Presence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1

Sorghum, an ancient old-world cereal grass, is the dietary staple of over 500 million people in more than 30 countries in the tropics and semitropics. Its C4 photosynthesis, drought resistance, wide adaptation, and high nutritional value hold the promise to alleviate hunger in Africa. Not present in...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 109; no. 26; pp. 10281 - 10286
Main Authors Wu, Yuye, Li, Xianran, Xiang, Wenwen, Zhu, Chengsong, Lin, Zhongwei, Wu, Yun, Li, Jiarui, Pandravada, Satchidanand, Ridder, Dustan D, Bai, Guihua, Wang, Ming L, Trick, Harold N, Bean, Scott R, Tuinstra, Mitchell R, Tesso, Tesfaye T, Yu, Jianming
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 26.06.2012
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sorghum, an ancient old-world cereal grass, is the dietary staple of over 500 million people in more than 30 countries in the tropics and semitropics. Its C4 photosynthesis, drought resistance, wide adaptation, and high nutritional value hold the promise to alleviate hunger in Africa. Not present in other major cereals, such as rice, wheat, and maize, condensed tannins (proanthocyanidins) in the pigmented testa of some sorghum cultivars have been implicated in reducing protein digestibility but recently have been shown to promote human health because of their high antioxidant capacity and ability to fight obesity through reduced digestion. Combining quantitative trait locus mapping, meta-quantitative trait locus fine-mapping, and association mapping, we showed that the nucleotide polymorphisms in the Tan1 gene, coding a WD40 protein, control the tannin biosynthesis in sorghum. A 1-bp G deletion in the coding region, causing a frame shift and a premature stop codon, led to a nonfunctional allele, tan1-a . Likewise, a different 10-bp insertion resulted in a second nonfunctional allele, tan1-b . Transforming the sorghum Tan1 ORF into a nontannin Arabidopsis mutant restored the tannin phenotype. In addition, reduction in nucleotide diversity from wild sorghum accessions to landraces and cultivars was found at the region that codes the highly conserved WD40 repeat domains and the C-terminal region of the protein. Genetic research in crops, coupled with nutritional and medical research, could open the possibility of producing different levels and combinations of phenolic compounds to promote human health.
AbstractList Sorghum, an ancient old-world cereal grass, is the dietary staple of over 500 million people in more than 30 countries in the tropics and semitropics. Its C4 photosynthesis, drought resistance, wide adaptation, and high nutritional value hold the promise to alleviate hunger in Africa. Not present in other major cereals, such as rice, wheat, and maize, condensed tannins (proanthocyanidins) in the pigmented testa of some sorghum cultivars have been implicated in reducing protein digestibility but recently have been shown to promote human health because of their high antioxidant capacity and ability to fight obesity through reduced digestion. Combining quantitative trait locus mapping, meta-quantitative trait locus fine-mapping, and association mapping, we showed that the nucleotide polymorphisms in the Tan1 gene, coding a WD40 protein, control the tannin biosynthesis in sorghum. A 1-bp G deletion in the coding region, causing a frame shift and a premature stop codon, led to a nonfunctional allele, tan1-a . Likewise, a different 10-bp insertion resulted in a second nonfunctional allele, tan1-b . Transforming the sorghum Tan1 ORF into a nontannin Arabidopsis mutant restored the tannin phenotype. In addition, reduction in nucleotide diversity from wild sorghum accessions to landraces and cultivars was found at the region that codes the highly conserved WD40 repeat domains and the C-terminal region of the protein. Genetic research in crops, coupled with nutritional and medical research, could open the possibility of producing different levels and combinations of phenolic compounds to promote human health.
Sorghum, an ancient old-world cereal grass, is the dietary staple of over 500 million people in more than 30 countries in the tropics and semitropics. Its C4 photosynthesis, drought resistance, wide adaptation, and high nutritional value hold the promise to alleviate hunger in Africa. Not present in other major cereals, such as rice, wheat, and maize, condensed tannins (proanthocyanidins) in the pigmented testa of some sorghum cultivars have been implicated in reducing protein digestibility but recently have been shown to promote human health because of their high antioxidant capacity and ability to fight obesity through reduced digestion. Combining quantitative trait locus mapping, meta-quantitative trait locus fine-mapping, and association mapping, we showed that the nucleotide polymorphisms in the Tan1 gene, coding a WD40 protein, control the tannin biosynthesis in sorghum. A 1-bp G deletion in the coding region, causing a frame shift and a premature stop codon, led to a nonfunctional allele, tan1-a . Likewise, a different 10-bp insertion resulted in a second nonfunctional allele, tan1-b . Transforming the sorghum Tan1 ORF into a nontannin Arabidopsis mutant restored the tannin phenotype. In addition, reduction in nucleotide diversity from wild sorghum accessions to landraces and cultivars was found at the region that codes the highly conserved WD40 repeat domains and the C-terminal region of the protein. Genetic research in crops, coupled with nutritional and medical research, could open the possibility of producing different levels and combinations of phenolic compounds to promote human health.
Sorghum, an ancient old-world cereal grass, is the dietary staple of over 500 million people in more than 30 countries in the tropics and semitropics. Its C4 photosynthesis, drought resistance, wide adaptation, and high nutritional value hold the promise to alleviate hunger in Africa. Not present in other major cereals, such as rice, wheat, and maize, condensed tannins (proanthocyanidins) in the pigmented testa of some sorghum cultivars have been implicated in reducing protein digestibility but recently have been shown to promote human health because of their high antioxidant capacity and ability to fight obesity through reduced digestion. Combining quantitative trait locus mapping, meta-quantitative trait locus fine-mapping, and association mapping, we showed that the nucleotide polymorphisms in the Tan1 gene, coding a WD40 protein, control the tannin biosynthesis in sorghum. A 1-bp G deletion in the coding region, causing a frame shift and a premature stop codon, led to a nonfunctional allele, tan1-a. Likewise, a different 10-bp insertion resulted in a second nonfunctional allele, tan1-b. Transforming the sorghum Tan1 ORF into a nontannin Arabidopsis mutant restored the tannin phenotype. In addition, reduction in nucleotide diversity from wild sorghum accessions to landraces and cultivars was found at the region that codes the highly conserved WD40 repeat domains and the C-terminal region of the protein. Genetic research in crops, coupled with nutritional and medical research, could open the possibility of producing different levels and combinations of phenolic compounds to promote human health. [PUBLICATION ABSTRACT]
Sorghum, an ancient old-world cereal grass, is the dietary staple of over 500 million people in more than 30 countries in the tropics and semitropics. Its C4 photosynthesis, drought resistance, wide adaptation, and high nutritional value hold the promise to alleviate hunger in Africa. Not present in other major cereals, such as rice, wheat, and maize, condensed tannins (proanthocyanidins) in the pigmented testa of some sorghum cultivars have been implicated in reducing protein digestibility but recently have been shown to promote human health because of their high antioxidant capacity and ability to fight obesity through reduced digestion. Combining quantitative trait locus mapping, meta-quantitative trait locus fine-mapping, and association mapping, we showed that the nucleotide polymorphisms in the Tan1 gene, coding a WD40 protein, control the tannin biosynthesis in sorghum. A 1-bp G deletion in the coding region, causing a frame shift and a premature stop codon, led to a nonfunctional allele, tan1-a. Likewise, a different 10-bp insertion resulted in a second nonfunctional allele, tan1-b. Transforming the sorghum Tan1 ORF into a nontannin Arabidopsis mutant restored the tannin phenotype. In addition, reduction in nucleotide diversity from wild sorghum accessions to landraces and cultivars was found at the region that codes the highly conserved WD40 repeat domains and the C-terminal region of the protein. Genetic research in crops, coupled with nutritional and medical research, could open the possibility of producing different levels and combinations of phenolic compounds to promote human health.Sorghum, an ancient old-world cereal grass, is the dietary staple of over 500 million people in more than 30 countries in the tropics and semitropics. Its C4 photosynthesis, drought resistance, wide adaptation, and high nutritional value hold the promise to alleviate hunger in Africa. Not present in other major cereals, such as rice, wheat, and maize, condensed tannins (proanthocyanidins) in the pigmented testa of some sorghum cultivars have been implicated in reducing protein digestibility but recently have been shown to promote human health because of their high antioxidant capacity and ability to fight obesity through reduced digestion. Combining quantitative trait locus mapping, meta-quantitative trait locus fine-mapping, and association mapping, we showed that the nucleotide polymorphisms in the Tan1 gene, coding a WD40 protein, control the tannin biosynthesis in sorghum. A 1-bp G deletion in the coding region, causing a frame shift and a premature stop codon, led to a nonfunctional allele, tan1-a. Likewise, a different 10-bp insertion resulted in a second nonfunctional allele, tan1-b. Transforming the sorghum Tan1 ORF into a nontannin Arabidopsis mutant restored the tannin phenotype. In addition, reduction in nucleotide diversity from wild sorghum accessions to landraces and cultivars was found at the region that codes the highly conserved WD40 repeat domains and the C-terminal region of the protein. Genetic research in crops, coupled with nutritional and medical research, could open the possibility of producing different levels and combinations of phenolic compounds to promote human health.
Author Wu, Yun
Ridder, Dustan D
Wang, Ming L
Zhu, Chengsong
Li, Jiarui
Xiang, Wenwen
Lin, Zhongwei
Bean, Scott R
Tesso, Tesfaye T
Yu, Jianming
Bai, Guihua
Li, Xianran
Wu, Yuye
Pandravada, Satchidanand
Trick, Harold N
Tuinstra, Mitchell R
Author_xml – sequence: 1
  fullname: Wu, Yuye
– sequence: 2
  fullname: Li, Xianran
– sequence: 3
  fullname: Xiang, Wenwen
– sequence: 4
  fullname: Zhu, Chengsong
– sequence: 5
  fullname: Lin, Zhongwei
– sequence: 6
  fullname: Wu, Yun
– sequence: 7
  fullname: Li, Jiarui
– sequence: 8
  fullname: Pandravada, Satchidanand
– sequence: 9
  fullname: Ridder, Dustan D
– sequence: 10
  fullname: Bai, Guihua
– sequence: 11
  fullname: Wang, Ming L
– sequence: 12
  fullname: Trick, Harold N
– sequence: 13
  fullname: Bean, Scott R
– sequence: 14
  fullname: Tuinstra, Mitchell R
– sequence: 15
  fullname: Tesso, Tesfaye T
– sequence: 16
  fullname: Yu, Jianming
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22699509$$D View this record in MEDLINE/PubMed
BookMark eNqFksFrFTEQxoNU7Gv17E0DXnrZdpJsNslFKMWqUFCwvQkhb3f2NWVf8kx2hf73Zt97ttqDXhLI_OabLzNzRA5CDEjIawanDJQ42wSXTxkHpgAYmGdkUU5WNbWBA7IA4KrSNa8PyVHOdwBgpIYX5JDzxhgJZkG-f02YMbRIY09HF4IPmfpAc0yr22lNV8ltXzJtY-j86Ev9ji7vaef7HhOGkQY3TskN1A0DDphnoeutEHtJnvduyPhqfx-Tm8sP1xefqqsvHz9fnF9VrQQxVp1TnRHgHDCDbYsNKui507pmUOPSLGsueOtQy6ZjQtZYrCMD3XAQeimZOCbvd7qbabnGri2uiiG7SX7t0r2Nztu_I8Hf2lX8aYXQCtQscLIXSPHHhHm0a59bHAYXME7ZMg2CNbWQ6v8ocC6lVlIW9N0T9C5OKZRObKlaqVroQr350_yD698zKsDZDmhTzDlh_4AwsPMW2HkL7OMWlAz5JKP1o5tnV37vh3_k0b2VOfBYxVjezJb13Km3O6R30bpV8tnefCsKTVHgWhsQvwD3BMl0
CitedBy_id crossref_primary_10_1108_NFS_05_2018_0149
crossref_primary_10_3835_plantgenome2018_09_0070
crossref_primary_10_1146_annurev_arplant_050312_120048
crossref_primary_10_1534_g3_115_026104
crossref_primary_10_3389_fpls_2017_00756
crossref_primary_10_5897_AJB2014_13664
crossref_primary_10_3835_plantgenome2018_06_0044
crossref_primary_10_1016_j_molp_2019_08_004
crossref_primary_10_1139_gen_2017_0131
crossref_primary_10_1007_s12042_015_9146_z
crossref_primary_10_1016_j_jgg_2024_07_016
crossref_primary_10_1016_j_jcs_2017_10_001
crossref_primary_10_1111_tpj_15285
crossref_primary_10_1007_s00122_020_03762_2
crossref_primary_10_1186_s12864_018_5157_0
crossref_primary_10_1002_csc2_20810
crossref_primary_10_1007_s00217_020_03625_6
crossref_primary_10_1016_j_lwt_2020_109576
crossref_primary_10_1080_09712119_2017_1371607
crossref_primary_10_3390_antiox11040794
crossref_primary_10_1016_j_jcs_2013_10_009
crossref_primary_10_1186_s12864_021_08000_7
crossref_primary_10_1038_s41467_022_33419_1
crossref_primary_10_1038_s41467_023_40014_5
crossref_primary_10_1111_tpj_14113
crossref_primary_10_3390_antiox9121297
crossref_primary_10_1017_S0960258521000076
crossref_primary_10_1186_s41065_020_00130_4
crossref_primary_10_1016_j_foodchem_2020_127970
crossref_primary_10_1534_g3_113_008417
crossref_primary_10_1016_j_lwt_2022_113367
crossref_primary_10_1016_j_lwt_2021_112672
crossref_primary_10_1021_acs_jafc_4c08975
crossref_primary_10_3945_cdn_117_001081
crossref_primary_10_3389_fgene_2021_742095
crossref_primary_10_1016_j_foodchem_2024_139810
crossref_primary_10_1111_tpj_16469
crossref_primary_10_32604_phyton_2022_020642
crossref_primary_10_3389_fpls_2021_625260
crossref_primary_10_2478_asn_2020_0008
crossref_primary_10_9787_PBB_2019_7_2_132
crossref_primary_10_1002_csc2_20609
crossref_primary_10_1002_cche_10349
crossref_primary_10_1007_s00122_023_04534_4
crossref_primary_10_1186_s12864_020_6489_0
crossref_primary_10_1007_s00344_025_11691_x
crossref_primary_10_1186_s12864_020_6538_8
crossref_primary_10_17221_16_2023_CJGPB
crossref_primary_10_1038_s41477_019_0567_9
crossref_primary_10_1038_s41477_019_0563_0
crossref_primary_10_1007_s11103_020_01026_7
crossref_primary_10_1093_g3journal_jkae145
crossref_primary_10_1007_s44307_024_00039_3
crossref_primary_10_1016_j_jcs_2022_103504
crossref_primary_10_1186_s12864_022_08793_1
crossref_primary_10_1080_03036758_2022_2034654
crossref_primary_10_1371_journal_pone_0225979
crossref_primary_10_18697_ajfand_80_16520
crossref_primary_10_3389_fgene_2021_637141
crossref_primary_10_1007_s11103_021_01159_3
crossref_primary_10_3389_fpls_2019_00691
crossref_primary_10_3389_fgene_2023_1143395
crossref_primary_10_1016_j_cj_2024_02_011
crossref_primary_10_1007_s00425_021_03742_w
crossref_primary_10_1080_10942912_2022_2071293
crossref_primary_10_1007_s11032_024_01463_y
crossref_primary_10_5897_AJAR2018_13570
crossref_primary_10_1016_j_cpb_2024_100364
crossref_primary_10_1155_2016_9640869
crossref_primary_10_1002_fsn3_2830
crossref_primary_10_1186_s12870_017_1122_3
crossref_primary_10_1007_s10722_021_01303_4
crossref_primary_10_1186_s12864_016_3475_7
crossref_primary_10_1002_csc2_20348
crossref_primary_10_1186_1756_0500_7_761
crossref_primary_10_1007_s12042_024_09376_y
crossref_primary_10_1093_genetics_iyab087
crossref_primary_10_1002_cche_10643
crossref_primary_10_1021_jf304882k
crossref_primary_10_3389_fpls_2024_1373975
crossref_primary_10_1088_1755_1315_981_2_022103
crossref_primary_10_1093_treephys_tpad040
crossref_primary_10_1007_s42994_022_00089_y
crossref_primary_10_1016_j_jcs_2018_11_012
crossref_primary_10_1007_s11101_023_09873_0
crossref_primary_10_1093_jxb_erz143
crossref_primary_10_1002_csc2_20198
crossref_primary_10_1016_j_foodres_2020_109975
crossref_primary_10_1016_j_foodchem_2019_125684
crossref_primary_10_1002_pld3_70055
crossref_primary_10_1534_g3_119_400353
crossref_primary_10_1002_cche_10252
crossref_primary_10_1002_ppj2_70013
crossref_primary_10_3389_fpls_2021_660171
crossref_primary_10_1021_jf503651t
crossref_primary_10_1080_10408398_2021_1960793
crossref_primary_10_3389_fpls_2024_1451215
crossref_primary_10_1007_s10722_022_01513_4
crossref_primary_10_1016_j_plantsci_2019_02_013
crossref_primary_10_3835_plantgenome2014_09_0048
crossref_primary_10_7717_peerj_17438
crossref_primary_10_1111_nph_14010
crossref_primary_10_1016_j_fcr_2020_107955
crossref_primary_10_1016_j_foodchem_2024_142627
crossref_primary_10_1590_s1678_3921_pab2020_v55_02288
crossref_primary_10_3389_fpls_2017_00536
crossref_primary_10_1111_tpj_15853
crossref_primary_10_1007_s00425_025_04628_x
crossref_primary_10_3389_frai_2022_872858
crossref_primary_10_1007_s10722_024_01956_x
crossref_primary_10_1094_CCHEM_03_16_0075_R
crossref_primary_10_3390_foods13030491
crossref_primary_10_1007_s00122_021_03789_z
crossref_primary_10_1038_s41598_022_09433_0
crossref_primary_10_3390_genes10110841
crossref_primary_10_1111_tpj_17244
crossref_primary_10_3390_agronomy13051330
crossref_primary_10_1126_sciadv_1400218
crossref_primary_10_1016_j_foodres_2020_109671
crossref_primary_10_1111_1541_4337_12506
crossref_primary_10_1111_pbr_12426
crossref_primary_10_1534_g3_114_013318
crossref_primary_10_1093_g3journal_jkab060
crossref_primary_10_1134_S1022795420110095
crossref_primary_10_1007_s00122_023_04307_z
crossref_primary_10_1016_j_tplants_2019_09_001
crossref_primary_10_3389_fpls_2018_00811
crossref_primary_10_1126_science_abg7985
crossref_primary_10_5897_AJAR2015_10065
crossref_primary_10_3389_fnut_2023_1228422
crossref_primary_10_1186_s12870_015_0477_6
crossref_primary_10_1007_s42729_024_01858_y
crossref_primary_10_1016_j_foodcont_2024_110469
Cites_doi 10.1021/jf001116h
10.1016/j.phytochem.2004.04.001
10.1039/b802662a
10.1038/nature07723
10.1073/pnas.1106212108
10.2135/cropsci2007.02.0080
10.1093/genetics/155.1.463
10.1111/j.1469-8137.2004.01217.x
10.1126/science.1078540
10.1186/1471-2105-8-49
10.3732/ajb.0800284
10.1534/genetics.104.032375
10.1111/j.1365-313X.2004.02138.x
10.1105/tpc.105.038430
10.1105/tpc.11.7.1337
10.3390/molecules13102674
10.1093/jxb/erq442
10.3109/09637481003670816
10.1105/tpc.109.068114
10.1089/jmf.2009.0147
10.1093/japr/1.1.122
10.1046/j.1365-313x.1998.00343.x
10.1016/j.cell.2006.12.006
10.1038/nrg1877
10.1158/1535-7163.MCT-06-0661
10.1146/annurev.nutr.22.111401.144957
10.1093/jn/134.3.613
10.1105/tpc.018796
ContentType Journal Article
Copyright Copyright National Academy of Sciences Jun 26, 2012
Copyright_xml – notice: Copyright National Academy of Sciences Jun 26, 2012
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1201700109
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
AGRICOLA

Virology and AIDS Abstracts
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Cloning of Tan1 in sorghum
EISSN 1091-6490
EndPage 10286
ExternalDocumentID PMC3387071
2698408631
22699509
10_1073_pnas_1201700109
109_26_10281
US201600128890
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GeographicLocations Africa
GeographicLocations_xml – name: Africa
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
H13
KM
PQEST
X
XHC
AAYXX
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
CITATION
IPSME
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c503t-da7d930aa019ecce6e70f2a884104eb9b4232cae856d1354e950e10862038b513
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:07:49 EDT 2025
Fri Jul 11 12:17:36 EDT 2025
Fri Jul 11 12:31:21 EDT 2025
Mon Jun 30 08:41:01 EDT 2025
Mon Jul 21 05:50:08 EDT 2025
Thu Apr 24 23:03:51 EDT 2025
Tue Jul 01 03:39:20 EDT 2025
Wed Nov 11 00:29:52 EST 2020
Wed Dec 27 19:16:00 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c503t-da7d930aa019ecce6e70f2a884104eb9b4232cae856d1354e950e10862038b513
Notes http://dx.doi.org/10.1073/pnas.1201700109
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Edited* by Ronald L. Phillips, University of Minnesota, St. Paul, MN, and approved May 23, 2012 (received for review February 6, 2012)
Author contributions: S.R.B., M.R.T., T.T.T., and J.Y. designed research; Yuye Wu, X.L., W.X., C.Z., Z.L., Yun Wu, and J.L. performed research; J.L., S.P., D.D.R., G.B., M.L.W., H.N.T., and S.R.B. contributed new reagents/analytic tools; Yuye Wu, X.L., W.X., C.Z., Z.L., and Yun Wu analyzed data; and Yuye Wu, X.L., G.B., and J.Y. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/109/26/10281.full.pdf
PMID 22699509
PQID 1022477438
PQPubID 42026
PageCount 6
ParticipantIDs proquest_journals_1022477438
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3387071
pubmed_primary_22699509
fao_agris_US201600128890
pnas_primary_109_26_10281
proquest_miscellaneous_1803164357
proquest_miscellaneous_1022558755
crossref_citationtrail_10_1073_pnas_1201700109
crossref_primary_10_1073_pnas_1201700109
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-06-26
PublicationDateYYYYMMDD 2012-06-26
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Dykes L (e_1_3_4_7_2) 2007; 52
Gu L (e_1_3_4_8_2) 2004; 134
Murphy RL (e_1_3_4_26_2) 2011; 108
Burdette A (e_1_3_4_29_2) 2010; 13
Doebley JF (e_1_3_4_11_2) 2006; 127
Clough SJ (e_1_3_4_34_2) 1998; 16
Carey CC (e_1_3_4_18_2) 2004; 16
Hahn DH (e_1_3_4_15_2) 1986; 63
Chardon F (e_1_3_4_24_2) 2004; 168
Gómez-Cordovés C (e_1_3_4_28_2) 2001; 49
Veyrieras JB (e_1_3_4_32_2) 2007; 8
Goffinet B (e_1_3_4_33_2) 2000; 155
Waniska R (e_1_3_4_12_2) 1992; 1
Floegel A (e_1_3_4_3_2) 2010; 61
Zhu C (e_1_3_4_25_2) 2008; 1
Crozier A (e_1_3_4_2_2) 2009; 26
Xie DY (e_1_3_4_5_2) 2003; 299
Baudry A (e_1_3_4_16_2) 2004; 39
Dixon RA (e_1_3_4_1_2) 2005; 165
Awika JM (e_1_3_4_9_2) 2004; 65
e_1_3_4_30_2
Sharma SD (e_1_3_4_4_2) 2007; 6
Alonso-Blanco C (e_1_3_4_22_2) 2009; 21
Hichri I (e_1_3_4_23_2) 2011; 62
Walker AR (e_1_3_4_14_2) 1999; 11
Paterson AH (e_1_3_4_13_2) 2009; 457
He F (e_1_3_4_19_2) 2008; 13
Gepts P (e_1_3_4_10_2) 2004; 24
Ross JA (e_1_3_4_27_2) 2002; 22
Casa AM (e_1_3_4_17_2) 2008; 48
Sweeney MT (e_1_3_4_20_2) 2006; 18
Barnaud A (e_1_3_4_21_2) 2009; 96
Whitham TG (e_1_3_4_6_2) 2006; 7
van Ooijen JW (e_1_3_4_31_2) 2001
17288608 - BMC Bioinformatics. 2007;8:49
15720617 - New Phytol. 2005 Jan;165(1):9-28
19574434 - Plant Cell. 2009 Jul;21(7):1877-96
21622308 - Am J Bot. 2009 Oct;96(10):1869-79
12532018 - Science. 2003 Jan 17;299(5605):396-9
16778835 - Nat Rev Genet. 2006 Jul;7(7):510-23
20673059 - J Med Food. 2010 Aug;13(4):879-87
21930910 - Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16469-74
19636448 - Nat Prod Rep. 2009 Aug;26(8):1001-43
10069079 - Plant J. 1998 Dec;16(6):735-43
14742877 - Plant Cell. 2004 Feb;16(2):450-64
17363493 - Mol Cancer Ther. 2007 Mar;6(3):995-1005
12055336 - Annu Rev Nutr. 2002;22:19-34
18971863 - Molecules. 2008;13(10):2674-703
21278228 - J Exp Bot. 2011 May;62(8):2465-83
20377495 - Int J Food Sci Nutr. 2010 Sep;61(6):600-23
14988456 - J Nutr. 2004 Mar;134(3):613-7
10402433 - Plant Cell. 1999 Jul;11(7):1337-50
19189423 - Nature. 2009 Jan 29;457(7229):551-6
15184005 - Phytochemistry. 2004 May;65(9):1199-221
10790417 - Genetics. 2000 May;155(1):463-73
11312905 - J Agric Food Chem. 2001 Mar;49(3):1620-4
15611184 - Genetics. 2004 Dec;168(4):2169-85
16399804 - Plant Cell. 2006 Feb;18(2):283-94
15255866 - Plant J. 2004 Aug;39(3):366-80
17190597 - Cell. 2006 Dec 29;127(7):1309-21
References_xml – volume: 63
  start-page: 4
  year: 1986
  ident: e_1_3_4_15_2
  article-title: Effect of genotype on tannins and phenols of sorghum
  publication-title: Cereal Chemistry
– volume-title: Joinmap v3.0, Software for the Calculation of Genetic Linkage Maps
  year: 2001
  ident: e_1_3_4_31_2
– volume: 49
  start-page: 1620
  year: 2001
  ident: e_1_3_4_28_2
  article-title: Effects of wine phenolics and sorghum tannins on tyrosinase activity and growth of melanoma cells
  publication-title: J Agric Food Chem
  doi: 10.1021/jf001116h
– volume: 65
  start-page: 1199
  year: 2004
  ident: e_1_3_4_9_2
  article-title: Sorghum phytochemicals and their potential impact on human health
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2004.04.001
– volume: 26
  start-page: 1001
  year: 2009
  ident: e_1_3_4_2_2
  article-title: Dietary phenolics: Chemistry, bioavailability and effects on health
  publication-title: Nat Prod Rep
  doi: 10.1039/b802662a
– volume: 52
  start-page: 105
  year: 2007
  ident: e_1_3_4_7_2
  article-title: Phenolic compounds in cereal grains and their health benefits
  publication-title: Cereal Foods World
– volume: 457
  start-page: 551
  year: 2009
  ident: e_1_3_4_13_2
  article-title: The Sorghum bicolor genome and the diversification of grasses
  publication-title: Nature
  doi: 10.1038/nature07723
– volume: 108
  start-page: 16469
  year: 2011
  ident: e_1_3_4_26_2
  article-title: Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1106212108
– volume: 48
  start-page: 30
  year: 2008
  ident: e_1_3_4_17_2
  article-title: Community resources and strategies for association mapping in sorghum
  publication-title: Crop Sci
  doi: 10.2135/cropsci2007.02.0080
– volume: 1
  start-page: 5
  year: 2008
  ident: e_1_3_4_25_2
  article-title: Status and prospects of association mapping in plants
  publication-title: The Plant Genome
– volume: 155
  start-page: 463
  year: 2000
  ident: e_1_3_4_33_2
  article-title: Quantitative trait loci: A meta-analysis
  publication-title: Genetics
  doi: 10.1093/genetics/155.1.463
– volume: 165
  start-page: 9
  year: 2005
  ident: e_1_3_4_1_2
  article-title: Proanthocyanidins—A final frontier in flavonoid research?
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2004.01217.x
– volume: 299
  start-page: 396
  year: 2003
  ident: e_1_3_4_5_2
  article-title: Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis
  publication-title: Science
  doi: 10.1126/science.1078540
– ident: e_1_3_4_30_2
– volume: 8
  start-page: 49
  year: 2007
  ident: e_1_3_4_32_2
  article-title: MetaQTL: A package of new computational methods for the meta-analysis of QTL mapping experiments
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-49
– volume: 96
  start-page: 1869
  year: 2009
  ident: e_1_3_4_21_2
  article-title: A weed-crop complex in sorghum: The dynamics of genetic diversity in a traditional farming system
  publication-title: Am J Bot
  doi: 10.3732/ajb.0800284
– volume: 168
  start-page: 2169
  year: 2004
  ident: e_1_3_4_24_2
  article-title: Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome
  publication-title: Genetics
  doi: 10.1534/genetics.104.032375
– volume: 39
  start-page: 366
  year: 2004
  ident: e_1_3_4_16_2
  article-title: TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2004.02138.x
– volume: 18
  start-page: 283
  year: 2006
  ident: e_1_3_4_20_2
  article-title: Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.038430
– volume: 11
  start-page: 1337
  year: 1999
  ident: e_1_3_4_14_2
  article-title: The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein
  publication-title: Plant Cell
  doi: 10.1105/tpc.11.7.1337
– volume: 13
  start-page: 2674
  year: 2008
  ident: e_1_3_4_19_2
  article-title: Biosynthesis and genetic regulation of proanthocyanidins in plants
  publication-title: Molecules
  doi: 10.3390/molecules13102674
– volume: 62
  start-page: 2465
  year: 2011
  ident: e_1_3_4_23_2
  article-title: Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erq442
– volume: 61
  start-page: 600
  year: 2010
  ident: e_1_3_4_3_2
  article-title: Development and validation of an algorithm to establish a total antioxidant capacity database of the US diet
  publication-title: Int J Food Sci Nutr
  doi: 10.3109/09637481003670816
– volume: 21
  start-page: 1877
  year: 2009
  ident: e_1_3_4_22_2
  article-title: What has natural variation taught us about plant development, physiology, and adaptation?
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.068114
– volume: 13
  start-page: 879
  year: 2010
  ident: e_1_3_4_29_2
  article-title: Anti-inflammatory activity of select sorghum (Sorghum bicolor) brans
  publication-title: J Med Food
  doi: 10.1089/jmf.2009.0147
– volume: 1
  start-page: 122
  year: 1992
  ident: e_1_3_4_12_2
  article-title: Practical methods to determine presence oftannins in sorghum
  publication-title: J Appl Poult Res
  doi: 10.1093/japr/1.1.122
– volume: 16
  start-page: 735
  year: 1998
  ident: e_1_3_4_34_2
  article-title: Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.1998.00343.x
– volume: 127
  start-page: 1309
  year: 2006
  ident: e_1_3_4_11_2
  article-title: The molecular genetics of crop domestication
  publication-title: Cell
  doi: 10.1016/j.cell.2006.12.006
– volume: 24
  start-page: 1
  year: 2004
  ident: e_1_3_4_10_2
  article-title: Crop domestication as a long-term selection experiment
  publication-title: Plant Breed Rev
– volume: 7
  start-page: 510
  year: 2006
  ident: e_1_3_4_6_2
  article-title: A framework for community and ecosystem genetics: From genes to ecosystems
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1877
– volume: 6
  start-page: 995
  year: 2007
  ident: e_1_3_4_4_2
  article-title: Dietary grape seed proanthocyanidins inhibit UVB-induced oxidative stress and activation of mitogen-activated protein kinases and nuclear factor-kappaB signaling in in vivo SKH-1 hairless mice
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-06-0661
– volume: 22
  start-page: 19
  year: 2002
  ident: e_1_3_4_27_2
  article-title: Dietary flavonoids: Bioavailability, metabolic effects, and safety
  publication-title: Annu Rev Nutr
  doi: 10.1146/annurev.nutr.22.111401.144957
– volume: 134
  start-page: 613
  year: 2004
  ident: e_1_3_4_8_2
  article-title: Concentrations of proanthocyanidins in common foods and estimations of normal consumption
  publication-title: J Nutr
  doi: 10.1093/jn/134.3.613
– volume: 16
  start-page: 450
  year: 2004
  ident: e_1_3_4_18_2
  article-title: Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana
  publication-title: Plant Cell
  doi: 10.1105/tpc.018796
– reference: 18971863 - Molecules. 2008;13(10):2674-703
– reference: 11312905 - J Agric Food Chem. 2001 Mar;49(3):1620-4
– reference: 10790417 - Genetics. 2000 May;155(1):463-73
– reference: 12055336 - Annu Rev Nutr. 2002;22:19-34
– reference: 17288608 - BMC Bioinformatics. 2007;8:49
– reference: 16399804 - Plant Cell. 2006 Feb;18(2):283-94
– reference: 16778835 - Nat Rev Genet. 2006 Jul;7(7):510-23
– reference: 21622308 - Am J Bot. 2009 Oct;96(10):1869-79
– reference: 21278228 - J Exp Bot. 2011 May;62(8):2465-83
– reference: 15720617 - New Phytol. 2005 Jan;165(1):9-28
– reference: 14988456 - J Nutr. 2004 Mar;134(3):613-7
– reference: 19189423 - Nature. 2009 Jan 29;457(7229):551-6
– reference: 19636448 - Nat Prod Rep. 2009 Aug;26(8):1001-43
– reference: 17363493 - Mol Cancer Ther. 2007 Mar;6(3):995-1005
– reference: 10402433 - Plant Cell. 1999 Jul;11(7):1337-50
– reference: 21930910 - Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16469-74
– reference: 14742877 - Plant Cell. 2004 Feb;16(2):450-64
– reference: 19574434 - Plant Cell. 2009 Jul;21(7):1877-96
– reference: 15611184 - Genetics. 2004 Dec;168(4):2169-85
– reference: 15184005 - Phytochemistry. 2004 May;65(9):1199-221
– reference: 20377495 - Int J Food Sci Nutr. 2010 Sep;61(6):600-23
– reference: 20673059 - J Med Food. 2010 Aug;13(4):879-87
– reference: 12532018 - Science. 2003 Jan 17;299(5605):396-9
– reference: 15255866 - Plant J. 2004 Aug;39(3):366-80
– reference: 10069079 - Plant J. 1998 Dec;16(6):735-43
– reference: 17190597 - Cell. 2006 Dec 29;127(7):1309-21
SSID ssj0009580
Score 2.4742785
Snippet Sorghum, an ancient old-world cereal grass, is the dietary staple of over 500 million people in more than 30 countries in the tropics and semitropics. Its C4...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10281
SubjectTerms Africa
Alleles
antioxidant activity
Antioxidants
Arabidopsis
Base Sequence
Biological Sciences
biomedical research
Biosynthesis
C4 photosynthesis
Cereals
chromosome mapping
corn
crops
Cultivars
digestible protein
digestion
Drought resistance
drought tolerance
Gene mapping
grasses
human health
Hunger
landraces
loci
Medical research
Molecular Sequence Data
mutants
Nutritive value
Obesity
open reading frames
people
Phenols
phenotype
Photosynthesis
Phylogeny
Polymorphism, Genetic
proanthocyanidins
Proteins
Quantitative Trait Loci
rice
Sequence Homology, Nucleic Acid
Sorghum
Sorghum (Poaceae)
Sorghum - genetics
Sorghum - metabolism
stop codon
Tannins
Tannins - genetics
Tannins - metabolism
testa
Tropical environments
tropics
wheat
Title Presence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1
URI http://www.pnas.org/content/109/26/10281.abstract
https://www.ncbi.nlm.nih.gov/pubmed/22699509
https://www.proquest.com/docview/1022477438
https://www.proquest.com/docview/1022558755
https://www.proquest.com/docview/1803164357
https://pubmed.ncbi.nlm.nih.gov/PMC3387071
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB6664sv4nrbrKuM4MNKSE0yuT4uohTBUrDFKkKYJJO20E2XTYOsf80_5zkzk0tLXdSX0CbTySTn67kk53yHkNfMQc47xq3YtbnleWlupSHzrKzIMx4UzEttLE7-NA5GM-_j3J8PBr96WUv1Nh1mPw_WlfyPVGEfyBWrZP9Bsu2ksAM-g3xhCxKG7V_JeCJrhzL1ol82H5LZrdXmZrGsr8wFtn-osGU5BL25IiWS_mbTFWVrSl5PpAtYr8H-yLSOqZzI6Xutk9bKVU1Owbh5iHjZlaRoPVGZljkZdw2Ov9a3wvxSN1_nSDGEzYJX3Vuh8ocoTTyw6NINBJwNGyF9W9b9RxOY4xFYqv69z-ytVtKuoa-NXbCQnqqhHgqlgMF_sQJPtRBtNbQd96Do9hUu-kfOQVMAugv7F5e8GjousgTZepoeMK6vJDLABY1jX59kh5J7z1S2CYwwVeIGiTz7EbnnQowis0pHfcbnSNU_6YtseKVC9nZvUUhIrVew4x0dFXyDnLsw-lD8s5_G2_OLpg_JAx3Q0EuFzhMyEOUjctKIgV5oXvM3j8n3Bq50U1ANV7oqqYYrVXClq4r24ErTW9rClWq4Ug1XnEjD9QmZfXg_fTeydHMPK_NttrVyHuYxszmHGAPUiAhEaBcujyLPsT2RxilmEGRcRH6QO8z3BNwegW3BXJtFqe-wp-S4hHWcEsqLHMvDXZHbsZc5fioCZPn0wiDPHJ6FBhk2NzXJNPM9NmBZJzIDI2QJ3uKkE4hBLtofXCvSlz8PPQUpJXwBJjmZfXaRsBF9vii2DWLIwd0MHWYMct7IM9EKpUokuyOEYywyyKv2MKh7fIfHS7Gp1Rjfj0Lfv2NMBJYaIg0frvyZgki7iAZoBgl3wNMOQLr53SPlailp5xkD2x46Z3dc1nNyv9MD5-R4e1OLF-C0b9OX8s_xG9Ts6SM
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Presence+of+tannins+in+sorghum+grains+is+conditioned+by+different+natural+alleles+of+Tannin1&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Yuye+Wu&rft.au=Xianran+Li&rft.au=Wenwen+Xiang&rft.au=Chengsong+Zhu&rft.date=2012-06-26&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=26&rft.spage=10281&rft_id=info:doi/10.1073%2Fpnas.1201700109&rft_id=info%3Apmid%2F22699509&rft.externalDBID=n%2Fa&rft.externalDocID=109_26_10281
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F26.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F26.cover.gif