Presence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1
Sorghum, an ancient old-world cereal grass, is the dietary staple of over 500 million people in more than 30 countries in the tropics and semitropics. Its C4 photosynthesis, drought resistance, wide adaptation, and high nutritional value hold the promise to alleviate hunger in Africa. Not present in...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 26; pp. 10281 - 10286 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
26.06.2012
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sorghum, an ancient old-world cereal grass, is the dietary staple of over 500 million people in more than 30 countries in the tropics and semitropics. Its C4 photosynthesis, drought resistance, wide adaptation, and high nutritional value hold the promise to alleviate hunger in Africa. Not present in other major cereals, such as rice, wheat, and maize, condensed tannins (proanthocyanidins) in the pigmented testa of some sorghum cultivars have been implicated in reducing protein digestibility but recently have been shown to promote human health because of their high antioxidant capacity and ability to fight obesity through reduced digestion. Combining quantitative trait locus mapping, meta-quantitative trait locus fine-mapping, and association mapping, we showed that the nucleotide polymorphisms in the Tan1 gene, coding a WD40 protein, control the tannin biosynthesis in sorghum. A 1-bp G deletion in the coding region, causing a frame shift and a premature stop codon, led to a nonfunctional allele, tan1-a . Likewise, a different 10-bp insertion resulted in a second nonfunctional allele, tan1-b . Transforming the sorghum Tan1 ORF into a nontannin Arabidopsis mutant restored the tannin phenotype. In addition, reduction in nucleotide diversity from wild sorghum accessions to landraces and cultivars was found at the region that codes the highly conserved WD40 repeat domains and the C-terminal region of the protein. Genetic research in crops, coupled with nutritional and medical research, could open the possibility of producing different levels and combinations of phenolic compounds to promote human health. |
---|---|
AbstractList | Sorghum, an ancient old-world cereal grass, is the dietary staple of over 500 million people in more than 30 countries in the tropics and semitropics. Its C4 photosynthesis, drought resistance, wide adaptation, and high nutritional value hold the promise to alleviate hunger in Africa. Not present in other major cereals, such as rice, wheat, and maize, condensed tannins (proanthocyanidins) in the pigmented testa of some sorghum cultivars have been implicated in reducing protein digestibility but recently have been shown to promote human health because of their high antioxidant capacity and ability to fight obesity through reduced digestion. Combining quantitative trait locus mapping, meta-quantitative trait locus fine-mapping, and association mapping, we showed that the nucleotide polymorphisms in the Tan1 gene, coding a WD40 protein, control the tannin biosynthesis in sorghum. A 1-bp G deletion in the coding region, causing a frame shift and a premature stop codon, led to a nonfunctional allele, tan1-a . Likewise, a different 10-bp insertion resulted in a second nonfunctional allele, tan1-b . Transforming the sorghum Tan1 ORF into a nontannin Arabidopsis mutant restored the tannin phenotype. In addition, reduction in nucleotide diversity from wild sorghum accessions to landraces and cultivars was found at the region that codes the highly conserved WD40 repeat domains and the C-terminal region of the protein. Genetic research in crops, coupled with nutritional and medical research, could open the possibility of producing different levels and combinations of phenolic compounds to promote human health. Sorghum, an ancient old-world cereal grass, is the dietary staple of over 500 million people in more than 30 countries in the tropics and semitropics. Its C4 photosynthesis, drought resistance, wide adaptation, and high nutritional value hold the promise to alleviate hunger in Africa. Not present in other major cereals, such as rice, wheat, and maize, condensed tannins (proanthocyanidins) in the pigmented testa of some sorghum cultivars have been implicated in reducing protein digestibility but recently have been shown to promote human health because of their high antioxidant capacity and ability to fight obesity through reduced digestion. Combining quantitative trait locus mapping, meta-quantitative trait locus fine-mapping, and association mapping, we showed that the nucleotide polymorphisms in the Tan1 gene, coding a WD40 protein, control the tannin biosynthesis in sorghum. A 1-bp G deletion in the coding region, causing a frame shift and a premature stop codon, led to a nonfunctional allele, tan1-a . Likewise, a different 10-bp insertion resulted in a second nonfunctional allele, tan1-b . Transforming the sorghum Tan1 ORF into a nontannin Arabidopsis mutant restored the tannin phenotype. In addition, reduction in nucleotide diversity from wild sorghum accessions to landraces and cultivars was found at the region that codes the highly conserved WD40 repeat domains and the C-terminal region of the protein. Genetic research in crops, coupled with nutritional and medical research, could open the possibility of producing different levels and combinations of phenolic compounds to promote human health. Sorghum, an ancient old-world cereal grass, is the dietary staple of over 500 million people in more than 30 countries in the tropics and semitropics. Its C4 photosynthesis, drought resistance, wide adaptation, and high nutritional value hold the promise to alleviate hunger in Africa. Not present in other major cereals, such as rice, wheat, and maize, condensed tannins (proanthocyanidins) in the pigmented testa of some sorghum cultivars have been implicated in reducing protein digestibility but recently have been shown to promote human health because of their high antioxidant capacity and ability to fight obesity through reduced digestion. Combining quantitative trait locus mapping, meta-quantitative trait locus fine-mapping, and association mapping, we showed that the nucleotide polymorphisms in the Tan1 gene, coding a WD40 protein, control the tannin biosynthesis in sorghum. A 1-bp G deletion in the coding region, causing a frame shift and a premature stop codon, led to a nonfunctional allele, tan1-a. Likewise, a different 10-bp insertion resulted in a second nonfunctional allele, tan1-b. Transforming the sorghum Tan1 ORF into a nontannin Arabidopsis mutant restored the tannin phenotype. In addition, reduction in nucleotide diversity from wild sorghum accessions to landraces and cultivars was found at the region that codes the highly conserved WD40 repeat domains and the C-terminal region of the protein. Genetic research in crops, coupled with nutritional and medical research, could open the possibility of producing different levels and combinations of phenolic compounds to promote human health. [PUBLICATION ABSTRACT] Sorghum, an ancient old-world cereal grass, is the dietary staple of over 500 million people in more than 30 countries in the tropics and semitropics. Its C4 photosynthesis, drought resistance, wide adaptation, and high nutritional value hold the promise to alleviate hunger in Africa. Not present in other major cereals, such as rice, wheat, and maize, condensed tannins (proanthocyanidins) in the pigmented testa of some sorghum cultivars have been implicated in reducing protein digestibility but recently have been shown to promote human health because of their high antioxidant capacity and ability to fight obesity through reduced digestion. Combining quantitative trait locus mapping, meta-quantitative trait locus fine-mapping, and association mapping, we showed that the nucleotide polymorphisms in the Tan1 gene, coding a WD40 protein, control the tannin biosynthesis in sorghum. A 1-bp G deletion in the coding region, causing a frame shift and a premature stop codon, led to a nonfunctional allele, tan1-a. Likewise, a different 10-bp insertion resulted in a second nonfunctional allele, tan1-b. Transforming the sorghum Tan1 ORF into a nontannin Arabidopsis mutant restored the tannin phenotype. In addition, reduction in nucleotide diversity from wild sorghum accessions to landraces and cultivars was found at the region that codes the highly conserved WD40 repeat domains and the C-terminal region of the protein. Genetic research in crops, coupled with nutritional and medical research, could open the possibility of producing different levels and combinations of phenolic compounds to promote human health.Sorghum, an ancient old-world cereal grass, is the dietary staple of over 500 million people in more than 30 countries in the tropics and semitropics. Its C4 photosynthesis, drought resistance, wide adaptation, and high nutritional value hold the promise to alleviate hunger in Africa. Not present in other major cereals, such as rice, wheat, and maize, condensed tannins (proanthocyanidins) in the pigmented testa of some sorghum cultivars have been implicated in reducing protein digestibility but recently have been shown to promote human health because of their high antioxidant capacity and ability to fight obesity through reduced digestion. Combining quantitative trait locus mapping, meta-quantitative trait locus fine-mapping, and association mapping, we showed that the nucleotide polymorphisms in the Tan1 gene, coding a WD40 protein, control the tannin biosynthesis in sorghum. A 1-bp G deletion in the coding region, causing a frame shift and a premature stop codon, led to a nonfunctional allele, tan1-a. Likewise, a different 10-bp insertion resulted in a second nonfunctional allele, tan1-b. Transforming the sorghum Tan1 ORF into a nontannin Arabidopsis mutant restored the tannin phenotype. In addition, reduction in nucleotide diversity from wild sorghum accessions to landraces and cultivars was found at the region that codes the highly conserved WD40 repeat domains and the C-terminal region of the protein. Genetic research in crops, coupled with nutritional and medical research, could open the possibility of producing different levels and combinations of phenolic compounds to promote human health. |
Author | Wu, Yun Ridder, Dustan D Wang, Ming L Zhu, Chengsong Li, Jiarui Xiang, Wenwen Lin, Zhongwei Bean, Scott R Tesso, Tesfaye T Yu, Jianming Bai, Guihua Li, Xianran Wu, Yuye Pandravada, Satchidanand Trick, Harold N Tuinstra, Mitchell R |
Author_xml | – sequence: 1 fullname: Wu, Yuye – sequence: 2 fullname: Li, Xianran – sequence: 3 fullname: Xiang, Wenwen – sequence: 4 fullname: Zhu, Chengsong – sequence: 5 fullname: Lin, Zhongwei – sequence: 6 fullname: Wu, Yun – sequence: 7 fullname: Li, Jiarui – sequence: 8 fullname: Pandravada, Satchidanand – sequence: 9 fullname: Ridder, Dustan D – sequence: 10 fullname: Bai, Guihua – sequence: 11 fullname: Wang, Ming L – sequence: 12 fullname: Trick, Harold N – sequence: 13 fullname: Bean, Scott R – sequence: 14 fullname: Tuinstra, Mitchell R – sequence: 15 fullname: Tesso, Tesfaye T – sequence: 16 fullname: Yu, Jianming |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22699509$$D View this record in MEDLINE/PubMed |
BookMark | eNqFksFrFTEQxoNU7Gv17E0DXnrZdpJsNslFKMWqUFCwvQkhb3f2NWVf8kx2hf73Zt97ttqDXhLI_OabLzNzRA5CDEjIawanDJQ42wSXTxkHpgAYmGdkUU5WNbWBA7IA4KrSNa8PyVHOdwBgpIYX5JDzxhgJZkG-f02YMbRIY09HF4IPmfpAc0yr22lNV8ltXzJtY-j86Ev9ji7vaef7HhOGkQY3TskN1A0DDphnoeutEHtJnvduyPhqfx-Tm8sP1xefqqsvHz9fnF9VrQQxVp1TnRHgHDCDbYsNKui507pmUOPSLGsueOtQy6ZjQtZYrCMD3XAQeimZOCbvd7qbabnGri2uiiG7SX7t0r2Nztu_I8Hf2lX8aYXQCtQscLIXSPHHhHm0a59bHAYXME7ZMg2CNbWQ6v8ocC6lVlIW9N0T9C5OKZRObKlaqVroQr350_yD698zKsDZDmhTzDlh_4AwsPMW2HkL7OMWlAz5JKP1o5tnV37vh3_k0b2VOfBYxVjezJb13Km3O6R30bpV8tnefCsKTVHgWhsQvwD3BMl0 |
CitedBy_id | crossref_primary_10_1108_NFS_05_2018_0149 crossref_primary_10_3835_plantgenome2018_09_0070 crossref_primary_10_1146_annurev_arplant_050312_120048 crossref_primary_10_1534_g3_115_026104 crossref_primary_10_3389_fpls_2017_00756 crossref_primary_10_5897_AJB2014_13664 crossref_primary_10_3835_plantgenome2018_06_0044 crossref_primary_10_1016_j_molp_2019_08_004 crossref_primary_10_1139_gen_2017_0131 crossref_primary_10_1007_s12042_015_9146_z crossref_primary_10_1016_j_jgg_2024_07_016 crossref_primary_10_1016_j_jcs_2017_10_001 crossref_primary_10_1111_tpj_15285 crossref_primary_10_1007_s00122_020_03762_2 crossref_primary_10_1186_s12864_018_5157_0 crossref_primary_10_1002_csc2_20810 crossref_primary_10_1007_s00217_020_03625_6 crossref_primary_10_1016_j_lwt_2020_109576 crossref_primary_10_1080_09712119_2017_1371607 crossref_primary_10_3390_antiox11040794 crossref_primary_10_1016_j_jcs_2013_10_009 crossref_primary_10_1186_s12864_021_08000_7 crossref_primary_10_1038_s41467_022_33419_1 crossref_primary_10_1038_s41467_023_40014_5 crossref_primary_10_1111_tpj_14113 crossref_primary_10_3390_antiox9121297 crossref_primary_10_1017_S0960258521000076 crossref_primary_10_1186_s41065_020_00130_4 crossref_primary_10_1016_j_foodchem_2020_127970 crossref_primary_10_1534_g3_113_008417 crossref_primary_10_1016_j_lwt_2022_113367 crossref_primary_10_1016_j_lwt_2021_112672 crossref_primary_10_1021_acs_jafc_4c08975 crossref_primary_10_3945_cdn_117_001081 crossref_primary_10_3389_fgene_2021_742095 crossref_primary_10_1016_j_foodchem_2024_139810 crossref_primary_10_1111_tpj_16469 crossref_primary_10_32604_phyton_2022_020642 crossref_primary_10_3389_fpls_2021_625260 crossref_primary_10_2478_asn_2020_0008 crossref_primary_10_9787_PBB_2019_7_2_132 crossref_primary_10_1002_csc2_20609 crossref_primary_10_1002_cche_10349 crossref_primary_10_1007_s00122_023_04534_4 crossref_primary_10_1186_s12864_020_6489_0 crossref_primary_10_1007_s00344_025_11691_x crossref_primary_10_1186_s12864_020_6538_8 crossref_primary_10_17221_16_2023_CJGPB crossref_primary_10_1038_s41477_019_0567_9 crossref_primary_10_1038_s41477_019_0563_0 crossref_primary_10_1007_s11103_020_01026_7 crossref_primary_10_1093_g3journal_jkae145 crossref_primary_10_1007_s44307_024_00039_3 crossref_primary_10_1016_j_jcs_2022_103504 crossref_primary_10_1186_s12864_022_08793_1 crossref_primary_10_1080_03036758_2022_2034654 crossref_primary_10_1371_journal_pone_0225979 crossref_primary_10_18697_ajfand_80_16520 crossref_primary_10_3389_fgene_2021_637141 crossref_primary_10_1007_s11103_021_01159_3 crossref_primary_10_3389_fpls_2019_00691 crossref_primary_10_3389_fgene_2023_1143395 crossref_primary_10_1016_j_cj_2024_02_011 crossref_primary_10_1007_s00425_021_03742_w crossref_primary_10_1080_10942912_2022_2071293 crossref_primary_10_1007_s11032_024_01463_y crossref_primary_10_5897_AJAR2018_13570 crossref_primary_10_1016_j_cpb_2024_100364 crossref_primary_10_1155_2016_9640869 crossref_primary_10_1002_fsn3_2830 crossref_primary_10_1186_s12870_017_1122_3 crossref_primary_10_1007_s10722_021_01303_4 crossref_primary_10_1186_s12864_016_3475_7 crossref_primary_10_1002_csc2_20348 crossref_primary_10_1186_1756_0500_7_761 crossref_primary_10_1007_s12042_024_09376_y crossref_primary_10_1093_genetics_iyab087 crossref_primary_10_1002_cche_10643 crossref_primary_10_1021_jf304882k crossref_primary_10_3389_fpls_2024_1373975 crossref_primary_10_1088_1755_1315_981_2_022103 crossref_primary_10_1093_treephys_tpad040 crossref_primary_10_1007_s42994_022_00089_y crossref_primary_10_1016_j_jcs_2018_11_012 crossref_primary_10_1007_s11101_023_09873_0 crossref_primary_10_1093_jxb_erz143 crossref_primary_10_1002_csc2_20198 crossref_primary_10_1016_j_foodres_2020_109975 crossref_primary_10_1016_j_foodchem_2019_125684 crossref_primary_10_1002_pld3_70055 crossref_primary_10_1534_g3_119_400353 crossref_primary_10_1002_cche_10252 crossref_primary_10_1002_ppj2_70013 crossref_primary_10_3389_fpls_2021_660171 crossref_primary_10_1021_jf503651t crossref_primary_10_1080_10408398_2021_1960793 crossref_primary_10_3389_fpls_2024_1451215 crossref_primary_10_1007_s10722_022_01513_4 crossref_primary_10_1016_j_plantsci_2019_02_013 crossref_primary_10_3835_plantgenome2014_09_0048 crossref_primary_10_7717_peerj_17438 crossref_primary_10_1111_nph_14010 crossref_primary_10_1016_j_fcr_2020_107955 crossref_primary_10_1016_j_foodchem_2024_142627 crossref_primary_10_1590_s1678_3921_pab2020_v55_02288 crossref_primary_10_3389_fpls_2017_00536 crossref_primary_10_1111_tpj_15853 crossref_primary_10_1007_s00425_025_04628_x crossref_primary_10_3389_frai_2022_872858 crossref_primary_10_1007_s10722_024_01956_x crossref_primary_10_1094_CCHEM_03_16_0075_R crossref_primary_10_3390_foods13030491 crossref_primary_10_1007_s00122_021_03789_z crossref_primary_10_1038_s41598_022_09433_0 crossref_primary_10_3390_genes10110841 crossref_primary_10_1111_tpj_17244 crossref_primary_10_3390_agronomy13051330 crossref_primary_10_1126_sciadv_1400218 crossref_primary_10_1016_j_foodres_2020_109671 crossref_primary_10_1111_1541_4337_12506 crossref_primary_10_1111_pbr_12426 crossref_primary_10_1534_g3_114_013318 crossref_primary_10_1093_g3journal_jkab060 crossref_primary_10_1134_S1022795420110095 crossref_primary_10_1007_s00122_023_04307_z crossref_primary_10_1016_j_tplants_2019_09_001 crossref_primary_10_3389_fpls_2018_00811 crossref_primary_10_1126_science_abg7985 crossref_primary_10_5897_AJAR2015_10065 crossref_primary_10_3389_fnut_2023_1228422 crossref_primary_10_1186_s12870_015_0477_6 crossref_primary_10_1007_s42729_024_01858_y crossref_primary_10_1016_j_foodcont_2024_110469 |
Cites_doi | 10.1021/jf001116h 10.1016/j.phytochem.2004.04.001 10.1039/b802662a 10.1038/nature07723 10.1073/pnas.1106212108 10.2135/cropsci2007.02.0080 10.1093/genetics/155.1.463 10.1111/j.1469-8137.2004.01217.x 10.1126/science.1078540 10.1186/1471-2105-8-49 10.3732/ajb.0800284 10.1534/genetics.104.032375 10.1111/j.1365-313X.2004.02138.x 10.1105/tpc.105.038430 10.1105/tpc.11.7.1337 10.3390/molecules13102674 10.1093/jxb/erq442 10.3109/09637481003670816 10.1105/tpc.109.068114 10.1089/jmf.2009.0147 10.1093/japr/1.1.122 10.1046/j.1365-313x.1998.00343.x 10.1016/j.cell.2006.12.006 10.1038/nrg1877 10.1158/1535-7163.MCT-06-0661 10.1146/annurev.nutr.22.111401.144957 10.1093/jn/134.3.613 10.1105/tpc.018796 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Jun 26, 2012 |
Copyright_xml | – notice: Copyright National Academy of Sciences Jun 26, 2012 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1201700109 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA Virology and AIDS Abstracts CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Cloning of Tan1 in sorghum |
EISSN | 1091-6490 |
EndPage | 10286 |
ExternalDocumentID | PMC3387071 2698408631 22699509 10_1073_pnas_1201700109 109_26_10281 US201600128890 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GeographicLocations | Africa |
GeographicLocations_xml | – name: Africa |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ H13 KM PQEST X XHC AAYXX ABXSQ ACHIC ADQXQ ADXHL AQVQM CITATION IPSME CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c503t-da7d930aa019ecce6e70f2a884104eb9b4232cae856d1354e950e10862038b513 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:07:49 EDT 2025 Fri Jul 11 12:17:36 EDT 2025 Fri Jul 11 12:31:21 EDT 2025 Mon Jun 30 08:41:01 EDT 2025 Mon Jul 21 05:50:08 EDT 2025 Thu Apr 24 23:03:51 EDT 2025 Tue Jul 01 03:39:20 EDT 2025 Wed Nov 11 00:29:52 EST 2020 Wed Dec 27 19:16:00 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c503t-da7d930aa019ecce6e70f2a884104eb9b4232cae856d1354e950e10862038b513 |
Notes | http://dx.doi.org/10.1073/pnas.1201700109 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Edited* by Ronald L. Phillips, University of Minnesota, St. Paul, MN, and approved May 23, 2012 (received for review February 6, 2012) Author contributions: S.R.B., M.R.T., T.T.T., and J.Y. designed research; Yuye Wu, X.L., W.X., C.Z., Z.L., Yun Wu, and J.L. performed research; J.L., S.P., D.D.R., G.B., M.L.W., H.N.T., and S.R.B. contributed new reagents/analytic tools; Yuye Wu, X.L., W.X., C.Z., Z.L., and Yun Wu analyzed data; and Yuye Wu, X.L., G.B., and J.Y. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/109/26/10281.full.pdf |
PMID | 22699509 |
PQID | 1022477438 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_journals_1022477438 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3387071 pubmed_primary_22699509 fao_agris_US201600128890 pnas_primary_109_26_10281 proquest_miscellaneous_1803164357 proquest_miscellaneous_1022558755 crossref_citationtrail_10_1073_pnas_1201700109 crossref_primary_10_1073_pnas_1201700109 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-06-26 |
PublicationDateYYYYMMDD | 2012-06-26 |
PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2012 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Dykes L (e_1_3_4_7_2) 2007; 52 Gu L (e_1_3_4_8_2) 2004; 134 Murphy RL (e_1_3_4_26_2) 2011; 108 Burdette A (e_1_3_4_29_2) 2010; 13 Doebley JF (e_1_3_4_11_2) 2006; 127 Clough SJ (e_1_3_4_34_2) 1998; 16 Carey CC (e_1_3_4_18_2) 2004; 16 Hahn DH (e_1_3_4_15_2) 1986; 63 Chardon F (e_1_3_4_24_2) 2004; 168 Gómez-Cordovés C (e_1_3_4_28_2) 2001; 49 Veyrieras JB (e_1_3_4_32_2) 2007; 8 Goffinet B (e_1_3_4_33_2) 2000; 155 Waniska R (e_1_3_4_12_2) 1992; 1 Floegel A (e_1_3_4_3_2) 2010; 61 Zhu C (e_1_3_4_25_2) 2008; 1 Crozier A (e_1_3_4_2_2) 2009; 26 Xie DY (e_1_3_4_5_2) 2003; 299 Baudry A (e_1_3_4_16_2) 2004; 39 Dixon RA (e_1_3_4_1_2) 2005; 165 Awika JM (e_1_3_4_9_2) 2004; 65 e_1_3_4_30_2 Sharma SD (e_1_3_4_4_2) 2007; 6 Alonso-Blanco C (e_1_3_4_22_2) 2009; 21 Hichri I (e_1_3_4_23_2) 2011; 62 Walker AR (e_1_3_4_14_2) 1999; 11 Paterson AH (e_1_3_4_13_2) 2009; 457 He F (e_1_3_4_19_2) 2008; 13 Gepts P (e_1_3_4_10_2) 2004; 24 Ross JA (e_1_3_4_27_2) 2002; 22 Casa AM (e_1_3_4_17_2) 2008; 48 Sweeney MT (e_1_3_4_20_2) 2006; 18 Barnaud A (e_1_3_4_21_2) 2009; 96 Whitham TG (e_1_3_4_6_2) 2006; 7 van Ooijen JW (e_1_3_4_31_2) 2001 17288608 - BMC Bioinformatics. 2007;8:49 15720617 - New Phytol. 2005 Jan;165(1):9-28 19574434 - Plant Cell. 2009 Jul;21(7):1877-96 21622308 - Am J Bot. 2009 Oct;96(10):1869-79 12532018 - Science. 2003 Jan 17;299(5605):396-9 16778835 - Nat Rev Genet. 2006 Jul;7(7):510-23 20673059 - J Med Food. 2010 Aug;13(4):879-87 21930910 - Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16469-74 19636448 - Nat Prod Rep. 2009 Aug;26(8):1001-43 10069079 - Plant J. 1998 Dec;16(6):735-43 14742877 - Plant Cell. 2004 Feb;16(2):450-64 17363493 - Mol Cancer Ther. 2007 Mar;6(3):995-1005 12055336 - Annu Rev Nutr. 2002;22:19-34 18971863 - Molecules. 2008;13(10):2674-703 21278228 - J Exp Bot. 2011 May;62(8):2465-83 20377495 - Int J Food Sci Nutr. 2010 Sep;61(6):600-23 14988456 - J Nutr. 2004 Mar;134(3):613-7 10402433 - Plant Cell. 1999 Jul;11(7):1337-50 19189423 - Nature. 2009 Jan 29;457(7229):551-6 15184005 - Phytochemistry. 2004 May;65(9):1199-221 10790417 - Genetics. 2000 May;155(1):463-73 11312905 - J Agric Food Chem. 2001 Mar;49(3):1620-4 15611184 - Genetics. 2004 Dec;168(4):2169-85 16399804 - Plant Cell. 2006 Feb;18(2):283-94 15255866 - Plant J. 2004 Aug;39(3):366-80 17190597 - Cell. 2006 Dec 29;127(7):1309-21 |
References_xml | – volume: 63 start-page: 4 year: 1986 ident: e_1_3_4_15_2 article-title: Effect of genotype on tannins and phenols of sorghum publication-title: Cereal Chemistry – volume-title: Joinmap v3.0, Software for the Calculation of Genetic Linkage Maps year: 2001 ident: e_1_3_4_31_2 – volume: 49 start-page: 1620 year: 2001 ident: e_1_3_4_28_2 article-title: Effects of wine phenolics and sorghum tannins on tyrosinase activity and growth of melanoma cells publication-title: J Agric Food Chem doi: 10.1021/jf001116h – volume: 65 start-page: 1199 year: 2004 ident: e_1_3_4_9_2 article-title: Sorghum phytochemicals and their potential impact on human health publication-title: Phytochemistry doi: 10.1016/j.phytochem.2004.04.001 – volume: 26 start-page: 1001 year: 2009 ident: e_1_3_4_2_2 article-title: Dietary phenolics: Chemistry, bioavailability and effects on health publication-title: Nat Prod Rep doi: 10.1039/b802662a – volume: 52 start-page: 105 year: 2007 ident: e_1_3_4_7_2 article-title: Phenolic compounds in cereal grains and their health benefits publication-title: Cereal Foods World – volume: 457 start-page: 551 year: 2009 ident: e_1_3_4_13_2 article-title: The Sorghum bicolor genome and the diversification of grasses publication-title: Nature doi: 10.1038/nature07723 – volume: 108 start-page: 16469 year: 2011 ident: e_1_3_4_26_2 article-title: Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1106212108 – volume: 48 start-page: 30 year: 2008 ident: e_1_3_4_17_2 article-title: Community resources and strategies for association mapping in sorghum publication-title: Crop Sci doi: 10.2135/cropsci2007.02.0080 – volume: 1 start-page: 5 year: 2008 ident: e_1_3_4_25_2 article-title: Status and prospects of association mapping in plants publication-title: The Plant Genome – volume: 155 start-page: 463 year: 2000 ident: e_1_3_4_33_2 article-title: Quantitative trait loci: A meta-analysis publication-title: Genetics doi: 10.1093/genetics/155.1.463 – volume: 165 start-page: 9 year: 2005 ident: e_1_3_4_1_2 article-title: Proanthocyanidins—A final frontier in flavonoid research? publication-title: New Phytol doi: 10.1111/j.1469-8137.2004.01217.x – volume: 299 start-page: 396 year: 2003 ident: e_1_3_4_5_2 article-title: Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis publication-title: Science doi: 10.1126/science.1078540 – ident: e_1_3_4_30_2 – volume: 8 start-page: 49 year: 2007 ident: e_1_3_4_32_2 article-title: MetaQTL: A package of new computational methods for the meta-analysis of QTL mapping experiments publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-49 – volume: 96 start-page: 1869 year: 2009 ident: e_1_3_4_21_2 article-title: A weed-crop complex in sorghum: The dynamics of genetic diversity in a traditional farming system publication-title: Am J Bot doi: 10.3732/ajb.0800284 – volume: 168 start-page: 2169 year: 2004 ident: e_1_3_4_24_2 article-title: Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome publication-title: Genetics doi: 10.1534/genetics.104.032375 – volume: 39 start-page: 366 year: 2004 ident: e_1_3_4_16_2 article-title: TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana publication-title: Plant J doi: 10.1111/j.1365-313X.2004.02138.x – volume: 18 start-page: 283 year: 2006 ident: e_1_3_4_20_2 article-title: Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice publication-title: Plant Cell doi: 10.1105/tpc.105.038430 – volume: 11 start-page: 1337 year: 1999 ident: e_1_3_4_14_2 article-title: The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein publication-title: Plant Cell doi: 10.1105/tpc.11.7.1337 – volume: 13 start-page: 2674 year: 2008 ident: e_1_3_4_19_2 article-title: Biosynthesis and genetic regulation of proanthocyanidins in plants publication-title: Molecules doi: 10.3390/molecules13102674 – volume: 62 start-page: 2465 year: 2011 ident: e_1_3_4_23_2 article-title: Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway publication-title: J Exp Bot doi: 10.1093/jxb/erq442 – volume: 61 start-page: 600 year: 2010 ident: e_1_3_4_3_2 article-title: Development and validation of an algorithm to establish a total antioxidant capacity database of the US diet publication-title: Int J Food Sci Nutr doi: 10.3109/09637481003670816 – volume: 21 start-page: 1877 year: 2009 ident: e_1_3_4_22_2 article-title: What has natural variation taught us about plant development, physiology, and adaptation? publication-title: Plant Cell doi: 10.1105/tpc.109.068114 – volume: 13 start-page: 879 year: 2010 ident: e_1_3_4_29_2 article-title: Anti-inflammatory activity of select sorghum (Sorghum bicolor) brans publication-title: J Med Food doi: 10.1089/jmf.2009.0147 – volume: 1 start-page: 122 year: 1992 ident: e_1_3_4_12_2 article-title: Practical methods to determine presence oftannins in sorghum publication-title: J Appl Poult Res doi: 10.1093/japr/1.1.122 – volume: 16 start-page: 735 year: 1998 ident: e_1_3_4_34_2 article-title: Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana publication-title: Plant J doi: 10.1046/j.1365-313x.1998.00343.x – volume: 127 start-page: 1309 year: 2006 ident: e_1_3_4_11_2 article-title: The molecular genetics of crop domestication publication-title: Cell doi: 10.1016/j.cell.2006.12.006 – volume: 24 start-page: 1 year: 2004 ident: e_1_3_4_10_2 article-title: Crop domestication as a long-term selection experiment publication-title: Plant Breed Rev – volume: 7 start-page: 510 year: 2006 ident: e_1_3_4_6_2 article-title: A framework for community and ecosystem genetics: From genes to ecosystems publication-title: Nat Rev Genet doi: 10.1038/nrg1877 – volume: 6 start-page: 995 year: 2007 ident: e_1_3_4_4_2 article-title: Dietary grape seed proanthocyanidins inhibit UVB-induced oxidative stress and activation of mitogen-activated protein kinases and nuclear factor-kappaB signaling in in vivo SKH-1 hairless mice publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-06-0661 – volume: 22 start-page: 19 year: 2002 ident: e_1_3_4_27_2 article-title: Dietary flavonoids: Bioavailability, metabolic effects, and safety publication-title: Annu Rev Nutr doi: 10.1146/annurev.nutr.22.111401.144957 – volume: 134 start-page: 613 year: 2004 ident: e_1_3_4_8_2 article-title: Concentrations of proanthocyanidins in common foods and estimations of normal consumption publication-title: J Nutr doi: 10.1093/jn/134.3.613 – volume: 16 start-page: 450 year: 2004 ident: e_1_3_4_18_2 article-title: Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana publication-title: Plant Cell doi: 10.1105/tpc.018796 – reference: 18971863 - Molecules. 2008;13(10):2674-703 – reference: 11312905 - J Agric Food Chem. 2001 Mar;49(3):1620-4 – reference: 10790417 - Genetics. 2000 May;155(1):463-73 – reference: 12055336 - Annu Rev Nutr. 2002;22:19-34 – reference: 17288608 - BMC Bioinformatics. 2007;8:49 – reference: 16399804 - Plant Cell. 2006 Feb;18(2):283-94 – reference: 16778835 - Nat Rev Genet. 2006 Jul;7(7):510-23 – reference: 21622308 - Am J Bot. 2009 Oct;96(10):1869-79 – reference: 21278228 - J Exp Bot. 2011 May;62(8):2465-83 – reference: 15720617 - New Phytol. 2005 Jan;165(1):9-28 – reference: 14988456 - J Nutr. 2004 Mar;134(3):613-7 – reference: 19189423 - Nature. 2009 Jan 29;457(7229):551-6 – reference: 19636448 - Nat Prod Rep. 2009 Aug;26(8):1001-43 – reference: 17363493 - Mol Cancer Ther. 2007 Mar;6(3):995-1005 – reference: 10402433 - Plant Cell. 1999 Jul;11(7):1337-50 – reference: 21930910 - Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16469-74 – reference: 14742877 - Plant Cell. 2004 Feb;16(2):450-64 – reference: 19574434 - Plant Cell. 2009 Jul;21(7):1877-96 – reference: 15611184 - Genetics. 2004 Dec;168(4):2169-85 – reference: 15184005 - Phytochemistry. 2004 May;65(9):1199-221 – reference: 20377495 - Int J Food Sci Nutr. 2010 Sep;61(6):600-23 – reference: 20673059 - J Med Food. 2010 Aug;13(4):879-87 – reference: 12532018 - Science. 2003 Jan 17;299(5605):396-9 – reference: 15255866 - Plant J. 2004 Aug;39(3):366-80 – reference: 10069079 - Plant J. 1998 Dec;16(6):735-43 – reference: 17190597 - Cell. 2006 Dec 29;127(7):1309-21 |
SSID | ssj0009580 |
Score | 2.4742785 |
Snippet | Sorghum, an ancient old-world cereal grass, is the dietary staple of over 500 million people in more than 30 countries in the tropics and semitropics. Its C4... |
SourceID | pubmedcentral proquest pubmed crossref pnas fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10281 |
SubjectTerms | Africa Alleles antioxidant activity Antioxidants Arabidopsis Base Sequence Biological Sciences biomedical research Biosynthesis C4 photosynthesis Cereals chromosome mapping corn crops Cultivars digestible protein digestion Drought resistance drought tolerance Gene mapping grasses human health Hunger landraces loci Medical research Molecular Sequence Data mutants Nutritive value Obesity open reading frames people Phenols phenotype Photosynthesis Phylogeny Polymorphism, Genetic proanthocyanidins Proteins Quantitative Trait Loci rice Sequence Homology, Nucleic Acid Sorghum Sorghum (Poaceae) Sorghum - genetics Sorghum - metabolism stop codon Tannins Tannins - genetics Tannins - metabolism testa Tropical environments tropics wheat |
Title | Presence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1 |
URI | http://www.pnas.org/content/109/26/10281.abstract https://www.ncbi.nlm.nih.gov/pubmed/22699509 https://www.proquest.com/docview/1022477438 https://www.proquest.com/docview/1022558755 https://www.proquest.com/docview/1803164357 https://pubmed.ncbi.nlm.nih.gov/PMC3387071 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB6664sv4nrbrKuM4MNKSE0yuT4uohTBUrDFKkKYJJO20E2XTYOsf80_5zkzk0tLXdSX0CbTySTn67kk53yHkNfMQc47xq3YtbnleWlupSHzrKzIMx4UzEttLE7-NA5GM-_j3J8PBr96WUv1Nh1mPw_WlfyPVGEfyBWrZP9Bsu2ksAM-g3xhCxKG7V_JeCJrhzL1ol82H5LZrdXmZrGsr8wFtn-osGU5BL25IiWS_mbTFWVrSl5PpAtYr8H-yLSOqZzI6Xutk9bKVU1Owbh5iHjZlaRoPVGZljkZdw2Ov9a3wvxSN1_nSDGEzYJX3Vuh8ocoTTyw6NINBJwNGyF9W9b9RxOY4xFYqv69z-ytVtKuoa-NXbCQnqqhHgqlgMF_sQJPtRBtNbQd96Do9hUu-kfOQVMAugv7F5e8GjousgTZepoeMK6vJDLABY1jX59kh5J7z1S2CYwwVeIGiTz7EbnnQowis0pHfcbnSNU_6YtseKVC9nZvUUhIrVew4x0dFXyDnLsw-lD8s5_G2_OLpg_JAx3Q0EuFzhMyEOUjctKIgV5oXvM3j8n3Bq50U1ANV7oqqYYrVXClq4r24ErTW9rClWq4Ug1XnEjD9QmZfXg_fTeydHMPK_NttrVyHuYxszmHGAPUiAhEaBcujyLPsT2RxilmEGRcRH6QO8z3BNwegW3BXJtFqe-wp-S4hHWcEsqLHMvDXZHbsZc5fioCZPn0wiDPHJ6FBhk2NzXJNPM9NmBZJzIDI2QJ3uKkE4hBLtofXCvSlz8PPQUpJXwBJjmZfXaRsBF9vii2DWLIwd0MHWYMct7IM9EKpUokuyOEYywyyKv2MKh7fIfHS7Gp1Rjfj0Lfv2NMBJYaIg0frvyZgki7iAZoBgl3wNMOQLr53SPlailp5xkD2x46Z3dc1nNyv9MD5-R4e1OLF-C0b9OX8s_xG9Ts6SM |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Presence+of+tannins+in+sorghum+grains+is+conditioned+by+different+natural+alleles+of+Tannin1&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Yuye+Wu&rft.au=Xianran+Li&rft.au=Wenwen+Xiang&rft.au=Chengsong+Zhu&rft.date=2012-06-26&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=26&rft.spage=10281&rft_id=info:doi/10.1073%2Fpnas.1201700109&rft_id=info%3Apmid%2F22699509&rft.externalDBID=n%2Fa&rft.externalDocID=109_26_10281 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F26.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F26.cover.gif |