The effects of unilateral transcranial direct current stimulation on unimanual laparoscopic peg-transfer task
[Display omitted] •Anodal tDCS did not improve learning of laparoscopic peg-transfer task.•A significant effect of learning over time was observed.•Subjects performance was comparable during active and sham stimulation.•Learning over time overshadows the effect of tDCS in single-stimulation session....
Saved in:
Published in | Brain research Vol. 1771; p. 147656 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.11.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-8993 1872-6240 1872-6240 |
DOI | 10.1016/j.brainres.2021.147656 |
Cover
Loading…
Abstract | [Display omitted]
•Anodal tDCS did not improve learning of laparoscopic peg-transfer task.•A significant effect of learning over time was observed.•Subjects performance was comparable during active and sham stimulation.•Learning over time overshadows the effect of tDCS in single-stimulation session.
Efficient training methods are required for laparoscopic surgical skills training to reduce the time needed for proficiency. Transcranial direct current stimulation (tDCS) is widely used to enhance motor skill acquisition and can be used to supplement the training of laparoscopic surgical skill acquisition. The aim of this study was to investigate the effect of anodal tDCS over the primary motor cortex (M1) on the performance of a unimanual variant of the laparoscopic peg-transfer task.
Fifteen healthy subjects participated in this randomized, double-blinded crossover study involving an anodal tDCS and a sham tDCS intervention separated by 48 h. On each intervention day, subjects performed a unimanual variant of laparoscopic peg-transfer task in three sessions (baseline, tDCS, post-tDCS). The tDCS session consisted of 10 min of offline tDCS followed by 10 min of online tDCS. The scores based on the task completion time and the number of errors in each session were used as a primary outcome measure. A linear mixed-effects model was used for the analysis.
We found that the scores increased over sessions (p < 0.01). However, we found no effects of stimulation (anodal tDCS vs. sham tDCS) and no interaction of stimulation and sessions.
This study suggests that irrespective of the type of current stimulation (anodal and sham) over M1, there was an improvement in the performance of the unimanual peg-transfer task, implying that there was motor learning over time. The results would be useful in designing efficient training paradigms and further investigating the effects of tDCS on laparoscopic peg-transfer tasks. |
---|---|
AbstractList | Graphical abstract [Display omitted] •Anodal tDCS did not improve learning of laparoscopic peg-transfer task.•A significant effect of learning over time was observed.•Subjects performance was comparable during active and sham stimulation.•Learning over time overshadows the effect of tDCS in single-stimulation session. Efficient training methods are required for laparoscopic surgical skills training to reduce the time needed for proficiency. Transcranial direct current stimulation (tDCS) is widely used to enhance motor skill acquisition and can be used to supplement the training of laparoscopic surgical skill acquisition. The aim of this study was to investigate the effect of anodal tDCS over the primary motor cortex (M1) on the performance of a unimanual variant of the laparoscopic peg-transfer task. Fifteen healthy subjects participated in this randomized, double-blinded crossover study involving an anodal tDCS and a sham tDCS intervention separated by 48 h. On each intervention day, subjects performed a unimanual variant of laparoscopic peg-transfer task in three sessions (baseline, tDCS, post-tDCS). The tDCS session consisted of 10 min of offline tDCS followed by 10 min of online tDCS. The scores based on the task completion time and the number of errors in each session were used as a primary outcome measure. A linear mixed-effects model was used for the analysis. We found that the scores increased over sessions (p < 0.01). However, we found no effects of stimulation (anodal tDCS vs. sham tDCS) and no interaction of stimulation and sessions. This study suggests that irrespective of the type of current stimulation (anodal and sham) over M1, there was an improvement in the performance of the unimanual peg-transfer task, implying that there was motor learning over time. The results would be useful in designing efficient training paradigms and further investigating the effects of tDCS on laparoscopic peg-transfer tasks. Efficient training methods are required for laparoscopic surgical skills training to reduce the time needed for proficiency. Transcranial direct current stimulation (tDCS) is widely used to enhance motor skill acquisition and can be used to supplement the training of laparoscopic surgical skill acquisition. The aim of this study was to investigate the effect of anodal tDCS over the primary motor cortex (M1) on the performance of a unimanual variant of the laparoscopic peg-transfer task.INTRODUCTIONEfficient training methods are required for laparoscopic surgical skills training to reduce the time needed for proficiency. Transcranial direct current stimulation (tDCS) is widely used to enhance motor skill acquisition and can be used to supplement the training of laparoscopic surgical skill acquisition. The aim of this study was to investigate the effect of anodal tDCS over the primary motor cortex (M1) on the performance of a unimanual variant of the laparoscopic peg-transfer task.Fifteen healthy subjects participated in this randomized, double-blinded crossover study involving an anodal tDCS and a sham tDCS intervention separated by 48 h. On each intervention day, subjects performed a unimanual variant of laparoscopic peg-transfer task in three sessions (baseline, tDCS, post-tDCS). The tDCS session consisted of 10 min of offline tDCS followed by 10 min of online tDCS. The scores based on the task completion time and the number of errors in each session were used as a primary outcome measure. A linear mixed-effects model was used for the analysis.METHODSFifteen healthy subjects participated in this randomized, double-blinded crossover study involving an anodal tDCS and a sham tDCS intervention separated by 48 h. On each intervention day, subjects performed a unimanual variant of laparoscopic peg-transfer task in three sessions (baseline, tDCS, post-tDCS). The tDCS session consisted of 10 min of offline tDCS followed by 10 min of online tDCS. The scores based on the task completion time and the number of errors in each session were used as a primary outcome measure. A linear mixed-effects model was used for the analysis.We found that the scores increased over sessions (p < 0.01). However, we found no effects of stimulation (anodal tDCS vs. sham tDCS) and no interaction of stimulation and sessions.RESULTSWe found that the scores increased over sessions (p < 0.01). However, we found no effects of stimulation (anodal tDCS vs. sham tDCS) and no interaction of stimulation and sessions.This study suggests that irrespective of the type of current stimulation (anodal and sham) over M1, there was an improvement in the performance of the unimanual peg-transfer task, implying that there was motor learning over time. The results would be useful in designing efficient training paradigms and further investigating the effects of tDCS on laparoscopic peg-transfer tasks.CONCLUSIONThis study suggests that irrespective of the type of current stimulation (anodal and sham) over M1, there was an improvement in the performance of the unimanual peg-transfer task, implying that there was motor learning over time. The results would be useful in designing efficient training paradigms and further investigating the effects of tDCS on laparoscopic peg-transfer tasks. |
ArticleNumber | 147656 |
Author | Hadi, Zaeem Umbreen, Aysha Anwar, Muhammad Nabeel Navid, Muhammad Samran |
Author_xml | – sequence: 1 givenname: Zaeem surname: Hadi fullname: Hadi, Zaeem organization: Human Systems Lab, Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan – sequence: 2 givenname: Aysha surname: Umbreen fullname: Umbreen, Aysha organization: Human Systems Lab, Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan – sequence: 3 givenname: Muhammad Nabeel surname: Anwar fullname: Anwar, Muhammad Nabeel organization: Human Systems Lab, Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan – sequence: 4 givenname: Muhammad Samran surname: Navid fullname: Navid, Muhammad Samran email: samran.navid@donders.ru.nl organization: Human Systems Lab, Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan |
BookMark | eNqNkk9rFTEUxYNU8LX6FSRLN_O8yUzmD4goRa1QcGFdh_TOjeY1LzMmmUK_vZlO3XRhhZBw4ZzDuT9yyk7CFIix1wL2AkT79rC_jsaFSGkvQYq9aLpWtc_YTvSdrFrZwAnbAUBb9cNQv2CnKR3KWNcD7Njx6hdxspYwJz5ZvgTnTaZoPM_RhITlcmUYXSwSjkuMFDJP2R2XInRT4OUU19GEpei8mU2cEk6zQz7Tz-o-xVLk2aSbl-y5NT7Rq4f3jP34_Onq_KK6_Pbl6_nHywoV1LkqfUZCUICdRStE00pQZKkfQXSNKVuYoSE1DqOlWo0Gu84OLViEIrpWqj5jb7bcOU6_F0pZH11C8t4EmpakperEIFXfrdJ3mxRL7RTJanT5frHS3HktQK-U9UH_paxXynqjXOztI_scC4t497Txw2akwuHWUdQJHQWkjbQeJ_d0xPtHEehdcGj8Dd1ROkxLDIWyFjpJDfr7-gfWLyAFgBJ1_--A_2nwB4aiy24 |
CitedBy_id | crossref_primary_10_1038_s41598_023_47404_1 crossref_primary_10_1038_s41598_023_40440_x |
Cites_doi | 10.1097/01.wnr.0000127637.22805.7c 10.1016/j.cortex.2014.03.006 10.1016/j.neuropsychologia.2008.07.007 10.1016/j.brainres.2019.146445 10.1016/j.neulet.2006.05.051 10.1016/j.brs.2015.04.010 10.1016/S1353-8020(09)70781-3 10.1016/j.clinph.2016.10.087 10.1097/WCO.0b013e32834c3db0 10.1016/j.jpedsurg.2011.02.026 10.1007/978-3-319-74727-9_44 10.1016/j.neulet.2016.01.039 10.1111/j.1460-9568.2007.05896.x 10.1016/j.neuropsychologia.2010.11.015 10.1016/j.brainres.2019.01.003 10.1007/s13311-019-00780-x 10.1007/978-0-85729-763-1 10.1111/j.1460-9568.2012.08175.x 10.3758/BF03193146 10.1212/WNL.57.10.1899 10.1177/1073858409336227 10.1016/j.drugalcdep.2007.06.011 10.1016/j.amjsurg.2011.07.001 10.1371/journal.pone.0085693 10.1016/j.brainres.2013.07.026 10.1007/s00464-010-1349-7 10.1038/srep35739 10.1111/j.1469-7793.2000.t01-1-00633.x 10.3758/s13423-020-01798-5 10.1002/bjs5.43 10.1007/s00464-010-1058-2 10.1371/journal.pone.0067344 10.3389/fpsyg.2016.00685 10.1016/j.brainres.2014.07.021 10.1016/j.brs.2015.06.018 10.1073/pnas.0805413106 10.1016/j.jss.2016.11.054 10.1080/09602011.2011.557292 10.1038/sj.npp.1300517 10.1016/S0002-9610(98)00080-4 10.1097/01.wnr.0000177010.44602.5e 10.1016/j.neuropsychologia.2008.02.023 10.1523/JNEUROSCI.0055-13.2013 10.1162/089892903321662994 10.1093/brain/awf238 10.1038/nn.3616 10.1016/j.brs.2014.11.006 10.1016/j.brs.2020.03.009 10.1016/j.clinph.2017.01.004 10.1016/j.juro.2013.03.115 10.1016/j.neuropsychologia.2011.02.009 10.1111/j.1460-9568.2004.03367.x 10.1016/S1567-424X(09)70230-2 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) The Author(s) Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 The Author(s) – notice: The Author(s) – notice: Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION 7X8 |
DOI | 10.1016/j.brainres.2021.147656 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1872-6240 |
EndPage | 147656 |
ExternalDocumentID | 10_1016_j_brainres_2021_147656 S0006899321005138 1_s2_0_S0006899321005138 |
GroupedDBID | --- --K --M -DZ -~X .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5RE 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABCQJ ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABTEW ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SES SPCBC SSN SSZ T5K Z5R ZGI ~G- .55 .GJ 41~ 53G 5VS AACTN AAQXK AAYJJ ABWVN ABXDB ACRPL ADIYS ADMUD ADNMO AFCTW AFJKZ AFKWA AGHFR AHHHB AI. AJOXV AMFUW ASPBG AVWKF AZFZN EJD FEDTE FGOYB G-2 HMQ HVGLF HZ~ MVM PKN R2- RIG SEW SNS VH1 WUQ X7M XPP 6I. AADPK AAFTH AAIAV ABYKQ EFLBG AAYXX AGQPQ AGRNS BNPGV CITATION SSH 7X8 |
ID | FETCH-LOGICAL-c503t-effdec050c7fcf1146205efe8d0174a993a94e5d9dfe35dac77f960fc0efeb553 |
IEDL.DBID | .~1 |
ISSN | 0006-8993 1872-6240 |
IngestDate | Fri Jul 11 06:36:53 EDT 2025 Tue Jul 01 04:35:00 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 Fri Feb 23 02:43:29 EST 2024 Tue Feb 25 20:01:17 EST 2025 Tue Aug 26 16:34:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Primary motor cortex Laparoscopic training Peg-transfer task tDCS Motor learning Uni-manual task |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c503t-effdec050c7fcf1146205efe8d0174a993a94e5d9dfe35dac77f960fc0efeb553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0006899321005138 |
PQID | 2571925875 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2571925875 crossref_citationtrail_10_1016_j_brainres_2021_147656 crossref_primary_10_1016_j_brainres_2021_147656 elsevier_sciencedirect_doi_10_1016_j_brainres_2021_147656 elsevier_clinicalkeyesjournals_1_s2_0_S0006899321005138 elsevier_clinicalkey_doi_10_1016_j_brainres_2021_147656 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-15 |
PublicationDateYYYYMMDD | 2021-11-15 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Brain research |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Korndorffer, Bellows, Tekian, Harris, Downing (b0145) 2012; 203 Antal, Terney, Poreisz, Paulus (b0020) 2007; 26 Boggio, Sultani, Fecteau, Merabet, Mecca, Pascual-Leone, Basaglia, Fregni (b0055) 2008; 92 Cox, Deng, Palmer, Watts, Beynel, Young, Lisanby, Migaly, Appelbaum (b0090) 2020; 13 Azzie, Gerstle, Nasr, Lasko, Green, Henao, Farcas, Okrainec (b0030) 2011; 46 Ciechanski, Cheng, Damji, Lopushinsky, Hecker, Jadavji, Kirton (b0070) 2018; 2 Galletta, Cancelli, Cottone, Simonelli, Tecchio, Bikson, Marangolo (b0120) 2015; 8 Reis, J., Fritsch, B., 2011. Modulation of motor performance and motor learning by transcranial direct current stimulation. Curr. Opin. Neurol. https://doi.org/10.1097/WCO.0b013e32834c3db0. Sriraman, Oishi, Madhavan (b0265) 2014; 1581 Nitsche, Schauenburg, Lang, Liebetanz, Exner, Paulus, Tergau (b0215) 2003; 15 Nguyen, Braga, Hoogenes, Matsumoto (b0185) 2013; 190 Cox, Zeng, Frisella, Brunt (b0085) 2011; 25 Bortoletto, Pellicciari, Rodella, Miniussi (b0045) 2015; 8 Antal, Begemeier, Nitsche, Paulus (b0025) 2008; 46 Kantak, Mummidisetty, Stinear (b0130) 2012; 36 Palter, Orzech, Aggarwal, Okrainec, Grantcharov (b0220) 2010; 24 Bolognini, Rossetti, Casati, Mancini, Vallar (b0060) 2011; 49 Reis, Schambra, Cohen, Buch, Fritsch, Zarahn, Celnik, Krakauer (b0245) 2009; 106 Quartarone, Morgante, Bagnato, Rizzo, Sant’Angelo, Aiello, Reggio, Battaglia, Messina, Girlanda (b0235) 2004; 15 Spruit, Kleijweg, Band, Hamming (b0260) 2016; 7 Antal, Nitsche, Kincses, Kruse, Hoffmann, Paulus (b0015) 2004; 19 Kuo, Unger, Liebetanz, Lang, Tergau, Paulus, Nitsche (b0155) 2008; 46 Soekadar, Witkowski, Cossio, Birbaumer, Cohen (b0255) 2014; 8 Schmidt, Lee, Winstein, Wulf, Zelaznik (b0250) 2018 Paulus (b0225) 2011; 21 Ciechanski, Kirton, Wilson, Williams, Anderson, Cheng, Lopushinsky, Hecker (b0075) 2019; 1725 Lindenberg, Nachtigall, Meinzer, Sieg, Flöel (b0170) 2013; 33 Wu, H. G., Miyamoto, Y. R., Castro, L. N. G., Ölveczky, B. P., & Smith, M. A. (2014). Temporal structure of motor variability is dynamically regulated and predicts motor learning ability. Nature Neuroscience 2014 17:2, 17(2), 312–321. https://doi.org/10.1038/nn.3616. Faul, F., Erdfelder, E., Lang, A.G., Buchner, A., 2007. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences, in: Behavior Research Methods. Psychonomic Society Inc., pp. 175–191. https://doi.org/10.3758/BF03193146. Nitsche, Liebetanz, Antal, Lang, Tergau, Paulus (b0200) 2003; 56 Philip, N. S., Sorensen, D. O., McCalley, D. M., & Hanlon, C. A. (2019). Non-invasive Brain Stimulation for Alcohol Use Disorders: State of the Art and Future Directions. Neurotherapeutics 2019 17:1, 17(1), 116–126. https://doi.org/10.1007/S13311-019-00780-X. Convento, Bolognini, Fusaro, Lollo, Vallar (b0080) 2014; 57 Ambrus, Chaieb, Stilling, Rothkegel, Antal, Paulus (b0010) 2016; 616 Vancleef, Meesen, Swinnen, Fujiyama (b0280) 2016; 6 Nitsche, Paulus (b0205) 2001; 57 Nitsche, Jaussi, Liebetanz, Lang, Tergau, Paulus (b0195) 2004; 29 Buch, E. R., Santarnecchi, E., Antal, A., Born, J., Celnik, P. A., Classen, J., Gerloff, C., Hallett, M., Hummel, F. C., Nitsche, M. A., Pascual-Leone, A., Paulus, W. J., Reis, J., Robertson, E. M., Rothwell, J. C., Sandrini, M., Schambra, H. M., Wassermann, E. M., Ziemann, U., & Cohen, L. G. (2017). Effects of tDCS on motor learning and memory formation: A consensus and critical position paper. In Clinical Neurophysiology (Vol. 128, Issue 4, pp. 589–603). Elsevier Ireland Ltd. https://doi.org/10.1016/j.clinph.2017.01.004. Fregni, Boggio, Mansur, Wagner, Ferreira, Lima, Rigonatti, Marcolin, Freedman, Nitsche, Pascual-Leone (b0110) 2005; 16 van Doorn, J., van den Bergh, D., Böhm, U., Dablander, F., Derks, K., Draws, T., Etz, A., Evans, N. J., Gronau, Q. F., Haaf, J. M., Hinne, M., Kucharský, Š., Ly, A., Marsman, M., Matzke, D., Gupta, A. R. K. N., Sarafoglou, A., Stefan, A., Voelkel, J. G., & Wagenmakers, E. J. (2020). The JASP guidelines for conducting and reporting a Bayesian analysis. In Psychonomic Bulletin and Review (Vol. 28, Issue 3, pp. 813–826). Springer. https://doi.org/10.3758/s13423-020-01798-5. Derossis, Fried, Abrahamowicz, Sigman, Barkun, Meakins (b0100) 1998; 175 Horvath, Carter, Forte (b0125) 2014 Stagg, Jayaram, Pastor, Kincses, Matthews, Johansen-Berg (b0270) 2011; 49 Zaghi, S., Acar, M., Hultgren, B., Boggio, P.S., Fregni, F., 2010. Noninvasive brain stimulation with low-intensity electrical currents: putative mechanisms of action for direct and alternating current stimulation. Neuroscientist 16, 285–307. https://doi.org/10.1177/1073858409336227. Liebetanz, Nitsche, Tergau, Paulus (b0165) 2002; 125 Lefaucheur, J. P., Antal, A., Ayache, S. S., Benninger, D. H., Brunelin, J., Cogiamanian, F., Cotelli, M., De Ridder, D., Ferrucci, R., Langguth, B., Marangolo, P., Mylius, V., Nitsche, M. A., Padberg, F., Palm, U., Poulet, E., Priori, A., Rossi, S., Schecklmann, M., … Paulus, W. (2017). Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). In Clinical Neurophysiology (Vol. 128, Issue 1, pp. 56–92). Elsevier Ireland Ltd. https://doi.org/10.1016/j.clinph.2016.10.087. Miyaguchi, Onishi, Kojima, Sugawara, Tsubaki, Kirimoto, Tamaki, Yamamoto (b0180) 2013; 1529 Berg, Inaba, Sullivan, Okoye, Siboni, Minneti, Teixeira, Demetriades (b0035) 2015; 157 Nitsche, Paulus (b0210) 2000; 527 Nieuwboer, Rochester, Müncks, Swinnen (b0190) 2009; 15 Amadi, Allman, Johansen-Berg, Stagg (b0005) 2015; 8 Cuypers, Leenus, van den Berg, Nitsche, Thijs, Wenderoth, Meesen, Foffani (b0095) 2013; 8 Klempous, R., Rozenblit, J.W., Kluwak, K., Nikodem, J., Patkowski, D., Gerus, S., Palczewski, M., Kiełbowicz, Z., Wytyczak-Partyka, A., 2018. Our Early Experience Concerning an Assessment of Laparoscopy Training Systems, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag, pp. 372–379. https://doi.org/10.1007/978-3-319-74727-9_44. Karok, S., & Witney, A. G. (2013). Enhanced motor learning following task-concurrent dual transcranial direct current stimulation. PLoS ONE, 8(12), 85693. https://doi.org/10.1371/journal.pone.0085693. Gallagher, A.G., O’Sullivan, G.C., 2012. Fundamentals of Surgical Simulation: Principles and Practice, Fundamentals of Surgical Simulation: Principles and Practice. Springer London. https://doi.org/10.1007/978-0-85729-763-1. Krause, Meier, Dinkelbach, Pollok (b0150) 2016; 10 Besson, Muthalib, Dray, Rothwell, Perrey (b0040) 2019; 1710 Boggio, Castro, Savagim, Braite, Cruz, Rocha, Rigonatti, Silva, Fregni (b0050) 2006; 404 Matzke, Ziegler, Martin, Crawford, Sutton (b0175) 2017; 211 Antal (10.1016/j.brainres.2021.147656_b0015) 2004; 19 10.1016/j.brainres.2021.147656_b0140 10.1016/j.brainres.2021.147656_b0065 10.1016/j.brainres.2021.147656_b0105 Palter (10.1016/j.brainres.2021.147656_b0220) 2010; 24 Ciechanski (10.1016/j.brainres.2021.147656_b0075) 2019; 1725 Ambrus (10.1016/j.brainres.2021.147656_b0010) 2016; 616 Nitsche (10.1016/j.brainres.2021.147656_b0205) 2001; 57 Amadi (10.1016/j.brainres.2021.147656_b0005) 2015; 8 Reis (10.1016/j.brainres.2021.147656_b0245) 2009; 106 Soekadar (10.1016/j.brainres.2021.147656_b0255) 2014; 8 Spruit (10.1016/j.brainres.2021.147656_b0260) 2016; 7 Paulus (10.1016/j.brainres.2021.147656_b0225) 2011; 21 Lindenberg (10.1016/j.brainres.2021.147656_b0170) 2013; 33 Nitsche (10.1016/j.brainres.2021.147656_b0210) 2000; 527 Vancleef (10.1016/j.brainres.2021.147656_b0280) 2016; 6 Berg (10.1016/j.brainres.2021.147656_b0035) 2015; 157 10.1016/j.brainres.2021.147656_b0135 Antal (10.1016/j.brainres.2021.147656_b0020) 2007; 26 Boggio (10.1016/j.brainres.2021.147656_b0050) 2006; 404 Fregni (10.1016/j.brainres.2021.147656_b0110) 2005; 16 Korndorffer (10.1016/j.brainres.2021.147656_b0145) 2012; 203 Nitsche (10.1016/j.brainres.2021.147656_b0215) 2003; 15 Stagg (10.1016/j.brainres.2021.147656_b0270) 2011; 49 Derossis (10.1016/j.brainres.2021.147656_b0100) 1998; 175 Matzke (10.1016/j.brainres.2021.147656_b0175) 2017; 211 Cox (10.1016/j.brainres.2021.147656_b0085) 2011; 25 10.1016/j.brainres.2021.147656_b0290 10.1016/j.brainres.2021.147656_b0240 10.1016/j.brainres.2021.147656_b0285 Cox (10.1016/j.brainres.2021.147656_b0090) 2020; 13 Schmidt (10.1016/j.brainres.2021.147656_b0250) 2018 Besson (10.1016/j.brainres.2021.147656_b0040) 2019; 1710 Convento (10.1016/j.brainres.2021.147656_b0080) 2014; 57 Nguyen (10.1016/j.brainres.2021.147656_b0185) 2013; 190 Cuypers (10.1016/j.brainres.2021.147656_b0095) 2013; 8 Kuo (10.1016/j.brainres.2021.147656_b0155) 2008; 46 Antal (10.1016/j.brainres.2021.147656_b0025) 2008; 46 Quartarone (10.1016/j.brainres.2021.147656_b0235) 2004; 15 Galletta (10.1016/j.brainres.2021.147656_b0120) 2015; 8 Horvath (10.1016/j.brainres.2021.147656_b0125) 2014 10.1016/j.brainres.2021.147656_b0160 10.1016/j.brainres.2021.147656_b0275 10.1016/j.brainres.2021.147656_b0230 Kantak (10.1016/j.brainres.2021.147656_b0130) 2012; 36 Bortoletto (10.1016/j.brainres.2021.147656_b0045) 2015; 8 Ciechanski (10.1016/j.brainres.2021.147656_b0070) 2018; 2 Miyaguchi (10.1016/j.brainres.2021.147656_b0180) 2013; 1529 10.1016/j.brainres.2021.147656_b0115 Liebetanz (10.1016/j.brainres.2021.147656_b0165) 2002; 125 Nitsche (10.1016/j.brainres.2021.147656_b0200) 2003; 56 Boggio (10.1016/j.brainres.2021.147656_b0055) 2008; 92 Azzie (10.1016/j.brainres.2021.147656_b0030) 2011; 46 Nieuwboer (10.1016/j.brainres.2021.147656_b0190) 2009; 15 Nitsche (10.1016/j.brainres.2021.147656_b0195) 2004; 29 Sriraman (10.1016/j.brainres.2021.147656_b0265) 2014; 1581 Bolognini (10.1016/j.brainres.2021.147656_b0060) 2011; 49 Krause (10.1016/j.brainres.2021.147656_b0150) 2016; 10 |
References_xml | – start-page: 2 year: 2014 ident: b0125 article-title: Transcranial direct current stimulation: five important issues we aren’t discussing (but probably should be) publication-title: Front. Syst. Neurosci. – reference: Reis, J., Fritsch, B., 2011. Modulation of motor performance and motor learning by transcranial direct current stimulation. Curr. Opin. Neurol. https://doi.org/10.1097/WCO.0b013e32834c3db0. – reference: Wu, H. G., Miyamoto, Y. R., Castro, L. N. G., Ölveczky, B. P., & Smith, M. A. (2014). Temporal structure of motor variability is dynamically regulated and predicts motor learning ability. Nature Neuroscience 2014 17:2, 17(2), 312–321. https://doi.org/10.1038/nn.3616. – volume: 1710 start-page: 181 year: 2019 end-page: 187 ident: b0040 article-title: Concurrent anodal transcranial direct-current stimulation and motor task to influence sensorimotor cortex activation publication-title: Brain Res. – volume: 106 start-page: 1590 year: 2009 end-page: 1595 ident: b0245 article-title: Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation publication-title: Proc. Natl. Acad. Sci. – volume: 13 start-page: 863 year: 2020 end-page: 872 ident: b0090 article-title: Utilizing transcranial direct current stimulation to enhance laparoscopic technical skills training: A randomized controlled trial publication-title: Brain Stimulation – volume: 8 start-page: 1108 year: 2015 end-page: 1115 ident: b0120 article-title: Use of Computational Modeling to Inform tDCS Electrode Montages for the Promotion of Language Recovery in Post-stroke Aphasia publication-title: Brain Stimulation – volume: 26 start-page: 2687 year: 2007 end-page: 2691 ident: b0020 article-title: Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex publication-title: Eur. J. Neurosci. – volume: 125 start-page: 2238 year: 2002 end-page: 2247 ident: b0165 article-title: Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability publication-title: Brain – volume: 211 start-page: 191 year: 2017 end-page: 195 ident: b0175 article-title: Usefulness of virtual reality in assessment of medical student laparoscopic skill publication-title: J. Surg. Res. – volume: 57 start-page: 1899 year: 2001 end-page: 1901 ident: b0205 article-title: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans publication-title: Neurology – volume: 2 start-page: 70 year: 2018 end-page: 78 ident: b0070 article-title: Effects of transcranial direct-current stimulation on laparoscopic surgical skill acquisition publication-title: BJS Open – volume: 33 start-page: 9176 year: 2013 end-page: 9183 ident: b0170 article-title: Differential effects of dual and unihemispheric motor cortex stimulation in older adults publication-title: J. Neurosci. – volume: 25 start-page: 1238 year: 2011 end-page: 1244 ident: b0085 article-title: Analysis of standard multiport versus single-site access for laparoscopic skills training publication-title: Surg. Endosc. – reference: Gallagher, A.G., O’Sullivan, G.C., 2012. Fundamentals of Surgical Simulation: Principles and Practice, Fundamentals of Surgical Simulation: Principles and Practice. Springer London. https://doi.org/10.1007/978-0-85729-763-1. – volume: 1725 start-page: 146445 year: 2019 ident: b0075 article-title: Electroencephalography correlates of transcranial direct-current stimulation enhanced surgical skill learning: A replication and extension study publication-title: Brain Res. – volume: 49 start-page: 800 year: 2011 end-page: 804 ident: b0270 article-title: Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning publication-title: Neuropsychologia – volume: 46 start-page: 3157 year: 2008 end-page: 3161 ident: b0025 article-title: Prior state of cortical activity influences subsequent practicing of a visuomotor coordination task publication-title: Neuropsychologia – volume: 1529 start-page: 83 year: 2013 end-page: 91 ident: b0180 article-title: Corticomotor excitability induced by anodal transcranial direct current stimulation with and without non-exhaustive movement publication-title: Brain Res. – reference: van Doorn, J., van den Bergh, D., Böhm, U., Dablander, F., Derks, K., Draws, T., Etz, A., Evans, N. J., Gronau, Q. F., Haaf, J. M., Hinne, M., Kucharský, Š., Ly, A., Marsman, M., Matzke, D., Gupta, A. R. K. N., Sarafoglou, A., Stefan, A., Voelkel, J. G., & Wagenmakers, E. J. (2020). The JASP guidelines for conducting and reporting a Bayesian analysis. In Psychonomic Bulletin and Review (Vol. 28, Issue 3, pp. 813–826). Springer. https://doi.org/10.3758/s13423-020-01798-5. – volume: 46 start-page: 897 year: 2011 end-page: 903 ident: b0030 article-title: Development and validation of a pediatric laparoscopic surgery simulator publication-title: J. Pediatr. Surg. – reference: Lefaucheur, J. P., Antal, A., Ayache, S. S., Benninger, D. H., Brunelin, J., Cogiamanian, F., Cotelli, M., De Ridder, D., Ferrucci, R., Langguth, B., Marangolo, P., Mylius, V., Nitsche, M. A., Padberg, F., Palm, U., Poulet, E., Priori, A., Rossi, S., Schecklmann, M., … Paulus, W. (2017). Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). In Clinical Neurophysiology (Vol. 128, Issue 1, pp. 56–92). Elsevier Ireland Ltd. https://doi.org/10.1016/j.clinph.2016.10.087. – volume: 8 start-page: 269 year: 2015 end-page: 276 ident: b0045 article-title: The interaction with task-induced activity is more important than polarization: A tDCS study publication-title: Brain Stimulation – reference: Buch, E. R., Santarnecchi, E., Antal, A., Born, J., Celnik, P. A., Classen, J., Gerloff, C., Hallett, M., Hummel, F. C., Nitsche, M. A., Pascual-Leone, A., Paulus, W. J., Reis, J., Robertson, E. M., Rothwell, J. C., Sandrini, M., Schambra, H. M., Wassermann, E. M., Ziemann, U., & Cohen, L. G. (2017). Effects of tDCS on motor learning and memory formation: A consensus and critical position paper. In Clinical Neurophysiology (Vol. 128, Issue 4, pp. 589–603). Elsevier Ireland Ltd. https://doi.org/10.1016/j.clinph.2017.01.004. – volume: 36 start-page: 2710 year: 2012 end-page: 2715 ident: b0130 article-title: Primary motor and premotor cortex in implicit sequence learning - Evidence for competition between implicit and explicit human motor memory systems publication-title: Eur. J. Neurosci. – volume: 1581 start-page: 23 year: 2014 end-page: 29 ident: b0265 article-title: Timing-dependent priming effects of tDCS on ankle motor skill learning publication-title: Brain Res. – reference: Zaghi, S., Acar, M., Hultgren, B., Boggio, P.S., Fregni, F., 2010. Noninvasive brain stimulation with low-intensity electrical currents: putative mechanisms of action for direct and alternating current stimulation. Neuroscientist 16, 285–307. https://doi.org/10.1177/1073858409336227. – volume: 175 start-page: 482 year: 1998 end-page: 487 ident: b0100 article-title: Development of a model for training and evaluation of laparoscopic skills publication-title: Am. J. Surg. – volume: 616 start-page: 98 year: 2016 end-page: 104 ident: b0010 article-title: Monitoring transcranial direct current stimulation induced changes in cortical excitability during the serial reaction time task publication-title: Neurosci. Lett. – volume: 6 start-page: 1 year: 2016 end-page: 11 ident: b0280 article-title: tDCS over left M1 or DLPFC does not improve learning of a bimanual coordination task publication-title: Sci. Rep. – volume: 24 start-page: 2830 year: 2010 end-page: 2834 ident: b0220 article-title: Resident perceptions of advanced laparoscopic skills training publication-title: Surg. Endosc. – volume: 8 start-page: 93 year: 2014 ident: b0255 article-title: Learned EEG-based brain self-regulation of motor-related oscillations during application of transcranial electric brain stimulation: Feasibility and limitations publication-title: Front. Behav. Neurosci. – volume: 7 start-page: 685 year: 2016 ident: b0260 article-title: Varied Practice in Laparoscopy Training: Beneficial Learning Stimulation or Cognitive Overload? publication-title: Front. Psychol. – volume: 92 start-page: 55 year: 2008 end-page: 60 ident: b0055 article-title: Prefrontal cortex modulation using transcranial DC stimulation reduces alcohol craving: A double-blind, sham-controlled study publication-title: Drug Alcohol Depend. – reference: Faul, F., Erdfelder, E., Lang, A.G., Buchner, A., 2007. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences, in: Behavior Research Methods. Psychonomic Society Inc., pp. 175–191. https://doi.org/10.3758/BF03193146. – volume: 56 start-page: 255 year: 2003 end-page: 276 ident: b0200 article-title: Modulation of cortical excitability by weak direct current stimulation - technical, safety and functional aspects publication-title: Suppl. Clin. Neurophysiol. – volume: 57 start-page: 51 year: 2014 end-page: 59 ident: b0080 article-title: Neuromodulation of parietal and motor activity affects motor planning and execution publication-title: Cortex – reference: Klempous, R., Rozenblit, J.W., Kluwak, K., Nikodem, J., Patkowski, D., Gerus, S., Palczewski, M., Kiełbowicz, Z., Wytyczak-Partyka, A., 2018. Our Early Experience Concerning an Assessment of Laparoscopy Training Systems, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag, pp. 372–379. https://doi.org/10.1007/978-3-319-74727-9_44. – volume: 15 start-page: 619 year: 2003 end-page: 626 ident: b0215 article-title: Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human publication-title: J. Cogn. Neurosci. – year: 2018 ident: b0250 article-title: Motor control and learning: A behavioral emphasis publication-title: Human kinetics. – reference: Karok, S., & Witney, A. G. (2013). Enhanced motor learning following task-concurrent dual transcranial direct current stimulation. PLoS ONE, 8(12), 85693. https://doi.org/10.1371/journal.pone.0085693. – volume: 21 start-page: 602 year: 2011 end-page: 617 ident: b0225 article-title: Transcranial electrical stimulation (tES – tDCS; tRNS, tACS) methods publication-title: Neuropsychol. Rehabil. – volume: 190 start-page: 894 year: 2013 end-page: 899 ident: b0185 article-title: Commercial Video Laparoscopic Trainers versus Less Expensive, Simple Laparoscopic Trainers: A Systematic Review and Meta-Analysis publication-title: J. Urol. – volume: 15 start-page: 1287 year: 2004 end-page: 1291 ident: b0235 article-title: Long lasting effects of transcranial direct current stimulation on motor imagery publication-title: NeuroReport – volume: 404 start-page: 232 year: 2006 end-page: 236 ident: b0050 article-title: Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation publication-title: Neurosci. Lett. – volume: 15 start-page: S53 year: 2009 end-page: S58 ident: b0190 article-title: Motor learning in Parkinson’s disease: limitations and potential for rehabilitation publication-title: Park. Relat. Disord. – volume: 203 start-page: 1 year: 2012 end-page: 7 ident: b0145 article-title: Effective home laparoscopic simulation training: A preliminary evaluation of an improved training paradigm publication-title: Am. J. Surg. – volume: 46 start-page: 2122 year: 2008 end-page: 2128 ident: b0155 article-title: Limited impact of homeostatic plasticity on motor learning in humans publication-title: Neuropsychologia – volume: 8 start-page: 898 year: 2015 end-page: 905 ident: b0005 article-title: The homeostatic interaction between anodal transcranial direct current stimulation and motor learning in humans is related to GABAA activity publication-title: Brain Stimulation – volume: 157 start-page: 87 year: 2015 end-page: 95 ident: b0035 article-title: The impact of heat stress on operative performance and cognitive function during simulated laparoscopic operative tasks publication-title: Surgery (United States) – volume: 10 start-page: 4 year: 2016 ident: b0150 article-title: Beta band transcranial alternating (tACS) and direct current stimulation (tDCS) applied after initial learning facilitate retrieval of a motor sequence publication-title: Front. Behav. Neurosci. – volume: 29 start-page: 1573 year: 2004 end-page: 1578 ident: b0195 article-title: Consolidation of human motor cortical neuroplasticity by D-cycloserine publication-title: Neuropsychopharmacology – volume: 16 start-page: 1551 year: 2005 end-page: 1555 ident: b0110 article-title: Transcranial direct current stimulation of the unaffected hemisphere in stroke patients publication-title: NeuroReport – volume: 19 start-page: 2888 year: 2004 end-page: 2892 ident: b0015 article-title: Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans publication-title: Eur. J. Neurosci. – volume: 49 start-page: 231 year: 2011 end-page: 237 ident: b0060 article-title: Neuromodulation of multisensory perception: A tDCS study of the sound-induced flash illusion publication-title: Neuropsychologia – volume: 527 start-page: 633 year: 2000 end-page: 639 ident: b0210 article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation publication-title: J Physiol – volume: 8 start-page: e67344 year: 2013 ident: b0095 article-title: Is Motor Learning Mediated by tDCS Intensity? publication-title: PLoS ONE – reference: Philip, N. S., Sorensen, D. O., McCalley, D. M., & Hanlon, C. A. (2019). Non-invasive Brain Stimulation for Alcohol Use Disorders: State of the Art and Future Directions. Neurotherapeutics 2019 17:1, 17(1), 116–126. https://doi.org/10.1007/S13311-019-00780-X. – volume: 15 start-page: 1287 issue: 8 year: 2004 ident: 10.1016/j.brainres.2021.147656_b0235 article-title: Long lasting effects of transcranial direct current stimulation on motor imagery publication-title: NeuroReport doi: 10.1097/01.wnr.0000127637.22805.7c – volume: 57 start-page: 51 year: 2014 ident: 10.1016/j.brainres.2021.147656_b0080 article-title: Neuromodulation of parietal and motor activity affects motor planning and execution publication-title: Cortex doi: 10.1016/j.cortex.2014.03.006 – volume: 46 start-page: 3157 issue: 13 year: 2008 ident: 10.1016/j.brainres.2021.147656_b0025 article-title: Prior state of cortical activity influences subsequent practicing of a visuomotor coordination task publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2008.07.007 – volume: 1725 start-page: 146445 year: 2019 ident: 10.1016/j.brainres.2021.147656_b0075 article-title: Electroencephalography correlates of transcranial direct-current stimulation enhanced surgical skill learning: A replication and extension study publication-title: Brain Res. doi: 10.1016/j.brainres.2019.146445 – volume: 404 start-page: 232 issue: 1-2 year: 2006 ident: 10.1016/j.brainres.2021.147656_b0050 article-title: Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2006.05.051 – start-page: 2 issue: JAN year: 2014 ident: 10.1016/j.brainres.2021.147656_b0125 article-title: Transcranial direct current stimulation: five important issues we aren’t discussing (but probably should be) publication-title: Front. Syst. Neurosci. – volume: 8 start-page: 898 issue: 5 year: 2015 ident: 10.1016/j.brainres.2021.147656_b0005 article-title: The homeostatic interaction between anodal transcranial direct current stimulation and motor learning in humans is related to GABAA activity publication-title: Brain Stimulation doi: 10.1016/j.brs.2015.04.010 – volume: 15 start-page: S53 year: 2009 ident: 10.1016/j.brainres.2021.147656_b0190 article-title: Motor learning in Parkinson’s disease: limitations and potential for rehabilitation publication-title: Park. Relat. Disord. doi: 10.1016/S1353-8020(09)70781-3 – ident: 10.1016/j.brainres.2021.147656_b0160 doi: 10.1016/j.clinph.2016.10.087 – ident: 10.1016/j.brainres.2021.147656_b0240 doi: 10.1097/WCO.0b013e32834c3db0 – volume: 46 start-page: 897 issue: 5 year: 2011 ident: 10.1016/j.brainres.2021.147656_b0030 article-title: Development and validation of a pediatric laparoscopic surgery simulator publication-title: J. Pediatr. Surg. doi: 10.1016/j.jpedsurg.2011.02.026 – ident: 10.1016/j.brainres.2021.147656_b0140 doi: 10.1007/978-3-319-74727-9_44 – volume: 616 start-page: 98 year: 2016 ident: 10.1016/j.brainres.2021.147656_b0010 article-title: Monitoring transcranial direct current stimulation induced changes in cortical excitability during the serial reaction time task publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2016.01.039 – volume: 26 start-page: 2687 issue: 9 year: 2007 ident: 10.1016/j.brainres.2021.147656_b0020 article-title: Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2007.05896.x – volume: 49 start-page: 231 issue: 2 year: 2011 ident: 10.1016/j.brainres.2021.147656_b0060 article-title: Neuromodulation of multisensory perception: A tDCS study of the sound-induced flash illusion publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2010.11.015 – volume: 1710 start-page: 181 year: 2019 ident: 10.1016/j.brainres.2021.147656_b0040 article-title: Concurrent anodal transcranial direct-current stimulation and motor task to influence sensorimotor cortex activation publication-title: Brain Res. doi: 10.1016/j.brainres.2019.01.003 – ident: 10.1016/j.brainres.2021.147656_b0230 doi: 10.1007/s13311-019-00780-x – ident: 10.1016/j.brainres.2021.147656_b0115 doi: 10.1007/978-0-85729-763-1 – volume: 10 start-page: 4 issue: JAN year: 2016 ident: 10.1016/j.brainres.2021.147656_b0150 article-title: Beta band transcranial alternating (tACS) and direct current stimulation (tDCS) applied after initial learning facilitate retrieval of a motor sequence publication-title: Front. Behav. Neurosci. – volume: 157 start-page: 87 issue: 1 year: 2015 ident: 10.1016/j.brainres.2021.147656_b0035 article-title: The impact of heat stress on operative performance and cognitive function during simulated laparoscopic operative tasks publication-title: Surgery (United States) – year: 2018 ident: 10.1016/j.brainres.2021.147656_b0250 article-title: Motor control and learning: A behavioral emphasis publication-title: Human kinetics. – volume: 8 start-page: 93 issue: MAR year: 2014 ident: 10.1016/j.brainres.2021.147656_b0255 article-title: Learned EEG-based brain self-regulation of motor-related oscillations during application of transcranial electric brain stimulation: Feasibility and limitations publication-title: Front. Behav. Neurosci. – volume: 36 start-page: 2710 issue: 5 year: 2012 ident: 10.1016/j.brainres.2021.147656_b0130 article-title: Primary motor and premotor cortex in implicit sequence learning - Evidence for competition between implicit and explicit human motor memory systems publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2012.08175.x – ident: 10.1016/j.brainres.2021.147656_b0105 doi: 10.3758/BF03193146 – volume: 57 start-page: 1899 issue: 10 year: 2001 ident: 10.1016/j.brainres.2021.147656_b0205 article-title: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans publication-title: Neurology doi: 10.1212/WNL.57.10.1899 – ident: 10.1016/j.brainres.2021.147656_b0290 doi: 10.1177/1073858409336227 – volume: 92 start-page: 55 issue: 1–3 year: 2008 ident: 10.1016/j.brainres.2021.147656_b0055 article-title: Prefrontal cortex modulation using transcranial DC stimulation reduces alcohol craving: A double-blind, sham-controlled study publication-title: Drug Alcohol Depend. doi: 10.1016/j.drugalcdep.2007.06.011 – volume: 203 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.brainres.2021.147656_b0145 article-title: Effective home laparoscopic simulation training: A preliminary evaluation of an improved training paradigm publication-title: Am. J. Surg. doi: 10.1016/j.amjsurg.2011.07.001 – ident: 10.1016/j.brainres.2021.147656_b0135 doi: 10.1371/journal.pone.0085693 – volume: 1529 start-page: 83 year: 2013 ident: 10.1016/j.brainres.2021.147656_b0180 article-title: Corticomotor excitability induced by anodal transcranial direct current stimulation with and without non-exhaustive movement publication-title: Brain Res. doi: 10.1016/j.brainres.2013.07.026 – volume: 25 start-page: 1238 issue: 4 year: 2011 ident: 10.1016/j.brainres.2021.147656_b0085 article-title: Analysis of standard multiport versus single-site access for laparoscopic skills training publication-title: Surg. Endosc. doi: 10.1007/s00464-010-1349-7 – volume: 6 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.brainres.2021.147656_b0280 article-title: tDCS over left M1 or DLPFC does not improve learning of a bimanual coordination task publication-title: Sci. Rep. doi: 10.1038/srep35739 – volume: 527 start-page: 633 issue: 3 year: 2000 ident: 10.1016/j.brainres.2021.147656_b0210 article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation publication-title: J Physiol doi: 10.1111/j.1469-7793.2000.t01-1-00633.x – ident: 10.1016/j.brainres.2021.147656_b0275 doi: 10.3758/s13423-020-01798-5 – volume: 2 start-page: 70 issue: 2 year: 2018 ident: 10.1016/j.brainres.2021.147656_b0070 article-title: Effects of transcranial direct-current stimulation on laparoscopic surgical skill acquisition publication-title: BJS Open doi: 10.1002/bjs5.43 – volume: 24 start-page: 2830 issue: 11 year: 2010 ident: 10.1016/j.brainres.2021.147656_b0220 article-title: Resident perceptions of advanced laparoscopic skills training publication-title: Surg. Endosc. doi: 10.1007/s00464-010-1058-2 – volume: 8 start-page: e67344 issue: 6 year: 2013 ident: 10.1016/j.brainres.2021.147656_b0095 article-title: Is Motor Learning Mediated by tDCS Intensity? publication-title: PLoS ONE doi: 10.1371/journal.pone.0067344 – volume: 7 start-page: 685 year: 2016 ident: 10.1016/j.brainres.2021.147656_b0260 article-title: Varied Practice in Laparoscopy Training: Beneficial Learning Stimulation or Cognitive Overload? publication-title: Front. Psychol. doi: 10.3389/fpsyg.2016.00685 – volume: 1581 start-page: 23 year: 2014 ident: 10.1016/j.brainres.2021.147656_b0265 article-title: Timing-dependent priming effects of tDCS on ankle motor skill learning publication-title: Brain Res. doi: 10.1016/j.brainres.2014.07.021 – volume: 8 start-page: 1108 issue: 6 year: 2015 ident: 10.1016/j.brainres.2021.147656_b0120 article-title: Use of Computational Modeling to Inform tDCS Electrode Montages for the Promotion of Language Recovery in Post-stroke Aphasia publication-title: Brain Stimulation doi: 10.1016/j.brs.2015.06.018 – volume: 106 start-page: 1590 issue: 5 year: 2009 ident: 10.1016/j.brainres.2021.147656_b0245 article-title: Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0805413106 – volume: 211 start-page: 191 year: 2017 ident: 10.1016/j.brainres.2021.147656_b0175 article-title: Usefulness of virtual reality in assessment of medical student laparoscopic skill publication-title: J. Surg. Res. doi: 10.1016/j.jss.2016.11.054 – volume: 21 start-page: 602 issue: 5 year: 2011 ident: 10.1016/j.brainres.2021.147656_b0225 article-title: Transcranial electrical stimulation (tES – tDCS; tRNS, tACS) methods publication-title: Neuropsychol. Rehabil. doi: 10.1080/09602011.2011.557292 – volume: 29 start-page: 1573 issue: 8 year: 2004 ident: 10.1016/j.brainres.2021.147656_b0195 article-title: Consolidation of human motor cortical neuroplasticity by D-cycloserine publication-title: Neuropsychopharmacology doi: 10.1038/sj.npp.1300517 – volume: 175 start-page: 482 issue: 6 year: 1998 ident: 10.1016/j.brainres.2021.147656_b0100 article-title: Development of a model for training and evaluation of laparoscopic skills publication-title: Am. J. Surg. doi: 10.1016/S0002-9610(98)00080-4 – volume: 16 start-page: 1551 issue: 14 year: 2005 ident: 10.1016/j.brainres.2021.147656_b0110 article-title: Transcranial direct current stimulation of the unaffected hemisphere in stroke patients publication-title: NeuroReport doi: 10.1097/01.wnr.0000177010.44602.5e – volume: 46 start-page: 2122 issue: 8 year: 2008 ident: 10.1016/j.brainres.2021.147656_b0155 article-title: Limited impact of homeostatic plasticity on motor learning in humans publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2008.02.023 – volume: 33 start-page: 9176 issue: 21 year: 2013 ident: 10.1016/j.brainres.2021.147656_b0170 article-title: Differential effects of dual and unihemispheric motor cortex stimulation in older adults publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0055-13.2013 – volume: 15 start-page: 619 year: 2003 ident: 10.1016/j.brainres.2021.147656_b0215 article-title: Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human publication-title: J. Cogn. Neurosci. doi: 10.1162/089892903321662994 – volume: 125 start-page: 2238 year: 2002 ident: 10.1016/j.brainres.2021.147656_b0165 article-title: Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability publication-title: Brain doi: 10.1093/brain/awf238 – ident: 10.1016/j.brainres.2021.147656_b0285 doi: 10.1038/nn.3616 – volume: 8 start-page: 269 issue: 2 year: 2015 ident: 10.1016/j.brainres.2021.147656_b0045 article-title: The interaction with task-induced activity is more important than polarization: A tDCS study publication-title: Brain Stimulation doi: 10.1016/j.brs.2014.11.006 – volume: 13 start-page: 863 issue: 3 year: 2020 ident: 10.1016/j.brainres.2021.147656_b0090 article-title: Utilizing transcranial direct current stimulation to enhance laparoscopic technical skills training: A randomized controlled trial publication-title: Brain Stimulation doi: 10.1016/j.brs.2020.03.009 – ident: 10.1016/j.brainres.2021.147656_b0065 doi: 10.1016/j.clinph.2017.01.004 – volume: 190 start-page: 894 issue: 3 year: 2013 ident: 10.1016/j.brainres.2021.147656_b0185 article-title: Commercial Video Laparoscopic Trainers versus Less Expensive, Simple Laparoscopic Trainers: A Systematic Review and Meta-Analysis publication-title: J. Urol. doi: 10.1016/j.juro.2013.03.115 – volume: 49 start-page: 800 issue: 5 year: 2011 ident: 10.1016/j.brainres.2021.147656_b0270 article-title: Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2011.02.009 – volume: 19 start-page: 2888 issue: 10 year: 2004 ident: 10.1016/j.brainres.2021.147656_b0015 article-title: Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2004.03367.x – volume: 56 start-page: 255 year: 2003 ident: 10.1016/j.brainres.2021.147656_b0200 article-title: Modulation of cortical excitability by weak direct current stimulation - technical, safety and functional aspects publication-title: Suppl. Clin. Neurophysiol. doi: 10.1016/S1567-424X(09)70230-2 |
SSID | ssj0003390 |
Score | 2.3916383 |
Snippet | [Display omitted]
•Anodal tDCS did not improve learning of laparoscopic peg-transfer task.•A significant effect of learning over time was observed.•Subjects... Graphical abstract Efficient training methods are required for laparoscopic surgical skills training to reduce the time needed for proficiency. Transcranial direct current... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 147656 |
SubjectTerms | Laparoscopic training Motor learning Neurology Peg-transfer task Primary motor cortex tDCS Uni-manual task |
Title | The effects of unilateral transcranial direct current stimulation on unimanual laparoscopic peg-transfer task |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0006899321005138 https://www.clinicalkey.es/playcontent/1-s2.0-S0006899321005138 https://dx.doi.org/10.1016/j.brainres.2021.147656 https://www.proquest.com/docview/2571925875 |
Volume | 1771 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB5EL17EFetSRhBvabNNYo6lWOpWRCx4G2YmM1Jt09KmBy_-dt9LJnUFRaGkJMxL2nnbfJm3EHLM_FRITwiAJZFwQiOZI_0AgGskgyTVWC8Fd3Sve1G3H17cs_sl0q5yYTCs0tr-0qYX1tpeadrZbE4GA8zxdSNAC5iEApIVYMIvVq8DmW68vIV5BEH5ngWRM45-lyX82JDYhgFgLeBE3wOjEUfYyPp7B_XJVBf-p7NO1uzCkbbK37ZBlnS2SbZaGYDm0TM9oUUoZ_GOfIuMgPnURmrQsaHzbDAUmGo8pDn6JgUHkDta_neqyhpNFLR9ZLt5UfgA1UhgxVI6BI-KVS_Hk4GiE_3gFHcxekpzMXvaJv3O2V2769i-Co5ibpA78PxUK5e5KjbKYFqy7zJt9GkK6hkKmCSRhJqlSWp0wFKh4tgA0DHKhUGSsWCHLGfjTO8SCqs5LUNARYkGU8CkxA1t33iJ8EOdhqJGWDWZXNmi49j7Ysir6LJHXjGBIxN4yYQaaS7oJmXZjR8p4opXvEoqBTPIwTP8jVLPrDbPuMdnPnf5F4mrkWRB-UFof_XUo0qgOGg0btOITI_nMIjFsOxmACT3_nH_fbKKZ5g26bEDspxP5_oQ1k-5rBcKUicrrfbt1Q1-n192e69ruh_G |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6x5bB7QTx2RXkaCe0t27yckGNVgQqFnkDiZtmOjQptWtH0wL9nJnEqXtIikKIcEo-TeF7-Ys8MwDEPc6kCKRGWJNKLreKeCiMEromKstxQvhRa0b0aJv2b-OKW365Ar4mFoW2VzvbXNr2y1u5Kx41mZzYaUYyvnyBaoCAUlKzo5AesUnaquAWr3fNBf7g0yFFU_2oh8EwELwKF7_8pqsSAyBahYhig3UgTqmX9sY96Y60rF3S2Dmtu7si69ettwIopNmGrWyBunjyxv6zazVn9Jt-CCfKfuc0abGrZohiNJUUbj1lJ7knjCUWP1Z_PdJ2miaHCT1xBL4YHUk0kJS1lY3SqlPhyOhtpNjN3XtWLNY-slPOH33Bzdnrd63uutIKnuR-VHj4_N9rnvk6tthSZHPrcWHOSo4bGEgdJZrHheZZbE_Fc6jS1iHWs9rGR4jz6A61iWphtYDihMypGYJQZtAZcKVrTDm2QyTA2eSzbwJvBFNrlHafyF2PRbDC7Fw0TBDFB1ExoQ2dJN6szb_yXIm14JZq4UrSEAp3D1yjN3Cn0XARiHgpfvBO6NmRLyldy-6mnHjUCJVCpaaVGFma6wEY8xZk3Ryy5843-D-Fn__rqUlyeDwe78IvuUBRlwPegVT4uzD5Op0p14NTlGSZxIOI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+unilateral+transcranial+direct+current+stimulation+on+unimanual+laparoscopic+peg-transfer+task&rft.jtitle=Brain+research&rft.au=Hadi%2C+Zaeem&rft.au=Umbreen%2C+Aysha&rft.au=Anwar%2C+Muhammad+Nabeel&rft.au=Navid%2C+Muhammad+Samran&rft.date=2021-11-15&rft.pub=Elsevier+B.V&rft.issn=0006-8993&rft.volume=1771&rft_id=info:doi/10.1016%2Fj.brainres.2021.147656&rft.externalDocID=S0006899321005138 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00068993%2FS0006899321X00194%2Fcov150h.gif |