Mapping protein conformational heterogeneity under pressure with site-directed spin labeling and double electron–electron resonance
The dominance of a single native state for most proteins under ambient conditions belies the functional importance of higher-energy conformational states (excited states), which often are too sparsely populated to allow spectroscopic investigation. Application of high hydrostatic pressure increases...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 13; pp. E1201 - E1210 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
01.04.2014
National Acad Sciences |
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The dominance of a single native state for most proteins under ambient conditions belies the functional importance of higher-energy conformational states (excited states), which often are too sparsely populated to allow spectroscopic investigation. Application of high hydrostatic pressure increases the population of excited states for study, but structural characterization is not trivial because of the multiplicity of states in the ensemble and rapid (microsecond to millisecond) exchange between them. Site-directed spin labeling in combination with double electron–electron resonance (DEER) provides long-range (20–80 Å) distance distributions with angstrom-level resolution and thus is ideally suited to resolve conformational heterogeneity in an excited state populated under high pressure. DEER currently is performed at cryogenic temperatures. Therefore, a method was developed for rapidly freezing spin-labeled proteins under pressure to kinetically trap the high-pressure conformational ensemble for subsequent DEER data collection at atmospheric pressure. The methodology was evaluated using seven doubly-labeled mutants of myoglobin designed to monitor selected interhelical distances. For holomyoglobin, the distance distributions are narrow and relatively insensitive to pressure. In apomyoglobin, on the other hand, the distributions reveal a striking conformational heterogeneity involving specific helices in the pressure range of 0–3 kbar, where a molten globule state is formed. The data directly reveal the amplitude of helical fluctuations, information unique to the DEER method that complements previous rate determinations. Comparison of the distance distributions for pressure- and pH-populated molten globules shows them to be remarkably similar despite a lower helical content in the latter. |
---|---|
AbstractList | The dominance of a single native state for most proteins under ambient conditions belies the functional importance of higher-energy conformational states (excited states), which often are too sparsely populated to allow spectroscopic investigation. Application of high hydrostatic pressure increases the population of excited states for study, but structural characterization is not trivial because of the multiplicity of states in the ensemble and rapid (microsecond to millisecond) exchange between them. Site-directed spin labeling in combination with double electron–electron resonance (DEER) provides long-range (20–80 Å) distance distributions with angstrom-level resolution and thus is ideally suited to resolve conformational heterogeneity in an excited state populated under high pressure. DEER currently is performed at cryogenic temperatures. Therefore, a method was developed for rapidly freezing spin-labeled proteins under pressure to kinetically trap the high-pressure conformational ensemble for subsequent DEER data collection at atmospheric pressure. The methodology was evaluated using seven doubly-labeled mutants of myoglobin designed to monitor selected interhelical distances. For holomyoglobin, the distance distributions are narrow and relatively insensitive to pressure. In apomyoglobin, on the other hand, the distributions reveal a striking conformational heterogeneity involving specific helices in the pressure range of 0–3 kbar, where a molten globule state is formed. The data directly reveal the amplitude of helical fluctuations, information unique to the DEER method that complements previous rate determinations. Comparison of the distance distributions for pressure- and pH-populated molten globules shows them to be remarkably similar despite a lower helical content in the latter. The dominance of a single native state for most proteins under ambient conditions belies the functional importance of higher-energy conformational states (excited states), which often are too sparsely populated to allow spectroscopic investigation. Application of high hydrostatic pressure increases the population of excited states for study, but structural characterization is not trivial because of the multiplicity of states in the ensemble and rapid (microsecond to millisecond) exchange between them. Site-directed spin labeling in combination with double electron-electron resonance (DEER) provides long-range (20-80 Å) distance distributions with angstrom-level resolution and thus is ideally suited to resolve conformational heterogeneity in an excited state populated under high pressure. DEER currently is performed at cryogenic temperatures. Therefore, a method was developed for rapidly freezing spin-labeled proteins under pressure to kinetically trap the high-pressure conformational ensemble for subsequent DEER data collection at atmospheric pressure. The methodology was evaluated using seven doubly-labeled mutants of myoglobin designed to monitor selected interhelical distances. For holomyoglobin, the distance distributions are narrow and relatively insensitive to pressure. In apomyoglobin, on the other hand, the distributions reveal a striking conformational heterogeneity involving specific helices in the pressure range of 0-3 kbar, where a molten globule state is formed. The data directly reveal the amplitude of helical fluctuations, information unique to the DEER method that complements previous rate determinations. Comparison of the distance distributions for pressure- and pH-populated molten globules shows them to be remarkably similar despite a lower helical content in the latter.The dominance of a single native state for most proteins under ambient conditions belies the functional importance of higher-energy conformational states (excited states), which often are too sparsely populated to allow spectroscopic investigation. Application of high hydrostatic pressure increases the population of excited states for study, but structural characterization is not trivial because of the multiplicity of states in the ensemble and rapid (microsecond to millisecond) exchange between them. Site-directed spin labeling in combination with double electron-electron resonance (DEER) provides long-range (20-80 Å) distance distributions with angstrom-level resolution and thus is ideally suited to resolve conformational heterogeneity in an excited state populated under high pressure. DEER currently is performed at cryogenic temperatures. Therefore, a method was developed for rapidly freezing spin-labeled proteins under pressure to kinetically trap the high-pressure conformational ensemble for subsequent DEER data collection at atmospheric pressure. The methodology was evaluated using seven doubly-labeled mutants of myoglobin designed to monitor selected interhelical distances. For holomyoglobin, the distance distributions are narrow and relatively insensitive to pressure. In apomyoglobin, on the other hand, the distributions reveal a striking conformational heterogeneity involving specific helices in the pressure range of 0-3 kbar, where a molten globule state is formed. The data directly reveal the amplitude of helical fluctuations, information unique to the DEER method that complements previous rate determinations. Comparison of the distance distributions for pressure- and pH-populated molten globules shows them to be remarkably similar despite a lower helical content in the latter. Excited states of proteins play functional roles, but their low population and conformational flexibility pose a challenge for characterization by most spectroscopic techniques. Here, this challenge is met by combining high hydrostatic pressure, which reversibly populates excited states, and site-directed spin labeling with double electron–electron resonance (DEER) spectroscopy, which resolves distinct conformational substates of proteins by measuring distances between spin-labeled pairs. We present a method for trapping high-pressure equilibria of proteins by rapid freezing under pressure, followed by depressurization and acquisition of DEER data at atmospheric pressure. The methodology is applied to myoglobin, revealing unique information on the length scale of helical fluctuations in the pressure-populated as compared with the pH-populated molten globule states of the apo-protein. The dominance of a single native state for most proteins under ambient conditions belies the functional importance of higher-energy conformational states (excited states), which often are too sparsely populated to allow spectroscopic investigation. Application of high hydrostatic pressure increases the population of excited states for study, but structural characterization is not trivial because of the multiplicity of states in the ensemble and rapid (microsecond to millisecond) exchange between them. Site-directed spin labeling in combination with double electron–electron resonance (DEER) provides long-range (20–80 Å) distance distributions with angstrom-level resolution and thus is ideally suited to resolve conformational heterogeneity in an excited state populated under high pressure. DEER currently is performed at cryogenic temperatures. Therefore, a method was developed for rapidly freezing spin-labeled proteins under pressure to kinetically trap the high-pressure conformational ensemble for subsequent DEER data collection at atmospheric pressure. The methodology was evaluated using seven doubly-labeled mutants of myoglobin designed to monitor selected interhelical distances. For holomyoglobin, the distance distributions are narrow and relatively insensitive to pressure. In apomyoglobin, on the other hand, the distributions reveal a striking conformational heterogeneity involving specific helices in the pressure range of 0–3 kbar, where a molten globule state is formed. The data directly reveal the amplitude of helical fluctuations, information unique to the DEER method that complements previous rate determinations. Comparison of the distance distributions for pressure- and pH-populated molten globules shows them to be remarkably similar despite a lower helical content in the latter. The dominance of a single native state for most proteins under ambient conditions belies the functional importance of higher-energy conformational states (excited states), which often are too sparsely populated to allow spectroscopic investigation. Application of high hydrostatic pressure increases the population of excited states for study, but structural characterization is not trivial because of the multiplicity of states in the ensemble and rapid (microsecond to millisecond) exchange between them. Site-directed spin labeling in combination with double electron-electron resonance (DEER) provides long-range (20-80 A) distance distributions with angstrom-level resolution and thus is ideally suited to resolve conformational heterogeneity in an excited state populated under high pressure. DEER currently is performed at cryogenic temperatures. Therefore, a method was developed for rapidly freezing spin-labeled proteins under pressure to kinetically trap the high-pressure conformational ensemble for subsequent DEER data collection at atmospheric pressure. The methodology was evaluated using seven doubly-labeled mutants of myoglobin designed to monitor selected interhelical distances. For holomyoglobin, the distance distributions are narrow and relatively insensitive to pressure. In apomyoglobin, on the other hand, the distributions reveal a striking conformational heterogeneity involving specific helices in the pressure range of 0-3 kbar, where a molten globule state is formed. The data directly reveal the amplitude of helical fluctuations, information unique to the DEER method that complements previous rate determinations. Comparison of the distance distributions for pressure- and pH-populated molten globules shows them to be remarkably similar despite a lower helical content in the latter. [PUBLICATION ABSTRACT] |
Author | Zhongyu Yang Evan K. Brooks Wayne L. Hubbell Michael T. Lerch |
Author_xml | – sequence: 1 givenname: Michael T. surname: Lerch fullname: Lerch, Michael T. organization: Jules Stein Eye Institute and, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 – sequence: 2 givenname: Zhongyu surname: Yang fullname: Yang, Zhongyu organization: Jules Stein Eye Institute and – sequence: 3 givenname: Evan K. surname: Brooks fullname: Brooks, Evan K. organization: Jules Stein Eye Institute and – sequence: 4 givenname: Wayne L. surname: Hubbell fullname: Hubbell, Wayne L. organization: Jules Stein Eye Institute and, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24707053$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9u1DAQxi1URLeFMzewxIVL2nHsxMkFqarKH6mIA_RseZ3JrqusHWwH1BsXnoA35ElwursFKiFOtjS_7_M3njkiB847JOQpgxMGkp-OTscTJoAz2TLGHpAFg5YVtWjhgCwASlk0ohSH5CjGawBoqwYekcNSSJBQ8QX5_l6Po3UrOgaf0DpqvOt92OhkvdMDXWPC4Ffo0KYbOrkOQ0Yxxikg_WrTmkabsOhsQJOwozGb0UEvcZhNteto56flgBSHDATvfn77sb_S7JMfcQYfk4e9HiI-2Z3H5Or1xafzt8Xlhzfvzs8uC1MBT0XP-1Ya3dTAQXZ1WxowVcU4NsKIBnvsOPbA0IhS9xpbY8qq7kF3uBSs05wfk1db33FabrAz6FLQgxqD3ehwo7y26u-Ks2u18l8Ub6UspcgGL3cGwX-eMCa1sdHgMGiHfoqKNTlaI6tS_h-tmBBcQMMy-uIeeu2nkL__lqrKFmQ7h3_2Z_i71PthZqDaAib4GAP2yth0O8jcix0UAzUvjZqXRv1emqw7vafbW_9bQXdR5sIdzZhiXF2wEmbk-RbptVd6FWxUVx9zoQbIfYMs-S_3KN0m |
CitedBy_id | crossref_primary_10_1002_cphc_201500669 crossref_primary_10_1039_C7CP00401J crossref_primary_10_1002_pro_5220 crossref_primary_10_1021_jacs_6b04110 crossref_primary_10_1021_ja5083206 crossref_primary_10_1021_bi500478m crossref_primary_10_1039_C6CP03555H crossref_primary_10_1021_ar500228s crossref_primary_10_1039_C6CP07597E crossref_primary_10_1002_pro_2795 crossref_primary_10_1007_s00723_017_0936_3 crossref_primary_10_1002_asia_201900855 crossref_primary_10_1021_acs_jpcb_8b03128 crossref_primary_10_1002_ange_202003342 crossref_primary_10_4049_jimmunol_1600463 crossref_primary_10_7554_eLife_10640 crossref_primary_10_1080_10408398_2017_1363712 crossref_primary_10_1371_journal_pcbi_1010834 crossref_primary_10_1007_s00723_023_01573_4 crossref_primary_10_1073_pnas_1721896115 crossref_primary_10_1007_s00723_023_01619_7 crossref_primary_10_1016_j_tifs_2021_01_022 crossref_primary_10_1021_acs_jpcb_2c02022 crossref_primary_10_1039_D3CP02569A crossref_primary_10_3390_biology13050298 crossref_primary_10_1007_s00723_017_0948_z crossref_primary_10_1073_pnas_1506505112 crossref_primary_10_1039_C7CP06042D crossref_primary_10_1021_bi5011128 crossref_primary_10_3390_magnetochemistry4040050 crossref_primary_10_1080_00268976_2017_1392629 crossref_primary_10_1111_febs_13171 crossref_primary_10_1126_science_aaa5264 crossref_primary_10_1002_anie_202003342 crossref_primary_10_1073_pnas_2013904117 |
Cites_doi | 10.1021/bi602574x 10.1073/pnas.0606236103 10.1126/science.8235610 10.1016/0167-4838(84)90159-6 10.1016/j.jmb.2005.01.052 10.1073/pnas.0802515105 10.1073/pnas.1105682108 10.1126/science.1749933 10.1016/j.bpj.2010.01.058 10.1016/j.jmr.2012.01.004 10.1002/0471140864.ps1717s74 10.1073/pnas.95.4.1552 10.1021/bi00428a042 10.1016/j.pnmrs.2012.12.001 10.1002/(SICI)1097-0282(20000405)53:4<293::AID-BIP2>3.0.CO;2-T 10.1021/cr040440z 10.1110/ps.8.7.1484 10.1016/j.bpj.2013.02.004 10.1073/pnas.1105810108 10.1021/bi00519a023 10.1016/j.str.2011.10.009 10.1371/journal.pone.0023050 10.1002/pro.180 10.1016/S0021-9258(19)68947-7 10.1073/pnas.1200915109 10.1016/0009-2614(84)80148-7 10.1073/pnas.0804033105 10.1016/j.bpc.2011.05.012 10.1021/bi002776i 10.1016/j.cryobiol.2006.01.003 10.1146/annurev-physchem-032511-143716 10.1021/bi201769z 10.1016/S0167-4838(01)00344-2 10.1074/jbc.M111.307728 10.1038/nchembio.238 10.1002/anie.201301698 10.1021/bi00375a035 10.1021/je101164q 10.1038/nsmb.2494 10.1016/S0022-2836(02)00449-7 10.1021/bi400109d 10.1073/pnas.1320124110 10.1038/nchembio.232 10.1016/j.sbi.2012.11.004 10.1016/j.bbapap.2013.04.016 10.1006/jmbi.1996.0596 10.1021/bi401049s 10.1016/S0006-3495(90)82540-6 10.1021/bi101466y 10.1016/j.bpc.2011.01.009 10.1016/S0167-2789(97)00097-3 10.1016/S0014-5793(97)01256-8 10.1146/annurev.physchem.48.1.545 10.1039/B812475B 10.1002/prot.22302 10.1021/bi0009993 10.1073/pnas.89.18.8721 10.1073/pnas.1317973110 10.1016/S0031-8914(40)90098-2 10.1002/pro.305 10.1016/j.abb.2012.11.016 10.1021/ja303791p 10.1074/jbc.271.41.25419 10.1021/bi00745a028 10.1021/bi3005686 10.1007/s00723-009-0079-2 10.1016/j.sbi.2012.07.007 10.1006/jmre.1999.1944 10.1038/nature06522 10.1073/pnas.1110553109 10.1038/nsb0298-148 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Apr 1, 2014 |
Copyright_xml | – notice: Copyright National Academy of Sciences Apr 1, 2014 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1403179111 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Mapping high-pressure states of proteins with DEER |
EISSN | 1091-6490 |
EndPage | E1210 |
ExternalDocumentID | PMC3977274 3273127491 24707053 10_1073_pnas_1403179111 111_13_E1201 US201600144072 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: 2R01 EY05216 – fundername: NEI NIH HHS grantid: P30 EY000331 – fundername: NEI NIH HHS grantid: 2P30 EY00331 – fundername: NIBIB NIH HHS grantid: P41 EB001980 – fundername: NEI NIH HHS grantid: R01 EY005216 – fundername: NIGMS NIH HHS grantid: T32 GM008496 – fundername: NIGMS NIH HHS grantid: T32 GM 008496 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX ADXHL CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c503t-f3f97ca860307d692c0c5513e84c48efed3ef01ec42afae9cc256f0adeb41da33 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:10:16 EDT 2025 Fri Jul 11 15:10:16 EDT 2025 Fri Jul 11 02:54:25 EDT 2025 Mon Jun 30 08:34:53 EDT 2025 Mon Jul 21 06:01:37 EDT 2025 Thu Apr 24 23:01:18 EDT 2025 Tue Jul 01 01:53:03 EDT 2025 Wed Nov 11 00:30:26 EST 2020 Thu Apr 03 09:44:46 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | compressibility dipolar spectroscopy EPR |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c503t-f3f97ca860307d692c0c5513e84c48efed3ef01ec42afae9cc256f0adeb41da33 |
Notes | http://dx.doi.org/10.1073/pnas.1403179111 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: M.T.L., Z.Y., and W.L.H. designed research; M.T.L., Z.Y., and E.K.B. performed research; E.K.B. contributed new reagents/analytic tools; M.T.L., Z.Y., and W.L.H. analyzed data; and M.T.L., Z.Y., and W.L.H. wrote the paper. Contributed by Wayne L. Hubbell, February 21, 2014 (sent for review January 22, 2014) |
OpenAccessLink | https://www.pnas.org/content/pnas/111/13/E1201.full.pdf |
PMID | 24707053 |
PQID | 1515290793 |
PQPubID | 42026 |
ParticipantIDs | pnas_primary_111_13_E1201 proquest_miscellaneous_1514434081 pubmed_primary_24707053 proquest_journals_1515290793 fao_agris_US201600144072 proquest_miscellaneous_1803087527 crossref_citationtrail_10_1073_pnas_1403179111 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3977274 crossref_primary_10_1073_pnas_1403179111 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-01 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_3_3_71_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 Raitsimring AM (e_1_3_3_46_2) 1974; 16 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_67_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_70_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 22496593 - Proc Natl Acad Sci U S A. 2012 May 1;109(18):6945-50 7251592 - J Biol Chem. 1981 Jul 25;256(14):7193-201 21606326 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9420-4 19089951 - Proteins. 2009 Jun;75(4):911-8 16683756 - Chem Rev. 2006 May;106(5):1814-35 23334289 - Nat Struct Mol Biol. 2013 Feb;20(2):215-21 23893661 - Angew Chem Int Ed Engl. 2013 Sep 9;52(37):9705-8 16968772 - Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):13997-4002 21367514 - Biophys Chem. 2011 Jun;156(1):24-30 24248390 - Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):E4714-22 24215492 - Biochemistry. 2013 Dec 23;52(51):9367-74 7295639 - Biochemistry. 1981 Aug 4;20(16):4667-76 23566104 - Biochemistry. 2013 May 14;52(19):3278-88 22676043 - J Am Chem Soc. 2012 Jun 20;134(24):9950-2 19081918 - Phys Chem Chem Phys. 2009 Jan 7;11(1):148-60 8918936 - J Mol Biol. 1996 Nov 8;263(4):531-8 17367166 - Biochemistry. 2007 Apr 10;46(14):4379-89 24510645 - Curr Protoc Protein Sci. 2013;74:Unit 17.17. 22147706 - J Biol Chem. 2012 Jan 20;287(4):2915-25 10648151 - J Magn Reson. 2000 Feb;142(2):331-40 6712953 - Biochim Biophys Acta. 1984 Apr 27;786(1-2):103-8 2653428 - Biochemistry. 1989 Jan 24;28(2):691-9 16499898 - Cryobiology. 2006 Jun;52(3):323-34 4795687 - Biochemistry. 1973 Oct 9;12(21):4217-28 23246376 - Arch Biochem Biophys. 2013 Mar;531(1-2):110-5 21683504 - Biophys Chem. 2011 Nov;159(1):90-9 20014029 - Protein Sci. 2010 Feb;19(2):269-78 23561535 - Biophys J. 2013 Apr 2;104(7):1585-94 20483346 - Biophys J. 2010 May 19;98(10):2365-73 22809279 - Biochemistry. 2012 Aug 21;51(33):6568-83 22203965 - Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):460-5 9395082 - FEBS Lett. 1997 Nov 3;417(1):92-6 1749933 - Science. 1991 Dec 13;254(5038):1598-603 10422837 - Protein Sci. 1999 Jul;8(7):1484-91 19841628 - Nat Chem Biol. 2009 Nov;5(11):789-96 21562212 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):9078-83 22959123 - Curr Opin Struct Biol. 2012 Oct;22(5):636-42 21829584 - PLoS One. 2011;6(7):e23050 19585559 - Protein Sci. 2009 Aug;18(8):1637-52 3828301 - Biochemistry. 1987 Jan 13;26(1):254-61 23611314 - Prog Nucl Magn Reson Spectrosc. 2013 May;71:35-58 22242919 - Biochemistry. 2012 Feb 14;51(6):1051-60 8810310 - J Biol Chem. 1996 Oct 11;271(41):25419-22 11983396 - Biochim Biophys Acta. 2002 Mar 25;1595(1-2):201-9 11041843 - Biochemistry. 2000 Oct 24;39(42):12789-95 23619242 - Biochim Biophys Acta. 2013 Sep;1834(9):1910-22 21082780 - Biochemistry. 2010 Dec 21;49(50):10636-46 18779573 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13859-64 10685050 - Biopolymers. 2000 Apr 5;53(4):293-307 9461081 - Nat Struct Biol. 1998 Feb;5(2):148-55 20157634 - Appl Magn Reson. 2010 Jan 1;37(1-4):363 1528885 - Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8721-5 15740740 - J Mol Biol. 2005 Mar 25;347(2):277-85 11297422 - Biochemistry. 2001 Mar 27;40(12):3561-71 22404592 - Annu Rev Phys Chem. 2012;63:419-46 24324160 - Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20988-93 9348663 - Annu Rev Phys Chem. 1997;48:545-600 19841630 - Nat Chem Biol. 2009 Nov;5(11):808-14 12079388 - J Mol Biol. 2002 Jul 5;320(2):311-9 9465053 - Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1552-5 18490656 - Proc Natl Acad Sci U S A. 2008 May 27;105(21):7439-44 22341208 - J Magn Reson. 2012 Mar;216:69-77 8235610 - Science. 1993 Nov 5;262(5135):892-6 18075575 - Nature. 2007 Dec 13;450(7172):964-72 2180490 - Biophys J. 1990 Feb;57(2):381-3 23237704 - Curr Opin Struct Biol. 2013 Feb;23(1):4-10 22078555 - Structure. 2011 Nov 9;19(11):1549-61 |
References_xml | – ident: e_1_3_3_49_2 doi: 10.1021/bi602574x – ident: e_1_3_3_60_2 doi: 10.1073/pnas.0606236103 – ident: e_1_3_3_29_2 doi: 10.1126/science.8235610 – ident: e_1_3_3_52_2 doi: 10.1016/0167-4838(84)90159-6 – ident: e_1_3_3_5_2 doi: 10.1016/j.jmb.2005.01.052 – ident: e_1_3_3_34_2 doi: 10.1073/pnas.0802515105 – ident: e_1_3_3_30_2 doi: 10.1073/pnas.1105682108 – ident: e_1_3_3_18_2 doi: 10.1126/science.1749933 – ident: e_1_3_3_6_2 doi: 10.1016/j.bpj.2010.01.058 – ident: e_1_3_3_32_2 doi: 10.1016/j.jmr.2012.01.004 – ident: e_1_3_3_33_2 doi: 10.1002/0471140864.ps1717s74 – ident: e_1_3_3_72_2 doi: 10.1073/pnas.95.4.1552 – ident: e_1_3_3_53_2 doi: 10.1021/bi00428a042 – volume: 16 start-page: 756 year: 1974 ident: e_1_3_3_46_2 article-title: Instantaneous diffusion in electron-spin echo of paramagnetic centers stabilized in solid matrices publication-title: Fiz Tverd Tela (St. Petersburg) – ident: e_1_3_3_19_2 doi: 10.1016/j.pnmrs.2012.12.001 – ident: e_1_3_3_55_2 doi: 10.1002/(SICI)1097-0282(20000405)53:4<293::AID-BIP2>3.0.CO;2-T – ident: e_1_3_3_11_2 doi: 10.1021/cr040440z – ident: e_1_3_3_67_2 doi: 10.1110/ps.8.7.1484 – ident: e_1_3_3_35_2 doi: 10.1016/j.bpj.2013.02.004 – ident: e_1_3_3_41_2 doi: 10.1073/pnas.1105810108 – ident: e_1_3_3_54_2 doi: 10.1021/bi00519a023 – ident: e_1_3_3_25_2 doi: 10.1016/j.str.2011.10.009 – ident: e_1_3_3_51_2 doi: 10.1371/journal.pone.0023050 – ident: e_1_3_3_58_2 doi: 10.1002/pro.180 – ident: e_1_3_3_57_2 doi: 10.1016/S0021-9258(19)68947-7 – ident: e_1_3_3_12_2 doi: 10.1073/pnas.1200915109 – ident: e_1_3_3_23_2 doi: 10.1016/0009-2614(84)80148-7 – ident: e_1_3_3_44_2 doi: 10.1073/pnas.0804033105 – ident: e_1_3_3_59_2 doi: 10.1016/j.bpc.2011.05.012 – ident: e_1_3_3_68_2 doi: 10.1021/bi002776i – ident: e_1_3_3_45_2 doi: 10.1016/j.cryobiol.2006.01.003 – ident: e_1_3_3_26_2 doi: 10.1146/annurev-physchem-032511-143716 – ident: e_1_3_3_39_2 doi: 10.1021/bi201769z – ident: e_1_3_3_10_2 doi: 10.1016/S0167-4838(01)00344-2 – ident: e_1_3_3_37_2 doi: 10.1074/jbc.M111.307728 – ident: e_1_3_3_1_2 doi: 10.1038/nchembio.238 – ident: e_1_3_3_40_2 doi: 10.1002/anie.201301698 – ident: e_1_3_3_64_2 doi: 10.1021/bi00375a035 – ident: e_1_3_3_42_2 doi: 10.1021/je101164q – ident: e_1_3_3_38_2 doi: 10.1038/nsmb.2494 – ident: e_1_3_3_20_2 doi: 10.1016/S0022-2836(02)00449-7 – ident: e_1_3_3_36_2 doi: 10.1021/bi400109d – ident: e_1_3_3_13_2 doi: 10.1073/pnas.1320124110 – ident: e_1_3_3_2_2 doi: 10.1038/nchembio.232 – ident: e_1_3_3_65_2 doi: 10.1016/j.sbi.2012.11.004 – ident: e_1_3_3_7_2 doi: 10.1016/j.bbapap.2013.04.016 – ident: e_1_3_3_66_2 doi: 10.1006/jmbi.1996.0596 – ident: e_1_3_3_61_2 doi: 10.1021/bi401049s – ident: e_1_3_3_63_2 doi: 10.1016/S0006-3495(90)82540-6 – ident: e_1_3_3_9_2 doi: 10.1021/bi101466y – ident: e_1_3_3_69_2 doi: 10.1016/j.bpc.2011.01.009 – ident: e_1_3_3_50_2 doi: 10.1016/S0167-2789(97)00097-3 – ident: e_1_3_3_28_2 doi: 10.1016/S0014-5793(97)01256-8 – ident: e_1_3_3_17_2 doi: 10.1146/annurev.physchem.48.1.545 – ident: e_1_3_3_47_2 doi: 10.1039/B812475B – ident: e_1_3_3_71_2 doi: 10.1002/prot.22302 – ident: e_1_3_3_4_2 doi: 10.1021/bi0009993 – ident: e_1_3_3_16_2 doi: 10.1073/pnas.89.18.8721 – ident: e_1_3_3_70_2 doi: 10.1073/pnas.1317973110 – ident: e_1_3_3_48_2 doi: 10.1016/S0031-8914(40)90098-2 – ident: e_1_3_3_56_2 doi: 10.1002/pro.305 – ident: e_1_3_3_14_2 doi: 10.1016/j.abb.2012.11.016 – ident: e_1_3_3_27_2 doi: 10.1021/ja303791p – ident: e_1_3_3_43_2 doi: 10.1074/jbc.271.41.25419 – ident: e_1_3_3_62_2 doi: 10.1021/bi00745a028 – ident: e_1_3_3_22_2 doi: 10.1021/bi3005686 – ident: e_1_3_3_21_2 doi: 10.1007/s00723-009-0079-2 – ident: e_1_3_3_15_2 doi: 10.1016/j.sbi.2012.07.007 – ident: e_1_3_3_24_2 doi: 10.1006/jmre.1999.1944 – ident: e_1_3_3_3_2 doi: 10.1038/nature06522 – ident: e_1_3_3_8_2 doi: 10.1073/pnas.1110553109 – ident: e_1_3_3_31_2 doi: 10.1038/nsb0298-148 – reference: 22809279 - Biochemistry. 2012 Aug 21;51(33):6568-83 – reference: 16683756 - Chem Rev. 2006 May;106(5):1814-35 – reference: 24324160 - Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20988-93 – reference: 20483346 - Biophys J. 2010 May 19;98(10):2365-73 – reference: 21606326 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9420-4 – reference: 22242919 - Biochemistry. 2012 Feb 14;51(6):1051-60 – reference: 22203965 - Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):460-5 – reference: 22404592 - Annu Rev Phys Chem. 2012;63:419-46 – reference: 23246376 - Arch Biochem Biophys. 2013 Mar;531(1-2):110-5 – reference: 22676043 - J Am Chem Soc. 2012 Jun 20;134(24):9950-2 – reference: 9465053 - Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1552-5 – reference: 18075575 - Nature. 2007 Dec 13;450(7172):964-72 – reference: 16499898 - Cryobiology. 2006 Jun;52(3):323-34 – reference: 18779573 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13859-64 – reference: 23893661 - Angew Chem Int Ed Engl. 2013 Sep 9;52(37):9705-8 – reference: 21082780 - Biochemistry. 2010 Dec 21;49(50):10636-46 – reference: 3828301 - Biochemistry. 1987 Jan 13;26(1):254-61 – reference: 15740740 - J Mol Biol. 2005 Mar 25;347(2):277-85 – reference: 4795687 - Biochemistry. 1973 Oct 9;12(21):4217-28 – reference: 22959123 - Curr Opin Struct Biol. 2012 Oct;22(5):636-42 – reference: 8918936 - J Mol Biol. 1996 Nov 8;263(4):531-8 – reference: 21829584 - PLoS One. 2011;6(7):e23050 – reference: 19089951 - Proteins. 2009 Jun;75(4):911-8 – reference: 1528885 - Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8721-5 – reference: 21367514 - Biophys Chem. 2011 Jun;156(1):24-30 – reference: 23566104 - Biochemistry. 2013 May 14;52(19):3278-88 – reference: 23561535 - Biophys J. 2013 Apr 2;104(7):1585-94 – reference: 18490656 - Proc Natl Acad Sci U S A. 2008 May 27;105(21):7439-44 – reference: 10648151 - J Magn Reson. 2000 Feb;142(2):331-40 – reference: 19081918 - Phys Chem Chem Phys. 2009 Jan 7;11(1):148-60 – reference: 22078555 - Structure. 2011 Nov 9;19(11):1549-61 – reference: 7295639 - Biochemistry. 1981 Aug 4;20(16):4667-76 – reference: 10422837 - Protein Sci. 1999 Jul;8(7):1484-91 – reference: 22147706 - J Biol Chem. 2012 Jan 20;287(4):2915-25 – reference: 24215492 - Biochemistry. 2013 Dec 23;52(51):9367-74 – reference: 20014029 - Protein Sci. 2010 Feb;19(2):269-78 – reference: 20157634 - Appl Magn Reson. 2010 Jan 1;37(1-4):363 – reference: 23611314 - Prog Nucl Magn Reson Spectrosc. 2013 May;71:35-58 – reference: 9461081 - Nat Struct Biol. 1998 Feb;5(2):148-55 – reference: 19585559 - Protein Sci. 2009 Aug;18(8):1637-52 – reference: 7251592 - J Biol Chem. 1981 Jul 25;256(14):7193-201 – reference: 9395082 - FEBS Lett. 1997 Nov 3;417(1):92-6 – reference: 12079388 - J Mol Biol. 2002 Jul 5;320(2):311-9 – reference: 19841630 - Nat Chem Biol. 2009 Nov;5(11):808-14 – reference: 2180490 - Biophys J. 1990 Feb;57(2):381-3 – reference: 10685050 - Biopolymers. 2000 Apr 5;53(4):293-307 – reference: 1749933 - Science. 1991 Dec 13;254(5038):1598-603 – reference: 11983396 - Biochim Biophys Acta. 2002 Mar 25;1595(1-2):201-9 – reference: 16968772 - Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):13997-4002 – reference: 11041843 - Biochemistry. 2000 Oct 24;39(42):12789-95 – reference: 21683504 - Biophys Chem. 2011 Nov;159(1):90-9 – reference: 9348663 - Annu Rev Phys Chem. 1997;48:545-600 – reference: 23334289 - Nat Struct Mol Biol. 2013 Feb;20(2):215-21 – reference: 22496593 - Proc Natl Acad Sci U S A. 2012 May 1;109(18):6945-50 – reference: 6712953 - Biochim Biophys Acta. 1984 Apr 27;786(1-2):103-8 – reference: 11297422 - Biochemistry. 2001 Mar 27;40(12):3561-71 – reference: 23619242 - Biochim Biophys Acta. 2013 Sep;1834(9):1910-22 – reference: 19841628 - Nat Chem Biol. 2009 Nov;5(11):789-96 – reference: 24248390 - Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):E4714-22 – reference: 23237704 - Curr Opin Struct Biol. 2013 Feb;23(1):4-10 – reference: 2653428 - Biochemistry. 1989 Jan 24;28(2):691-9 – reference: 24510645 - Curr Protoc Protein Sci. 2013;74:Unit 17.17. – reference: 8235610 - Science. 1993 Nov 5;262(5135):892-6 – reference: 21562212 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):9078-83 – reference: 17367166 - Biochemistry. 2007 Apr 10;46(14):4379-89 – reference: 8810310 - J Biol Chem. 1996 Oct 11;271(41):25419-22 – reference: 22341208 - J Magn Reson. 2012 Mar;216:69-77 |
SSID | ssj0009580 |
Score | 2.3133125 |
Snippet | The dominance of a single native state for most proteins under ambient conditions belies the functional importance of higher-energy conformational states... Excited states of proteins play functional roles, but their low population and conformational flexibility pose a challenge for characterization by most... |
SourceID | pubmedcentral proquest pubmed crossref pnas fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E1201 |
SubjectTerms | Animals Apoproteins - chemistry Atmospheric pressure Biological Sciences Data collection Electron Spin Resonance Spectroscopy - methods Electrons Freezing Genomics Heterogeneity High pressure high pressure treatment Hydrogen-Ion Concentration Hydrostatic Pressure Models, Molecular mutants myoglobin Myoglobin - chemistry Myoglobins PNAS Plus Protein Structure, Secondary Proteins Resonance spectral analysis Sperm Whale Spin Labels temperature |
Title | Mapping protein conformational heterogeneity under pressure with site-directed spin labeling and double electron–electron resonance |
URI | http://www.pnas.org/content/111/13/E1201.abstract https://www.ncbi.nlm.nih.gov/pubmed/24707053 https://www.proquest.com/docview/1515290793 https://www.proquest.com/docview/1514434081 https://www.proquest.com/docview/1803087527 https://pubmed.ncbi.nlm.nih.gov/PMC3977274 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF415cIFUV4xFLRIHIosG8fe2M6BQ1UVVdBEkUhExcXarNctothRkxzKiQu_gH_IL2HG-4gdAoJeLMderx3Pez3zDSEvCibStIAwNeY88RhIkDcDK-mJIE1SsE8QU-DSwHAUn0zZ27P-2U6n28haWi1nvvi6ta7kJlSFY0BXrJL9D8raSeEA7AN9YQsUhu0_0XjI53NVTV5h00pMIbfFiHWNI7y0Cq6W6GpjtdiVW-e94kcDlZsODqenrBo4nguYzAWuUCXquKKeVyusrDK9ckxmRGQOuDBbVVrG0U7u2BrFhUlBGJlnOlxXsGi1snA9dzxa90M-lbo9lc7odye-VU16cfvjRVWeX68aSwnVZ1VWgdVY7_w1r87Md5UP_Brc6VN1CokjF6_xru74sr300WtmzDSQw7c-elPnh2CHmarU9qVS88CFXsxUo1JrB7TW1wwfNdT6cS_U95Xmt0rG_c0AgcbErsklX_iIhIjgr2raBjvOv9T8GLIE9K2CSt7A_B4Pj9AxDxPWIbdC2InMOpSFk05VcZX-bwa0Kolebdwb0a71jVquV6fgFQL6wuhtwdVmjnDD6ZrcJXd0tEQPFevvkR1Z3iN75u3TAw2a_vI--a5lgWpZoG1ZoC1ZoLUsUCMLFGWBtmSBoixQIwsUZIEqWaCG9X9--2F2qZWCB2T65nhydOLpFiOe6AfR0iuiYpAInsZo6_J4EIpAYMsjmTLBUlnIPJKgyaRgIS-4HAgBIUIRALvNWC_nUfSQ7JZVKbuEiiBPggFnot-TLBYwV5722SAJg1imfckd4pu3nwmNv49tYC6zOg8kiTKkRbamnEMO7AVzBT3z56FdIGfGz8ExyKbvQ4SNxKWSIAkd4tSD7QwQ8PeirOZoh-wbwmdarcGsEOGEA8TNdMhzexqMDn5J5KWsVvUYxiIG4cRfxqQ12mg_TBzySPGSfQjDkQ5JWlxmByDofftM-emiBr_XcvH4xlc-IbfXumSf7C6vVvIpBBbL2bNaxn4BR5goJQ |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+protein+conformational+heterogeneity+under+pressure+with+site-directed+spin+labeling+and+double+electron%E2%80%93electron+resonance&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lerch%2C+Michael+T.&rft.au=Yang%2C+Zhongyu&rft.au=Brooks%2C+Evan+K.&rft.au=Hubbell%2C+Wayne+L.&rft.series=PNAS+Plus&rft.date=2014-04-01&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=13&rft.spage=E1201&rft.epage=E1210&rft_id=info:doi/10.1073%2Fpnas.1403179111&rft_id=info%3Apmid%2F24707053&rft.externalDocID=PMC3977274 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F13.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F13.cover.gif |