L-Rhamnose Dehydrogenase LraA of Aspergillus niger Shows High Substrate Specificity Matching Its Expression Profile

L-rhamnose is one of the main monomeric sugars of rhamnogalacturonan I and II, which are polysaccharide components of pectin. In the ascomycete fungus Aspergillus niger it is metabolized through the non-phosphorylated L-rhamnose pathway, of which the first step is catalyzed by L-rhamnose dehydrogena...

Full description

Saved in:
Bibliographic Details
Published inJournal of fungi (Basel) Vol. 11; no. 4; p. 301
Main Authors Terebieniec, Agata, Xu, Li, Peng, Mao, Mäkelä, Miia R., Vries, Ronald P. de
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 10.04.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract L-rhamnose is one of the main monomeric sugars of rhamnogalacturonan I and II, which are polysaccharide components of pectin. In the ascomycete fungus Aspergillus niger it is metabolized through the non-phosphorylated L-rhamnose pathway, of which the first step is catalyzed by L-rhamnose dehydrogenase (LraA), converting L-rhamnose into L-rhamnono-γ-lactone. This enzyme belongs to PFAM PF00106, unlike most of other reductases/dehydrogenases involved in fungal sugar catabolism that are typically assigned to PF00248 and PF00107. The enzymes of those families have broad substrate specificity and in some cases have been shown to be involved in multiple pathways. In this study we heterologously produced and biochemically characterized A. niger LraA and studied its expression on a set of monosaccharides. This revealed that, in contrast to other metabolic redox enzymes, LraA is highly specific for L-rhamnose and has no activity on most other substrates tested in this study. This specificity is matched by a highly specific expression profile, which only shows significant expression on L-rhamnose. It therefore can be concluded that LraA has evolved with a highly specific function in fungal sugar catabolism, unlike most other sugar reductases/dehydrogenases described so far. The high specificity of LraA also affects its biotechnological applications, as it may benefit L-rhamnose-based processes, but would be less suitable for applications involving conversion of multiple sugars.
AbstractList L-rhamnose is one of the main monomeric sugars of rhamnogalacturonan I and II, which are polysaccharide components of pectin. In the ascomycete fungus Aspergillus niger it is metabolized through the non-phosphorylated L-rhamnose pathway, of which the first step is catalyzed by L-rhamnose dehydrogenase (LraA), converting L-rhamnose into L-rhamnono-γ-lactone. This enzyme belongs to PFAM PF00106, unlike most of other reductases/dehydrogenases involved in fungal sugar catabolism that are typically assigned to PF00248 and PF00107. The enzymes of those families have broad substrate specificity and in some cases have been shown to be involved in multiple pathways. In this study we heterologously produced and biochemically characterized A. niger LraA and studied its expression on a set of monosaccharides. This revealed that, in contrast to other metabolic redox enzymes, LraA is highly specific for L-rhamnose and has no activity on most other substrates tested in this study. This specificity is matched by a highly specific expression profile, which only shows significant expression on L-rhamnose. It therefore can be concluded that LraA has evolved with a highly specific function in fungal sugar catabolism, unlike most other sugar reductases/dehydrogenases described so far. The high specificity of LraA also affects its biotechnological applications, as it may benefit L-rhamnose-based processes, but would be less suitable for applications involving conversion of multiple sugars.L-rhamnose is one of the main monomeric sugars of rhamnogalacturonan I and II, which are polysaccharide components of pectin. In the ascomycete fungus Aspergillus niger it is metabolized through the non-phosphorylated L-rhamnose pathway, of which the first step is catalyzed by L-rhamnose dehydrogenase (LraA), converting L-rhamnose into L-rhamnono-γ-lactone. This enzyme belongs to PFAM PF00106, unlike most of other reductases/dehydrogenases involved in fungal sugar catabolism that are typically assigned to PF00248 and PF00107. The enzymes of those families have broad substrate specificity and in some cases have been shown to be involved in multiple pathways. In this study we heterologously produced and biochemically characterized A. niger LraA and studied its expression on a set of monosaccharides. This revealed that, in contrast to other metabolic redox enzymes, LraA is highly specific for L-rhamnose and has no activity on most other substrates tested in this study. This specificity is matched by a highly specific expression profile, which only shows significant expression on L-rhamnose. It therefore can be concluded that LraA has evolved with a highly specific function in fungal sugar catabolism, unlike most other sugar reductases/dehydrogenases described so far. The high specificity of LraA also affects its biotechnological applications, as it may benefit L-rhamnose-based processes, but would be less suitable for applications involving conversion of multiple sugars.
L-rhamnose is one of the main monomeric sugars of rhamnogalacturonan I and II, which are polysaccharide components of pectin. In the ascomycete fungus Aspergillus niger it is metabolized through the non-phosphorylated L-rhamnose pathway, of which the first step is catalyzed by L-rhamnose dehydrogenase (LraA), converting L-rhamnose into L-rhamnono-γ-lactone. This enzyme belongs to PFAM PF00106, unlike most of other reductases/dehydrogenases involved in fungal sugar catabolism that are typically assigned to PF00248 and PF00107. The enzymes of those families have broad substrate specificity and in some cases have been shown to be involved in multiple pathways. In this study we heterologously produced and biochemically characterized A. niger LraA and studied its expression on a set of monosaccharides. This revealed that, in contrast to other metabolic redox enzymes, LraA is highly specific for L-rhamnose and has no activity on most other substrates tested in this study. This specificity is matched by a highly specific expression profile, which only shows significant expression on L-rhamnose. It therefore can be concluded that LraA has evolved with a highly specific function in fungal sugar catabolism, unlike most other sugar reductases/dehydrogenases described so far. The high specificity of LraA also affects its biotechnological applications, as it may benefit L-rhamnose-based processes, but would be less suitable for applications involving conversion of multiple sugars.
L-rhamnose is one of the main monomeric sugars of rhamnogalacturonan I and II, which are polysaccharide components of pectin. In the ascomycete fungus Aspergillus niger it is metabolized through the non-phosphorylated L-rhamnose pathway, of which the first step is catalyzed by L-rhamnose dehydrogenase (LraA), converting L-rhamnose into L-rhamnono-γ-lactone. This enzyme belongs to PFAM PF00106, unlike most of other reductases/dehydrogenases involved in fungal sugar catabolism that are typically assigned to PF00248 and PF00107. The enzymes of those families have broad substrate specificity and in some cases have been shown to be involved in multiple pathways. In this study we heterologously produced and biochemically characterized A. niger LraA and studied its expression on a set of monosaccharides. This revealed that, in contrast to other metabolic redox enzymes, LraA is highly specific for L-rhamnose and has no activity on most other substrates tested in this study. This specificity is matched by a highly specific expression profile, which only shows significant expression on L-rhamnose. It therefore can be concluded that LraA has evolved with a highly specific function in fungal sugar catabolism, unlike most other sugar reductases/dehydrogenases described so far. The high specificity of LraA also affects its biotechnological applications, as it may benefit L-rhamnose-based processes, but would be less suitable for applications involving conversion of multiple sugars.
L-rhamnose is one of the main monomeric sugars of rhamnogalacturonan I and II, which are polysaccharide components of pectin. In the ascomycete fungus it is metabolized through the non-phosphorylated L-rhamnose pathway, of which the first step is catalyzed by L-rhamnose dehydrogenase (LraA), converting L-rhamnose into L-rhamnono-γ-lactone. This enzyme belongs to PFAM PF00106, unlike most of other reductases/dehydrogenases involved in fungal sugar catabolism that are typically assigned to PF00248 and PF00107. The enzymes of those families have broad substrate specificity and in some cases have been shown to be involved in multiple pathways. In this study we heterologously produced and biochemically characterized LraA and studied its expression on a set of monosaccharides. This revealed that, in contrast to other metabolic redox enzymes, LraA is highly specific for L-rhamnose and has no activity on most other substrates tested in this study. This specificity is matched by a highly specific expression profile, which only shows significant expression on L-rhamnose. It therefore can be concluded that LraA has evolved with a highly specific function in fungal sugar catabolism, unlike most other sugar reductases/dehydrogenases described so far. The high specificity of LraA also affects its biotechnological applications, as it may benefit L-rhamnose-based processes, but would be less suitable for applications involving conversion of multiple sugars.
Audience Academic
Author Xu, Li
Terebieniec, Agata
Peng, Mao
Mäkelä, Miia R.
Vries, Ronald P. de
AuthorAffiliation 1 Fungal Physiology Group, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; terebieniecagata@gmail.com (A.T.); xuli_lixu1125@163.com (L.X.); m.peng@wi.knaw.nl (M.P.)
2 Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-02150 Espoo, Finland; miia.makela@aalto.fi
AuthorAffiliation_xml – name: 2 Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-02150 Espoo, Finland; miia.makela@aalto.fi
– name: 1 Fungal Physiology Group, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; terebieniecagata@gmail.com (A.T.); xuli_lixu1125@163.com (L.X.); m.peng@wi.knaw.nl (M.P.)
Author_xml – sequence: 1
  givenname: Agata
  orcidid: 0000-0002-8197-2885
  surname: Terebieniec
  fullname: Terebieniec, Agata
– sequence: 2
  givenname: Li
  orcidid: 0000-0003-3782-8509
  surname: Xu
  fullname: Xu, Li
– sequence: 3
  givenname: Mao
  orcidid: 0000-0003-1676-0242
  surname: Peng
  fullname: Peng, Mao
– sequence: 4
  givenname: Miia R.
  orcidid: 0000-0003-0771-2329
  surname: Mäkelä
  fullname: Mäkelä, Miia R.
– sequence: 5
  givenname: Ronald P. de
  orcidid: 0000-0002-4363-1123
  surname: Vries
  fullname: Vries, Ronald P. de
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40278122$$D View this record in MEDLINE/PubMed
BookMark eNptks2PEyEYxolZ4651T94NiReTTVc-Z-FkmnV1m9RorCbeCMPADM0UKsy49r-X2nVtjeHA148HnpfnKTgJMVgAnmN0SalEr1fRYYwYogg_AmeEIjmtkPh2cjA-Bec5rxBCmItKSvoEnDJErgQm5AzkxfRzp9chZgvf2m7bpNjaoMtskfQMRgdneWNT6_t-zDD41ia47OJdhre-7eByrPOQ9GDhcmONd974YQs_6MF0PrRwPmR483OTbM4-BvgpRed7-ww8drrP9vy-n4Cv726-XN9OFx_fz69ni6nhiA5TYzVtGCGNppg2gtaOI4IqzZnQWNYE00o7oblxruK4EgQ1jvOKUEuxNkzSCZjvdZuoV2qT_FqnrYraq98LMbVKp8Gb3ipWC0SZkZRhwypJpePEScJoVWsriuIEvNlrbcZ6bRtjQ7HdH4ke7wTfqTb-UJggIjDfvebVvUKK30ebB7X22di-18HGMSuKJat4xctfTsDLf9BVHFMotdpTuFD4L9Xq4sAHF8vFZieqZoJeiVIQSQt1-R-qtMauvSlh2v3I8YEXh04fLP7JTAEu9oBJMedk3QOCkdqFUh2Ekv4CTFbRyw
Cites_doi 10.1093/bioinformatics/btw313
10.1016/j.gene.2011.10.031
10.1002/elps.11501401163
10.1038/s41598-018-25152-x
10.1016/S0969-2126(96)00007-X
10.1111/j.1742-4658.2008.06392.x
10.1186/s13059-014-0550-8
10.1074/jbc.M801065200
10.1073/pnas.1603941113
10.1021/bi00705a026
10.1016/j.micres.2020.126426
10.1111/j.1742-4658.2010.07656.x
10.1139/m94-144
10.1016/0378-1097(89)90226-7
10.1093/molbev/mst197
10.1128/jb.73.3.410-414.1957
10.3390/jof8121315
10.1111/j.1742-4658.2009.06885.x
10.1002/prot.20205
10.1016/j.carbpol.2021.118909
10.1016/S0141-0229(01)00346-5
10.1016/j.febslet.2010.06.037
10.1111/j.1574-6968.2012.02524.x
10.3389/fmicb.2013.00407
10.1096/fasebj.10.4.8647345
10.1186/s12866-017-1118-z
10.1371/journal.pgen.1006468
10.1111/1751-7915.13790
10.1007/978-1-59745-251-9_3
10.1107/S2053230X14019785
10.1002/1873-3468.14046
10.1186/s12934-020-01443-9
10.1007/s00792-012-0444-1
10.1016/S0921-0423(96)80245-0
10.1016/j.biortech.2023.130006
10.1093/nar/gkac240
10.1111/j.1365-2672.1984.tb01347.x
10.1016/j.pbi.2008.03.006
10.1074/jbc.M112.372755
10.1139/m85-153
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/jof11040301
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



CrossRef
Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 2309-608X
ExternalDocumentID oai_doaj_org_article_4b8034c9341c46939f52f92436bae83e
PMC12028159
A837882093
40278122
10_3390_jof11040301
Genre Journal Article
GeographicLocations Niger
Germany
United States--US
GeographicLocations_xml – name: Niger
– name: Germany
– name: United States--US
GrantInformation_xml – fundername: China Scholarship Council
  grantid: 202107720100
– fundername: Horizon Europe
  grantid: 101094287
– fundername: Polish National Agency for Academic Exchange
  grantid: n/a
– fundername: Research Council of Finland
  grantid: 348443
– fundername: Academy of Finland
  grantid: 348443
– fundername: China Scholarship Council Scholarship
  grantid: 202107720100
– fundername: Polish National Agency for Academic Exchange
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
LK8
M7P
MODMG
M~E
OK1
OZF
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PQGLB
PMFND
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c503t-cea3d422da313d83bf50206a548a19b2136af8a5cff6516820df55623e31ac493
IEDL.DBID BENPR
ISSN 2309-608X
IngestDate Wed Aug 27 00:15:08 EDT 2025
Thu Aug 21 18:26:47 EDT 2025
Fri Jul 11 18:29:59 EDT 2025
Sun Jul 27 01:40:17 EDT 2025
Thu May 08 04:16:22 EDT 2025
Tue Jun 10 20:57:56 EDT 2025
Mon Jul 21 05:45:40 EDT 2025
Tue Jul 01 04:53:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords L-rhamnose dehydrogenase
L-rhamnose pathway
expression profile
substrate specificity
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-cea3d422da313d83bf50206a548a19b2136af8a5cff6516820df55623e31ac493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0771-2329
0000-0002-8197-2885
0000-0003-3782-8509
0000-0002-4363-1123
0000-0003-1676-0242
OpenAccessLink https://www.proquest.com/docview/3194616541?pq-origsite=%requestingapplication%
PMID 40278122
PQID 3194616541
PQPubID 2059559
ParticipantIDs doaj_primary_oai_doaj_org_article_4b8034c9341c46939f52f92436bae83e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12028159
proquest_miscellaneous_3194656540
proquest_journals_3194616541
gale_infotracmisc_A837882093
gale_infotracacademiconefile_A837882093
pubmed_primary_40278122
crossref_primary_10_3390_jof11040301
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-10
PublicationDateYYYYMMDD 2025-04-10
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-10
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of fungi (Basel)
PublicationTitleAlternate J Fungi (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Gu (ref_26) 2016; 32
Rigo (ref_15) 1985; 31
Katoh (ref_23) 2009; 537
Yoshiwara (ref_30) 2021; 595
Tamura (ref_24) 2013; 30
Pletnev (ref_34) 2004; 57
Visser (ref_1) 1996; Volume 14
Wilson (ref_8) 1957; 73
Kallberg (ref_36) 2010; 277
Frey (ref_39) 1996; 10
Koivistoinen (ref_19) 2008; 275
Fekete (ref_31) 2012; 329
Madeira (ref_33) 2022; 50
Tanaka (ref_35) 1996; 4
Akhy (ref_9) 1984; 56
ref_18
Riley (ref_17) 2016; 113
Mikshina (ref_3) 2015; 80
Kim (ref_29) 2012; 16
Koivistoinen (ref_16) 2012; 492
Watanabe (ref_13) 2008; 283
Twerdochlib (ref_32) 1994; 40
ref_25
MacCabe (ref_12) 2020; 19
Elshafei (ref_38) 2001; 29
Bjellqvist (ref_28) 1993; 14
Mojzita (ref_22) 2010; 584
Shah (ref_37) 2014; 70
ref_20
ref_41
Mohnen (ref_4) 2008; 11
ref_27
Watanabe (ref_14) 2009; 276
Kaczmarska (ref_2) 2022; 278
Chroumpi (ref_21) 2021; 14
Schwartz (ref_11) 1974; 13
Mojzita (ref_40) 2012; 287
ref_5
ref_7
Badia (ref_10) 1989; 53
ref_6
References_xml – volume: 32
  start-page: 2847
  year: 2016
  ident: ref_26
  article-title: Complex heatmaps reveal patterns and correlations in multidimensional genomic data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw313
– volume: 492
  start-page: 177
  year: 2012
  ident: ref_16
  article-title: Characterisation of the gene cluster for L-rhamnose catabolism in the yeast Scheffersomyces (Pichia) stipitis
  publication-title: Gene
  doi: 10.1016/j.gene.2011.10.031
– volume: 14
  start-page: 1023
  year: 1993
  ident: ref_28
  article-title: The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences
  publication-title: Electrophoresis
  doi: 10.1002/elps.11501401163
– ident: ref_41
  doi: 10.1038/s41598-018-25152-x
– volume: 4
  start-page: 33
  year: 1996
  ident: ref_35
  article-title: Crystal structure of the ternary complex of mouse lung carbonyl reductase at 1.8 A resolution: The structural origin of coenzyme specificity in the short-chain dehydrogenase/reductase family
  publication-title: Structure
  doi: 10.1016/S0969-2126(96)00007-X
– volume: 275
  start-page: 2482
  year: 2008
  ident: ref_19
  article-title: Identification in the yeast Pichia stipitis of the first l-rhamnose-1-dehydrogenase gene
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2008.06392.x
– ident: ref_27
  doi: 10.1186/s13059-014-0550-8
– volume: 283
  start-page: 20372
  year: 2008
  ident: ref_13
  article-title: Eukaryotic and bacterial gene clusters related to an alternative pathway of nonphosphorylated L-rhamnose metabolism
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M801065200
– volume: 113
  start-page: 9882
  year: 2016
  ident: ref_17
  article-title: Comparative genomics of biotechnologically important yeasts
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1603941113
– volume: 13
  start-page: 1726
  year: 1974
  ident: ref_11
  article-title: L-Rhamnulose 1-phosphate aldolase of Escherichia coli. The role of metal in enzyme structure
  publication-title: Biochemistry
  doi: 10.1021/bi00705a026
– ident: ref_18
  doi: 10.1016/j.micres.2020.126426
– volume: 277
  start-page: 2375
  year: 2010
  ident: ref_36
  article-title: Classification of the short-chain dehydrogenase/reductase superfamily using hidden Markov models
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2010.07656.x
– volume: 40
  start-page: 896
  year: 1994
  ident: ref_32
  article-title: L-rhamnose metabolism in Pichia stipitis and Debaryomyces polymorphus
  publication-title: Can. J. Microbiol.
  doi: 10.1139/m94-144
– volume: 53
  start-page: 253
  year: 1989
  ident: ref_10
  article-title: Identification of the rhaA, rhaB and rhaD gene products from Escherichia coli K-12
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1016/0378-1097(89)90226-7
– volume: 80
  start-page: 915
  year: 2015
  ident: ref_3
  article-title: Tissue-specific rhamnogalacturonan I forms the gel with hyperelastic properties
  publication-title: Biochemistry
– volume: 30
  start-page: 2725
  year: 2013
  ident: ref_24
  article-title: MEGA6: Molecular Evolutionary Genetics Analysis version 6.0
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/mst197
– volume: 73
  start-page: 410
  year: 1957
  ident: ref_8
  article-title: Metabolism of L-rhamnose by Escherichia coli. I. L-rhamnose isomerase
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.73.3.410-414.1957
– ident: ref_20
  doi: 10.3390/jof8121315
– volume: 276
  start-page: 1554
  year: 2009
  ident: ref_14
  article-title: Novel modified version of nonphosphorylated sugar metabolism-an alternative L-rhamnose pathway of Sphingomonas sp.
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2009.06885.x
– volume: 57
  start-page: 294
  year: 2004
  ident: ref_34
  article-title: Rational proteomics II: Electrostatic nature of cofactor preference in the short-chain oxidoreductase (SCOR) enzyme family
  publication-title: Proteins
  doi: 10.1002/prot.20205
– volume: 278
  start-page: 118909
  year: 2022
  ident: ref_2
  article-title: Structure and functionality of Rhamnogalacturonan I in the cell wall and in solution: A review
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2021.118909
– volume: 29
  start-page: 76
  year: 2001
  ident: ref_38
  article-title: Evidence for a non-phosphorylated route of galactose breakdown in cell-free extracts of Aspergillus niger
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/S0141-0229(01)00346-5
– volume: 584
  start-page: 3540
  year: 2010
  ident: ref_22
  article-title: The ‘true’ L-xylulose reductase of filamentous fungi identified in Aspergillus niger
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2010.06.037
– volume: 329
  start-page: 198
  year: 2012
  ident: ref_31
  article-title: D-Galactose uptake is nonfunctional in the conidiospores of Aspergillus niger
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2012.02524.x
– ident: ref_6
  doi: 10.3389/fmicb.2013.00407
– volume: 10
  start-page: 461
  year: 1996
  ident: ref_39
  article-title: The Leloir pathway: A mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose
  publication-title: FASEB J.
  doi: 10.1096/fasebj.10.4.8647345
– ident: ref_5
  doi: 10.1186/s12866-017-1118-z
– ident: ref_7
  doi: 10.1371/journal.pgen.1006468
– volume: 14
  start-page: 2525
  year: 2021
  ident: ref_21
  article-title: Revisiting a ‘simple’ fungal metabolic pathway reveals redundancy, complexity and diversity
  publication-title: Microb. Biotechnol.
  doi: 10.1111/1751-7915.13790
– volume: 537
  start-page: 39
  year: 2009
  ident: ref_23
  article-title: Multiple alignment of DNA sequences with MAFFT
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-59745-251-9_3
– volume: 70
  start-page: 1318
  year: 2014
  ident: ref_37
  article-title: Structure of a short-chain dehydrogenase/reductase (SDR) within a genomic island from a clinical strain of Acinetobacter baumannii
  publication-title: Acta Crystallogr. Sect. F Struct. Biol. Commun.
  doi: 10.1107/S2053230X14019785
– volume: 595
  start-page: 637
  year: 2021
  ident: ref_30
  article-title: Crystal structure of l-rhamnose 1-dehydrogenase involved in the nonphosphorylative pathway of l-rhamnose metabolism in bacteria
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.14046
– volume: 19
  start-page: 188
  year: 2020
  ident: ref_12
  article-title: Catabolism of L-rhamnose in A. nidulans proceeds via the non-phosphorylated pathway and is glucose repressed by a CreA-independent mechanism
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-020-01443-9
– volume: 16
  start-page: 447
  year: 2012
  ident: ref_29
  article-title: Characterization of NADP+-specific L-rhamnose dehydrogenase from the thermoacidophilic Archaeon Thermoplasma acidophilum
  publication-title: Extremophiles
  doi: 10.1007/s00792-012-0444-1
– volume: Volume 14
  start-page: 47
  year: 1996
  ident: ref_1
  article-title: An hypothesis: The same six polysaccharides are components of the primary cell walls of all higher plants
  publication-title: Pectins and Pectinases
  doi: 10.1016/S0921-0423(96)80245-0
– ident: ref_25
  doi: 10.1016/j.biortech.2023.130006
– volume: 50
  start-page: W276
  year: 2022
  ident: ref_33
  article-title: Search and sequence analysis tools services from EMBL-EBI in 2022
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac240
– volume: 56
  start-page: 269
  year: 1984
  ident: ref_9
  article-title: L-Rhamnose utilisation in Salmonella typhimurium
  publication-title: J. Appl. Bacteriol.
  doi: 10.1111/j.1365-2672.1984.tb01347.x
– volume: 11
  start-page: 266
  year: 2008
  ident: ref_4
  article-title: Pectin structure and biosynthesis
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2008.03.006
– volume: 287
  start-page: 26010
  year: 2012
  ident: ref_40
  article-title: L-xylo-3-hexulose reductase is the missing link in the oxidoreductive pathway for D-galactose catabolism in filamentous fungi
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.372755
– volume: 31
  start-page: 817
  year: 1985
  ident: ref_15
  article-title: Oxidative pathway for L-rhamnose degradation in Pullularia pullulans
  publication-title: Can. J. Microbiol.
  doi: 10.1139/m85-153
SSID ssj0001586993
Score 2.2886727
Snippet L-rhamnose is one of the main monomeric sugars of rhamnogalacturonan I and II, which are polysaccharide components of pectin. In the ascomycete fungus...
L-rhamnose is one of the main monomeric sugars of rhamnogalacturonan I and II, which are polysaccharide components of pectin. In the ascomycete fungus it is...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 301
SubjectTerms Aspergillus niger
Carbohydrates
Carbon
Catabolism
Communication
Dehydrogenases
E coli
Enzymes
expression profile
Fungi
Gene expression
Genomes
L-Rhamnose
L-rhamnose dehydrogenase
L-rhamnose pathway
Metabolism
Monosaccharides
Pectin
Phylogenetics
Polysaccharides
Proteins
Rhamnogalacturonan
Substrate specificity
Sugar
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYEL4k2gICNV4hQ1jh-1j1toVVCLEFCpN8vxo7uoJGiTFey_ZyZJV4k4cOEaeyVnxjPzTXbmG0IOtDApQd6RBxlCLngQ4AeNyzVLBkfBq1hgo_DFJ3V2KT5eyavJqC-sCRvogQfBHYpKF1x4A97WQyrHTZJlgqSBq8pFzSN6X4h5k2Rq6A_WCiLv0JDHIa8__N4kiHQCM4BZCOqZ-v_2x5OANC-WnESf0wfk_ggb6WI47kNyJ9aPyN3jBqDd9jFpz_MvS_ejbtpI38flNqwbuBcQn-j52i1ok-gCCcGvVzc3m5bWq-u4pl-Xza-WYpkHRefRk9TSfho9ckp0W3oBTho_T9EPXUtPfo8FszX9PEz5fkIuT0--vTvLx2kKuZcF73IfHWiiLIPjjAfNqyQBKioHKYtjpioZVy5pJ31KSjIFyCAkiegocua8MPwp2aubOj4nVKKtB2HikUNHW-jAjIxGRy4BbfqjjBzcCtj-HEgzLCQbqAc70UNGjlH4uy3IdN0_AP3bUf_2X_rPyFtUnUV7BFF5N7YVwElRGHbRM-bDFeEZ2Z_tBDvy8-Vb5dvRjlsLDkoobPiCw77ZLeMvsTatjs1m3AO4WBQZeTbcld0rCfxjl5VlRvTsFs3eeb5Sr5Y9yzcrAfoB2HzxP6T0ktwrcXAxklQW-2SvW2_iK0BTXfW6N5w_rNcbKw
  priority: 102
  providerName: Directory of Open Access Journals
Title L-Rhamnose Dehydrogenase LraA of Aspergillus niger Shows High Substrate Specificity Matching Its Expression Profile
URI https://www.ncbi.nlm.nih.gov/pubmed/40278122
https://www.proquest.com/docview/3194616541
https://www.proquest.com/docview/3194656540
https://pubmed.ncbi.nlm.nih.gov/PMC12028159
https://doaj.org/article/4b8034c9341c46939f52f92436bae83e
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELeg5YEXxDeBURlpEk_RktjO7CfUsFYDbdM0mLS3yI3ttmgko0kF_e-5S9yuERKvtSslvq_fXc6_I-RQcuUc5B2hEcaEnBkOflDpUMZO4Sj41EZ4Ufj8Ij295l9vxI0vuNW-rXLrE1tHbaoCa-RHoCo8xas38ae7XyFOjcKvq36ExkMyBBcs5YAMs8nF5dV9lUXIFCJwdzGPQX5_9KNyEPE4ZgK9UNQy9v_rl_cCU79pci8KTZ-SJx4-0nEn72fkgS2fk0dZBRBv84LUZ-HVQv8sq9rSE7vYmFUF-gFxip6t9JhWjo6RGHy-vL1d17Rczu2KfltUv2uK7R4UnUhLVkvbqfTILdFs6Dk4ayxT0S9NTSd_fONsSS-7ad8vyfV08v3zaeinKoSFiFgTFlaDRJLEaBYzI9nMCYCMqYbURcdqlsQs1U5qUTiXijgFhGCcQJRkWawLrtgrMiir0r4hVKDNG67ssUaHG0kTK2GVtEwA6iyOA3K4PeD8riPPyCHpQDnke3IISIaHv9uCjNftD9VqnnsDyvlMRowXCqJuASk9U04kDpJHls60lcwG5COKLke7hKMqtL9eAE-Kh5GPW-b8JFIsIAe9nWBPRX95K_zc23Od32tfQD7slvGf2KNW2mrt9wA-5lFAXne6snsljh944yQJiOxpUe-d-yvlctGyfccJQEAAnW___1zvyOMERxMjDWV0QAbNam3fA15qZiMyHGcn2XTkjWPU1h3-AjyHF2Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VKRJcEO8aCixSESer9j5c7wGhhKZKaBJVfUi9mbW9mwQVO8SJSv4Uv5EZ20ljIXHr1buW1juz832zngchB6FQ1oLf4aYyTV3BUwF2UGk39K3CVvCB8TBReDgKelfi27W83iF_1rkwGFa5tomloU7zBO_ID0FVRICpN_6X2S8Xu0bh39V1C41KLU7N6hZctuJz_xjk-5Gxk-7l155bdxVwE-nxhZsYDStiLNXc52nIYyuBMgUaqLv2Vcx8HmgbaplYG0g_AIRMrUSWYLivE4HFl8Dk7woeeKxFdjvd0dn53a2ODANA_CoRkHPlHf7ILSCsQM-jAX1lh4B_cWALCJtBmluod_KEPK7pKm1X-vWU7JjsGXnQyYFSrp6TYuCeT_TPLC8MPTaTVTrPQR8BF-lgrts0t7SNhcjH05ubZUGz6djM6cUkvy0ohpdQNFplcVx6MTNlbCC4BHQI4IDXYrS_KGj3dx2om9Gzqrv4C3J1L_v9krSyPDN7hEq0MalQ5kijgffC1FfSqNBwCSw3OXLIwXqDo1lVrCMCJwflEG3JwSEd3PzNFKywXT7I5-OoPrCRiEOPi0QByiciUFxZySw4qzyItQm5ccgnFF2EdgC2KtF1OgOsFDcjapeV-pmnuEP2GzPh_CbN4bXwo9p-FNGdtjvkw2YY38SYuMzky3oO8HHhOeRVpSubTxL4Q9lnzCFhQ4sa39wcyaaTsrq4z4ByAsl9_f91vScPe5fDQTToj07fkEcM2yJjCUxvn7QW86V5C1xtEb-rDwgl3-_7TP4FOsVRBg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamDiFeEHcCA4w0xFPUJLbT-AGhlrZaWVdVG5P2FtzYbotGUppWo3-NX8c5Sdo1QuJtr7EjOef6HedcCDmOuLQW4g5XC61dzjQHOyiVG_lW4ij40HhYKHw2Ck8u-dcrcXVA_mxrYTCtcmsTC0OtswTvyJsgKjzE0hu_aau0iHG3_3nxy8UJUvindTtOoxSRU7O5gfAt_zToAq8_BEG_9-3LiVtNGHAT4bGVmxgFpwsCrZjPdMQmVgB8ChXAeOXLSeCzUNlIicTaUPgheEttBSIGw3yVcGzEBOb_sIVRUYMcdnqj8fntDY-IQvD-ZVEgY9Jr_sgseFuOUUjNDRbTAv71CXtOsZ6wuecB-4_Iwwq60nYpa4_JgUmfkHudDODl5inJh-75TP1Ms9zQrplt9DID2QQfSYdL1aaZpW1sSj6dX1-vc5rOp2ZJL2bZTU4x1YSiASsa5dKLhSnyBCE8oGfgKPCKjA5WOe39rpJ2UzouJ40_I5d3Qu_npJFmqXlJqEB7o7k0LYXG3ou0L4WRkWECEG_ScsjxlsDxomzcEUPAg3yI9_jgkA4Sf7cFu20XD7LlNK6UN-aTyGM8keDxEx5KJq0ILASuLJwoEzHjkI_IuhhtApAqUVVpA5wUiRG3i679gSeZQ45qO0GXk_rylvlxZUvy-FbyHfJ-t4xvYn5carJ1tQewOfcc8qKUld0ncfy57AeBQ6KaFNW-ub6SzmdFp3E_APgJgPfV_8_1jtwHXYyHg9Hpa_IgwAnJ2A3TOyKN1XJt3gBsW03eVvpByfe7Vsm_7H5VOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=L-Rhamnose+Dehydrogenase+LraA+of+Aspergillus+niger+Shows+High+Substrate+Specificity+Matching+Its+Expression+Profile&rft.jtitle=Journal+of+fungi+%28Basel%29&rft.au=Terebieniec%2C+Agata&rft.au=Xu%2C+Li&rft.au=Peng%2C+Mao&rft.au=M%C3%A4kel%C3%A4%2C+Miia+R&rft.date=2025-04-10&rft.issn=2309-608X&rft.eissn=2309-608X&rft.volume=11&rft.issue=4&rft_id=info:doi/10.3390%2Fjof11040301&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2309-608X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2309-608X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2309-608X&client=summon