Liver X receptor regulates Th17 and RORγt+ Treg cells by distinct mechanisms
The gastrointestinal microenvironment, dominated by dietary compounds and the commensal bacteria, is a major driver of intestinal CD4+ T helper (Th) cell differentiation. Dietary compounds can be sensed by nuclear receptors (NRs) that consequently exert pleiotropic effects including immune modulatio...
Saved in:
Published in | Mucosal immunology Vol. 14; no. 2; pp. 411 - 419 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
01.03.2021
Nature Publishing Group US Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The gastrointestinal microenvironment, dominated by dietary compounds and the commensal bacteria, is a major driver of intestinal CD4+ T helper (Th) cell differentiation. Dietary compounds can be sensed by nuclear receptors (NRs) that consequently exert pleiotropic effects including immune modulation. Here, we found that under homeostatic conditions the NR Liver X receptor (LXR), a sensor of cholesterol metabolites, regulates RORγt+ CD4 T cells in the intestine draining mesenteric lymph node (MLN). While LXR activation led to a decrease, LXR-deficiency resulted in an increase in MLN Th17 and RORγt+ Tregs. Mechanistically, LXR signaling in CD11c+ myeloid cells was required to control RORγt+ Treg. By contrast, modulation of MLN Th17 was independent of LXR signaling in either immune or epithelial cells. Of note, horizontal transfer of microbiota between LXRα−/− and WT mice was sufficient to only partially increase MLN Th17 in WT mice. Despite LXRα deficiency resulted in an increased abundance of Ruminococcaceae and Lachnospiraceae bacterial families compared to littermate controls, microbiota ablation (including SFB) was not sufficient to dampen LXRα-mediated expansion of MLN Th17. Altogether, our results suggest that LXR modulates RORγt+ Treg and Th17 cells in the MLN through distinct mechanisms. |
---|---|
AbstractList | The gastrointestinal microenvironment, dominated by dietary compounds and the commensal bacteria, is a major driver of intestinal CD4
T helper (Th) cell differentiation. Dietary compounds can be sensed by nuclear receptors (NRs) that consequently exert pleiotropic effects including immune modulation. Here, we found that under homeostatic conditions the NR Liver X receptor (LXR), a sensor of cholesterol metabolites, regulates RORγt
CD4 T cells in the intestine draining mesenteric lymph node (MLN). While LXR activation led to a decrease, LXR-deficiency resulted in an increase in MLN Th17 and RORγt
Tregs. Mechanistically, LXR signaling in CD11c
myeloid cells was required to control RORγt
Treg. By contrast, modulation of MLN Th17 was independent of LXR signaling in either immune or epithelial cells. Of note, horizontal transfer of microbiota between LXRα
and WT mice was sufficient to only partially increase MLN Th17 in WT mice. Despite LXRα deficiency resulted in an increased abundance of Ruminococcaceae and Lachnospiraceae bacterial families compared to littermate controls, microbiota ablation (including SFB) was not sufficient to dampen LXRα-mediated expansion of MLN Th17. Altogether, our results suggest that LXR modulates RORγt
Treg and Th17 cells in the MLN through distinct mechanisms. The gastrointestinal microenvironment, dominated by dietary compounds and the commensal bacteria, is a major driver of intestinal CD4 + T helper (Th) cell differentiation. Dietary compounds can be sensed by nuclear receptors (NRs) that consequently exert pleiotropic effects including immune modulation. Here, we found that under homeostatic conditions the NR Liver X receptor (LXR), a sensor of cholesterol metabolites, regulates RORγt + CD4 T cells in the intestine draining mesenteric lymph node (MLN). While LXR activation led to a decrease, LXR-deficiency resulted in an increase in MLN Th17 and RORγt + Tregs. Mechanistically, LXR signaling in CD11c + myeloid cells was required to control RORγt + Treg. By contrast, modulation of MLN Th17 was independent of LXR signaling in either immune or epithelial cells. Of note, horizontal transfer of microbiota between LXRα −/− and WT mice was sufficient to only partially increase MLN Th17 in WT mice. Despite LXRα deficiency resulted in an increased abundance of Ruminococcaceae and Lachnospiraceae bacterial families compared to littermate controls, microbiota ablation (including SFB) was not sufficient to dampen LXRα-mediated expansion of MLN Th17. Altogether, our results suggest that LXR modulates RORγt + Treg and Th17 cells in the MLN through distinct mechanisms. The gastrointestinal microenvironment, dominated by dietary compounds and the commensal bacteria, is a major driver of intestinal CD4+ T helper (Th) cell differentiation. Dietary compounds can be sensed by nuclear receptors (NRs) that consequently exert pleiotropic effects including immune modulation. Here, we found that under homeostatic conditions the NR Liver X receptor (LXR), a sensor of cholesterol metabolites, regulates RORγt+ CD4 T cells in the intestine draining mesenteric lymph node (MLN). While LXR activation led to a decrease, LXR-deficiency resulted in an increase in MLN Th17 and RORγt+ Tregs. Mechanistically, LXR signaling in CD11c+ myeloid cells was required to control RORγt+ Treg. By contrast, modulation of MLN Th17 was independent of LXR signaling in either immune or epithelial cells. Of note, horizontal transfer of microbiota between LXRα−/− and WT mice was sufficient to only partially increase MLN Th17 in WT mice. Despite LXRα deficiency resulted in an increased abundance of Ruminococcaceae and Lachnospiraceae bacterial families compared to littermate controls, microbiota ablation (including SFB) was not sufficient to dampen LXRα-mediated expansion of MLN Th17. Altogether, our results suggest that LXR modulates RORγt+ Treg and Th17 cells in the MLN through distinct mechanisms. The gastrointestinal microenvironment, dominated by dietary compounds and the commensal bacteria, is a major driver of intestinal CD4+ T helper (Th) cell differentiation. Dietary compounds can be sensed by nuclear receptors (NRs) that consequently exert pleiotropic effects including immune modulation. Here, we found that under homeostatic conditions the NR Liver X receptor (LXR), a sensor of cholesterol metabolites, regulates RORγt+ CD4 T cells in the intestine draining mesenteric lymph node (MLN). While LXR activation led to a decrease, LXR-deficiency resulted in an increase in MLN Th17 and RORγt+ Tregs. Mechanistically, LXR signaling in CD11c+ myeloid cells was required to control RORγt+ Treg. By contrast, modulation of MLN Th17 was independent of LXR signaling in either immune or epithelial cells. Of note, horizontal transfer of microbiota between LXRα-/- and WT mice was sufficient to only partially increase MLN Th17 in WT mice. Despite LXRα deficiency resulted in an increased abundance of Ruminococcaceae and Lachnospiraceae bacterial families compared to littermate controls, microbiota ablation (including SFB) was not sufficient to dampen LXRα-mediated expansion of MLN Th17. Altogether, our results suggest that LXR modulates RORγt+ Treg and Th17 cells in the MLN through distinct mechanisms.The gastrointestinal microenvironment, dominated by dietary compounds and the commensal bacteria, is a major driver of intestinal CD4+ T helper (Th) cell differentiation. Dietary compounds can be sensed by nuclear receptors (NRs) that consequently exert pleiotropic effects including immune modulation. Here, we found that under homeostatic conditions the NR Liver X receptor (LXR), a sensor of cholesterol metabolites, regulates RORγt+ CD4 T cells in the intestine draining mesenteric lymph node (MLN). While LXR activation led to a decrease, LXR-deficiency resulted in an increase in MLN Th17 and RORγt+ Tregs. Mechanistically, LXR signaling in CD11c+ myeloid cells was required to control RORγt+ Treg. By contrast, modulation of MLN Th17 was independent of LXR signaling in either immune or epithelial cells. Of note, horizontal transfer of microbiota between LXRα-/- and WT mice was sufficient to only partially increase MLN Th17 in WT mice. Despite LXRα deficiency resulted in an increased abundance of Ruminococcaceae and Lachnospiraceae bacterial families compared to littermate controls, microbiota ablation (including SFB) was not sufficient to dampen LXRα-mediated expansion of MLN Th17. Altogether, our results suggest that LXR modulates RORγt+ Treg and Th17 cells in the MLN through distinct mechanisms. |
Author | Das, Srustidhar Doñas, Cristian Cardoso, Rebeca F. Villablanca, Eduardo J. Hu, Yue O.O. Antonson, Per Engstrand, Lars Gustafsson, Jan-Åke Parigi, Sara M. Frede, Annika Tripathi, Kumar Parijat |
Author_xml | – sequence: 1 givenname: Sara M. surname: Parigi fullname: Parigi, Sara M. organization: Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden – sequence: 2 givenname: Srustidhar surname: Das fullname: Das, Srustidhar organization: Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden – sequence: 3 givenname: Annika surname: Frede fullname: Frede, Annika organization: Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden – sequence: 4 givenname: Rebeca F. surname: Cardoso fullname: Cardoso, Rebeca F. organization: Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden – sequence: 5 givenname: Kumar Parijat surname: Tripathi fullname: Tripathi, Kumar Parijat organization: Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden – sequence: 6 givenname: Cristian surname: Doñas fullname: Doñas, Cristian organization: Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden – sequence: 7 givenname: Yue O.O. surname: Hu fullname: Hu, Yue O.O. organization: Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Karolinska Hospital, Stockholm, Sweden – sequence: 8 givenname: Per surname: Antonson fullname: Antonson, Per organization: Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden – sequence: 9 givenname: Lars surname: Engstrand fullname: Engstrand, Lars organization: Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Karolinska Hospital, Stockholm, Sweden – sequence: 10 givenname: Jan-Åke surname: Gustafsson fullname: Gustafsson, Jan-Åke organization: Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden – sequence: 11 givenname: Eduardo J. surname: Villablanca fullname: Villablanca, Eduardo J. email: eduardo.villablanca@ki.se organization: Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32681027$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:144203532$$DView record from Swedish Publication Index |
BookMark | eNp9kctq3DAUhkVJaC7tA3RTBN0UilNdLNlalpBeYEIgTKE7IUtnEiW2PJXklHmuvkefqZp6mkAWs9KPzvdL55z_BB2EMQBCbyg5o4S3H1NNeSsqwkhFOOOVeIGOqeKi4rWQB_80L1WqjtBJSneESEIEf4mOOJMtJaw5RpcL_wAR_8ARLKzzGIu4mXqTIeHlLW2wCQ5fX13_-Z0_4GWpYQt9n3C3wc6n7IPNeAB7a4JPQ3qFDlemT_B6d56i758vludfq8XVl2_nnxaVFYTnyoHsbFt3VEqneM1XhjSNJU5YwVjXcaGsc2CF7ahojSMdM4ZTbmRjad3Slp-ian43_YL11Ol19IOJGz0ar3dX90WBrqWSNSn8-5lfx_HnBCnrwaftICbAOCXNalYrJZSgBX33DL0bpxjKNHrLSCmZZIV6u6OmbgD32MD_xRaAzoCNY0oRVo8IJXobnp7D0yU8vQ1Pi-Jpnnmszyb7MeRofL_XyXb7KL-EG4hPTe8zqdkEJakHX0y298Fb09_DRrvR7_H-Bd0Qvr8 |
CitedBy_id | crossref_primary_10_1016_j_intimp_2021_108450 crossref_primary_10_1016_j_jep_2024_118715 crossref_primary_10_3389_fimmu_2024_1444892 crossref_primary_10_1124_dmd_122_000860 crossref_primary_10_2139_ssrn_3945928 crossref_primary_10_1002_mco2_444 crossref_primary_10_1016_j_immuni_2022_11_002 crossref_primary_10_1073_pnas_2017394118 crossref_primary_10_1167_iovs_63_6_12 |
Cites_doi | 10.1016/j.cell.2017.12.026 10.1186/gb-2012-13-9-r79 10.1136/gutjnl-2013-305386 10.1038/nature16161 10.3389/fmicb.2019.01655 10.1016/j.cell.2008.04.052 10.4110/in.2017.17.1.1 10.1016/j.immuni.2015.09.007 10.1016/j.celrep.2019.05.042 10.1038/s41598-017-18283-0 10.1016/j.reprotox.2020.02.009 10.1084/jem.20062648 10.1038/mi.2015.74 10.1016/j.immuni.2014.03.005 10.1016/j.cell.2015.08.058 10.1111/imr.12039 10.1038/nature24628 10.1371/journal.pone.0184985 10.1126/science.aac4263 10.1053/j.gastro.2011.04.010 10.1016/j.immuni.2019.09.004 10.1021/jm0255116 10.1126/science.aaa9420 10.1016/j.immuni.2013.03.009 10.1038/nm.2074 10.1016/j.immuni.2016.11.008 10.1038/s41575-018-0084-8 10.1016/j.cell.2009.09.033 10.1002/eji.201646879 10.1172/JCI42974 10.1161/ATVBAHA.114.303567 10.1172/JCI27883 10.1038/s41385-018-0074-8 10.1186/s12944-018-0811-8 10.1126/sciadv.1700492 10.1161/01.ATV.0000210278.67076.8f 10.4049/jimmunol.1300032 10.1016/j.jaut.2017.12.003 10.3389/fimmu.2017.01373 |
ContentType | Journal Article |
Copyright | 2020 © Society for Mucosal Immunology Society for Mucosal Immunology 2020 Society for Mucosal Immunology 2020. |
Copyright_xml | – notice: 2020 © Society for Mucosal Immunology – notice: Society for Mucosal Immunology 2020 – notice: Society for Mucosal Immunology 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7T5 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 ADTPV AOWAS D8T ZZAVC |
DOI | 10.1038/s41385-020-0323-5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Immunology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1935-3456 |
EndPage | 419 |
ExternalDocumentID | oai_swepub_ki_se_469640 32681027 10_1038_s41385_020_0323_5 S1933021922001416 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -Q- .1- .FO 0R~ 123 29M 39C 4.4 53G 70F 7X7 88E 8FI 8FJ AALRI AANZL AAXUO AAYWO ABAWZ ABUWG ACGFS ACKTT ACRQY ACVFH ADBBV ADCNI ADVLN AEJRE AENEX AEUPX AEXQZ AEXYK AFJKZ AFKRA AFPUW AFRHN AFSHS AGAYW AGHAI AHMBA AHSBF AIGII AILAN AITUG AJRNO AJUYK AKBMS AKRWK AKYEP ALFFA ALMA_UNASSIGNED_HOLDINGS AMRAJ AMYLF APXCP AXYYD BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CAG CCPQU COF CS3 DNIVK DU5 EBS EE. EIOEI EJD F5P FDB FDQFY FERAY FIZPM FSGXE FYUFA HCIFZ HMCUK HZ~ IWAJR JSO JZLTJ M1P M7P NQJWS O9- OK1 P2P PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RNT RNTTT ROL SNYQT SRMVM SWTZT TAOOD TBHMF TDRGL TSG UKHRP Z5R 3V. AAZLF ABDBF ACZOJ ADHDB AEFQL AFCTW ALIPV ESX NAO SNX SV3 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7XB 8FE 8FH 8FK AZQEC DWQXO GNUQQ H94 K9. LK8 PKEHL PQEST PQUKI PRINS 7X8 ADTPV AOWAS D8T ZZAVC |
ID | FETCH-LOGICAL-c503t-de6bc84b166d9343fa077c0d5c522bb359cddec5cb158ad0b2aa313a67c148183 |
IEDL.DBID | 7X7 |
ISSN | 1933-0219 1935-3456 |
IngestDate | Mon Aug 25 03:25:39 EDT 2025 Fri Jul 11 01:04:35 EDT 2025 Fri Jul 25 11:11:44 EDT 2025 Mon Jul 21 05:55:54 EDT 2025 Tue Aug 05 12:09:53 EDT 2025 Thu Apr 24 22:54:33 EDT 2025 Fri Feb 21 02:39:40 EST 2025 Tue Aug 26 17:30:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c503t-de6bc84b166d9343fa077c0d5c522bb359cddec5cb158ad0b2aa313a67c148183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://kipublications.ki.se/Default.aspx?queryparsed=id:144203532 |
PMID | 32681027 |
PQID | 2499666262 |
PQPubID | 2041940 |
PageCount | 9 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_469640 proquest_miscellaneous_2424995951 proquest_journals_2499666262 pubmed_primary_32681027 crossref_primary_10_1038_s41385_020_0323_5 crossref_citationtrail_10_1038_s41385_020_0323_5 springer_journals_10_1038_s41385_020_0323_5 elsevier_clinicalkey_doi_10_1038_s41385_020_0323_5 |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Kidlington |
PublicationSubtitle | The official publication of the Society for Mucosal Immunology |
PublicationTitle | Mucosal immunology |
PublicationTitleAbbrev | Mucosal Immunol |
PublicationTitleAlternate | Mucosal Immunol |
PublicationYear | 2021 |
Publisher | Elsevier Inc Nature Publishing Group US Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Nature Publishing Group US – name: Elsevier Limited |
References | Persson (bib6) 2013; 38 Takeuchi (bib17) 2013; 191 Cui (bib18) 2011; 121 Bensinger (bib20) 2008; 134 Ito (bib25) 2016; 45 Kempski, J., Brockmann, L., Gagliani, N. & Huber, S. Th17 cell and epithelial cell crosstalk during inflammatory bowel disease and carcinogenesis. Nagao-Kitamoto, Kamada (bib29) 2017; 17 Caruso, Ono, Bunker, Nunez, Inohara (bib23) 2019; 27 Parigi (bib38) 2018; 8 Sefik (bib3) 2015; 349 Zelcer, Tontonoz (bib11) 2006; 116 Yang (bib4) 2016; 9 Ivanov (bib10) 2009; 139 Herold (bib16) 2017; 12 Jijon (bib27) 2019; 12 Liu (bib32) 2018; 17 Taleb, Tedgui, Mallat (bib36) 2015; 35 Tavazoie (bib14) 2018; 172 Diaz (bib12) 2020; 93 Wilck (bib8) 2017; 551 von Moltke, Ji, Liang, Locksley (bib28) 2016; 529 Agalioti, T., Villablanca, E. J., Huber, S. & Gagliani, N. Th17 cell plasticity: the role of dendritic cells and molecular mechanisms. Collins (bib19) 2002; 45 Villablanca (bib26) 2014; 63 Ohnmacht (bib2) 2015; 349 Villablanca (bib39) 2011; 141 Walcher (bib15) 2006; 26 Caton, Smith-Raska, Reizis (bib22) 2007; 204 Shale, Schiering, Powrie (bib1) 2013; 252 Goto (bib37) 2014; 40 Villablanca (bib13) 2010; 16 Ascher, Reinhardt (bib33) 2018; 48 . Morgan (bib30) 2012; 13 Moschen, Tilg, Raine (bib34) 2019; 16 (2018). Atarashi (bib24) 2015; 163 (2017). Cosorich (bib7) 2017; 3 Xu (bib21) 2019; 51 Lo Presti (bib31) 2019; 10 Haghikia (bib9) 2015; 43 Cui (CR18) 2011; 121 Cosorich (CR7) 2017; 3 Caruso, Ono, Bunker, Nunez, Inohara (CR23) 2019; 27 Herold (CR16) 2017; 12 Villablanca (CR26) 2014; 63 Shale, Schiering, Powrie (CR1) 2013; 252 Goto (CR37) 2014; 40 Collins (CR19) 2002; 45 Caton, Smith-Raska, Reizis (CR22) 2007; 204 Nagao-Kitamoto, Kamada (CR29) 2017; 17 CR35 Yang (CR4) 2016; 9 von Moltke, Ji, Liang, Locksley (CR28) 2016; 529 Taleb, Tedgui, Mallat (CR36) 2015; 35 Lo Presti (CR31) 2019; 10 Ivanov (CR10) 2009; 139 Takeuchi (CR17) 2013; 191 Wilck (CR8) 2017; 551 Persson (CR6) 2013; 38 Liu (CR32) 2018; 17 Villablanca (CR13) 2010; 16 Tavazoie (CR14) 2018; 172 Moschen, Tilg, Raine (CR34) 2019; 16 Atarashi (CR24) 2015; 163 CR5 Haghikia (CR9) 2015; 43 Zelcer, Tontonoz (CR11) 2006; 116 Xu (CR21) 2019; 51 Villablanca (CR39) 2011; 141 Ito (CR25) 2016; 45 Bensinger (CR20) 2008; 134 Ascher, Reinhardt (CR33) 2018; 48 Walcher (CR15) 2006; 26 Morgan (CR30) 2012; 13 Jijon (CR27) 2019; 12 Diaz (CR12) 2020; 93 Parigi (CR38) 2018; 8 Ohnmacht (CR2) 2015; 349 Sefik (CR3) 2015; 349 Morgan (10.1038/s41385-020-0323-5_bib30) 2012; 13 Villablanca (10.1038/s41385-020-0323-5_bib26) 2014; 63 Cosorich (10.1038/s41385-020-0323-5_bib7) 2017; 3 Caton (10.1038/s41385-020-0323-5_bib22) 2007; 204 Villablanca (10.1038/s41385-020-0323-5_bib39) 2011; 141 Cui (10.1038/s41385-020-0323-5_bib18) 2011; 121 Nagao-Kitamoto (10.1038/s41385-020-0323-5_bib29) 2017; 17 Takeuchi (10.1038/s41385-020-0323-5_bib17) 2013; 191 Ivanov (10.1038/s41385-020-0323-5_bib10) 2009; 139 Caruso (10.1038/s41385-020-0323-5_bib23) 2019; 27 Walcher (10.1038/s41385-020-0323-5_bib15) 2006; 26 Goto (10.1038/s41385-020-0323-5_bib37) 2014; 40 Wilck (10.1038/s41385-020-0323-5_bib8) 2017; 551 Persson (10.1038/s41385-020-0323-5_bib6) 2013; 38 Zelcer (10.1038/s41385-020-0323-5_bib11) 2006; 116 Atarashi (10.1038/s41385-020-0323-5_bib24) 2015; 163 Ito (10.1038/s41385-020-0323-5_bib25) 2016; 45 von Moltke (10.1038/s41385-020-0323-5_bib28) 2016; 529 10.1038/s41385-020-0323-5_bib35 Shale (10.1038/s41385-020-0323-5_bib1) 2013; 252 Lo Presti (10.1038/s41385-020-0323-5_bib31) 2019; 10 Liu (10.1038/s41385-020-0323-5_bib32) 2018; 17 Tavazoie (10.1038/s41385-020-0323-5_bib14) 2018; 172 Moschen (10.1038/s41385-020-0323-5_bib34) 2019; 16 Haghikia (10.1038/s41385-020-0323-5_bib9) 2015; 43 Ohnmacht (10.1038/s41385-020-0323-5_bib2) 2015; 349 Taleb (10.1038/s41385-020-0323-5_bib36) 2015; 35 Yang (10.1038/s41385-020-0323-5_bib4) 2016; 9 Parigi (10.1038/s41385-020-0323-5_bib38) 2018; 8 Herold (10.1038/s41385-020-0323-5_bib16) 2017; 12 Collins (10.1038/s41385-020-0323-5_bib19) 2002; 45 Ascher (10.1038/s41385-020-0323-5_bib33) 2018; 48 Sefik (10.1038/s41385-020-0323-5_bib3) 2015; 349 Bensinger (10.1038/s41385-020-0323-5_bib20) 2008; 134 10.1038/s41385-020-0323-5_bib5 Villablanca (10.1038/s41385-020-0323-5_bib13) 2010; 16 Diaz (10.1038/s41385-020-0323-5_bib12) 2020; 93 Jijon (10.1038/s41385-020-0323-5_bib27) 2019; 12 Xu (10.1038/s41385-020-0323-5_bib21) 2019; 51 |
References_xml | – volume: 12 start-page: 580 year: 2019 ident: bib27 article-title: Correction: intestinal epithelial cell-specific RARalpha depletion results in aberrant epithelial cell homeostasis and underdeveloped immune system publication-title: Mucosal Immunol. – volume: 40 start-page: 594 year: 2014 end-page: 607 ident: bib37 article-title: Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation publication-title: Immunity – volume: 93 start-page: 163 year: 2020 end-page: 168 ident: bib12 article-title: Retinoic acid induced cytokines are selectively modulated by liver X receptor activation in zebrafish publication-title: Reprod. Toxicol. – volume: 16 start-page: 185 year: 2019 end-page: 196 ident: bib34 article-title: IL-12, IL-23 and IL-17 in IBD: immunobiology and therapeutic targeting publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 121 start-page: 658 year: 2011 end-page: 670 ident: bib18 article-title: Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation publication-title: J. Clin. Invest. – volume: 17 start-page: 1 year: 2017 end-page: 12 ident: bib29 article-title: Host-microbial cross-talk in inflammatory bowel disease publication-title: Immune Netw. – volume: 13 year: 2012 ident: bib30 article-title: Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment publication-title: Genome Biol. – volume: 8 year: 2018 ident: bib38 article-title: Flt3 ligand expands bona fide innate lymphoid cell precursors in vivo publication-title: Sci. Rep. – volume: 16 start-page: 98 year: 2010 end-page: 105 ident: bib13 article-title: Tumor-mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses publication-title: Nat. Med. – volume: 3 start-page: e1700492 year: 2017 ident: bib7 article-title: High frequency of intestinal Th17 cells correlates with microbiota alterations and disease activity in multiple sclerosis publication-title: Sci. Adv. – reference: Kempski, J., Brockmann, L., Gagliani, N. & Huber, S. Th17 cell and epithelial cell crosstalk during inflammatory bowel disease and carcinogenesis. – volume: 9 start-page: 444 year: 2016 end-page: 457 ident: bib4 article-title: Foxp3(+) T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation publication-title: Mucosal Immunol. – volume: 163 start-page: 367 year: 2015 end-page: 380 ident: bib24 article-title: Th17 cell induction by adhesion of microbes to intestinal epithelial cells publication-title: Cell – volume: 35 start-page: 258 year: 2015 end-page: 264 ident: bib36 article-title: IL-17 and Th17 cells in atherosclerosis: subtle and contextual roles publication-title: Arterioscler Thromb. Vasc. Biol. – volume: 17 start-page: 159 year: 2018 ident: bib32 article-title: Western diet feeding influences gut microbiota profiles in apoE knockout mice publication-title: Lipids Health Dis. – volume: 26 start-page: 1022 year: 2006 end-page: 1028 ident: bib15 article-title: LXR activation reduces proinflammatory cytokine expression in human CD4-positive lymphocytes publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 252 start-page: 164 year: 2013 end-page: 182 ident: bib1 article-title: CD4(+) T-cell subsets in intestinal inflammation publication-title: Immunol. Rev. – volume: 43 start-page: 817 year: 2015 end-page: 829 ident: bib9 article-title: Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine publication-title: Immunity – volume: 38 start-page: 958 year: 2013 end-page: 969 ident: bib6 article-title: IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation publication-title: Immunity – volume: 134 start-page: 97 year: 2008 end-page: 111 ident: bib20 article-title: LXR signaling couples sterol metabolism to proliferation in the acquired immune response publication-title: Cell – volume: 116 start-page: 607 year: 2006 end-page: 614 ident: bib11 article-title: Liver X receptors as integrators of metabolic and inflammatory signaling publication-title: J. Clin. Invest. – volume: 139 start-page: 485 year: 2009 end-page: 498 ident: bib10 article-title: Induction of intestinal Th17 cells by segmented filamentous bacteria publication-title: Cell – volume: 12 start-page: e0184985 year: 2017 ident: bib16 article-title: Liver X receptor activation promotes differentiation of regulatory T cells publication-title: PLoS ONE – volume: 141 start-page: 176 year: 2011 end-page: 185 ident: bib39 article-title: MyD88 and retinoic acid signaling pathways interact to modulate gastrointestinal activities of dendritic cells publication-title: Gastroenterology – volume: 204 start-page: 1653 year: 2007 end-page: 1664 ident: bib22 article-title: Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen publication-title: J. Exp. Med. – volume: 529 start-page: 221 year: 2016 end-page: 225 ident: bib28 article-title: Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit publication-title: Nature – volume: 63 start-page: 1431 year: 2014 end-page: 1440 ident: bib26 article-title: beta7 integrins are required to give rise to intestinal mononuclear phagocytes with tolerogenic potential publication-title: Gut – volume: 45 start-page: 1963 year: 2002 end-page: 1966 ident: bib19 article-title: Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines publication-title: J. Med. Chem. – volume: 48 start-page: 564 year: 2018 end-page: 575 ident: bib33 article-title: The gut microbiota: an emerging risk factor for cardiovascular and cerebrovascular disease publication-title: Eur. J. Immunol. – volume: 191 start-page: 3725 year: 2013 end-page: 3733 ident: bib17 article-title: Retinoid X receptor agonists modulate Foxp3 publication-title: J. Immunol. – volume: 45 start-page: 1311 year: 2016 end-page: 1326 ident: bib25 article-title: Cholesterol accumulation in CD11c+ immune cells is a causal and targetable factor in autoimmune disease publication-title: Immunity – reference: (2018). – volume: 349 start-page: 993 year: 2015 end-page: 997 ident: bib3 article-title: Mucosal immunology. Individual intestinal symbionts induce a distinct population of RORγ publication-title: Science – volume: 10 start-page: 1655 year: 2019 ident: bib31 article-title: Fecal and mucosal microbiota profiling in irritable bowel syndrome and inflammatory bowel disease publication-title: Front. Microbiol. – volume: 349 start-page: 989 year: 2015 end-page: 993 ident: bib2 article-title: Mucosal immunology. The microbiota regulates type 2 immunity through RORγt publication-title: Science – volume: 172 start-page: 825 year: 2018 end-page: 840.e8 ident: bib14 article-title: LXR/ApoE activation restricts innate immune suppression in cancer publication-title: Cell – volume: 27 start-page: 3401 year: 2019 end-page: 3412 e3403 ident: bib23 article-title: Dynamic and asymmetric changes of the microbial communities after cohousing in laboratory mice publication-title: Cell Rep. – volume: 51 start-page: 696 year: 2019 end-page: 708 e699 ident: bib21 article-title: Transcriptional atlas of intestinal immune cells reveals that neuropeptide alpha-CGRP modulates group 2 innate lymphoid cell responses publication-title: Immunity – reference: . – volume: 551 start-page: 585 year: 2017 end-page: 589 ident: bib8 article-title: Salt-responsive gut commensal modulates Th17 axis and disease publication-title: Nature – reference: Agalioti, T., Villablanca, E. J., Huber, S. & Gagliani, N. Th17 cell plasticity: the role of dendritic cells and molecular mechanisms. – reference: (2017). – volume: 172 start-page: 825 year: 2018 end-page: 840.e8 ident: CR14 article-title: LXR/ApoE activation restricts innate immune suppression in cancer publication-title: Cell doi: 10.1016/j.cell.2017.12.026 – volume: 13 year: 2012 ident: CR30 article-title: Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment publication-title: Genome Biol. doi: 10.1186/gb-2012-13-9-r79 – volume: 63 start-page: 1431 year: 2014 end-page: 1440 ident: CR26 article-title: beta7 integrins are required to give rise to intestinal mononuclear phagocytes with tolerogenic potential publication-title: Gut doi: 10.1136/gutjnl-2013-305386 – volume: 529 start-page: 221 year: 2016 end-page: 225 ident: CR28 article-title: Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit publication-title: Nature doi: 10.1038/nature16161 – volume: 10 start-page: 1655 year: 2019 ident: CR31 article-title: Fecal and mucosal microbiota profiling in irritable bowel syndrome and inflammatory bowel disease publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.01655 – volume: 134 start-page: 97 year: 2008 end-page: 111 ident: CR20 article-title: LXR signaling couples sterol metabolism to proliferation in the acquired immune response publication-title: Cell doi: 10.1016/j.cell.2008.04.052 – volume: 17 start-page: 1 year: 2017 end-page: 12 ident: CR29 article-title: Host-microbial cross-talk in inflammatory bowel disease publication-title: Immune Netw. doi: 10.4110/in.2017.17.1.1 – volume: 43 start-page: 817 year: 2015 end-page: 829 ident: CR9 article-title: Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine publication-title: Immunity doi: 10.1016/j.immuni.2015.09.007 – volume: 27 start-page: 3401 year: 2019 end-page: 3412 e3403 ident: CR23 article-title: Dynamic and asymmetric changes of the microbial communities after cohousing in laboratory mice publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.05.042 – volume: 8 year: 2018 ident: CR38 article-title: Flt3 ligand expands bona fide innate lymphoid cell precursors in vivo publication-title: Sci. Rep. doi: 10.1038/s41598-017-18283-0 – volume: 93 start-page: 163 year: 2020 end-page: 168 ident: CR12 article-title: Retinoic acid induced cytokines are selectively modulated by liver X receptor activation in zebrafish publication-title: Reprod. Toxicol. doi: 10.1016/j.reprotox.2020.02.009 – volume: 204 start-page: 1653 year: 2007 end-page: 1664 ident: CR22 article-title: Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen publication-title: J. Exp. Med. doi: 10.1084/jem.20062648 – ident: CR35 – volume: 9 start-page: 444 year: 2016 end-page: 457 ident: CR4 article-title: Foxp3(+) T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation publication-title: Mucosal Immunol. doi: 10.1038/mi.2015.74 – volume: 40 start-page: 594 year: 2014 end-page: 607 ident: CR37 article-title: Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation publication-title: Immunity doi: 10.1016/j.immuni.2014.03.005 – volume: 163 start-page: 367 year: 2015 end-page: 380 ident: CR24 article-title: Th17 cell induction by adhesion of microbes to intestinal epithelial cells publication-title: Cell doi: 10.1016/j.cell.2015.08.058 – volume: 252 start-page: 164 year: 2013 end-page: 182 ident: CR1 article-title: CD4(+) T-cell subsets in intestinal inflammation publication-title: Immunol. Rev. doi: 10.1111/imr.12039 – volume: 551 start-page: 585 year: 2017 end-page: 589 ident: CR8 article-title: Salt-responsive gut commensal modulates Th17 axis and disease publication-title: Nature doi: 10.1038/nature24628 – volume: 12 start-page: e0184985 year: 2017 ident: CR16 article-title: Liver X receptor activation promotes differentiation of regulatory T cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0184985 – volume: 349 start-page: 989 year: 2015 end-page: 993 ident: CR2 article-title: Mucosal immunology. The microbiota regulates type 2 immunity through RORγt T cells publication-title: Science doi: 10.1126/science.aac4263 – volume: 141 start-page: 176 year: 2011 end-page: 185 ident: CR39 article-title: MyD88 and retinoic acid signaling pathways interact to modulate gastrointestinal activities of dendritic cells publication-title: Gastroenterology doi: 10.1053/j.gastro.2011.04.010 – volume: 51 start-page: 696 year: 2019 end-page: 708 e699 ident: CR21 article-title: Transcriptional atlas of intestinal immune cells reveals that neuropeptide alpha-CGRP modulates group 2 innate lymphoid cell responses publication-title: Immunity doi: 10.1016/j.immuni.2019.09.004 – volume: 45 start-page: 1963 year: 2002 end-page: 1966 ident: CR19 article-title: Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines publication-title: J. Med. Chem. doi: 10.1021/jm0255116 – volume: 349 start-page: 993 year: 2015 end-page: 997 ident: CR3 article-title: Mucosal immunology. Individual intestinal symbionts induce a distinct population of RORγ regulatory T cells publication-title: Science doi: 10.1126/science.aaa9420 – volume: 38 start-page: 958 year: 2013 end-page: 969 ident: CR6 article-title: IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation publication-title: Immunity doi: 10.1016/j.immuni.2013.03.009 – volume: 16 start-page: 98 year: 2010 end-page: 105 ident: CR13 article-title: Tumor-mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses publication-title: Nat. Med. doi: 10.1038/nm.2074 – volume: 45 start-page: 1311 year: 2016 end-page: 1326 ident: CR25 article-title: Cholesterol accumulation in CD11c+ immune cells is a causal and targetable factor in autoimmune disease publication-title: Immunity doi: 10.1016/j.immuni.2016.11.008 – volume: 16 start-page: 185 year: 2019 end-page: 196 ident: CR34 article-title: IL-12, IL-23 and IL-17 in IBD: immunobiology and therapeutic targeting publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-018-0084-8 – volume: 139 start-page: 485 year: 2009 end-page: 498 ident: CR10 article-title: Induction of intestinal Th17 cells by segmented filamentous bacteria publication-title: Cell doi: 10.1016/j.cell.2009.09.033 – volume: 48 start-page: 564 year: 2018 end-page: 575 ident: CR33 article-title: The gut microbiota: an emerging risk factor for cardiovascular and cerebrovascular disease publication-title: Eur. J. Immunol. doi: 10.1002/eji.201646879 – volume: 121 start-page: 658 year: 2011 end-page: 670 ident: CR18 article-title: Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation publication-title: J. Clin. Invest. doi: 10.1172/JCI42974 – volume: 35 start-page: 258 year: 2015 end-page: 264 ident: CR36 article-title: IL-17 and Th17 cells in atherosclerosis: subtle and contextual roles publication-title: Arterioscler Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.114.303567 – ident: CR5 – volume: 116 start-page: 607 year: 2006 end-page: 614 ident: CR11 article-title: Liver X receptors as integrators of metabolic and inflammatory signaling publication-title: J. Clin. Invest. doi: 10.1172/JCI27883 – volume: 12 start-page: 580 year: 2019 ident: CR27 article-title: Correction: intestinal epithelial cell-specific RARalpha depletion results in aberrant epithelial cell homeostasis and underdeveloped immune system publication-title: Mucosal Immunol. doi: 10.1038/s41385-018-0074-8 – volume: 17 start-page: 159 year: 2018 ident: CR32 article-title: Western diet feeding influences gut microbiota profiles in apoE knockout mice publication-title: Lipids Health Dis. doi: 10.1186/s12944-018-0811-8 – volume: 3 start-page: e1700492 year: 2017 ident: CR7 article-title: High frequency of intestinal Th17 cells correlates with microbiota alterations and disease activity in multiple sclerosis publication-title: Sci. Adv. doi: 10.1126/sciadv.1700492 – volume: 26 start-page: 1022 year: 2006 end-page: 1028 ident: CR15 article-title: LXR activation reduces proinflammatory cytokine expression in human CD4-positive lymphocytes publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/01.ATV.0000210278.67076.8f – volume: 191 start-page: 3725 year: 2013 end-page: 3733 ident: CR17 article-title: Retinoid X receptor agonists modulate Foxp3 regulatory T cell and Th17 cell differentiation with differential dependence on retinoic acid receptor activation publication-title: J. Immunol. doi: 10.4049/jimmunol.1300032 – volume: 163 start-page: 367 year: 2015 ident: 10.1038/s41385-020-0323-5_bib24 article-title: Th17 cell induction by adhesion of microbes to intestinal epithelial cells publication-title: Cell doi: 10.1016/j.cell.2015.08.058 – volume: 10 start-page: 1655 year: 2019 ident: 10.1038/s41385-020-0323-5_bib31 article-title: Fecal and mucosal microbiota profiling in irritable bowel syndrome and inflammatory bowel disease publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.01655 – volume: 35 start-page: 258 year: 2015 ident: 10.1038/s41385-020-0323-5_bib36 article-title: IL-17 and Th17 cells in atherosclerosis: subtle and contextual roles publication-title: Arterioscler Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.114.303567 – volume: 43 start-page: 817 year: 2015 ident: 10.1038/s41385-020-0323-5_bib9 article-title: Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine publication-title: Immunity doi: 10.1016/j.immuni.2015.09.007 – volume: 191 start-page: 3725 year: 2013 ident: 10.1038/s41385-020-0323-5_bib17 article-title: Retinoid X receptor agonists modulate Foxp3+ regulatory T cell and Th17 cell differentiation with differential dependence on retinoic acid receptor activation publication-title: J. Immunol. doi: 10.4049/jimmunol.1300032 – volume: 38 start-page: 958 year: 2013 ident: 10.1038/s41385-020-0323-5_bib6 article-title: IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation publication-title: Immunity doi: 10.1016/j.immuni.2013.03.009 – volume: 529 start-page: 221 year: 2016 ident: 10.1038/s41385-020-0323-5_bib28 article-title: Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit publication-title: Nature doi: 10.1038/nature16161 – volume: 141 start-page: 176 year: 2011 ident: 10.1038/s41385-020-0323-5_bib39 article-title: MyD88 and retinoic acid signaling pathways interact to modulate gastrointestinal activities of dendritic cells publication-title: Gastroenterology doi: 10.1053/j.gastro.2011.04.010 – volume: 9 start-page: 444 year: 2016 ident: 10.1038/s41385-020-0323-5_bib4 article-title: Foxp3(+) T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation publication-title: Mucosal Immunol. doi: 10.1038/mi.2015.74 – volume: 17 start-page: 159 year: 2018 ident: 10.1038/s41385-020-0323-5_bib32 article-title: Western diet feeding influences gut microbiota profiles in apoE knockout mice publication-title: Lipids Health Dis. doi: 10.1186/s12944-018-0811-8 – volume: 204 start-page: 1653 year: 2007 ident: 10.1038/s41385-020-0323-5_bib22 article-title: Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen publication-title: J. Exp. Med. doi: 10.1084/jem.20062648 – volume: 45 start-page: 1963 year: 2002 ident: 10.1038/s41385-020-0323-5_bib19 article-title: Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines publication-title: J. Med. Chem. doi: 10.1021/jm0255116 – ident: 10.1038/s41385-020-0323-5_bib5 doi: 10.1016/j.jaut.2017.12.003 – volume: 17 start-page: 1 year: 2017 ident: 10.1038/s41385-020-0323-5_bib29 article-title: Host-microbial cross-talk in inflammatory bowel disease publication-title: Immune Netw. doi: 10.4110/in.2017.17.1.1 – volume: 349 start-page: 989 year: 2015 ident: 10.1038/s41385-020-0323-5_bib2 article-title: Mucosal immunology. The microbiota regulates type 2 immunity through RORγt+ T cells publication-title: Science doi: 10.1126/science.aac4263 – volume: 3 start-page: e1700492 year: 2017 ident: 10.1038/s41385-020-0323-5_bib7 article-title: High frequency of intestinal Th17 cells correlates with microbiota alterations and disease activity in multiple sclerosis publication-title: Sci. Adv. doi: 10.1126/sciadv.1700492 – volume: 63 start-page: 1431 year: 2014 ident: 10.1038/s41385-020-0323-5_bib26 article-title: beta7 integrins are required to give rise to intestinal mononuclear phagocytes with tolerogenic potential publication-title: Gut doi: 10.1136/gutjnl-2013-305386 – volume: 8 year: 2018 ident: 10.1038/s41385-020-0323-5_bib38 article-title: Flt3 ligand expands bona fide innate lymphoid cell precursors in vivo publication-title: Sci. Rep. doi: 10.1038/s41598-017-18283-0 – volume: 26 start-page: 1022 year: 2006 ident: 10.1038/s41385-020-0323-5_bib15 article-title: LXR activation reduces proinflammatory cytokine expression in human CD4-positive lymphocytes publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/01.ATV.0000210278.67076.8f – volume: 134 start-page: 97 year: 2008 ident: 10.1038/s41385-020-0323-5_bib20 article-title: LXR signaling couples sterol metabolism to proliferation in the acquired immune response publication-title: Cell doi: 10.1016/j.cell.2008.04.052 – volume: 13 year: 2012 ident: 10.1038/s41385-020-0323-5_bib30 article-title: Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment publication-title: Genome Biol. doi: 10.1186/gb-2012-13-9-r79 – volume: 16 start-page: 98 year: 2010 ident: 10.1038/s41385-020-0323-5_bib13 article-title: Tumor-mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses publication-title: Nat. Med. doi: 10.1038/nm.2074 – volume: 172 start-page: 825 year: 2018 ident: 10.1038/s41385-020-0323-5_bib14 article-title: LXR/ApoE activation restricts innate immune suppression in cancer publication-title: Cell doi: 10.1016/j.cell.2017.12.026 – volume: 40 start-page: 594 year: 2014 ident: 10.1038/s41385-020-0323-5_bib37 article-title: Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation publication-title: Immunity doi: 10.1016/j.immuni.2014.03.005 – volume: 27 start-page: 3401 year: 2019 ident: 10.1038/s41385-020-0323-5_bib23 article-title: Dynamic and asymmetric changes of the microbial communities after cohousing in laboratory mice publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.05.042 – volume: 93 start-page: 163 year: 2020 ident: 10.1038/s41385-020-0323-5_bib12 article-title: Retinoic acid induced cytokines are selectively modulated by liver X receptor activation in zebrafish publication-title: Reprod. Toxicol. doi: 10.1016/j.reprotox.2020.02.009 – volume: 252 start-page: 164 year: 2013 ident: 10.1038/s41385-020-0323-5_bib1 article-title: CD4(+) T-cell subsets in intestinal inflammation publication-title: Immunol. Rev. doi: 10.1111/imr.12039 – volume: 349 start-page: 993 year: 2015 ident: 10.1038/s41385-020-0323-5_bib3 article-title: Mucosal immunology. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells publication-title: Science doi: 10.1126/science.aaa9420 – volume: 551 start-page: 585 year: 2017 ident: 10.1038/s41385-020-0323-5_bib8 article-title: Salt-responsive gut commensal modulates Th17 axis and disease publication-title: Nature doi: 10.1038/nature24628 – volume: 139 start-page: 485 year: 2009 ident: 10.1038/s41385-020-0323-5_bib10 article-title: Induction of intestinal Th17 cells by segmented filamentous bacteria publication-title: Cell doi: 10.1016/j.cell.2009.09.033 – volume: 51 start-page: 696 year: 2019 ident: 10.1038/s41385-020-0323-5_bib21 article-title: Transcriptional atlas of intestinal immune cells reveals that neuropeptide alpha-CGRP modulates group 2 innate lymphoid cell responses publication-title: Immunity doi: 10.1016/j.immuni.2019.09.004 – volume: 45 start-page: 1311 year: 2016 ident: 10.1038/s41385-020-0323-5_bib25 article-title: Cholesterol accumulation in CD11c+ immune cells is a causal and targetable factor in autoimmune disease publication-title: Immunity doi: 10.1016/j.immuni.2016.11.008 – volume: 12 start-page: e0184985 year: 2017 ident: 10.1038/s41385-020-0323-5_bib16 article-title: Liver X receptor activation promotes differentiation of regulatory T cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0184985 – volume: 16 start-page: 185 year: 2019 ident: 10.1038/s41385-020-0323-5_bib34 article-title: IL-12, IL-23 and IL-17 in IBD: immunobiology and therapeutic targeting publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-018-0084-8 – volume: 116 start-page: 607 year: 2006 ident: 10.1038/s41385-020-0323-5_bib11 article-title: Liver X receptors as integrators of metabolic and inflammatory signaling publication-title: J. Clin. Invest. doi: 10.1172/JCI27883 – volume: 48 start-page: 564 year: 2018 ident: 10.1038/s41385-020-0323-5_bib33 article-title: The gut microbiota: an emerging risk factor for cardiovascular and cerebrovascular disease publication-title: Eur. J. Immunol. doi: 10.1002/eji.201646879 – volume: 12 start-page: 580 year: 2019 ident: 10.1038/s41385-020-0323-5_bib27 article-title: Correction: intestinal epithelial cell-specific RARalpha depletion results in aberrant epithelial cell homeostasis and underdeveloped immune system publication-title: Mucosal Immunol. doi: 10.1038/s41385-018-0074-8 – volume: 121 start-page: 658 year: 2011 ident: 10.1038/s41385-020-0323-5_bib18 article-title: Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation publication-title: J. Clin. Invest. doi: 10.1172/JCI42974 – ident: 10.1038/s41385-020-0323-5_bib35 doi: 10.3389/fimmu.2017.01373 |
SSID | ssj0060053 |
Score | 2.3556206 |
Snippet | The gastrointestinal microenvironment, dominated by dietary compounds and the commensal bacteria, is a major driver of intestinal CD4+ T helper (Th) cell... The gastrointestinal microenvironment, dominated by dietary compounds and the commensal bacteria, is a major driver of intestinal CD4 + T helper (Th) cell... The gastrointestinal microenvironment, dominated by dietary compounds and the commensal bacteria, is a major driver of intestinal CD4 T helper (Th) cell... |
SourceID | swepub proquest pubmed crossref springer elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 411 |
SubjectTerms | Allergology Animals Antibodies Biomedical and Life Sciences Biomedicine CD11c antigen CD4 antigen Cell Differentiation Cholesterol Cholesterol - metabolism Epithelial cells Gastroenterology Gastrointestinal Microbiome - immunology Helper cells Horizontal cells Horizontal transfer Immunology Immunomodulation Intestine Intestines - immunology Liver X receptors Liver X Receptors - genetics Liver X Receptors - metabolism Lymph nodes Lymph Nodes - immunology Lymphocyte Activation Lymphocytes T Metabolites Mice Mice, Inbred C57BL Mice, Knockout Microbiota Microenvironments Myeloid cells Nuclear Receptor Subfamily 1, Group F, Member 3 - metabolism Nuclear receptors Rodents T-Lymphocytes, Regulatory - immunology Th17 Cells - immunology |
Title | Liver X receptor regulates Th17 and RORγt+ Treg cells by distinct mechanisms |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1933021922001416 https://link.springer.com/article/10.1038/s41385-020-0323-5 https://www.ncbi.nlm.nih.gov/pubmed/32681027 https://www.proquest.com/docview/2499666262 https://www.proquest.com/docview/2424995951 http://kipublications.ki.se/Default.aspx?queryparsed=id:144203532 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxUxEA7aIvhSvLtaSwTxwRKabDbZ7JOotBSxVQ6ncN5CboeKds-pu33o7_J_-Juc2VtF8byF3SSEmcnkm8xkhpBXcCY7OPYUU2IZWeF9YN5wz4yvwMTVQruE751PTvXxWfFxoRbDhVszhFWOOrFT1HEV8I78AMwEQOYAv_O360uGVaPQuzqU0LhNtjF1GUp1uZgMLo0S1nuV0VcpqtGrKc1BA8rb4NtkzrjMJVP_O5f-xZ1_-Ez_yi_anUlH98jOACbpu57798mtVD8gd_ryktcPycknDLqgCwpaLa3BuIZGV3k-NXR-Lkrq6khnn2e_frb7dA7_KF7jN9Rf04hbvw4tvUj4NPhrc9E8ImdHh_MPx2won8CC4rJlMWkfTOGF1rGShVw6XpaBRxUAc3kvVRVAtwUVvFDGRe5z56SQTpcBbCTY6o_JVr2q01NCeXReLIVZqsoVQQiXY3iUynkqZNRGZISPxLNhyC2OJS6-287HLY3t6W2B3hbpbVVG3kxD1n1ijU2d85EjdnwxCjrOgtrfNGh35J0dNmZjb8QoIy-n37ClkMCuTqsr7IO9FGDPjDzpeT4tEdCuAUxWZmR_FIKbyTcs5XUvJ9M8mNV7-PQNWskWutIFf7Z5zc_J3RxjaroYuF2y1f64Si8AFLV-r5P8PbL9_vD0y-w3ETwGFA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEaIXxJtAASMBByqrdhw7yQEhBFRbulukaivtzdiOV1TQ7EJSof1TXPgf_CZm8ioCsbferMSxrPE8vsnMeAh5CjbZgtlTTIl5wRLnPHMZdyxzObi4WmgbsN55cqhHx8n7mZptkB99LQymVfY6sVHUxcLjP_JdcBMAmQP8jl8tvzLsGoXR1b6FRssWB2H1HVy26uX-WzjfZ3G89276ZsS6rgLMKy5rVgTtfJY4oXWRy0TOLU9TzwvlAYo4J1XuQeS98k6ozBbcxdZKIa1OPbgOIAGw7iVyGQwvR2cvnQ0OnkaObqPYGBsVeR9FldluBcYiw1pozriMJVP_s4P_4tw_YrR_3Wfa2MC96-RaB17p65bbbpCNUN4kV9p2lqtbZDLGJA86o6BFwxKceRg0ne5DRaefREptWdCjD0e_ftY7dArvKIYNKupWtEBVU_qangYsRT6pTqvb5PhCCHuHbJaLMtwjlBfWibnI5iq3iRfCxpiOpWIeElnoTESE98QzvrvLHFtqfDFNTF1mpqW3AXobpLdREXkxfLJsL_JYNznuT8T0FaqgUw2YmXUfbfdnZzpFUJlzto3Ik-E1iDAS2JZhcYZzcJYCrBuRu-2ZD1sEdJ0BBkwjstMzwfnia7byvOWTYR28Rbx79BlGwSQ61wm_v37Pj8nV0XQyNuP9w4MHZCvGfJ4m_26bbNbfzsJDAGS1e9RIASUfL1rsfgNJRkH_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTiBeEP8pDDAS8MAU1Y5jJ3lACNiqjW1lqjqpb8Z2XIFgaSGdUD8Xb3wIPhN3TdIhEH3bm5U4lnW-P7_L3fkAnqJNtmj2VKTEpIgS53zkMu6izOXo4mqhbaB656OB3jtJ3o3VeAN-trUwlFbZ6sSloi6mnv6R99BNQGSO8DvuTZq0iOOd_qvZ14g6SFGktW2nUbPIQVh8R_eterm_g2f9LI77u6O3e1HTYSDyist5VATtfJY4oXWRy0ROLE9TzwvlEZY4J1XuUfy98k6ozBbcxdZKIa1OPboRKA247iXYTMkr6sDmm93B8bC1A5r4u45pU6RU5G1MVWa9Ck1HRpXRPOIylpH6n1X8F_X-EbH963bTpUXsX4drDZRlr2veuwEbobwJl-vmlotbcHRIKR9szFCnhhm69jhY9r0PFRt9FCmzZcGG74e_fsy32QjfMQoiVMwtWEGKp_RzdhqoMPlTdVrdhpMLIe0d6JTTMtwDxgvrxERkE5XbxAthY0rOUjEPiSx0JrrAW-IZ39xsTg02vphlhF1mpqa3QXobordRXXix-mRWX-uxbnLcnohp61VRwxo0Ous-2mrPzjRqoTLnTNyFJ6vXKNBEYFuG6RnNoVkKkW8X7tZnvtoiYu0MEWHahe2WCc4XX7OV5zWfrNahO8WbR59xFEyic53w--v3_BiuoMiZw_3BwQO4GlNyzzIZbws6829n4SGis7l71IgBgw8XLXm_ASDeR5o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liver+X+receptor+regulates+Th17+and+ROR%CE%B3t%2B+Treg+cells+by+distinct+mechanisms&rft.jtitle=Mucosal+immunology&rft.au=Parigi%2C+Sara+M&rft.au=Das+Srustidhar&rft.au=Frede+Annika&rft.au=Cardoso%2C+Rebeca+F&rft.date=2021-03-01&rft.pub=Elsevier+Limited&rft.issn=1933-0219&rft.eissn=1935-3456&rft.volume=14&rft.issue=2&rft.spage=411&rft.epage=419&rft_id=info:doi/10.1038%2Fs41385-020-0323-5&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1933-0219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1933-0219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1933-0219&client=summon |