (DEER) provides long-range (20-80 Å) distance distributions with angstrom-level resolution and thus is ideally suited to resolve conformational heterogeneity in an excited state populated under high pressure. DEER currently is performed at cryogenic temperatures. Therefore, a method was developed for rapidly freezing spin-labeled proteins under pressure to kinetically trap the high-pressure conformational ensemble for subsequent DEER data collection at atmospheric pressure. The methodology was evaluated using seven doubly-labeled mutants of myoglobin designed to monitor selected interhelical distances. For holomyoglobin, the distance distributions are narrow and relatively insensitive to pressure. In apomyoglobin, on the other hand, the distributions reveal a striking conformational heterogeneity involving specific helices in the pressure range of 0-3 kbar, where a molten globule state is formed. The data directly reveal the amplitude of helical fluctuations, information unique to the DEER method that complements previous rate determinations. Comparison of the distance distributions for pressure- and pH-populated molten globules shows them to be remarkably similar despite a lower helical content in the latter.
Excited states of proteins play functional roles, but their low population and conformational flexibility pose a challenge for characterization by most spectroscopic techniques. Here, this challenge is met by combining high hydrostatic pressure, which reversibly populates excited states, and site-directed spin labeling with double electron–electron resonance (DEER) spectroscopy, which resolves distinct conformational substates of proteins by measuring distances between spin-labeled pairs. We present a method for trapping high-pressure equilibria of proteins by rapid freezing under pressure, followed by depressurization and acquisition of DEER data at atmospheric pressure. The methodology is applied to myoglobin, revealing unique information on the length scale of helical fluctuations in the pressure-populated as compared with the pH-populated molten globule states of the apo-protein. The dominance of a single native state for most proteins under ambient conditions belies the functional importance of higher-energy conformational states (excited states), which often are too sparsely populated to allow spectroscopic investigation. Application of high hydrostatic pressure increases the population of excited states for study, but structural characterization is not trivial because of the multiplicity of states in the ensemble and rapid (microsecond to millisecond) exchange between them. Site-directed spin labeling in combination with double electron–electron resonance (DEER) provides long-range (20–80 Å) distance distributions with angstrom-level resolution and thus is ideally suited to resolve conformational heterogeneity in an excited state populated under high pressure. DEER currently is performed at cryogenic temperatures. Therefore, a method was developed for rapidly freezing spin-labeled proteins under pressure to kinetically trap the high-pressure conformational ensemble for subsequent DEER data collection at atmospheric pressure. The methodology was evaluated using seven doubly-labeled mutants of myoglobin designed to monitor selected interhelical distances. For holomyoglobin, the distance distributions are narrow and relatively insensitive to pressure. In apomyoglobin, on the other hand, the distributions reveal a striking conformational heterogeneity involving specific helices in the pressure range of 0–3 kbar, where a molten globule state is formed. The data directly reveal the amplitude of helical fluctuations, information unique to the DEER method that complements previous rate determinations. Comparison of the distance distributions for pressure- and pH-populated molten globules shows them to be remarkably similar despite a lower helical content in the latter.
The dominance of a single native state for most proteins under ambient conditions belies the functional importance of higher-energy conformational states (excited states), which often are too sparsely populated to allow spectroscopic investigation. Application of high hydrostatic pressure increases the population of excited states for study, but structural characterization is not trivial because of the multiplicity of states in the ensemble and rapid (microsecond to millisecond) exchange between them. Site-directed spin labeling in combination with double electron-electron resonance (DEER) provides long-range (20-80 A) distance distributions with angstrom-level resolution and thus is ideally suited to resolve conformational heterogeneity in an excited state populated under high pressure. DEER currently is performed at cryogenic temperatures. Therefore, a method was developed for rapidly freezing spin-labeled proteins under pressure to kinetically trap the high-pressure conformational ensemble for subsequent DEER data collection at atmospheric pressure. The methodology was evaluated using seven doubly-labeled mutants of myoglobin designed to monitor selected interhelical distances. For holomyoglobin, the distance distributions are narrow and relatively insensitive to pressure. In apomyoglobin, on the other hand, the distributions reveal a striking conformational heterogeneity involving specific helices in the pressure range of 0-3 kbar, where a molten globule state is formed. The data directly reveal the amplitude of helical fluctuations, information unique to the DEER method that complements previous rate determinations. Comparison of the distance distributions for pressure- and pH-populated molten globules shows them to be remarkably similar despite a lower helical content in the latter. [PUBLICATION ABSTRACT]
Author Zhongyu Yang
Evan K. Brooks
Wayne L. Hubbell
Michael T. Lerch
Author_xml – sequence: 1
  givenname: Michael T.
  surname: Lerch
  fullname: Lerch, Michael T.
  organization: Jules Stein Eye Institute and, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
– sequence: 2
  givenname: Zhongyu
  surname: Yang
  fullname: Yang, Zhongyu
  organization: Jules Stein Eye Institute and
– sequence: 3
  givenname: Evan K.
  surname: Brooks
  fullname: Brooks, Evan K.
  organization: Jules Stein Eye Institute and
– sequence: 4
  givenname: Wayne L.
  surname: Hubbell
  fullname: Hubbell, Wayne L.
  organization: Jules Stein Eye Institute and, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24707053$$D View this record in MEDLINE/PubMed
BookMark eNqFks9u1DAQxi1URLeFMzewxIVL2nHsxMkFqarKH6mIA_RseZ3JrqusHWwH1BsXnoA35ElwursFKiFOtjS_7_M3njkiB847JOQpgxMGkp-OTscTJoAz2TLGHpAFg5YVtWjhgCwASlk0ohSH5CjGawBoqwYekcNSSJBQ8QX5_l6Po3UrOgaf0DpqvOt92OhkvdMDXWPC4Ffo0KYbOrkOQ0Yxxikg_WrTmkabsOhsQJOwozGb0UEvcZhNteto56flgBSHDATvfn77sb_S7JMfcQYfk4e9HiI-2Z3H5Or1xafzt8Xlhzfvzs8uC1MBT0XP-1Ya3dTAQXZ1WxowVcU4NsKIBnvsOPbA0IhS9xpbY8qq7kF3uBSs05wfk1db33FabrAz6FLQgxqD3ehwo7y26u-Ks2u18l8Ub6UspcgGL3cGwX-eMCa1sdHgMGiHfoqKNTlaI6tS_h-tmBBcQMMy-uIeeu2nkL__lqrKFmQ7h3_2Z_i71PthZqDaAib4GAP2yth0O8jcix0UAzUvjZqXRv1emqw7vafbW_9bQXdR5sIdzZhiXF2wEmbk-RbptVd6FWxUVx9zoQbIfYMs-S_3KN0m
CitedBy_id crossref_primary_10_1002_cphc_201500669
crossref_primary_10_1039_C7CP00401J
crossref_primary_10_1002_pro_5220
crossref_primary_10_1021_jacs_6b04110
crossref_primary_10_1021_ja5083206
crossref_primary_10_1021_bi500478m
crossref_primary_10_1039_C6CP03555H
crossref_primary_10_1021_ar500228s
crossref_primary_10_1039_C6CP07597E
crossref_primary_10_1002_pro_2795
crossref_primary_10_1007_s00723_017_0936_3
crossref_primary_10_1002_asia_201900855
crossref_primary_10_1021_acs_jpcb_8b03128
crossref_primary_10_1002_ange_202003342
crossref_primary_10_4049_jimmunol_1600463
crossref_primary_10_7554_eLife_10640
crossref_primary_10_1080_10408398_2017_1363712
crossref_primary_10_1371_journal_pcbi_1010834
crossref_primary_10_1007_s00723_023_01573_4
crossref_primary_10_1073_pnas_1721896115
crossref_primary_10_1007_s00723_023_01619_7
crossref_primary_10_1016_j_tifs_2021_01_022
crossref_primary_10_1021_acs_jpcb_2c02022
crossref_primary_10_1039_D3CP02569A
crossref_primary_10_3390_biology13050298
crossref_primary_10_1007_s00723_017_0948_z
crossref_primary_10_1073_pnas_1506505112
crossref_primary_10_1039_C7CP06042D
crossref_primary_10_1021_bi5011128
crossref_primary_10_3390_magnetochemistry4040050
crossref_primary_10_1080_00268976_2017_1392629
crossref_primary_10_1111_febs_13171
crossref_primary_10_1126_science_aaa5264
crossref_primary_10_1002_anie_202003342
crossref_primary_10_1073_pnas_2013904117
Cites_doi 10.1021/bi602574x
10.1073/pnas.0606236103
10.1126/science.8235610
10.1016/0167-4838(84)90159-6
10.1016/j.jmb.2005.01.052
10.1073/pnas.0802515105
10.1073/pnas.1105682108
10.1126/science.1749933
10.1016/j.bpj.2010.01.058
10.1016/j.jmr.2012.01.004
10.1002/0471140864.ps1717s74
10.1073/pnas.95.4.1552
10.1021/bi00428a042
10.1016/j.pnmrs.2012.12.001
10.1002/(SICI)1097-0282(20000405)53:4<293::AID-BIP2>3.0.CO;2-T
10.1021/cr040440z
10.1110/ps.8.7.1484
10.1016/j.bpj.2013.02.004
10.1073/pnas.1105810108
10.1021/bi00519a023
10.1016/j.str.2011.10.009
10.1371/journal.pone.0023050
10.1002/pro.180
10.1016/S0021-9258(19)68947-7
10.1073/pnas.1200915109
10.1016/0009-2614(84)80148-7
10.1073/pnas.0804033105
10.1016/j.bpc.2011.05.012
10.1021/bi002776i
10.1016/j.cryobiol.2006.01.003
10.1146/annurev-physchem-032511-143716
10.1021/bi201769z
10.1016/S0167-4838(01)00344-2
10.1074/jbc.M111.307728
10.1038/nchembio.238
10.1002/anie.201301698
10.1021/bi00375a035
10.1021/je101164q
10.1038/nsmb.2494
10.1016/S0022-2836(02)00449-7
10.1021/bi400109d
10.1073/pnas.1320124110
10.1038/nchembio.232
10.1016/j.sbi.2012.11.004
10.1016/j.bbapap.2013.04.016
10.1006/jmbi.1996.0596
10.1021/bi401049s
10.1016/S0006-3495(90)82540-6
10.1021/bi101466y
10.1016/j.bpc.2011.01.009
10.1016/S0167-2789(97)00097-3
10.1016/S0014-5793(97)01256-8
10.1146/annurev.physchem.48.1.545
10.1039/B812475B
10.1002/prot.22302
10.1021/bi0009993
10.1073/pnas.89.18.8721
10.1073/pnas.1317973110
10.1016/S0031-8914(40)90098-2
10.1002/pro.305
10.1016/j.abb.2012.11.016
10.1021/ja303791p
10.1074/jbc.271.41.25419
10.1021/bi00745a028
10.1021/bi3005686
10.1007/s00723-009-0079-2
10.1016/j.sbi.2012.07.007
10.1006/jmre.1999.1944
10.1038/nature06522
10.1073/pnas.1110553109
10.1038/nsb0298-148
ContentType Journal Article
Copyright Copyright National Academy of Sciences Apr 1, 2014
Copyright_xml – notice: Copyright National Academy of Sciences Apr 1, 2014
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1403179111
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE
MEDLINE - Academic

Virology and AIDS Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Mapping high-pressure states of proteins with DEER
EISSN 1091-6490
EndPage E1210
ExternalDocumentID PMC3977274
3273127491
24707053
10_1073_pnas_1403179111
111_13_E1201
US201600144072
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: 2R01 EY05216
– fundername: NEI NIH HHS
  grantid: P30 EY000331
– fundername: NEI NIH HHS
  grantid: 2P30 EY00331
– fundername: NIBIB NIH HHS
  grantid: P41 EB001980
– fundername: NEI NIH HHS
  grantid: R01 EY005216
– fundername: NIGMS NIH HHS
  grantid: T32 GM008496
– fundername: NIGMS NIH HHS
  grantid: T32 GM 008496
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
ADXHL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c503t-f3f97ca860307d692c0c5513e84c48efed3ef01ec42afae9cc256f0adeb41da33
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:10:16 EDT 2025
Fri Jul 11 15:10:16 EDT 2025
Fri Jul 11 02:54:25 EDT 2025
Mon Jun 30 08:34:53 EDT 2025
Mon Jul 21 06:01:37 EDT 2025
Thu Apr 24 23:01:18 EDT 2025
Tue Jul 01 01:53:03 EDT 2025
Wed Nov 11 00:30:26 EST 2020
Thu Apr 03 09:44:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords compressibility
dipolar spectroscopy
EPR
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c503t-f3f97ca860307d692c0c5513e84c48efed3ef01ec42afae9cc256f0adeb41da33
Notes http://dx.doi.org/10.1073/pnas.1403179111
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: M.T.L., Z.Y., and W.L.H. designed research; M.T.L., Z.Y., and E.K.B. performed research; E.K.B. contributed new reagents/analytic tools; M.T.L., Z.Y., and W.L.H. analyzed data; and M.T.L., Z.Y., and W.L.H. wrote the paper.
Contributed by Wayne L. Hubbell, February 21, 2014 (sent for review January 22, 2014)
OpenAccessLink https://www.pnas.org/content/pnas/111/13/E1201.full.pdf
PMID 24707053
PQID 1515290793
PQPubID 42026
ParticipantIDs pnas_primary_111_13_E1201
proquest_miscellaneous_1514434081
pubmed_primary_24707053
proquest_journals_1515290793
fao_agris_US201600144072
proquest_miscellaneous_1803087527
crossref_citationtrail_10_1073_pnas_1403179111
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3977274
crossref_primary_10_1073_pnas_1403179111
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_3_3_71_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
Raitsimring AM (e_1_3_3_46_2) 1974; 16
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_67_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_70_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
22496593 - Proc Natl Acad Sci U S A. 2012 May 1;109(18):6945-50
7251592 - J Biol Chem. 1981 Jul 25;256(14):7193-201
21606326 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9420-4
19089951 - Proteins. 2009 Jun;75(4):911-8
16683756 - Chem Rev. 2006 May;106(5):1814-35
23334289 - Nat Struct Mol Biol. 2013 Feb;20(2):215-21
23893661 - Angew Chem Int Ed Engl. 2013 Sep 9;52(37):9705-8
16968772 - Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):13997-4002
21367514 - Biophys Chem. 2011 Jun;156(1):24-30
24248390 - Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):E4714-22
24215492 - Biochemistry. 2013 Dec 23;52(51):9367-74
7295639 - Biochemistry. 1981 Aug 4;20(16):4667-76
23566104 - Biochemistry. 2013 May 14;52(19):3278-88
22676043 - J Am Chem Soc. 2012 Jun 20;134(24):9950-2
19081918 - Phys Chem Chem Phys. 2009 Jan 7;11(1):148-60
8918936 - J Mol Biol. 1996 Nov 8;263(4):531-8
17367166 - Biochemistry. 2007 Apr 10;46(14):4379-89
24510645 - Curr Protoc Protein Sci. 2013;74:Unit 17.17.
22147706 - J Biol Chem. 2012 Jan 20;287(4):2915-25
10648151 - J Magn Reson. 2000 Feb;142(2):331-40
6712953 - Biochim Biophys Acta. 1984 Apr 27;786(1-2):103-8
2653428 - Biochemistry. 1989 Jan 24;28(2):691-9
16499898 - Cryobiology. 2006 Jun;52(3):323-34
4795687 - Biochemistry. 1973 Oct 9;12(21):4217-28
23246376 - Arch Biochem Biophys. 2013 Mar;531(1-2):110-5
21683504 - Biophys Chem. 2011 Nov;159(1):90-9
20014029 - Protein Sci. 2010 Feb;19(2):269-78
23561535 - Biophys J. 2013 Apr 2;104(7):1585-94
20483346 - Biophys J. 2010 May 19;98(10):2365-73
22809279 - Biochemistry. 2012 Aug 21;51(33):6568-83
22203965 - Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):460-5
9395082 - FEBS Lett. 1997 Nov 3;417(1):92-6
1749933 - Science. 1991 Dec 13;254(5038):1598-603
10422837 - Protein Sci. 1999 Jul;8(7):1484-91
19841628 - Nat Chem Biol. 2009 Nov;5(11):789-96
21562212 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):9078-83
22959123 - Curr Opin Struct Biol. 2012 Oct;22(5):636-42
21829584 - PLoS One. 2011;6(7):e23050
19585559 - Protein Sci. 2009 Aug;18(8):1637-52
3828301 - Biochemistry. 1987 Jan 13;26(1):254-61
23611314 - Prog Nucl Magn Reson Spectrosc. 2013 May;71:35-58
22242919 - Biochemistry. 2012 Feb 14;51(6):1051-60
8810310 - J Biol Chem. 1996 Oct 11;271(41):25419-22
11983396 - Biochim Biophys Acta. 2002 Mar 25;1595(1-2):201-9
11041843 - Biochemistry. 2000 Oct 24;39(42):12789-95
23619242 - Biochim Biophys Acta. 2013 Sep;1834(9):1910-22
21082780 - Biochemistry. 2010 Dec 21;49(50):10636-46
18779573 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13859-64
10685050 - Biopolymers. 2000 Apr 5;53(4):293-307
9461081 - Nat Struct Biol. 1998 Feb;5(2):148-55
20157634 - Appl Magn Reson. 2010 Jan 1;37(1-4):363
1528885 - Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8721-5
15740740 - J Mol Biol. 2005 Mar 25;347(2):277-85
11297422 - Biochemistry. 2001 Mar 27;40(12):3561-71
22404592 - Annu Rev Phys Chem. 2012;63:419-46
24324160 - Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20988-93
9348663 - Annu Rev Phys Chem. 1997;48:545-600
19841630 - Nat Chem Biol. 2009 Nov;5(11):808-14
12079388 - J Mol Biol. 2002 Jul 5;320(2):311-9
9465053 - Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1552-5
18490656 - Proc Natl Acad Sci U S A. 2008 May 27;105(21):7439-44
22341208 - J Magn Reson. 2012 Mar;216:69-77
8235610 - Science. 1993 Nov 5;262(5135):892-6
18075575 - Nature. 2007 Dec 13;450(7172):964-72
2180490 - Biophys J. 1990 Feb;57(2):381-3
23237704 - Curr Opin Struct Biol. 2013 Feb;23(1):4-10
22078555 - Structure. 2011 Nov 9;19(11):1549-61
References_xml – ident: e_1_3_3_49_2
  doi: 10.1021/bi602574x
– ident: e_1_3_3_60_2
  doi: 10.1073/pnas.0606236103
– ident: e_1_3_3_29_2
  doi: 10.1126/science.8235610
– ident: e_1_3_3_52_2
  doi: 10.1016/0167-4838(84)90159-6
– ident: e_1_3_3_5_2
  doi: 10.1016/j.jmb.2005.01.052
– ident: e_1_3_3_34_2
  doi: 10.1073/pnas.0802515105
– ident: e_1_3_3_30_2
  doi: 10.1073/pnas.1105682108
– ident: e_1_3_3_18_2
  doi: 10.1126/science.1749933
– ident: e_1_3_3_6_2
  doi: 10.1016/j.bpj.2010.01.058
– ident: e_1_3_3_32_2
  doi: 10.1016/j.jmr.2012.01.004
– ident: e_1_3_3_33_2
  doi: 10.1002/0471140864.ps1717s74
– ident: e_1_3_3_72_2
  doi: 10.1073/pnas.95.4.1552
– ident: e_1_3_3_53_2
  doi: 10.1021/bi00428a042
– volume: 16
  start-page: 756
  year: 1974
  ident: e_1_3_3_46_2
  article-title: Instantaneous diffusion in electron-spin echo of paramagnetic centers stabilized in solid matrices
  publication-title: Fiz Tverd Tela (St. Petersburg)
– ident: e_1_3_3_19_2
  doi: 10.1016/j.pnmrs.2012.12.001
– ident: e_1_3_3_55_2
  doi: 10.1002/(SICI)1097-0282(20000405)53:4<293::AID-BIP2>3.0.CO;2-T
– ident: e_1_3_3_11_2
  doi: 10.1021/cr040440z
– ident: e_1_3_3_67_2
  doi: 10.1110/ps.8.7.1484
– ident: e_1_3_3_35_2
  doi: 10.1016/j.bpj.2013.02.004
– ident: e_1_3_3_41_2
  doi: 10.1073/pnas.1105810108
– ident: e_1_3_3_54_2
  doi: 10.1021/bi00519a023
– ident: e_1_3_3_25_2
  doi: 10.1016/j.str.2011.10.009
– ident: e_1_3_3_51_2
  doi: 10.1371/journal.pone.0023050
– ident: e_1_3_3_58_2
  doi: 10.1002/pro.180
– ident: e_1_3_3_57_2
  doi: 10.1016/S0021-9258(19)68947-7
– ident: e_1_3_3_12_2
  doi: 10.1073/pnas.1200915109
– ident: e_1_3_3_23_2
  doi: 10.1016/0009-2614(84)80148-7
– ident: e_1_3_3_44_2
  doi: 10.1073/pnas.0804033105
– ident: e_1_3_3_59_2
  doi: 10.1016/j.bpc.2011.05.012
– ident: e_1_3_3_68_2
  doi: 10.1021/bi002776i
– ident: e_1_3_3_45_2
  doi: 10.1016/j.cryobiol.2006.01.003
– ident: e_1_3_3_26_2
  doi: 10.1146/annurev-physchem-032511-143716
– ident: e_1_3_3_39_2
  doi: 10.1021/bi201769z
– ident: e_1_3_3_10_2
  doi: 10.1016/S0167-4838(01)00344-2
– ident: e_1_3_3_37_2
  doi: 10.1074/jbc.M111.307728
– ident: e_1_3_3_1_2
  doi: 10.1038/nchembio.238
– ident: e_1_3_3_40_2
  doi: 10.1002/anie.201301698
– ident: e_1_3_3_64_2
  doi: 10.1021/bi00375a035
– ident: e_1_3_3_42_2
  doi: 10.1021/je101164q
– ident: e_1_3_3_38_2
  doi: 10.1038/nsmb.2494
– ident: e_1_3_3_20_2
  doi: 10.1016/S0022-2836(02)00449-7
– ident: e_1_3_3_36_2
  doi: 10.1021/bi400109d
– ident: e_1_3_3_13_2
  doi: 10.1073/pnas.1320124110
– ident: e_1_3_3_2_2
  doi: 10.1038/nchembio.232
– ident: e_1_3_3_65_2
  doi: 10.1016/j.sbi.2012.11.004
– ident: e_1_3_3_7_2
  doi: 10.1016/j.bbapap.2013.04.016
– ident: e_1_3_3_66_2
  doi: 10.1006/jmbi.1996.0596
– ident: e_1_3_3_61_2
  doi: 10.1021/bi401049s
– ident: e_1_3_3_63_2
  doi: 10.1016/S0006-3495(90)82540-6
– ident: e_1_3_3_9_2
  doi: 10.1021/bi101466y
– ident: e_1_3_3_69_2
  doi: 10.1016/j.bpc.2011.01.009
– ident: e_1_3_3_50_2
  doi: 10.1016/S0167-2789(97)00097-3
– ident: e_1_3_3_28_2
  doi: 10.1016/S0014-5793(97)01256-8
– ident: e_1_3_3_17_2
  doi: 10.1146/annurev.physchem.48.1.545
– ident: e_1_3_3_47_2
  doi: 10.1039/B812475B
– ident: e_1_3_3_71_2
  doi: 10.1002/prot.22302
– ident: e_1_3_3_4_2
  doi: 10.1021/bi0009993
– ident: e_1_3_3_16_2
  doi: 10.1073/pnas.89.18.8721
– ident: e_1_3_3_70_2
  doi: 10.1073/pnas.1317973110
– ident: e_1_3_3_48_2
  doi: 10.1016/S0031-8914(40)90098-2
– ident: e_1_3_3_56_2
  doi: 10.1002/pro.305
– ident: e_1_3_3_14_2
  doi: 10.1016/j.abb.2012.11.016
– ident: e_1_3_3_27_2
  doi: 10.1021/ja303791p
– ident: e_1_3_3_43_2
  doi: 10.1074/jbc.271.41.25419
– ident: e_1_3_3_62_2
  doi: 10.1021/bi00745a028
– ident: e_1_3_3_22_2
  doi: 10.1021/bi3005686
– ident: e_1_3_3_21_2
  doi: 10.1007/s00723-009-0079-2
– ident: e_1_3_3_15_2
  doi: 10.1016/j.sbi.2012.07.007
– ident: e_1_3_3_24_2
  doi: 10.1006/jmre.1999.1944
– ident: e_1_3_3_3_2
  doi: 10.1038/nature06522
– ident: e_1_3_3_8_2
  doi: 10.1073/pnas.1110553109
– ident: e_1_3_3_31_2
  doi: 10.1038/nsb0298-148
– reference: 22809279 - Biochemistry. 2012 Aug 21;51(33):6568-83
– reference: 16683756 - Chem Rev. 2006 May;106(5):1814-35
– reference: 24324160 - Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20988-93
– reference: 20483346 - Biophys J. 2010 May 19;98(10):2365-73
– reference: 21606326 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9420-4
– reference: 22242919 - Biochemistry. 2012 Feb 14;51(6):1051-60
– reference: 22203965 - Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):460-5
– reference: 22404592 - Annu Rev Phys Chem. 2012;63:419-46
– reference: 23246376 - Arch Biochem Biophys. 2013 Mar;531(1-2):110-5
– reference: 22676043 - J Am Chem Soc. 2012 Jun 20;134(24):9950-2
– reference: 9465053 - Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1552-5
– reference: 18075575 - Nature. 2007 Dec 13;450(7172):964-72
– reference: 16499898 - Cryobiology. 2006 Jun;52(3):323-34
– reference: 18779573 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13859-64
– reference: 23893661 - Angew Chem Int Ed Engl. 2013 Sep 9;52(37):9705-8
– reference: 21082780 - Biochemistry. 2010 Dec 21;49(50):10636-46
– reference: 3828301 - Biochemistry. 1987 Jan 13;26(1):254-61
– reference: 15740740 - J Mol Biol. 2005 Mar 25;347(2):277-85
– reference: 4795687 - Biochemistry. 1973 Oct 9;12(21):4217-28
– reference: 22959123 - Curr Opin Struct Biol. 2012 Oct;22(5):636-42
– reference: 8918936 - J Mol Biol. 1996 Nov 8;263(4):531-8
– reference: 21829584 - PLoS One. 2011;6(7):e23050
– reference: 19089951 - Proteins. 2009 Jun;75(4):911-8
– reference: 1528885 - Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8721-5
– reference: 21367514 - Biophys Chem. 2011 Jun;156(1):24-30
– reference: 23566104 - Biochemistry. 2013 May 14;52(19):3278-88
– reference: 23561535 - Biophys J. 2013 Apr 2;104(7):1585-94
– reference: 18490656 - Proc Natl Acad Sci U S A. 2008 May 27;105(21):7439-44
– reference: 10648151 - J Magn Reson. 2000 Feb;142(2):331-40
– reference: 19081918 - Phys Chem Chem Phys. 2009 Jan 7;11(1):148-60
– reference: 22078555 - Structure. 2011 Nov 9;19(11):1549-61
– reference: 7295639 - Biochemistry. 1981 Aug 4;20(16):4667-76
– reference: 10422837 - Protein Sci. 1999 Jul;8(7):1484-91
– reference: 22147706 - J Biol Chem. 2012 Jan 20;287(4):2915-25
– reference: 24215492 - Biochemistry. 2013 Dec 23;52(51):9367-74
– reference: 20014029 - Protein Sci. 2010 Feb;19(2):269-78
– reference: 20157634 - Appl Magn Reson. 2010 Jan 1;37(1-4):363
– reference: 23611314 - Prog Nucl Magn Reson Spectrosc. 2013 May;71:35-58
– reference: 9461081 - Nat Struct Biol. 1998 Feb;5(2):148-55
– reference: 19585559 - Protein Sci. 2009 Aug;18(8):1637-52
– reference: 7251592 - J Biol Chem. 1981 Jul 25;256(14):7193-201
– reference: 9395082 - FEBS Lett. 1997 Nov 3;417(1):92-6
– reference: 12079388 - J Mol Biol. 2002 Jul 5;320(2):311-9
– reference: 19841630 - Nat Chem Biol. 2009 Nov;5(11):808-14
– reference: 2180490 - Biophys J. 1990 Feb;57(2):381-3
– reference: 10685050 - Biopolymers. 2000 Apr 5;53(4):293-307
– reference: 1749933 - Science. 1991 Dec 13;254(5038):1598-603
– reference: 11983396 - Biochim Biophys Acta. 2002 Mar 25;1595(1-2):201-9
– reference: 16968772 - Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):13997-4002
– reference: 11041843 - Biochemistry. 2000 Oct 24;39(42):12789-95
– reference: 21683504 - Biophys Chem. 2011 Nov;159(1):90-9
– reference: 9348663 - Annu Rev Phys Chem. 1997;48:545-600
– reference: 23334289 - Nat Struct Mol Biol. 2013 Feb;20(2):215-21
– reference: 22496593 - Proc Natl Acad Sci U S A. 2012 May 1;109(18):6945-50
– reference: 6712953 - Biochim Biophys Acta. 1984 Apr 27;786(1-2):103-8
– reference: 11297422 - Biochemistry. 2001 Mar 27;40(12):3561-71
– reference: 23619242 - Biochim Biophys Acta. 2013 Sep;1834(9):1910-22
– reference: 19841628 - Nat Chem Biol. 2009 Nov;5(11):789-96
– reference: 24248390 - Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):E4714-22
– reference: 23237704 - Curr Opin Struct Biol. 2013 Feb;23(1):4-10
– reference: 2653428 - Biochemistry. 1989 Jan 24;28(2):691-9
– reference: 24510645 - Curr Protoc Protein Sci. 2013;74:Unit 17.17.
– reference: 8235610 - Science. 1993 Nov 5;262(5135):892-6
– reference: 21562212 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):9078-83
– reference: 17367166 - Biochemistry. 2007 Apr 10;46(14):4379-89
– reference: 8810310 - J Biol Chem. 1996 Oct 11;271(41):25419-22
– reference: 22341208 - J Magn Reson. 2012 Mar;216:69-77
SSID ssj0009580
Score 2.3133125
Snippet The dominance of a single native state for most proteins under ambient conditions belies the functional importance of higher-energy conformational states...
Excited states of proteins play functional roles, but their low population and conformational flexibility pose a challenge for characterization by most...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E1201
SubjectTerms Animals
Apoproteins - chemistry
Atmospheric pressure
Biological Sciences
Data collection
Electron Spin Resonance Spectroscopy - methods
Electrons
Freezing
Genomics
Heterogeneity
High pressure
high pressure treatment
Hydrogen-Ion Concentration
Hydrostatic Pressure
Models, Molecular
mutants
myoglobin
Myoglobin - chemistry
Myoglobins
PNAS Plus
Protein Structure, Secondary
Proteins
Resonance
spectral analysis
Sperm Whale
Spin Labels
temperature
Title Mapping protein conformational heterogeneity under pressure with site-directed spin labeling and double electron–electron resonance
URI http://www.pnas.org/content/111/13/E1201.abstract
https://www.ncbi.nlm.nih.gov/pubmed/24707053
https://www.proquest.com/docview/1515290793
https://www.proquest.com/docview/1514434081
https://www.proquest.com/docview/1803087527
https://pubmed.ncbi.nlm.nih.gov/PMC3977274
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF415cIFUV4xFLRIHIosG8fe2M6BQ1UVVdBEkUhExcXarNctothRkxzKiQu_gH_IL2HG-4gdAoJeLMderx3Pez3zDSEvCibStIAwNeY88RhIkDcDK-mJIE1SsE8QU-DSwHAUn0zZ27P-2U6n28haWi1nvvi6ta7kJlSFY0BXrJL9D8raSeEA7AN9YQsUhu0_0XjI53NVTV5h00pMIbfFiHWNI7y0Cq6W6GpjtdiVW-e94kcDlZsODqenrBo4nguYzAWuUCXquKKeVyusrDK9ckxmRGQOuDBbVVrG0U7u2BrFhUlBGJlnOlxXsGi1snA9dzxa90M-lbo9lc7odye-VU16cfvjRVWeX68aSwnVZ1VWgdVY7_w1r87Md5UP_Brc6VN1CokjF6_xru74sr300WtmzDSQw7c-elPnh2CHmarU9qVS88CFXsxUo1JrB7TW1wwfNdT6cS_U95Xmt0rG_c0AgcbErsklX_iIhIjgr2raBjvOv9T8GLIE9K2CSt7A_B4Pj9AxDxPWIbdC2InMOpSFk05VcZX-bwa0Kolebdwb0a71jVquV6fgFQL6wuhtwdVmjnDD6ZrcJXd0tEQPFevvkR1Z3iN75u3TAw2a_vI--a5lgWpZoG1ZoC1ZoLUsUCMLFGWBtmSBoixQIwsUZIEqWaCG9X9--2F2qZWCB2T65nhydOLpFiOe6AfR0iuiYpAInsZo6_J4EIpAYMsjmTLBUlnIPJKgyaRgIS-4HAgBIUIRALvNWC_nUfSQ7JZVKbuEiiBPggFnot-TLBYwV5722SAJg1imfckd4pu3nwmNv49tYC6zOg8kiTKkRbamnEMO7AVzBT3z56FdIGfGz8ExyKbvQ4SNxKWSIAkd4tSD7QwQ8PeirOZoh-wbwmdarcGsEOGEA8TNdMhzexqMDn5J5KWsVvUYxiIG4cRfxqQ12mg_TBzySPGSfQjDkQ5JWlxmByDofftM-emiBr_XcvH4xlc-IbfXumSf7C6vVvIpBBbL2bNaxn4BR5goJQ
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+protein+conformational+heterogeneity+under+pressure+with+site-directed+spin+labeling+and+double+electron%E2%80%93electron+resonance&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lerch%2C+Michael+T.&rft.au=Yang%2C+Zhongyu&rft.au=Brooks%2C+Evan+K.&rft.au=Hubbell%2C+Wayne+L.&rft.series=PNAS+Plus&rft.date=2014-04-01&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=13&rft.spage=E1201&rft.epage=E1210&rft_id=info:doi/10.1073%2Fpnas.1403179111&rft_id=info%3Apmid%2F24707053&rft.externalDocID=PMC3977274
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F13.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F13.cover.gif