Liver X receptor regulates Th17 and RORγt+ Treg cells by distinct mechanisms

The gastrointestinal microenvironment, dominated by dietary compounds and the commensal bacteria, is a major driver of intestinal CD4+ T helper (Th) cell differentiation. Dietary compounds can be sensed by nuclear receptors (NRs) that consequently exert pleiotropic effects including immune modulatio...

Full description

Saved in:
Bibliographic Details
Published inMucosal immunology Vol. 14; no. 2; pp. 411 - 419
Main Authors Parigi, Sara M., Das, Srustidhar, Frede, Annika, Cardoso, Rebeca F., Tripathi, Kumar Parijat, Doñas, Cristian, Hu, Yue O.O., Antonson, Per, Engstrand, Lars, Gustafsson, Jan-Åke, Villablanca, Eduardo J.
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.03.2021
Nature Publishing Group US
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The gastrointestinal microenvironment, dominated by dietary compounds and the commensal bacteria, is a major driver of intestinal CD4+ T helper (Th) cell differentiation. Dietary compounds can be sensed by nuclear receptors (NRs) that consequently exert pleiotropic effects including immune modulation. Here, we found that under homeostatic conditions the NR Liver X receptor (LXR), a sensor of cholesterol metabolites, regulates RORγt+ CD4 T cells in the intestine draining mesenteric lymph node (MLN). While LXR activation led to a decrease, LXR-deficiency resulted in an increase in MLN Th17 and RORγt+ Tregs. Mechanistically, LXR signaling in CD11c+ myeloid cells was required to control RORγt+ Treg. By contrast, modulation of MLN Th17 was independent of LXR signaling in either immune or epithelial cells. Of note, horizontal transfer of microbiota between LXRα−/− and WT mice was sufficient to only partially increase MLN Th17 in WT mice. Despite LXRα deficiency resulted in an increased abundance of Ruminococcaceae and Lachnospiraceae bacterial families compared to littermate controls, microbiota ablation (including SFB) was not sufficient to dampen LXRα-mediated expansion of MLN Th17. Altogether, our results suggest that LXR modulates RORγt+ Treg and Th17 cells in the MLN through distinct mechanisms.
AbstractList The gastrointestinal microenvironment, dominated by dietary compounds and the commensal bacteria, is a major driver of intestinal CD4 T helper (Th) cell differentiation. Dietary compounds can be sensed by nuclear receptors (NRs) that consequently exert pleiotropic effects including immune modulation. Here, we found that under homeostatic conditions the NR Liver X receptor (LXR), a sensor of cholesterol metabolites, regulates RORγt CD4 T cells in the intestine draining mesenteric lymph node (MLN). While LXR activation led to a decrease, LXR-deficiency resulted in an increase in MLN Th17 and RORγt Tregs. Mechanistically, LXR signaling in CD11c myeloid cells was required to control RORγt Treg. By contrast, modulation of MLN Th17 was independent of LXR signaling in either immune or epithelial cells. Of note, horizontal transfer of microbiota between LXRα and WT mice was sufficient to only partially increase MLN Th17 in WT mice. Despite LXRα deficiency resulted in an increased abundance of Ruminococcaceae and Lachnospiraceae bacterial families compared to littermate controls, microbiota ablation (including SFB) was not sufficient to dampen LXRα-mediated expansion of MLN Th17. Altogether, our results suggest that LXR modulates RORγt Treg and Th17 cells in the MLN through distinct mechanisms.
The gastrointestinal microenvironment, dominated by dietary compounds and the commensal bacteria, is a major driver of intestinal CD4 + T helper (Th) cell differentiation. Dietary compounds can be sensed by nuclear receptors (NRs) that consequently exert pleiotropic effects including immune modulation. Here, we found that under homeostatic conditions the NR Liver X receptor (LXR), a sensor of cholesterol metabolites, regulates RORγt + CD4 T cells in the intestine draining mesenteric lymph node (MLN). While LXR activation led to a decrease, LXR-deficiency resulted in an increase in MLN Th17 and RORγt + Tregs. Mechanistically, LXR signaling in CD11c + myeloid cells was required to control RORγt + Treg. By contrast, modulation of MLN Th17 was independent of LXR signaling in either immune or epithelial cells. Of note, horizontal transfer of microbiota between LXRα −/− and WT mice was sufficient to only partially increase MLN Th17 in WT mice. Despite LXRα deficiency resulted in an increased abundance of Ruminococcaceae and Lachnospiraceae bacterial families compared to littermate controls, microbiota ablation (including SFB) was not sufficient to dampen LXRα-mediated expansion of MLN Th17. Altogether, our results suggest that LXR modulates RORγt + Treg and Th17 cells in the MLN through distinct mechanisms.
The gastrointestinal microenvironment, dominated by dietary compounds and the commensal bacteria, is a major driver of intestinal CD4+ T helper (Th) cell differentiation. Dietary compounds can be sensed by nuclear receptors (NRs) that consequently exert pleiotropic effects including immune modulation. Here, we found that under homeostatic conditions the NR Liver X receptor (LXR), a sensor of cholesterol metabolites, regulates RORγt+ CD4 T cells in the intestine draining mesenteric lymph node (MLN). While LXR activation led to a decrease, LXR-deficiency resulted in an increase in MLN Th17 and RORγt+ Tregs. Mechanistically, LXR signaling in CD11c+ myeloid cells was required to control RORγt+ Treg. By contrast, modulation of MLN Th17 was independent of LXR signaling in either immune or epithelial cells. Of note, horizontal transfer of microbiota between LXRα−/− and WT mice was sufficient to only partially increase MLN Th17 in WT mice. Despite LXRα deficiency resulted in an increased abundance of Ruminococcaceae and Lachnospiraceae bacterial families compared to littermate controls, microbiota ablation (including SFB) was not sufficient to dampen LXRα-mediated expansion of MLN Th17. Altogether, our results suggest that LXR modulates RORγt+ Treg and Th17 cells in the MLN through distinct mechanisms.
The gastrointestinal microenvironment, dominated by dietary compounds and the commensal bacteria, is a major driver of intestinal CD4+ T helper (Th) cell differentiation. Dietary compounds can be sensed by nuclear receptors (NRs) that consequently exert pleiotropic effects including immune modulation. Here, we found that under homeostatic conditions the NR Liver X receptor (LXR), a sensor of cholesterol metabolites, regulates RORγt+ CD4 T cells in the intestine draining mesenteric lymph node (MLN). While LXR activation led to a decrease, LXR-deficiency resulted in an increase in MLN Th17 and RORγt+ Tregs. Mechanistically, LXR signaling in CD11c+ myeloid cells was required to control RORγt+ Treg. By contrast, modulation of MLN Th17 was independent of LXR signaling in either immune or epithelial cells. Of note, horizontal transfer of microbiota between LXRα-/- and WT mice was sufficient to only partially increase MLN Th17 in WT mice. Despite LXRα deficiency resulted in an increased abundance of Ruminococcaceae and Lachnospiraceae bacterial families compared to littermate controls, microbiota ablation (including SFB) was not sufficient to dampen LXRα-mediated expansion of MLN Th17. Altogether, our results suggest that LXR modulates RORγt+ Treg and Th17 cells in the MLN through distinct mechanisms.The gastrointestinal microenvironment, dominated by dietary compounds and the commensal bacteria, is a major driver of intestinal CD4+ T helper (Th) cell differentiation. Dietary compounds can be sensed by nuclear receptors (NRs) that consequently exert pleiotropic effects including immune modulation. Here, we found that under homeostatic conditions the NR Liver X receptor (LXR), a sensor of cholesterol metabolites, regulates RORγt+ CD4 T cells in the intestine draining mesenteric lymph node (MLN). While LXR activation led to a decrease, LXR-deficiency resulted in an increase in MLN Th17 and RORγt+ Tregs. Mechanistically, LXR signaling in CD11c+ myeloid cells was required to control RORγt+ Treg. By contrast, modulation of MLN Th17 was independent of LXR signaling in either immune or epithelial cells. Of note, horizontal transfer of microbiota between LXRα-/- and WT mice was sufficient to only partially increase MLN Th17 in WT mice. Despite LXRα deficiency resulted in an increased abundance of Ruminococcaceae and Lachnospiraceae bacterial families compared to littermate controls, microbiota ablation (including SFB) was not sufficient to dampen LXRα-mediated expansion of MLN Th17. Altogether, our results suggest that LXR modulates RORγt+ Treg and Th17 cells in the MLN through distinct mechanisms.
Author Das, Srustidhar
Doñas, Cristian
Cardoso, Rebeca F.
Villablanca, Eduardo J.
Hu, Yue O.O.
Antonson, Per
Engstrand, Lars
Gustafsson, Jan-Åke
Parigi, Sara M.
Frede, Annika
Tripathi, Kumar Parijat
Author_xml – sequence: 1
  givenname: Sara M.
  surname: Parigi
  fullname: Parigi, Sara M.
  organization: Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
– sequence: 2
  givenname: Srustidhar
  surname: Das
  fullname: Das, Srustidhar
  organization: Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
– sequence: 3
  givenname: Annika
  surname: Frede
  fullname: Frede, Annika
  organization: Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
– sequence: 4
  givenname: Rebeca F.
  surname: Cardoso
  fullname: Cardoso, Rebeca F.
  organization: Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
– sequence: 5
  givenname: Kumar Parijat
  surname: Tripathi
  fullname: Tripathi, Kumar Parijat
  organization: Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
– sequence: 6
  givenname: Cristian
  surname: Doñas
  fullname: Doñas, Cristian
  organization: Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
– sequence: 7
  givenname: Yue O.O.
  surname: Hu
  fullname: Hu, Yue O.O.
  organization: Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Karolinska Hospital, Stockholm, Sweden
– sequence: 8
  givenname: Per
  surname: Antonson
  fullname: Antonson, Per
  organization: Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
– sequence: 9
  givenname: Lars
  surname: Engstrand
  fullname: Engstrand, Lars
  organization: Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Karolinska Hospital, Stockholm, Sweden
– sequence: 10
  givenname: Jan-Åke
  surname: Gustafsson
  fullname: Gustafsson, Jan-Åke
  organization: Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
– sequence: 11
  givenname: Eduardo J.
  surname: Villablanca
  fullname: Villablanca, Eduardo J.
  email: eduardo.villablanca@ki.se
  organization: Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32681027$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:144203532$$DView record from Swedish Publication Index
BookMark eNp9kctq3DAUhkVJaC7tA3RTBN0UilNdLNlalpBeYEIgTKE7IUtnEiW2PJXklHmuvkefqZp6mkAWs9KPzvdL55z_BB2EMQBCbyg5o4S3H1NNeSsqwkhFOOOVeIGOqeKi4rWQB_80L1WqjtBJSneESEIEf4mOOJMtJaw5RpcL_wAR_8ARLKzzGIu4mXqTIeHlLW2wCQ5fX13_-Z0_4GWpYQt9n3C3wc6n7IPNeAB7a4JPQ3qFDlemT_B6d56i758vludfq8XVl2_nnxaVFYTnyoHsbFt3VEqneM1XhjSNJU5YwVjXcaGsc2CF7ahojSMdM4ZTbmRjad3Slp-ian43_YL11Ol19IOJGz0ar3dX90WBrqWSNSn8-5lfx_HnBCnrwaftICbAOCXNalYrJZSgBX33DL0bpxjKNHrLSCmZZIV6u6OmbgD32MD_xRaAzoCNY0oRVo8IJXobnp7D0yU8vQ1Pi-Jpnnmszyb7MeRofL_XyXb7KL-EG4hPTe8zqdkEJakHX0y298Fb09_DRrvR7_H-Bd0Qvr8
CitedBy_id crossref_primary_10_1016_j_intimp_2021_108450
crossref_primary_10_1016_j_jep_2024_118715
crossref_primary_10_3389_fimmu_2024_1444892
crossref_primary_10_1124_dmd_122_000860
crossref_primary_10_2139_ssrn_3945928
crossref_primary_10_1002_mco2_444
crossref_primary_10_1016_j_immuni_2022_11_002
crossref_primary_10_1073_pnas_2017394118
crossref_primary_10_1167_iovs_63_6_12
Cites_doi 10.1016/j.cell.2017.12.026
10.1186/gb-2012-13-9-r79
10.1136/gutjnl-2013-305386
10.1038/nature16161
10.3389/fmicb.2019.01655
10.1016/j.cell.2008.04.052
10.4110/in.2017.17.1.1
10.1016/j.immuni.2015.09.007
10.1016/j.celrep.2019.05.042
10.1038/s41598-017-18283-0
10.1016/j.reprotox.2020.02.009
10.1084/jem.20062648
10.1038/mi.2015.74
10.1016/j.immuni.2014.03.005
10.1016/j.cell.2015.08.058
10.1111/imr.12039
10.1038/nature24628
10.1371/journal.pone.0184985
10.1126/science.aac4263
10.1053/j.gastro.2011.04.010
10.1016/j.immuni.2019.09.004
10.1021/jm0255116
10.1126/science.aaa9420
10.1016/j.immuni.2013.03.009
10.1038/nm.2074
10.1016/j.immuni.2016.11.008
10.1038/s41575-018-0084-8
10.1016/j.cell.2009.09.033
10.1002/eji.201646879
10.1172/JCI42974
10.1161/ATVBAHA.114.303567
10.1172/JCI27883
10.1038/s41385-018-0074-8
10.1186/s12944-018-0811-8
10.1126/sciadv.1700492
10.1161/01.ATV.0000210278.67076.8f
10.4049/jimmunol.1300032
10.1016/j.jaut.2017.12.003
10.3389/fimmu.2017.01373
ContentType Journal Article
Copyright 2020 © Society for Mucosal Immunology
Society for Mucosal Immunology 2020
Society for Mucosal Immunology 2020.
Copyright_xml – notice: 2020 © Society for Mucosal Immunology
– notice: Society for Mucosal Immunology 2020
– notice: Society for Mucosal Immunology 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1038/s41385-020-0323-5
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

ProQuest Central Student

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1935-3456
EndPage 419
ExternalDocumentID oai_swepub_ki_se_469640
32681027
10_1038_s41385_020_0323_5
S1933021922001416
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-Q-
.1-
.FO
0R~
123
29M
39C
4.4
53G
70F
7X7
88E
8FI
8FJ
AALRI
AANZL
AAXUO
AAYWO
ABAWZ
ABUWG
ACGFS
ACKTT
ACRQY
ACVFH
ADBBV
ADCNI
ADVLN
AEJRE
AENEX
AEUPX
AEXQZ
AEXYK
AFJKZ
AFKRA
AFPUW
AFRHN
AFSHS
AGAYW
AGHAI
AHMBA
AHSBF
AIGII
AILAN
AITUG
AJRNO
AJUYK
AKBMS
AKRWK
AKYEP
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AMYLF
APXCP
AXYYD
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DNIVK
DU5
EBS
EE.
EIOEI
EJD
F5P
FDB
FDQFY
FERAY
FIZPM
FSGXE
FYUFA
HCIFZ
HMCUK
HZ~
IWAJR
JSO
JZLTJ
M1P
M7P
NQJWS
O9-
OK1
P2P
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RNT
RNTTT
ROL
SNYQT
SRMVM
SWTZT
TAOOD
TBHMF
TDRGL
TSG
UKHRP
Z5R
3V.
AAZLF
ABDBF
ACZOJ
ADHDB
AEFQL
AFCTW
ALIPV
ESX
NAO
SNX
SV3
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7XB
8FE
8FH
8FK
AZQEC
DWQXO
GNUQQ
H94
K9.
LK8
PKEHL
PQEST
PQUKI
PRINS
7X8
ADTPV
AOWAS
D8T
ZZAVC
ID FETCH-LOGICAL-c503t-de6bc84b166d9343fa077c0d5c522bb359cddec5cb158ad0b2aa313a67c148183
IEDL.DBID 7X7
ISSN 1933-0219
1935-3456
IngestDate Mon Aug 25 03:25:39 EDT 2025
Fri Jul 11 01:04:35 EDT 2025
Fri Jul 25 11:11:44 EDT 2025
Mon Jul 21 05:55:54 EDT 2025
Tue Aug 05 12:09:53 EDT 2025
Thu Apr 24 22:54:33 EDT 2025
Fri Feb 21 02:39:40 EST 2025
Tue Aug 26 17:30:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-de6bc84b166d9343fa077c0d5c522bb359cddec5cb158ad0b2aa313a67c148183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://kipublications.ki.se/Default.aspx?queryparsed=id:144203532
PMID 32681027
PQID 2499666262
PQPubID 2041940
PageCount 9
ParticipantIDs swepub_primary_oai_swepub_ki_se_469640
proquest_miscellaneous_2424995951
proquest_journals_2499666262
pubmed_primary_32681027
crossref_primary_10_1038_s41385_020_0323_5
crossref_citationtrail_10_1038_s41385_020_0323_5
springer_journals_10_1038_s41385_020_0323_5
elsevier_clinicalkey_doi_10_1038_s41385_020_0323_5
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Kidlington
PublicationSubtitle The official publication of the Society for Mucosal Immunology
PublicationTitle Mucosal immunology
PublicationTitleAbbrev Mucosal Immunol
PublicationTitleAlternate Mucosal Immunol
PublicationYear 2021
Publisher Elsevier Inc
Nature Publishing Group US
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Nature Publishing Group US
– name: Elsevier Limited
References Persson (bib6) 2013; 38
Takeuchi (bib17) 2013; 191
Cui (bib18) 2011; 121
Bensinger (bib20) 2008; 134
Ito (bib25) 2016; 45
Kempski, J., Brockmann, L., Gagliani, N. & Huber, S. Th17 cell and epithelial cell crosstalk during inflammatory bowel disease and carcinogenesis.
Nagao-Kitamoto, Kamada (bib29) 2017; 17
Caruso, Ono, Bunker, Nunez, Inohara (bib23) 2019; 27
Parigi (bib38) 2018; 8
Sefik (bib3) 2015; 349
Zelcer, Tontonoz (bib11) 2006; 116
Yang (bib4) 2016; 9
Ivanov (bib10) 2009; 139
Herold (bib16) 2017; 12
Jijon (bib27) 2019; 12
Liu (bib32) 2018; 17
Taleb, Tedgui, Mallat (bib36) 2015; 35
Tavazoie (bib14) 2018; 172
Diaz (bib12) 2020; 93
Wilck (bib8) 2017; 551
von Moltke, Ji, Liang, Locksley (bib28) 2016; 529
Agalioti, T., Villablanca, E. J., Huber, S. & Gagliani, N. Th17 cell plasticity: the role of dendritic cells and molecular mechanisms.
Collins (bib19) 2002; 45
Villablanca (bib26) 2014; 63
Ohnmacht (bib2) 2015; 349
Villablanca (bib39) 2011; 141
Walcher (bib15) 2006; 26
Caton, Smith-Raska, Reizis (bib22) 2007; 204
Shale, Schiering, Powrie (bib1) 2013; 252
Goto (bib37) 2014; 40
Villablanca (bib13) 2010; 16
Ascher, Reinhardt (bib33) 2018; 48
.
Morgan (bib30) 2012; 13
Moschen, Tilg, Raine (bib34) 2019; 16
(2018).
Atarashi (bib24) 2015; 163
(2017).
Cosorich (bib7) 2017; 3
Xu (bib21) 2019; 51
Lo Presti (bib31) 2019; 10
Haghikia (bib9) 2015; 43
Cui (CR18) 2011; 121
Cosorich (CR7) 2017; 3
Caruso, Ono, Bunker, Nunez, Inohara (CR23) 2019; 27
Herold (CR16) 2017; 12
Villablanca (CR26) 2014; 63
Shale, Schiering, Powrie (CR1) 2013; 252
Goto (CR37) 2014; 40
Collins (CR19) 2002; 45
Caton, Smith-Raska, Reizis (CR22) 2007; 204
Nagao-Kitamoto, Kamada (CR29) 2017; 17
CR35
Yang (CR4) 2016; 9
von Moltke, Ji, Liang, Locksley (CR28) 2016; 529
Taleb, Tedgui, Mallat (CR36) 2015; 35
Lo Presti (CR31) 2019; 10
Ivanov (CR10) 2009; 139
Takeuchi (CR17) 2013; 191
Wilck (CR8) 2017; 551
Persson (CR6) 2013; 38
Liu (CR32) 2018; 17
Villablanca (CR13) 2010; 16
Tavazoie (CR14) 2018; 172
Moschen, Tilg, Raine (CR34) 2019; 16
Atarashi (CR24) 2015; 163
CR5
Haghikia (CR9) 2015; 43
Zelcer, Tontonoz (CR11) 2006; 116
Xu (CR21) 2019; 51
Villablanca (CR39) 2011; 141
Ito (CR25) 2016; 45
Bensinger (CR20) 2008; 134
Ascher, Reinhardt (CR33) 2018; 48
Walcher (CR15) 2006; 26
Morgan (CR30) 2012; 13
Jijon (CR27) 2019; 12
Diaz (CR12) 2020; 93
Parigi (CR38) 2018; 8
Ohnmacht (CR2) 2015; 349
Sefik (CR3) 2015; 349
Morgan (10.1038/s41385-020-0323-5_bib30) 2012; 13
Villablanca (10.1038/s41385-020-0323-5_bib26) 2014; 63
Cosorich (10.1038/s41385-020-0323-5_bib7) 2017; 3
Caton (10.1038/s41385-020-0323-5_bib22) 2007; 204
Villablanca (10.1038/s41385-020-0323-5_bib39) 2011; 141
Cui (10.1038/s41385-020-0323-5_bib18) 2011; 121
Nagao-Kitamoto (10.1038/s41385-020-0323-5_bib29) 2017; 17
Takeuchi (10.1038/s41385-020-0323-5_bib17) 2013; 191
Ivanov (10.1038/s41385-020-0323-5_bib10) 2009; 139
Caruso (10.1038/s41385-020-0323-5_bib23) 2019; 27
Walcher (10.1038/s41385-020-0323-5_bib15) 2006; 26
Goto (10.1038/s41385-020-0323-5_bib37) 2014; 40
Wilck (10.1038/s41385-020-0323-5_bib8) 2017; 551
Persson (10.1038/s41385-020-0323-5_bib6) 2013; 38
Zelcer (10.1038/s41385-020-0323-5_bib11) 2006; 116
Atarashi (10.1038/s41385-020-0323-5_bib24) 2015; 163
Ito (10.1038/s41385-020-0323-5_bib25) 2016; 45
von Moltke (10.1038/s41385-020-0323-5_bib28) 2016; 529
10.1038/s41385-020-0323-5_bib35
Shale (10.1038/s41385-020-0323-5_bib1) 2013; 252
Lo Presti (10.1038/s41385-020-0323-5_bib31) 2019; 10
Liu (10.1038/s41385-020-0323-5_bib32) 2018; 17
Tavazoie (10.1038/s41385-020-0323-5_bib14) 2018; 172
Moschen (10.1038/s41385-020-0323-5_bib34) 2019; 16
Haghikia (10.1038/s41385-020-0323-5_bib9) 2015; 43
Ohnmacht (10.1038/s41385-020-0323-5_bib2) 2015; 349
Taleb (10.1038/s41385-020-0323-5_bib36) 2015; 35
Yang (10.1038/s41385-020-0323-5_bib4) 2016; 9
Parigi (10.1038/s41385-020-0323-5_bib38) 2018; 8
Herold (10.1038/s41385-020-0323-5_bib16) 2017; 12
Collins (10.1038/s41385-020-0323-5_bib19) 2002; 45
Ascher (10.1038/s41385-020-0323-5_bib33) 2018; 48
Sefik (10.1038/s41385-020-0323-5_bib3) 2015; 349
Bensinger (10.1038/s41385-020-0323-5_bib20) 2008; 134
10.1038/s41385-020-0323-5_bib5
Villablanca (10.1038/s41385-020-0323-5_bib13) 2010; 16
Diaz (10.1038/s41385-020-0323-5_bib12) 2020; 93
Jijon (10.1038/s41385-020-0323-5_bib27) 2019; 12
Xu (10.1038/s41385-020-0323-5_bib21) 2019; 51
References_xml – volume: 12
  start-page: 580
  year: 2019
  ident: bib27
  article-title: Correction: intestinal epithelial cell-specific RARalpha depletion results in aberrant epithelial cell homeostasis and underdeveloped immune system
  publication-title: Mucosal Immunol.
– volume: 40
  start-page: 594
  year: 2014
  end-page: 607
  ident: bib37
  article-title: Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation
  publication-title: Immunity
– volume: 93
  start-page: 163
  year: 2020
  end-page: 168
  ident: bib12
  article-title: Retinoic acid induced cytokines are selectively modulated by liver X receptor activation in zebrafish
  publication-title: Reprod. Toxicol.
– volume: 16
  start-page: 185
  year: 2019
  end-page: 196
  ident: bib34
  article-title: IL-12, IL-23 and IL-17 in IBD: immunobiology and therapeutic targeting
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 121
  start-page: 658
  year: 2011
  end-page: 670
  ident: bib18
  article-title: Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation
  publication-title: J. Clin. Invest.
– volume: 17
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib29
  article-title: Host-microbial cross-talk in inflammatory bowel disease
  publication-title: Immune Netw.
– volume: 13
  year: 2012
  ident: bib30
  article-title: Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment
  publication-title: Genome Biol.
– volume: 8
  year: 2018
  ident: bib38
  article-title: Flt3 ligand expands bona fide innate lymphoid cell precursors in vivo
  publication-title: Sci. Rep.
– volume: 16
  start-page: 98
  year: 2010
  end-page: 105
  ident: bib13
  article-title: Tumor-mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses
  publication-title: Nat. Med.
– volume: 3
  start-page: e1700492
  year: 2017
  ident: bib7
  article-title: High frequency of intestinal Th17 cells correlates with microbiota alterations and disease activity in multiple sclerosis
  publication-title: Sci. Adv.
– reference: Kempski, J., Brockmann, L., Gagliani, N. & Huber, S. Th17 cell and epithelial cell crosstalk during inflammatory bowel disease and carcinogenesis.
– volume: 9
  start-page: 444
  year: 2016
  end-page: 457
  ident: bib4
  article-title: Foxp3(+) T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation
  publication-title: Mucosal Immunol.
– volume: 163
  start-page: 367
  year: 2015
  end-page: 380
  ident: bib24
  article-title: Th17 cell induction by adhesion of microbes to intestinal epithelial cells
  publication-title: Cell
– volume: 35
  start-page: 258
  year: 2015
  end-page: 264
  ident: bib36
  article-title: IL-17 and Th17 cells in atherosclerosis: subtle and contextual roles
  publication-title: Arterioscler Thromb. Vasc. Biol.
– volume: 17
  start-page: 159
  year: 2018
  ident: bib32
  article-title: Western diet feeding influences gut microbiota profiles in apoE knockout mice
  publication-title: Lipids Health Dis.
– volume: 26
  start-page: 1022
  year: 2006
  end-page: 1028
  ident: bib15
  article-title: LXR activation reduces proinflammatory cytokine expression in human CD4-positive lymphocytes
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 252
  start-page: 164
  year: 2013
  end-page: 182
  ident: bib1
  article-title: CD4(+) T-cell subsets in intestinal inflammation
  publication-title: Immunol. Rev.
– volume: 43
  start-page: 817
  year: 2015
  end-page: 829
  ident: bib9
  article-title: Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine
  publication-title: Immunity
– volume: 38
  start-page: 958
  year: 2013
  end-page: 969
  ident: bib6
  article-title: IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation
  publication-title: Immunity
– volume: 134
  start-page: 97
  year: 2008
  end-page: 111
  ident: bib20
  article-title: LXR signaling couples sterol metabolism to proliferation in the acquired immune response
  publication-title: Cell
– volume: 116
  start-page: 607
  year: 2006
  end-page: 614
  ident: bib11
  article-title: Liver X receptors as integrators of metabolic and inflammatory signaling
  publication-title: J. Clin. Invest.
– volume: 139
  start-page: 485
  year: 2009
  end-page: 498
  ident: bib10
  article-title: Induction of intestinal Th17 cells by segmented filamentous bacteria
  publication-title: Cell
– volume: 12
  start-page: e0184985
  year: 2017
  ident: bib16
  article-title: Liver X receptor activation promotes differentiation of regulatory T cells
  publication-title: PLoS ONE
– volume: 141
  start-page: 176
  year: 2011
  end-page: 185
  ident: bib39
  article-title: MyD88 and retinoic acid signaling pathways interact to modulate gastrointestinal activities of dendritic cells
  publication-title: Gastroenterology
– volume: 204
  start-page: 1653
  year: 2007
  end-page: 1664
  ident: bib22
  article-title: Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen
  publication-title: J. Exp. Med.
– volume: 529
  start-page: 221
  year: 2016
  end-page: 225
  ident: bib28
  article-title: Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit
  publication-title: Nature
– volume: 63
  start-page: 1431
  year: 2014
  end-page: 1440
  ident: bib26
  article-title: beta7 integrins are required to give rise to intestinal mononuclear phagocytes with tolerogenic potential
  publication-title: Gut
– volume: 45
  start-page: 1963
  year: 2002
  end-page: 1966
  ident: bib19
  article-title: Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines
  publication-title: J. Med. Chem.
– volume: 48
  start-page: 564
  year: 2018
  end-page: 575
  ident: bib33
  article-title: The gut microbiota: an emerging risk factor for cardiovascular and cerebrovascular disease
  publication-title: Eur. J. Immunol.
– volume: 191
  start-page: 3725
  year: 2013
  end-page: 3733
  ident: bib17
  article-title: Retinoid X receptor agonists modulate Foxp3
  publication-title: J. Immunol.
– volume: 45
  start-page: 1311
  year: 2016
  end-page: 1326
  ident: bib25
  article-title: Cholesterol accumulation in CD11c+ immune cells is a causal and targetable factor in autoimmune disease
  publication-title: Immunity
– reference: (2018).
– volume: 349
  start-page: 993
  year: 2015
  end-page: 997
  ident: bib3
  article-title: Mucosal immunology. Individual intestinal symbionts induce a distinct population of RORγ
  publication-title: Science
– volume: 10
  start-page: 1655
  year: 2019
  ident: bib31
  article-title: Fecal and mucosal microbiota profiling in irritable bowel syndrome and inflammatory bowel disease
  publication-title: Front. Microbiol.
– volume: 349
  start-page: 989
  year: 2015
  end-page: 993
  ident: bib2
  article-title: Mucosal immunology. The microbiota regulates type 2 immunity through RORγt
  publication-title: Science
– volume: 172
  start-page: 825
  year: 2018
  end-page: 840.e8
  ident: bib14
  article-title: LXR/ApoE activation restricts innate immune suppression in cancer
  publication-title: Cell
– volume: 27
  start-page: 3401
  year: 2019
  end-page: 3412 e3403
  ident: bib23
  article-title: Dynamic and asymmetric changes of the microbial communities after cohousing in laboratory mice
  publication-title: Cell Rep.
– volume: 51
  start-page: 696
  year: 2019
  end-page: 708 e699
  ident: bib21
  article-title: Transcriptional atlas of intestinal immune cells reveals that neuropeptide alpha-CGRP modulates group 2 innate lymphoid cell responses
  publication-title: Immunity
– reference: .
– volume: 551
  start-page: 585
  year: 2017
  end-page: 589
  ident: bib8
  article-title: Salt-responsive gut commensal modulates Th17 axis and disease
  publication-title: Nature
– reference: Agalioti, T., Villablanca, E. J., Huber, S. & Gagliani, N. Th17 cell plasticity: the role of dendritic cells and molecular mechanisms.
– reference: (2017).
– volume: 172
  start-page: 825
  year: 2018
  end-page: 840.e8
  ident: CR14
  article-title: LXR/ApoE activation restricts innate immune suppression in cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2017.12.026
– volume: 13
  year: 2012
  ident: CR30
  article-title: Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment
  publication-title: Genome Biol.
  doi: 10.1186/gb-2012-13-9-r79
– volume: 63
  start-page: 1431
  year: 2014
  end-page: 1440
  ident: CR26
  article-title: beta7 integrins are required to give rise to intestinal mononuclear phagocytes with tolerogenic potential
  publication-title: Gut
  doi: 10.1136/gutjnl-2013-305386
– volume: 529
  start-page: 221
  year: 2016
  end-page: 225
  ident: CR28
  article-title: Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit
  publication-title: Nature
  doi: 10.1038/nature16161
– volume: 10
  start-page: 1655
  year: 2019
  ident: CR31
  article-title: Fecal and mucosal microbiota profiling in irritable bowel syndrome and inflammatory bowel disease
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.01655
– volume: 134
  start-page: 97
  year: 2008
  end-page: 111
  ident: CR20
  article-title: LXR signaling couples sterol metabolism to proliferation in the acquired immune response
  publication-title: Cell
  doi: 10.1016/j.cell.2008.04.052
– volume: 17
  start-page: 1
  year: 2017
  end-page: 12
  ident: CR29
  article-title: Host-microbial cross-talk in inflammatory bowel disease
  publication-title: Immune Netw.
  doi: 10.4110/in.2017.17.1.1
– volume: 43
  start-page: 817
  year: 2015
  end-page: 829
  ident: CR9
  article-title: Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.09.007
– volume: 27
  start-page: 3401
  year: 2019
  end-page: 3412 e3403
  ident: CR23
  article-title: Dynamic and asymmetric changes of the microbial communities after cohousing in laboratory mice
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.05.042
– volume: 8
  year: 2018
  ident: CR38
  article-title: Flt3 ligand expands bona fide innate lymphoid cell precursors in vivo
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-18283-0
– volume: 93
  start-page: 163
  year: 2020
  end-page: 168
  ident: CR12
  article-title: Retinoic acid induced cytokines are selectively modulated by liver X receptor activation in zebrafish
  publication-title: Reprod. Toxicol.
  doi: 10.1016/j.reprotox.2020.02.009
– volume: 204
  start-page: 1653
  year: 2007
  end-page: 1664
  ident: CR22
  article-title: Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20062648
– ident: CR35
– volume: 9
  start-page: 444
  year: 2016
  end-page: 457
  ident: CR4
  article-title: Foxp3(+) T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation
  publication-title: Mucosal Immunol.
  doi: 10.1038/mi.2015.74
– volume: 40
  start-page: 594
  year: 2014
  end-page: 607
  ident: CR37
  article-title: Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.03.005
– volume: 163
  start-page: 367
  year: 2015
  end-page: 380
  ident: CR24
  article-title: Th17 cell induction by adhesion of microbes to intestinal epithelial cells
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.058
– volume: 252
  start-page: 164
  year: 2013
  end-page: 182
  ident: CR1
  article-title: CD4(+) T-cell subsets in intestinal inflammation
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12039
– volume: 551
  start-page: 585
  year: 2017
  end-page: 589
  ident: CR8
  article-title: Salt-responsive gut commensal modulates Th17 axis and disease
  publication-title: Nature
  doi: 10.1038/nature24628
– volume: 12
  start-page: e0184985
  year: 2017
  ident: CR16
  article-title: Liver X receptor activation promotes differentiation of regulatory T cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0184985
– volume: 349
  start-page: 989
  year: 2015
  end-page: 993
  ident: CR2
  article-title: Mucosal immunology. The microbiota regulates type 2 immunity through RORγt T cells
  publication-title: Science
  doi: 10.1126/science.aac4263
– volume: 141
  start-page: 176
  year: 2011
  end-page: 185
  ident: CR39
  article-title: MyD88 and retinoic acid signaling pathways interact to modulate gastrointestinal activities of dendritic cells
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2011.04.010
– volume: 51
  start-page: 696
  year: 2019
  end-page: 708 e699
  ident: CR21
  article-title: Transcriptional atlas of intestinal immune cells reveals that neuropeptide alpha-CGRP modulates group 2 innate lymphoid cell responses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.09.004
– volume: 45
  start-page: 1963
  year: 2002
  end-page: 1966
  ident: CR19
  article-title: Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines
  publication-title: J. Med. Chem.
  doi: 10.1021/jm0255116
– volume: 349
  start-page: 993
  year: 2015
  end-page: 997
  ident: CR3
  article-title: Mucosal immunology. Individual intestinal symbionts induce a distinct population of RORγ regulatory T cells
  publication-title: Science
  doi: 10.1126/science.aaa9420
– volume: 38
  start-page: 958
  year: 2013
  end-page: 969
  ident: CR6
  article-title: IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.03.009
– volume: 16
  start-page: 98
  year: 2010
  end-page: 105
  ident: CR13
  article-title: Tumor-mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses
  publication-title: Nat. Med.
  doi: 10.1038/nm.2074
– volume: 45
  start-page: 1311
  year: 2016
  end-page: 1326
  ident: CR25
  article-title: Cholesterol accumulation in CD11c+ immune cells is a causal and targetable factor in autoimmune disease
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.11.008
– volume: 16
  start-page: 185
  year: 2019
  end-page: 196
  ident: CR34
  article-title: IL-12, IL-23 and IL-17 in IBD: immunobiology and therapeutic targeting
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-018-0084-8
– volume: 139
  start-page: 485
  year: 2009
  end-page: 498
  ident: CR10
  article-title: Induction of intestinal Th17 cells by segmented filamentous bacteria
  publication-title: Cell
  doi: 10.1016/j.cell.2009.09.033
– volume: 48
  start-page: 564
  year: 2018
  end-page: 575
  ident: CR33
  article-title: The gut microbiota: an emerging risk factor for cardiovascular and cerebrovascular disease
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201646879
– volume: 121
  start-page: 658
  year: 2011
  end-page: 670
  ident: CR18
  article-title: Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI42974
– volume: 35
  start-page: 258
  year: 2015
  end-page: 264
  ident: CR36
  article-title: IL-17 and Th17 cells in atherosclerosis: subtle and contextual roles
  publication-title: Arterioscler Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.114.303567
– ident: CR5
– volume: 116
  start-page: 607
  year: 2006
  end-page: 614
  ident: CR11
  article-title: Liver X receptors as integrators of metabolic and inflammatory signaling
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI27883
– volume: 12
  start-page: 580
  year: 2019
  ident: CR27
  article-title: Correction: intestinal epithelial cell-specific RARalpha depletion results in aberrant epithelial cell homeostasis and underdeveloped immune system
  publication-title: Mucosal Immunol.
  doi: 10.1038/s41385-018-0074-8
– volume: 17
  start-page: 159
  year: 2018
  ident: CR32
  article-title: Western diet feeding influences gut microbiota profiles in apoE knockout mice
  publication-title: Lipids Health Dis.
  doi: 10.1186/s12944-018-0811-8
– volume: 3
  start-page: e1700492
  year: 2017
  ident: CR7
  article-title: High frequency of intestinal Th17 cells correlates with microbiota alterations and disease activity in multiple sclerosis
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700492
– volume: 26
  start-page: 1022
  year: 2006
  end-page: 1028
  ident: CR15
  article-title: LXR activation reduces proinflammatory cytokine expression in human CD4-positive lymphocytes
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/01.ATV.0000210278.67076.8f
– volume: 191
  start-page: 3725
  year: 2013
  end-page: 3733
  ident: CR17
  article-title: Retinoid X receptor agonists modulate Foxp3 regulatory T cell and Th17 cell differentiation with differential dependence on retinoic acid receptor activation
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1300032
– volume: 163
  start-page: 367
  year: 2015
  ident: 10.1038/s41385-020-0323-5_bib24
  article-title: Th17 cell induction by adhesion of microbes to intestinal epithelial cells
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.058
– volume: 10
  start-page: 1655
  year: 2019
  ident: 10.1038/s41385-020-0323-5_bib31
  article-title: Fecal and mucosal microbiota profiling in irritable bowel syndrome and inflammatory bowel disease
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.01655
– volume: 35
  start-page: 258
  year: 2015
  ident: 10.1038/s41385-020-0323-5_bib36
  article-title: IL-17 and Th17 cells in atherosclerosis: subtle and contextual roles
  publication-title: Arterioscler Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.114.303567
– volume: 43
  start-page: 817
  year: 2015
  ident: 10.1038/s41385-020-0323-5_bib9
  article-title: Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.09.007
– volume: 191
  start-page: 3725
  year: 2013
  ident: 10.1038/s41385-020-0323-5_bib17
  article-title: Retinoid X receptor agonists modulate Foxp3+ regulatory T cell and Th17 cell differentiation with differential dependence on retinoic acid receptor activation
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1300032
– volume: 38
  start-page: 958
  year: 2013
  ident: 10.1038/s41385-020-0323-5_bib6
  article-title: IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.03.009
– volume: 529
  start-page: 221
  year: 2016
  ident: 10.1038/s41385-020-0323-5_bib28
  article-title: Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit
  publication-title: Nature
  doi: 10.1038/nature16161
– volume: 141
  start-page: 176
  year: 2011
  ident: 10.1038/s41385-020-0323-5_bib39
  article-title: MyD88 and retinoic acid signaling pathways interact to modulate gastrointestinal activities of dendritic cells
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2011.04.010
– volume: 9
  start-page: 444
  year: 2016
  ident: 10.1038/s41385-020-0323-5_bib4
  article-title: Foxp3(+) T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation
  publication-title: Mucosal Immunol.
  doi: 10.1038/mi.2015.74
– volume: 17
  start-page: 159
  year: 2018
  ident: 10.1038/s41385-020-0323-5_bib32
  article-title: Western diet feeding influences gut microbiota profiles in apoE knockout mice
  publication-title: Lipids Health Dis.
  doi: 10.1186/s12944-018-0811-8
– volume: 204
  start-page: 1653
  year: 2007
  ident: 10.1038/s41385-020-0323-5_bib22
  article-title: Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20062648
– volume: 45
  start-page: 1963
  year: 2002
  ident: 10.1038/s41385-020-0323-5_bib19
  article-title: Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines
  publication-title: J. Med. Chem.
  doi: 10.1021/jm0255116
– ident: 10.1038/s41385-020-0323-5_bib5
  doi: 10.1016/j.jaut.2017.12.003
– volume: 17
  start-page: 1
  year: 2017
  ident: 10.1038/s41385-020-0323-5_bib29
  article-title: Host-microbial cross-talk in inflammatory bowel disease
  publication-title: Immune Netw.
  doi: 10.4110/in.2017.17.1.1
– volume: 349
  start-page: 989
  year: 2015
  ident: 10.1038/s41385-020-0323-5_bib2
  article-title: Mucosal immunology. The microbiota regulates type 2 immunity through RORγt+ T cells
  publication-title: Science
  doi: 10.1126/science.aac4263
– volume: 3
  start-page: e1700492
  year: 2017
  ident: 10.1038/s41385-020-0323-5_bib7
  article-title: High frequency of intestinal Th17 cells correlates with microbiota alterations and disease activity in multiple sclerosis
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700492
– volume: 63
  start-page: 1431
  year: 2014
  ident: 10.1038/s41385-020-0323-5_bib26
  article-title: beta7 integrins are required to give rise to intestinal mononuclear phagocytes with tolerogenic potential
  publication-title: Gut
  doi: 10.1136/gutjnl-2013-305386
– volume: 8
  year: 2018
  ident: 10.1038/s41385-020-0323-5_bib38
  article-title: Flt3 ligand expands bona fide innate lymphoid cell precursors in vivo
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-18283-0
– volume: 26
  start-page: 1022
  year: 2006
  ident: 10.1038/s41385-020-0323-5_bib15
  article-title: LXR activation reduces proinflammatory cytokine expression in human CD4-positive lymphocytes
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/01.ATV.0000210278.67076.8f
– volume: 134
  start-page: 97
  year: 2008
  ident: 10.1038/s41385-020-0323-5_bib20
  article-title: LXR signaling couples sterol metabolism to proliferation in the acquired immune response
  publication-title: Cell
  doi: 10.1016/j.cell.2008.04.052
– volume: 13
  year: 2012
  ident: 10.1038/s41385-020-0323-5_bib30
  article-title: Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment
  publication-title: Genome Biol.
  doi: 10.1186/gb-2012-13-9-r79
– volume: 16
  start-page: 98
  year: 2010
  ident: 10.1038/s41385-020-0323-5_bib13
  article-title: Tumor-mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses
  publication-title: Nat. Med.
  doi: 10.1038/nm.2074
– volume: 172
  start-page: 825
  year: 2018
  ident: 10.1038/s41385-020-0323-5_bib14
  article-title: LXR/ApoE activation restricts innate immune suppression in cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2017.12.026
– volume: 40
  start-page: 594
  year: 2014
  ident: 10.1038/s41385-020-0323-5_bib37
  article-title: Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.03.005
– volume: 27
  start-page: 3401
  year: 2019
  ident: 10.1038/s41385-020-0323-5_bib23
  article-title: Dynamic and asymmetric changes of the microbial communities after cohousing in laboratory mice
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.05.042
– volume: 93
  start-page: 163
  year: 2020
  ident: 10.1038/s41385-020-0323-5_bib12
  article-title: Retinoic acid induced cytokines are selectively modulated by liver X receptor activation in zebrafish
  publication-title: Reprod. Toxicol.
  doi: 10.1016/j.reprotox.2020.02.009
– volume: 252
  start-page: 164
  year: 2013
  ident: 10.1038/s41385-020-0323-5_bib1
  article-title: CD4(+) T-cell subsets in intestinal inflammation
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12039
– volume: 349
  start-page: 993
  year: 2015
  ident: 10.1038/s41385-020-0323-5_bib3
  article-title: Mucosal immunology. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells
  publication-title: Science
  doi: 10.1126/science.aaa9420
– volume: 551
  start-page: 585
  year: 2017
  ident: 10.1038/s41385-020-0323-5_bib8
  article-title: Salt-responsive gut commensal modulates Th17 axis and disease
  publication-title: Nature
  doi: 10.1038/nature24628
– volume: 139
  start-page: 485
  year: 2009
  ident: 10.1038/s41385-020-0323-5_bib10
  article-title: Induction of intestinal Th17 cells by segmented filamentous bacteria
  publication-title: Cell
  doi: 10.1016/j.cell.2009.09.033
– volume: 51
  start-page: 696
  year: 2019
  ident: 10.1038/s41385-020-0323-5_bib21
  article-title: Transcriptional atlas of intestinal immune cells reveals that neuropeptide alpha-CGRP modulates group 2 innate lymphoid cell responses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.09.004
– volume: 45
  start-page: 1311
  year: 2016
  ident: 10.1038/s41385-020-0323-5_bib25
  article-title: Cholesterol accumulation in CD11c+ immune cells is a causal and targetable factor in autoimmune disease
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.11.008
– volume: 12
  start-page: e0184985
  year: 2017
  ident: 10.1038/s41385-020-0323-5_bib16
  article-title: Liver X receptor activation promotes differentiation of regulatory T cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0184985
– volume: 16
  start-page: 185
  year: 2019
  ident: 10.1038/s41385-020-0323-5_bib34
  article-title: IL-12, IL-23 and IL-17 in IBD: immunobiology and therapeutic targeting
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-018-0084-8
– volume: 116
  start-page: 607
  year: 2006
  ident: 10.1038/s41385-020-0323-5_bib11
  article-title: Liver X receptors as integrators of metabolic and inflammatory signaling
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI27883
– volume: 48
  start-page: 564
  year: 2018
  ident: 10.1038/s41385-020-0323-5_bib33
  article-title: The gut microbiota: an emerging risk factor for cardiovascular and cerebrovascular disease
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201646879
– volume: 12
  start-page: 580
  year: 2019
  ident: 10.1038/s41385-020-0323-5_bib27
  article-title: Correction: intestinal epithelial cell-specific RARalpha depletion results in aberrant epithelial cell homeostasis and underdeveloped immune system
  publication-title: Mucosal Immunol.
  doi: 10.1038/s41385-018-0074-8
– volume: 121
  start-page: 658
  year: 2011
  ident: 10.1038/s41385-020-0323-5_bib18
  article-title: Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI42974
– ident: 10.1038/s41385-020-0323-5_bib35
  doi: 10.3389/fimmu.2017.01373
SSID ssj0060053
Score 2.3556206
Snippet The gastrointestinal microenvironment, dominated by dietary compounds and the commensal bacteria, is a major driver of intestinal CD4+ T helper (Th) cell...
The gastrointestinal microenvironment, dominated by dietary compounds and the commensal bacteria, is a major driver of intestinal CD4 + T helper (Th) cell...
The gastrointestinal microenvironment, dominated by dietary compounds and the commensal bacteria, is a major driver of intestinal CD4 T helper (Th) cell...
SourceID swepub
proquest
pubmed
crossref
springer
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 411
SubjectTerms Allergology
Animals
Antibodies
Biomedical and Life Sciences
Biomedicine
CD11c antigen
CD4 antigen
Cell Differentiation
Cholesterol
Cholesterol - metabolism
Epithelial cells
Gastroenterology
Gastrointestinal Microbiome - immunology
Helper cells
Horizontal cells
Horizontal transfer
Immunology
Immunomodulation
Intestine
Intestines - immunology
Liver X receptors
Liver X Receptors - genetics
Liver X Receptors - metabolism
Lymph nodes
Lymph Nodes - immunology
Lymphocyte Activation
Lymphocytes T
Metabolites
Mice
Mice, Inbred C57BL
Mice, Knockout
Microbiota
Microenvironments
Myeloid cells
Nuclear Receptor Subfamily 1, Group F, Member 3 - metabolism
Nuclear receptors
Rodents
T-Lymphocytes, Regulatory - immunology
Th17 Cells - immunology
Title Liver X receptor regulates Th17 and RORγt+ Treg cells by distinct mechanisms
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1933021922001416
https://link.springer.com/article/10.1038/s41385-020-0323-5
https://www.ncbi.nlm.nih.gov/pubmed/32681027
https://www.proquest.com/docview/2499666262
https://www.proquest.com/docview/2424995951
http://kipublications.ki.se/Default.aspx?queryparsed=id:144203532
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxUxEA7aIvhSvLtaSwTxwRKabDbZ7JOotBSxVQ6ncN5CboeKds-pu33o7_J_-Juc2VtF8byF3SSEmcnkm8xkhpBXcCY7OPYUU2IZWeF9YN5wz4yvwMTVQruE751PTvXxWfFxoRbDhVszhFWOOrFT1HEV8I78AMwEQOYAv_O360uGVaPQuzqU0LhNtjF1GUp1uZgMLo0S1nuV0VcpqtGrKc1BA8rb4NtkzrjMJVP_O5f-xZ1_-Ez_yi_anUlH98jOACbpu57798mtVD8gd_ryktcPycknDLqgCwpaLa3BuIZGV3k-NXR-Lkrq6khnn2e_frb7dA7_KF7jN9Rf04hbvw4tvUj4NPhrc9E8ImdHh_MPx2won8CC4rJlMWkfTOGF1rGShVw6XpaBRxUAc3kvVRVAtwUVvFDGRe5z56SQTpcBbCTY6o_JVr2q01NCeXReLIVZqsoVQQiXY3iUynkqZNRGZISPxLNhyC2OJS6-287HLY3t6W2B3hbpbVVG3kxD1n1ijU2d85EjdnwxCjrOgtrfNGh35J0dNmZjb8QoIy-n37ClkMCuTqsr7IO9FGDPjDzpeT4tEdCuAUxWZmR_FIKbyTcs5XUvJ9M8mNV7-PQNWskWutIFf7Z5zc_J3RxjaroYuF2y1f64Si8AFLV-r5P8PbL9_vD0y-w3ETwGFA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEaIXxJtAASMBByqrdhw7yQEhBFRbulukaivtzdiOV1TQ7EJSof1TXPgf_CZm8ioCsbferMSxrPE8vsnMeAh5CjbZgtlTTIl5wRLnPHMZdyxzObi4WmgbsN55cqhHx8n7mZptkB99LQymVfY6sVHUxcLjP_JdcBMAmQP8jl8tvzLsGoXR1b6FRssWB2H1HVy26uX-WzjfZ3G89276ZsS6rgLMKy5rVgTtfJY4oXWRy0TOLU9TzwvlAYo4J1XuQeS98k6ozBbcxdZKIa1OPbgOIAGw7iVyGQwvR2cvnQ0OnkaObqPYGBsVeR9FldluBcYiw1pozriMJVP_s4P_4tw_YrR_3Wfa2MC96-RaB17p65bbbpCNUN4kV9p2lqtbZDLGJA86o6BFwxKceRg0ne5DRaefREptWdCjD0e_ftY7dArvKIYNKupWtEBVU_qangYsRT6pTqvb5PhCCHuHbJaLMtwjlBfWibnI5iq3iRfCxpiOpWIeElnoTESE98QzvrvLHFtqfDFNTF1mpqW3AXobpLdREXkxfLJsL_JYNznuT8T0FaqgUw2YmXUfbfdnZzpFUJlzto3Ik-E1iDAS2JZhcYZzcJYCrBuRu-2ZD1sEdJ0BBkwjstMzwfnia7byvOWTYR28Rbx79BlGwSQ61wm_v37Pj8nV0XQyNuP9w4MHZCvGfJ4m_26bbNbfzsJDAGS1e9RIASUfL1rsfgNJRkH_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTiBeEP8pDDAS8MAU1Y5jJ3lACNiqjW1lqjqpb8Z2XIFgaSGdUD8Xb3wIPhN3TdIhEH3bm5U4lnW-P7_L3fkAnqJNtmj2VKTEpIgS53zkMu6izOXo4mqhbaB656OB3jtJ3o3VeAN-trUwlFbZ6sSloi6mnv6R99BNQGSO8DvuTZq0iOOd_qvZ14g6SFGktW2nUbPIQVh8R_eterm_g2f9LI77u6O3e1HTYSDyist5VATtfJY4oXWRy0ROLE9TzwvlEZY4J1XuUfy98k6ozBbcxdZKIa1OPboRKA247iXYTMkr6sDmm93B8bC1A5r4u45pU6RU5G1MVWa9Ck1HRpXRPOIylpH6n1X8F_X-EbH963bTpUXsX4drDZRlr2veuwEbobwJl-vmlotbcHRIKR9szFCnhhm69jhY9r0PFRt9FCmzZcGG74e_fsy32QjfMQoiVMwtWEGKp_RzdhqoMPlTdVrdhpMLIe0d6JTTMtwDxgvrxERkE5XbxAthY0rOUjEPiSx0JrrAW-IZ39xsTg02vphlhF1mpqa3QXobordRXXix-mRWX-uxbnLcnohp61VRwxo0Ous-2mrPzjRqoTLnTNyFJ6vXKNBEYFuG6RnNoVkKkW8X7tZnvtoiYu0MEWHahe2WCc4XX7OV5zWfrNahO8WbR59xFEyic53w--v3_BiuoMiZw_3BwQO4GlNyzzIZbws6829n4SGis7l71IgBgw8XLXm_ASDeR5o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liver+X+receptor+regulates+Th17+and+ROR%CE%B3t%2B+Treg+cells+by+distinct+mechanisms&rft.jtitle=Mucosal+immunology&rft.au=Parigi%2C+Sara+M&rft.au=Das+Srustidhar&rft.au=Frede+Annika&rft.au=Cardoso%2C+Rebeca+F&rft.date=2021-03-01&rft.pub=Elsevier+Limited&rft.issn=1933-0219&rft.eissn=1935-3456&rft.volume=14&rft.issue=2&rft.spage=411&rft.epage=419&rft_id=info:doi/10.1038%2Fs41385-020-0323-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1933-0219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1933-0219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1933-0219&client=summon