L-Rhamnose Dehydrogenase LraA of Aspergillus niger Shows High Substrate Specificity Matching Its Expression Profile
L-rhamnose is one of the main monomeric sugars of rhamnogalacturonan I and II, which are polysaccharide components of pectin. In the ascomycete fungus Aspergillus niger it is metabolized through the non-phosphorylated L-rhamnose pathway, of which the first step is catalyzed by L-rhamnose dehydrogena...
Saved in:
Published in | Journal of fungi (Basel) Vol. 11; no. 4; p. 301 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
10.04.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | L-rhamnose is one of the main monomeric sugars of rhamnogalacturonan I and II, which are polysaccharide components of pectin. In the ascomycete fungus Aspergillus niger it is metabolized through the non-phosphorylated L-rhamnose pathway, of which the first step is catalyzed by L-rhamnose dehydrogenase (LraA), converting L-rhamnose into L-rhamnono-γ-lactone. This enzyme belongs to PFAM PF00106, unlike most of other reductases/dehydrogenases involved in fungal sugar catabolism that are typically assigned to PF00248 and PF00107. The enzymes of those families have broad substrate specificity and in some cases have been shown to be involved in multiple pathways. In this study we heterologously produced and biochemically characterized A. niger LraA and studied its expression on a set of monosaccharides. This revealed that, in contrast to other metabolic redox enzymes, LraA is highly specific for L-rhamnose and has no activity on most other substrates tested in this study. This specificity is matched by a highly specific expression profile, which only shows significant expression on L-rhamnose. It therefore can be concluded that LraA has evolved with a highly specific function in fungal sugar catabolism, unlike most other sugar reductases/dehydrogenases described so far. The high specificity of LraA also affects its biotechnological applications, as it may benefit L-rhamnose-based processes, but would be less suitable for applications involving conversion of multiple sugars. |
---|---|
AbstractList | L-rhamnose is one of the main monomeric sugars of rhamnogalacturonan I and II, which are polysaccharide components of pectin. In the ascomycete fungus Aspergillus niger it is metabolized through the non-phosphorylated L-rhamnose pathway, of which the first step is catalyzed by L-rhamnose dehydrogenase (LraA), converting L-rhamnose into L-rhamnono-γ-lactone. This enzyme belongs to PFAM PF00106, unlike most of other reductases/dehydrogenases involved in fungal sugar catabolism that are typically assigned to PF00248 and PF00107. The enzymes of those families have broad substrate specificity and in some cases have been shown to be involved in multiple pathways. In this study we heterologously produced and biochemically characterized A. niger LraA and studied its expression on a set of monosaccharides. This revealed that, in contrast to other metabolic redox enzymes, LraA is highly specific for L-rhamnose and has no activity on most other substrates tested in this study. This specificity is matched by a highly specific expression profile, which only shows significant expression on L-rhamnose. It therefore can be concluded that LraA has evolved with a highly specific function in fungal sugar catabolism, unlike most other sugar reductases/dehydrogenases described so far. The high specificity of LraA also affects its biotechnological applications, as it may benefit L-rhamnose-based processes, but would be less suitable for applications involving conversion of multiple sugars.L-rhamnose is one of the main monomeric sugars of rhamnogalacturonan I and II, which are polysaccharide components of pectin. In the ascomycete fungus Aspergillus niger it is metabolized through the non-phosphorylated L-rhamnose pathway, of which the first step is catalyzed by L-rhamnose dehydrogenase (LraA), converting L-rhamnose into L-rhamnono-γ-lactone. This enzyme belongs to PFAM PF00106, unlike most of other reductases/dehydrogenases involved in fungal sugar catabolism that are typically assigned to PF00248 and PF00107. The enzymes of those families have broad substrate specificity and in some cases have been shown to be involved in multiple pathways. In this study we heterologously produced and biochemically characterized A. niger LraA and studied its expression on a set of monosaccharides. This revealed that, in contrast to other metabolic redox enzymes, LraA is highly specific for L-rhamnose and has no activity on most other substrates tested in this study. This specificity is matched by a highly specific expression profile, which only shows significant expression on L-rhamnose. It therefore can be concluded that LraA has evolved with a highly specific function in fungal sugar catabolism, unlike most other sugar reductases/dehydrogenases described so far. The high specificity of LraA also affects its biotechnological applications, as it may benefit L-rhamnose-based processes, but would be less suitable for applications involving conversion of multiple sugars. L-rhamnose is one of the main monomeric sugars of rhamnogalacturonan I and II, which are polysaccharide components of pectin. In the ascomycete fungus Aspergillus niger it is metabolized through the non-phosphorylated L-rhamnose pathway, of which the first step is catalyzed by L-rhamnose dehydrogenase (LraA), converting L-rhamnose into L-rhamnono-γ-lactone. This enzyme belongs to PFAM PF00106, unlike most of other reductases/dehydrogenases involved in fungal sugar catabolism that are typically assigned to PF00248 and PF00107. The enzymes of those families have broad substrate specificity and in some cases have been shown to be involved in multiple pathways. In this study we heterologously produced and biochemically characterized A. niger LraA and studied its expression on a set of monosaccharides. This revealed that, in contrast to other metabolic redox enzymes, LraA is highly specific for L-rhamnose and has no activity on most other substrates tested in this study. This specificity is matched by a highly specific expression profile, which only shows significant expression on L-rhamnose. It therefore can be concluded that LraA has evolved with a highly specific function in fungal sugar catabolism, unlike most other sugar reductases/dehydrogenases described so far. The high specificity of LraA also affects its biotechnological applications, as it may benefit L-rhamnose-based processes, but would be less suitable for applications involving conversion of multiple sugars. L-rhamnose is one of the main monomeric sugars of rhamnogalacturonan I and II, which are polysaccharide components of pectin. In the ascomycete fungus Aspergillus niger it is metabolized through the non-phosphorylated L-rhamnose pathway, of which the first step is catalyzed by L-rhamnose dehydrogenase (LraA), converting L-rhamnose into L-rhamnono-γ-lactone. This enzyme belongs to PFAM PF00106, unlike most of other reductases/dehydrogenases involved in fungal sugar catabolism that are typically assigned to PF00248 and PF00107. The enzymes of those families have broad substrate specificity and in some cases have been shown to be involved in multiple pathways. In this study we heterologously produced and biochemically characterized A. niger LraA and studied its expression on a set of monosaccharides. This revealed that, in contrast to other metabolic redox enzymes, LraA is highly specific for L-rhamnose and has no activity on most other substrates tested in this study. This specificity is matched by a highly specific expression profile, which only shows significant expression on L-rhamnose. It therefore can be concluded that LraA has evolved with a highly specific function in fungal sugar catabolism, unlike most other sugar reductases/dehydrogenases described so far. The high specificity of LraA also affects its biotechnological applications, as it may benefit L-rhamnose-based processes, but would be less suitable for applications involving conversion of multiple sugars. L-rhamnose is one of the main monomeric sugars of rhamnogalacturonan I and II, which are polysaccharide components of pectin. In the ascomycete fungus it is metabolized through the non-phosphorylated L-rhamnose pathway, of which the first step is catalyzed by L-rhamnose dehydrogenase (LraA), converting L-rhamnose into L-rhamnono-γ-lactone. This enzyme belongs to PFAM PF00106, unlike most of other reductases/dehydrogenases involved in fungal sugar catabolism that are typically assigned to PF00248 and PF00107. The enzymes of those families have broad substrate specificity and in some cases have been shown to be involved in multiple pathways. In this study we heterologously produced and biochemically characterized LraA and studied its expression on a set of monosaccharides. This revealed that, in contrast to other metabolic redox enzymes, LraA is highly specific for L-rhamnose and has no activity on most other substrates tested in this study. This specificity is matched by a highly specific expression profile, which only shows significant expression on L-rhamnose. It therefore can be concluded that LraA has evolved with a highly specific function in fungal sugar catabolism, unlike most other sugar reductases/dehydrogenases described so far. The high specificity of LraA also affects its biotechnological applications, as it may benefit L-rhamnose-based processes, but would be less suitable for applications involving conversion of multiple sugars. |
Audience | Academic |
Author | Xu, Li Terebieniec, Agata Peng, Mao Mäkelä, Miia R. Vries, Ronald P. de |
AuthorAffiliation | 1 Fungal Physiology Group, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; terebieniecagata@gmail.com (A.T.); xuli_lixu1125@163.com (L.X.); m.peng@wi.knaw.nl (M.P.) 2 Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-02150 Espoo, Finland; miia.makela@aalto.fi |
AuthorAffiliation_xml | – name: 2 Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-02150 Espoo, Finland; miia.makela@aalto.fi – name: 1 Fungal Physiology Group, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; terebieniecagata@gmail.com (A.T.); xuli_lixu1125@163.com (L.X.); m.peng@wi.knaw.nl (M.P.) |
Author_xml | – sequence: 1 givenname: Agata orcidid: 0000-0002-8197-2885 surname: Terebieniec fullname: Terebieniec, Agata – sequence: 2 givenname: Li orcidid: 0000-0003-3782-8509 surname: Xu fullname: Xu, Li – sequence: 3 givenname: Mao orcidid: 0000-0003-1676-0242 surname: Peng fullname: Peng, Mao – sequence: 4 givenname: Miia R. orcidid: 0000-0003-0771-2329 surname: Mäkelä fullname: Mäkelä, Miia R. – sequence: 5 givenname: Ronald P. de orcidid: 0000-0002-4363-1123 surname: Vries fullname: Vries, Ronald P. de |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40278122$$D View this record in MEDLINE/PubMed |
BookMark | eNptks2PEyEYxolZ4651T94NiReTTVc-Z-FkmnV1m9RorCbeCMPADM0UKsy49r-X2nVtjeHA148HnpfnKTgJMVgAnmN0SalEr1fRYYwYogg_AmeEIjmtkPh2cjA-Bec5rxBCmItKSvoEnDJErgQm5AzkxfRzp9chZgvf2m7bpNjaoMtskfQMRgdneWNT6_t-zDD41ia47OJdhre-7eByrPOQ9GDhcmONd974YQs_6MF0PrRwPmR483OTbM4-BvgpRed7-ww8drrP9vy-n4Cv726-XN9OFx_fz69ni6nhiA5TYzVtGCGNppg2gtaOI4IqzZnQWNYE00o7oblxruK4EgQ1jvOKUEuxNkzSCZjvdZuoV2qT_FqnrYraq98LMbVKp8Gb3ipWC0SZkZRhwypJpePEScJoVWsriuIEvNlrbcZ6bRtjQ7HdH4ke7wTfqTb-UJggIjDfvebVvUKK30ebB7X22di-18HGMSuKJat4xctfTsDLf9BVHFMotdpTuFD4L9Xq4sAHF8vFZieqZoJeiVIQSQt1-R-qtMauvSlh2v3I8YEXh04fLP7JTAEu9oBJMedk3QOCkdqFUh2Ekv4CTFbRyw |
Cites_doi | 10.1093/bioinformatics/btw313 10.1016/j.gene.2011.10.031 10.1002/elps.11501401163 10.1038/s41598-018-25152-x 10.1016/S0969-2126(96)00007-X 10.1111/j.1742-4658.2008.06392.x 10.1186/s13059-014-0550-8 10.1074/jbc.M801065200 10.1073/pnas.1603941113 10.1021/bi00705a026 10.1016/j.micres.2020.126426 10.1111/j.1742-4658.2010.07656.x 10.1139/m94-144 10.1016/0378-1097(89)90226-7 10.1093/molbev/mst197 10.1128/jb.73.3.410-414.1957 10.3390/jof8121315 10.1111/j.1742-4658.2009.06885.x 10.1002/prot.20205 10.1016/j.carbpol.2021.118909 10.1016/S0141-0229(01)00346-5 10.1016/j.febslet.2010.06.037 10.1111/j.1574-6968.2012.02524.x 10.3389/fmicb.2013.00407 10.1096/fasebj.10.4.8647345 10.1186/s12866-017-1118-z 10.1371/journal.pgen.1006468 10.1111/1751-7915.13790 10.1007/978-1-59745-251-9_3 10.1107/S2053230X14019785 10.1002/1873-3468.14046 10.1186/s12934-020-01443-9 10.1007/s00792-012-0444-1 10.1016/S0921-0423(96)80245-0 10.1016/j.biortech.2023.130006 10.1093/nar/gkac240 10.1111/j.1365-2672.1984.tb01347.x 10.1016/j.pbi.2008.03.006 10.1074/jbc.M112.372755 10.1139/m85-153 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/jof11040301 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2309-608X |
ExternalDocumentID | oai_doaj_org_article_4b8034c9341c46939f52f92436bae83e PMC12028159 A837882093 40278122 10_3390_jof11040301 |
Genre | Journal Article |
GeographicLocations | Niger Germany United States--US |
GeographicLocations_xml | – name: Niger – name: Germany – name: United States--US |
GrantInformation_xml | – fundername: China Scholarship Council grantid: 202107720100 – fundername: Horizon Europe grantid: 101094287 – fundername: Polish National Agency for Academic Exchange grantid: n/a – fundername: Research Council of Finland grantid: 348443 – fundername: Academy of Finland grantid: 348443 – fundername: China Scholarship Council Scholarship grantid: 202107720100 – fundername: Polish National Agency for Academic Exchange |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO ITC KQ8 LK8 M7P MODMG M~E OK1 OZF PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PQGLB PMFND ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c503t-cea3d422da313d83bf50206a548a19b2136af8a5cff6516820df55623e31ac493 |
IEDL.DBID | BENPR |
ISSN | 2309-608X |
IngestDate | Wed Aug 27 00:15:08 EDT 2025 Thu Aug 21 18:26:47 EDT 2025 Fri Jul 11 18:29:59 EDT 2025 Sun Jul 27 01:40:17 EDT 2025 Thu May 08 04:16:22 EDT 2025 Tue Jun 10 20:57:56 EDT 2025 Mon Jul 21 05:45:40 EDT 2025 Tue Jul 01 04:53:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | L-rhamnose dehydrogenase L-rhamnose pathway expression profile substrate specificity |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c503t-cea3d422da313d83bf50206a548a19b2136af8a5cff6516820df55623e31ac493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0771-2329 0000-0002-8197-2885 0000-0003-3782-8509 0000-0002-4363-1123 0000-0003-1676-0242 |
OpenAccessLink | https://www.proquest.com/docview/3194616541?pq-origsite=%requestingapplication% |
PMID | 40278122 |
PQID | 3194616541 |
PQPubID | 2059559 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4b8034c9341c46939f52f92436bae83e pubmedcentral_primary_oai_pubmedcentral_nih_gov_12028159 proquest_miscellaneous_3194656540 proquest_journals_3194616541 gale_infotracmisc_A837882093 gale_infotracacademiconefile_A837882093 pubmed_primary_40278122 crossref_primary_10_3390_jof11040301 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-10 |
PublicationDateYYYYMMDD | 2025-04-10 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Journal of fungi (Basel) |
PublicationTitleAlternate | J Fungi (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Gu (ref_26) 2016; 32 Rigo (ref_15) 1985; 31 Katoh (ref_23) 2009; 537 Yoshiwara (ref_30) 2021; 595 Tamura (ref_24) 2013; 30 Pletnev (ref_34) 2004; 57 Visser (ref_1) 1996; Volume 14 Wilson (ref_8) 1957; 73 Kallberg (ref_36) 2010; 277 Frey (ref_39) 1996; 10 Koivistoinen (ref_19) 2008; 275 Fekete (ref_31) 2012; 329 Madeira (ref_33) 2022; 50 Tanaka (ref_35) 1996; 4 Akhy (ref_9) 1984; 56 ref_18 Riley (ref_17) 2016; 113 Mikshina (ref_3) 2015; 80 Kim (ref_29) 2012; 16 Koivistoinen (ref_16) 2012; 492 Watanabe (ref_13) 2008; 283 Twerdochlib (ref_32) 1994; 40 ref_25 MacCabe (ref_12) 2020; 19 Elshafei (ref_38) 2001; 29 Bjellqvist (ref_28) 1993; 14 Mojzita (ref_22) 2010; 584 Shah (ref_37) 2014; 70 ref_20 ref_41 Mohnen (ref_4) 2008; 11 ref_27 Watanabe (ref_14) 2009; 276 Kaczmarska (ref_2) 2022; 278 Chroumpi (ref_21) 2021; 14 Schwartz (ref_11) 1974; 13 Mojzita (ref_40) 2012; 287 ref_5 ref_7 Badia (ref_10) 1989; 53 ref_6 |
References_xml | – volume: 32 start-page: 2847 year: 2016 ident: ref_26 article-title: Complex heatmaps reveal patterns and correlations in multidimensional genomic data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw313 – volume: 492 start-page: 177 year: 2012 ident: ref_16 article-title: Characterisation of the gene cluster for L-rhamnose catabolism in the yeast Scheffersomyces (Pichia) stipitis publication-title: Gene doi: 10.1016/j.gene.2011.10.031 – volume: 14 start-page: 1023 year: 1993 ident: ref_28 article-title: The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences publication-title: Electrophoresis doi: 10.1002/elps.11501401163 – ident: ref_41 doi: 10.1038/s41598-018-25152-x – volume: 4 start-page: 33 year: 1996 ident: ref_35 article-title: Crystal structure of the ternary complex of mouse lung carbonyl reductase at 1.8 A resolution: The structural origin of coenzyme specificity in the short-chain dehydrogenase/reductase family publication-title: Structure doi: 10.1016/S0969-2126(96)00007-X – volume: 275 start-page: 2482 year: 2008 ident: ref_19 article-title: Identification in the yeast Pichia stipitis of the first l-rhamnose-1-dehydrogenase gene publication-title: FEBS J. doi: 10.1111/j.1742-4658.2008.06392.x – ident: ref_27 doi: 10.1186/s13059-014-0550-8 – volume: 283 start-page: 20372 year: 2008 ident: ref_13 article-title: Eukaryotic and bacterial gene clusters related to an alternative pathway of nonphosphorylated L-rhamnose metabolism publication-title: J. Biol. Chem. doi: 10.1074/jbc.M801065200 – volume: 113 start-page: 9882 year: 2016 ident: ref_17 article-title: Comparative genomics of biotechnologically important yeasts publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1603941113 – volume: 13 start-page: 1726 year: 1974 ident: ref_11 article-title: L-Rhamnulose 1-phosphate aldolase of Escherichia coli. The role of metal in enzyme structure publication-title: Biochemistry doi: 10.1021/bi00705a026 – ident: ref_18 doi: 10.1016/j.micres.2020.126426 – volume: 277 start-page: 2375 year: 2010 ident: ref_36 article-title: Classification of the short-chain dehydrogenase/reductase superfamily using hidden Markov models publication-title: FEBS J. doi: 10.1111/j.1742-4658.2010.07656.x – volume: 40 start-page: 896 year: 1994 ident: ref_32 article-title: L-rhamnose metabolism in Pichia stipitis and Debaryomyces polymorphus publication-title: Can. J. Microbiol. doi: 10.1139/m94-144 – volume: 53 start-page: 253 year: 1989 ident: ref_10 article-title: Identification of the rhaA, rhaB and rhaD gene products from Escherichia coli K-12 publication-title: FEMS Microbiol. Lett. doi: 10.1016/0378-1097(89)90226-7 – volume: 80 start-page: 915 year: 2015 ident: ref_3 article-title: Tissue-specific rhamnogalacturonan I forms the gel with hyperelastic properties publication-title: Biochemistry – volume: 30 start-page: 2725 year: 2013 ident: ref_24 article-title: MEGA6: Molecular Evolutionary Genetics Analysis version 6.0 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mst197 – volume: 73 start-page: 410 year: 1957 ident: ref_8 article-title: Metabolism of L-rhamnose by Escherichia coli. I. L-rhamnose isomerase publication-title: J. Bacteriol. doi: 10.1128/jb.73.3.410-414.1957 – ident: ref_20 doi: 10.3390/jof8121315 – volume: 276 start-page: 1554 year: 2009 ident: ref_14 article-title: Novel modified version of nonphosphorylated sugar metabolism-an alternative L-rhamnose pathway of Sphingomonas sp. publication-title: FEBS J. doi: 10.1111/j.1742-4658.2009.06885.x – volume: 57 start-page: 294 year: 2004 ident: ref_34 article-title: Rational proteomics II: Electrostatic nature of cofactor preference in the short-chain oxidoreductase (SCOR) enzyme family publication-title: Proteins doi: 10.1002/prot.20205 – volume: 278 start-page: 118909 year: 2022 ident: ref_2 article-title: Structure and functionality of Rhamnogalacturonan I in the cell wall and in solution: A review publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2021.118909 – volume: 29 start-page: 76 year: 2001 ident: ref_38 article-title: Evidence for a non-phosphorylated route of galactose breakdown in cell-free extracts of Aspergillus niger publication-title: Enzym. Microb. Technol. doi: 10.1016/S0141-0229(01)00346-5 – volume: 584 start-page: 3540 year: 2010 ident: ref_22 article-title: The ‘true’ L-xylulose reductase of filamentous fungi identified in Aspergillus niger publication-title: FEBS Lett. doi: 10.1016/j.febslet.2010.06.037 – volume: 329 start-page: 198 year: 2012 ident: ref_31 article-title: D-Galactose uptake is nonfunctional in the conidiospores of Aspergillus niger publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2012.02524.x – ident: ref_6 doi: 10.3389/fmicb.2013.00407 – volume: 10 start-page: 461 year: 1996 ident: ref_39 article-title: The Leloir pathway: A mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose publication-title: FASEB J. doi: 10.1096/fasebj.10.4.8647345 – ident: ref_5 doi: 10.1186/s12866-017-1118-z – ident: ref_7 doi: 10.1371/journal.pgen.1006468 – volume: 14 start-page: 2525 year: 2021 ident: ref_21 article-title: Revisiting a ‘simple’ fungal metabolic pathway reveals redundancy, complexity and diversity publication-title: Microb. Biotechnol. doi: 10.1111/1751-7915.13790 – volume: 537 start-page: 39 year: 2009 ident: ref_23 article-title: Multiple alignment of DNA sequences with MAFFT publication-title: Methods Mol. Biol. doi: 10.1007/978-1-59745-251-9_3 – volume: 70 start-page: 1318 year: 2014 ident: ref_37 article-title: Structure of a short-chain dehydrogenase/reductase (SDR) within a genomic island from a clinical strain of Acinetobacter baumannii publication-title: Acta Crystallogr. Sect. F Struct. Biol. Commun. doi: 10.1107/S2053230X14019785 – volume: 595 start-page: 637 year: 2021 ident: ref_30 article-title: Crystal structure of l-rhamnose 1-dehydrogenase involved in the nonphosphorylative pathway of l-rhamnose metabolism in bacteria publication-title: FEBS Lett. doi: 10.1002/1873-3468.14046 – volume: 19 start-page: 188 year: 2020 ident: ref_12 article-title: Catabolism of L-rhamnose in A. nidulans proceeds via the non-phosphorylated pathway and is glucose repressed by a CreA-independent mechanism publication-title: Microb. Cell Factories doi: 10.1186/s12934-020-01443-9 – volume: 16 start-page: 447 year: 2012 ident: ref_29 article-title: Characterization of NADP+-specific L-rhamnose dehydrogenase from the thermoacidophilic Archaeon Thermoplasma acidophilum publication-title: Extremophiles doi: 10.1007/s00792-012-0444-1 – volume: Volume 14 start-page: 47 year: 1996 ident: ref_1 article-title: An hypothesis: The same six polysaccharides are components of the primary cell walls of all higher plants publication-title: Pectins and Pectinases doi: 10.1016/S0921-0423(96)80245-0 – ident: ref_25 doi: 10.1016/j.biortech.2023.130006 – volume: 50 start-page: W276 year: 2022 ident: ref_33 article-title: Search and sequence analysis tools services from EMBL-EBI in 2022 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac240 – volume: 56 start-page: 269 year: 1984 ident: ref_9 article-title: L-Rhamnose utilisation in Salmonella typhimurium publication-title: J. Appl. Bacteriol. doi: 10.1111/j.1365-2672.1984.tb01347.x – volume: 11 start-page: 266 year: 2008 ident: ref_4 article-title: Pectin structure and biosynthesis publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2008.03.006 – volume: 287 start-page: 26010 year: 2012 ident: ref_40 article-title: L-xylo-3-hexulose reductase is the missing link in the oxidoreductive pathway for D-galactose catabolism in filamentous fungi publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.372755 – volume: 31 start-page: 817 year: 1985 ident: ref_15 article-title: Oxidative pathway for L-rhamnose degradation in Pullularia pullulans publication-title: Can. J. Microbiol. doi: 10.1139/m85-153 |
SSID | ssj0001586993 |
Score | 2.2886727 |
Snippet | L-rhamnose is one of the main monomeric sugars of rhamnogalacturonan I and II, which are polysaccharide components of pectin. In the ascomycete fungus... L-rhamnose is one of the main monomeric sugars of rhamnogalacturonan I and II, which are polysaccharide components of pectin. In the ascomycete fungus it is... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 301 |
SubjectTerms | Aspergillus niger Carbohydrates Carbon Catabolism Communication Dehydrogenases E coli Enzymes expression profile Fungi Gene expression Genomes L-Rhamnose L-rhamnose dehydrogenase L-rhamnose pathway Metabolism Monosaccharides Pectin Phylogenetics Polysaccharides Proteins Rhamnogalacturonan Substrate specificity Sugar |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYEL4k2gICNV4hQ1jh-1j1toVVCLEFCpN8vxo7uoJGiTFey_ZyZJV4k4cOEaeyVnxjPzTXbmG0IOtDApQd6RBxlCLngQ4AeNyzVLBkfBq1hgo_DFJ3V2KT5eyavJqC-sCRvogQfBHYpKF1x4A97WQyrHTZJlgqSBq8pFzSN6X4h5k2Rq6A_WCiLv0JDHIa8__N4kiHQCM4BZCOqZ-v_2x5OANC-WnESf0wfk_ggb6WI47kNyJ9aPyN3jBqDd9jFpz_MvS_ejbtpI38flNqwbuBcQn-j52i1ok-gCCcGvVzc3m5bWq-u4pl-Xza-WYpkHRefRk9TSfho9ckp0W3oBTho_T9EPXUtPfo8FszX9PEz5fkIuT0--vTvLx2kKuZcF73IfHWiiLIPjjAfNqyQBKioHKYtjpioZVy5pJ31KSjIFyCAkiegocua8MPwp2aubOj4nVKKtB2HikUNHW-jAjIxGRy4BbfqjjBzcCtj-HEgzLCQbqAc70UNGjlH4uy3IdN0_AP3bUf_2X_rPyFtUnUV7BFF5N7YVwElRGHbRM-bDFeEZ2Z_tBDvy8-Vb5dvRjlsLDkoobPiCw77ZLeMvsTatjs1m3AO4WBQZeTbcld0rCfxjl5VlRvTsFs3eeb5Sr5Y9yzcrAfoB2HzxP6T0ktwrcXAxklQW-2SvW2_iK0BTXfW6N5w_rNcbKw priority: 102 providerName: Directory of Open Access Journals |
Title | L-Rhamnose Dehydrogenase LraA of Aspergillus niger Shows High Substrate Specificity Matching Its Expression Profile |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40278122 https://www.proquest.com/docview/3194616541 https://www.proquest.com/docview/3194656540 https://pubmed.ncbi.nlm.nih.gov/PMC12028159 https://doaj.org/article/4b8034c9341c46939f52f92436bae83e |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELeg5YEXxDeBURlpEk_RktjO7CfUsFYDbdM0mLS3yI3ttmgko0kF_e-5S9yuERKvtSslvq_fXc6_I-RQcuUc5B2hEcaEnBkOflDpUMZO4Sj41EZ4Ufj8Ij295l9vxI0vuNW-rXLrE1tHbaoCa-RHoCo8xas38ae7XyFOjcKvq36ExkMyBBcs5YAMs8nF5dV9lUXIFCJwdzGPQX5_9KNyEPE4ZgK9UNQy9v_rl_cCU79pci8KTZ-SJx4-0nEn72fkgS2fk0dZBRBv84LUZ-HVQv8sq9rSE7vYmFUF-gFxip6t9JhWjo6RGHy-vL1d17Rczu2KfltUv2uK7R4UnUhLVkvbqfTILdFs6Dk4ayxT0S9NTSd_fONsSS-7ad8vyfV08v3zaeinKoSFiFgTFlaDRJLEaBYzI9nMCYCMqYbURcdqlsQs1U5qUTiXijgFhGCcQJRkWawLrtgrMiir0r4hVKDNG67ssUaHG0kTK2GVtEwA6iyOA3K4PeD8riPPyCHpQDnke3IISIaHv9uCjNftD9VqnnsDyvlMRowXCqJuASk9U04kDpJHls60lcwG5COKLke7hKMqtL9eAE-Kh5GPW-b8JFIsIAe9nWBPRX95K_zc23Od32tfQD7slvGf2KNW2mrt9wA-5lFAXne6snsljh944yQJiOxpUe-d-yvlctGyfccJQEAAnW___1zvyOMERxMjDWV0QAbNam3fA15qZiMyHGcn2XTkjWPU1h3-AjyHF2Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VKRJcEO8aCixSESer9j5c7wGhhKZKaBJVfUi9mbW9mwQVO8SJSv4Uv5EZ20ljIXHr1buW1juz832zngchB6FQ1oLf4aYyTV3BUwF2UGk39K3CVvCB8TBReDgKelfi27W83iF_1rkwGFa5tomloU7zBO_ID0FVRICpN_6X2S8Xu0bh39V1C41KLU7N6hZctuJz_xjk-5Gxk-7l155bdxVwE-nxhZsYDStiLNXc52nIYyuBMgUaqLv2Vcx8HmgbaplYG0g_AIRMrUSWYLivE4HFl8Dk7woeeKxFdjvd0dn53a2ODANA_CoRkHPlHf7ILSCsQM-jAX1lh4B_cWALCJtBmluod_KEPK7pKm1X-vWU7JjsGXnQyYFSrp6TYuCeT_TPLC8MPTaTVTrPQR8BF-lgrts0t7SNhcjH05ubZUGz6djM6cUkvy0ohpdQNFplcVx6MTNlbCC4BHQI4IDXYrS_KGj3dx2om9Gzqrv4C3J1L_v9krSyPDN7hEq0MalQ5kijgffC1FfSqNBwCSw3OXLIwXqDo1lVrCMCJwflEG3JwSEd3PzNFKywXT7I5-OoPrCRiEOPi0QByiciUFxZySw4qzyItQm5ccgnFF2EdgC2KtF1OgOsFDcjapeV-pmnuEP2GzPh_CbN4bXwo9p-FNGdtjvkw2YY38SYuMzky3oO8HHhOeRVpSubTxL4Q9lnzCFhQ4sa39wcyaaTsrq4z4ByAsl9_f91vScPe5fDQTToj07fkEcM2yJjCUxvn7QW86V5C1xtEb-rDwgl3-_7TP4FOsVRBg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamDiFeEHcCA4w0xFPUJLbT-AGhlrZaWVdVG5P2FtzYbotGUppWo3-NX8c5Sdo1QuJtr7EjOef6HedcCDmOuLQW4g5XC61dzjQHOyiVG_lW4ij40HhYKHw2Ck8u-dcrcXVA_mxrYTCtcmsTC0OtswTvyJsgKjzE0hu_aau0iHG3_3nxy8UJUvindTtOoxSRU7O5gfAt_zToAq8_BEG_9-3LiVtNGHAT4bGVmxgFpwsCrZjPdMQmVgB8ChXAeOXLSeCzUNlIicTaUPgheEttBSIGw3yVcGzEBOb_sIVRUYMcdnqj8fntDY-IQvD-ZVEgY9Jr_sgseFuOUUjNDRbTAv71CXtOsZ6wuecB-4_Iwwq60nYpa4_JgUmfkHudDODl5inJh-75TP1Ms9zQrplt9DID2QQfSYdL1aaZpW1sSj6dX1-vc5rOp2ZJL2bZTU4x1YSiASsa5dKLhSnyBCE8oGfgKPCKjA5WOe39rpJ2UzouJ40_I5d3Qu_npJFmqXlJqEB7o7k0LYXG3ou0L4WRkWECEG_ScsjxlsDxomzcEUPAg3yI9_jgkA4Sf7cFu20XD7LlNK6UN-aTyGM8keDxEx5KJq0ILASuLJwoEzHjkI_IuhhtApAqUVVpA5wUiRG3i679gSeZQ45qO0GXk_rylvlxZUvy-FbyHfJ-t4xvYn5carJ1tQewOfcc8qKUld0ncfy57AeBQ6KaFNW-ub6SzmdFp3E_APgJgPfV_8_1jtwHXYyHg9Hpa_IgwAnJ2A3TOyKN1XJt3gBsW03eVvpByfe7Vsm_7H5VOw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=L-Rhamnose+Dehydrogenase+LraA+of+Aspergillus+niger+Shows+High+Substrate+Specificity+Matching+Its+Expression+Profile&rft.jtitle=Journal+of+fungi+%28Basel%29&rft.au=Terebieniec%2C+Agata&rft.au=Xu%2C+Li&rft.au=Peng%2C+Mao&rft.au=M%C3%A4kel%C3%A4%2C+Miia+R&rft.date=2025-04-10&rft.issn=2309-608X&rft.eissn=2309-608X&rft.volume=11&rft.issue=4&rft_id=info:doi/10.3390%2Fjof11040301&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2309-608X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2309-608X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2309-608X&client=summon |