Mechanisms of NDV-3 vaccine efficacy in MRSA skin versus invasive infection
Significance Staphylococcus aureus is an opportunistic pathogen of the normal human flora. It is among the most frequent causes of cutaneous abscesses, leading to life-threatening invasive infection. Incomplete understanding of host defenses against S. aureus skin or invasive infection has hindered...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 51; pp. E5555 - E5563 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
23.12.2014
National Acad Sciences |
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Significance Staphylococcus aureus is an opportunistic pathogen of the normal human flora. It is among the most frequent causes of cutaneous abscesses, leading to life-threatening invasive infection. Incomplete understanding of host defenses against S. aureus skin or invasive infection has hindered development of effective vaccines to address these issues. NDV-3 is a unique cross-kingdom vaccine targeting S. aureus and Candida albicans . The present studies offer important new evidence: ( i ) NDV-3 protects against methicillin-resistant S. aureus skin and skin structure infection largely through IL-22– and IL-17A–mediated host defense peptide and neutrophil induction, ( ii ) vaccine-mediated IL-22 and IL-17A play distinct roles in protection against cutaneous versus invasive infection, and ( iii ) NDV-3 vaccine efficacy in this model involves a coordinated induction of innate and adaptive immunity.
Increasing rates of life-threatening infections and decreasing susceptibility to antibiotics urge development of an effective vaccine targeting Staphylococcus aureus . This study evaluated the efficacy and immunologic mechanisms of a vaccine containing a recombinant glycoprotein antigen (NDV-3) in mouse skin and skin structure infection (SSSI) due to methicillin-resistant S. aureus (MRSA). Compared with adjuvant alone, NDV-3 reduced abscess progression, severity, and MRSA density in skin, as well as hematogenous dissemination to kidney. NDV-3 induced increases in CD3+ T-cell and neutrophil infiltration and IL-17A, IL-22, and host defense peptide expression in local settings of SSSI abscesses. Vaccine induction of IL-22 was necessary for protective mitigation of cutaneous infection. By comparison, protection against hematogenous dissemination required the induction of IL-17A and IL-22 by NDV-3. These findings demonstrate that NDV-3 protective efficacy against MRSA in SSSI involves a robust and complementary response integrating innate and adaptive immune mechanisms. These results support further evaluation of the NDV-3 vaccine to address disease due to S. aureus in humans. |
---|---|
AbstractList | Increasing rates of life-threatening infections and decreasing susceptibility to antibiotics urge development of an effective vaccine targeting Staphylococcus aureus. This study evaluated the efficacy and immunologic mechanisms of a vaccine containing a recombinant glycoprotein antigen (NDV-3) in mouse skin and skin structure infection (SSSI) due to methicillin-resistant S. aureus (MRSA). Compared with adjuvant alone, NDV-3 reduced abscess progression, severity, and MRSA density in skin, as well as hematogenous dissemination to kidney. NDV-3 induced increases in CD3+ T-cell and neutrophil infiltration and IL-17A, IL-22, and host defense peptide expression in local settings of SSSI abscesses. Vaccine induction of IL-22 was necessary for protective mitigation of cutaneous infection. By comparison, protection against hematogenous dissemination required the induction of IL-17A and IL-22 by NDV-3. These findings demonstrate that NDV-3 protective efficacy against MRSA in SSSI involves a robust and complementary response integrating innate and adaptive immune mechanisms. These results support further evaluation of the NDV-3 vaccine to address disease due to S. aureus in humans. Significance Staphylococcus aureus is an opportunistic pathogen of the normal human flora. It is among the most frequent causes of cutaneous abscesses, leading to life-threatening invasive infection. Incomplete understanding of host defenses against S. aureus skin or invasive infection has hindered development of effective vaccines to address these issues. NDV-3 is a unique cross-kingdom vaccine targeting S. aureus and Candida albicans . The present studies offer important new evidence: ( i ) NDV-3 protects against methicillin-resistant S. aureus skin and skin structure infection largely through IL-22– and IL-17A–mediated host defense peptide and neutrophil induction, ( ii ) vaccine-mediated IL-22 and IL-17A play distinct roles in protection against cutaneous versus invasive infection, and ( iii ) NDV-3 vaccine efficacy in this model involves a coordinated induction of innate and adaptive immunity. Increasing rates of life-threatening infections and decreasing susceptibility to antibiotics urge development of an effective vaccine targeting Staphylococcus aureus . This study evaluated the efficacy and immunologic mechanisms of a vaccine containing a recombinant glycoprotein antigen (NDV-3) in mouse skin and skin structure infection (SSSI) due to methicillin-resistant S. aureus (MRSA). Compared with adjuvant alone, NDV-3 reduced abscess progression, severity, and MRSA density in skin, as well as hematogenous dissemination to kidney. NDV-3 induced increases in CD3+ T-cell and neutrophil infiltration and IL-17A, IL-22, and host defense peptide expression in local settings of SSSI abscesses. Vaccine induction of IL-22 was necessary for protective mitigation of cutaneous infection. By comparison, protection against hematogenous dissemination required the induction of IL-17A and IL-22 by NDV-3. These findings demonstrate that NDV-3 protective efficacy against MRSA in SSSI involves a robust and complementary response integrating innate and adaptive immune mechanisms. These results support further evaluation of the NDV-3 vaccine to address disease due to S. aureus in humans. Significance Staphylococcus aureus is an opportunistic pathogen of the normal human flora. It is among the most frequent causes of cutaneous abscesses, leading to life-threatening invasive infection. Incomplete understanding of host defenses against S. aureus skin or invasive infection has hindered development of effective vaccines to address these issues. NDV-3 is a unique cross-kingdom vaccine targeting S. aureus and Candida albicans . The present studies offer important new evidence: ( i ) NDV-3 protects against methicillin-resistant S. aureus skin and skin structure infection largely through IL-22– and IL-17A–mediated host defense peptide and neutrophil induction, ( ii ) vaccine-mediated IL-22 and IL-17A play distinct roles in protection against cutaneous versus invasive infection, and ( iii ) NDV-3 vaccine efficacy in this model involves a coordinated induction of innate and adaptive immunity. Increasing rates of life-threatening infections and decreasing susceptibility to antibiotics urge development of an effective vaccine targeting Staphylococcus aureus . This study evaluated the efficacy and immunologic mechanisms of a vaccine containing a recombinant glycoprotein antigen (NDV-3) in mouse skin and skin structure infection (SSSI) due to methicillin-resistant S. aureus (MRSA). Compared with adjuvant alone, NDV-3 reduced abscess progression, severity, and MRSA density in skin, as well as hematogenous dissemination to kidney. NDV-3 induced increases in CD3+ T-cell and neutrophil infiltration and IL-17A, IL-22, and host defense peptide expression in local settings of SSSI abscesses. Vaccine induction of IL-22 was necessary for protective mitigation of cutaneous infection. By comparison, protection against hematogenous dissemination required the induction of IL-17A and IL-22 by NDV-3. These findings demonstrate that NDV-3 protective efficacy against MRSA in SSSI involves a robust and complementary response integrating innate and adaptive immune mechanisms. These results support further evaluation of the NDV-3 vaccine to address disease due to S. aureus in humans. Staphylococcus aureus is an opportunistic pathogen of the normal human flora. It is among the most frequent causes of cutaneous abscesses, leading to life-threatening invasive infection. Incomplete understanding of host defenses against S. aureus skin or invasive infection has hindered development of effective vaccines to address these issues. NDV-3 is a unique cross-kingdom vaccine targeting S. aureus and Candida albicans . The present studies offer important new evidence: ( i ) NDV-3 protects against methicillin-resistant S. aureus skin and skin structure infection largely through IL-22– and IL-17A–mediated host defense peptide and neutrophil induction, ( ii ) vaccine-mediated IL-22 and IL-17A play distinct roles in protection against cutaneous versus invasive infection, and ( iii ) NDV-3 vaccine efficacy in this model involves a coordinated induction of innate and adaptive immunity. Increasing rates of life-threatening infections and decreasing susceptibility to antibiotics urge development of an effective vaccine targeting Staphylococcus aureus . This study evaluated the efficacy and immunologic mechanisms of a vaccine containing a recombinant glycoprotein antigen (NDV-3) in mouse skin and skin structure infection (SSSI) due to methicillin-resistant S. aureus (MRSA). Compared with adjuvant alone, NDV-3 reduced abscess progression, severity, and MRSA density in skin, as well as hematogenous dissemination to kidney. NDV-3 induced increases in CD3+ T-cell and neutrophil infiltration and IL-17A, IL-22, and host defense peptide expression in local settings of SSSI abscesses. Vaccine induction of IL-22 was necessary for protective mitigation of cutaneous infection. By comparison, protection against hematogenous dissemination required the induction of IL-17A and IL-22 by NDV-3. These findings demonstrate that NDV-3 protective efficacy against MRSA in SSSI involves a robust and complementary response integrating innate and adaptive immune mechanisms. These results support further evaluation of the NDV-3 vaccine to address disease due to S. aureus in humans. |
Author | Deborah Kupferwasser Clint S. Schmidt Scott G. Filler John E. Edwards Jr Huiyuan Wang Yan Q. Xiong Ashraf S. Ibrahim Yue Fu John P. Hennessey Jr Michael R. Yeaman Kevin Barr Siyang Chaili |
Author_xml | – sequence: 1 givenname: Michael R surname: Yeaman fullname: Yeaman, Michael R email: MRYeaman@ucla.edu organization: Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Divisions of Infectious Diseases and Molecular Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and MRYeaman@ucla.edu – sequence: 2 givenname: Scott G surname: Filler fullname: Filler, Scott G organization: Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Divisions of Infectious Diseases and St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and – sequence: 3 givenname: Siyang surname: Chaili fullname: Chaili, Siyang organization: Divisions of Infectious Diseases and Molecular Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and – sequence: 4 givenname: Kevin surname: Barr fullname: Barr, Kevin organization: St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and – sequence: 5 givenname: Huiyuan surname: Wang fullname: Wang, Huiyuan organization: Divisions of Infectious Diseases and Molecular Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and – sequence: 6 givenname: Deborah surname: Kupferwasser fullname: Kupferwasser, Deborah organization: Divisions of Infectious Diseases and Molecular Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and – sequence: 7 givenname: John P surname: Hennessey, Jr fullname: Hennessey, Jr, John P organization: NovaDigm Therapeutics, Inc., Grand Forks, ND 58202 – sequence: 8 givenname: Yue surname: Fu fullname: Fu, Yue organization: Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Divisions of Infectious Diseases and St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and – sequence: 9 givenname: Clint S surname: Schmidt fullname: Schmidt, Clint S organization: NovaDigm Therapeutics, Inc., Grand Forks, ND 58202 – sequence: 10 givenname: John E surname: Edwards, Jr fullname: Edwards, Jr, John E organization: Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Divisions of Infectious Diseases and St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and – sequence: 11 givenname: Yan Q surname: Xiong fullname: Xiong, Yan Q organization: Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Divisions of Infectious Diseases and St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and – sequence: 12 givenname: Ashraf S surname: Ibrahim fullname: Ibrahim, Ashraf S organization: Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Divisions of Infectious Diseases and St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25489065$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1vEzEQhi3UiqaFMzdYiUsv287YXnt9Qar6AagtSJRytRzHbl0SO6yzK_Xf10tC-Djhi0fjZ94Z-_U-2YkpOkJeIRwhSHa8jCYfIcdGICDiMzJBUFgLrmCHTACorFtO-R7Zz_kBAFTTwnOyRxveKhDNhFxeO3tvYsiLXCVffTr7VrNqMNaG6CrnfbDGPlYhVtdfbk6q_L1Eg-tyn0tuMDkMrgTe2VVI8QXZ9Wae3cvNfkBuL86_nn6orz6__3h6clXbBtiqns4Um3nZMmQUBZetd8CkMtJJKyxiyTghJPPTqaRMCMCWKustpWhnylF2QN6tdZf9dOFm1sVVZ-Z62YWF6R51MkH_fRLDvb5Lg-a0hUaqInC4EejSj97llV6EbN18bqJLfdYoGl4GYAL-A-XAW6RsHOvtP-hD6rtYXuInpVrO-Nj7eE3ZLuXcOb-dG0GPnurRU_3b01Lx-s_rbvlfJhag2gBj5VYOUTeoz5uyCvJmjXiTtLnrQta3NxRQACAv34KyJ43ZsFo |
CitedBy_id | crossref_primary_10_1002_adma_202107300 crossref_primary_10_1371_journal_ppat_1007056 crossref_primary_10_3389_fimmu_2021_797550 crossref_primary_10_1021_acsinfecdis_7b00095 crossref_primary_10_3389_fcimb_2020_00300 crossref_primary_10_1093_femspd_ftad016 crossref_primary_10_1128_spectrum_02114_22 crossref_primary_10_1146_annurev_pharmtox_010716_104718 crossref_primary_10_1016_j_phrs_2020_105067 crossref_primary_10_1128_AAC_00880_16 crossref_primary_10_1128_IAI_01061_15 crossref_primary_10_15252_embr_202255338 crossref_primary_10_3389_fcimb_2024_1339501 crossref_primary_10_1073_pnas_1818256116 crossref_primary_10_1093_pnasnexus_pgae185 crossref_primary_10_1371_journal_ppat_1008733 crossref_primary_10_3389_fimmu_2020_00076 crossref_primary_10_3389_fimmu_2024_1373553 crossref_primary_10_1371_journal_ppat_1005226 crossref_primary_10_1073_pnas_1808353115 crossref_primary_10_3389_fimmu_2015_00439 crossref_primary_10_3390_pathogens5010022 crossref_primary_10_1080_14760584_2016_1179583 crossref_primary_10_1128_IAI_00876_16 crossref_primary_10_3390_microbiolres15010009 crossref_primary_10_1080_21505594_2016_1270494 crossref_primary_10_1172_jci_insight_127551 crossref_primary_10_3389_fcimb_2023_1242702 crossref_primary_10_3390_vaccines10020199 crossref_primary_10_1002_advs_202100681 crossref_primary_10_3389_fimmu_2022_851818 crossref_primary_10_1016_j_clim_2018_05_007 crossref_primary_10_1093_milmed_usz105 crossref_primary_10_1128_IAI_00549_17 crossref_primary_10_3389_fcimb_2022_1060810 crossref_primary_10_1073_pnas_2300644120 crossref_primary_10_1371_journal_ppat_1007713 crossref_primary_10_1002_adma_201501071 crossref_primary_10_4049_jimmunol_1801042 crossref_primary_10_1016_j_bioactmat_2021_11_019 crossref_primary_10_1111_tmi_13865 crossref_primary_10_3389_fimmu_2021_705360 crossref_primary_10_1371_journal_ppat_1012018 crossref_primary_10_1038_s41598_019_52982_0 crossref_primary_10_1111_jcmm_12634 crossref_primary_10_1016_j_tim_2023_08_003 crossref_primary_10_1111_odi_12546 crossref_primary_10_1016_j_jaci_2016_07_001 crossref_primary_10_1097_QCO_0000000000000156 crossref_primary_10_1016_j_cmet_2021_11_010 crossref_primary_10_1172_jci_insight_178216 crossref_primary_10_1038_s41467_018_07738_1 crossref_primary_10_1186_s41232_023_00316_z crossref_primary_10_3390_vaccines9101159 crossref_primary_10_1016_j_vaccine_2021_04_031 crossref_primary_10_1038_s41598_018_22044_y |
Cites_doi | 10.1016/S0140-6736(09)61999-1 10.1093/cid/cis199 10.1073/pnas.1002099107 10.1542/peds.2010-3081 10.1016/S0140-6736(06)68231-7 10.1371/journal.pone.0060900 10.1038/ni.1995 10.1001/jama.298.15.1763 10.3389/fcimb.2012.00016 10.1074/jbc.M401929200 10.1046/j.1365-2249.2003.02151.x 10.1086/666329 10.1146/annurev-pharmtox-010611-134535 10.1128/CMR.05022-11 10.1038/nri2622 10.1016/j.iac.2008.01.005 10.3389/fimmu.2013.00507 10.1111/j.1365-2249.2009.03969.x 10.1086/653519 10.1128/JB.00655-08 10.1086/509506 10.1016/j.vaccine.2012.10.038 10.1038/nri1310 10.1172/JCI40891 10.1084/jem.20080218 10.1186/1476-7961-9-10 10.1186/1471-2334-12-284 10.1016/S0140-6736(02)08713-5 10.1086/504691 10.1128/IAI.67.7.3542-3547.1999 10.1016/j.amjsurg.2009.12.024 10.1016/j.vaccine.2013.09.016 10.1038/jid.2010.289 10.1128/IAI.01491-14 10.1002/lt.22378 10.1093/cid/cis033 10.3389/fimmu.2014.00463 10.1126/science.1200439 10.1097/QCO.0b013e328335b004 10.1089/dia.2011.0007 10.1111/j.1468-1293.2011.00978.x 10.1038/nature06764 10.1016/j.jaci.2008.04.037 10.1038/nrmicro2200 10.1128/IAI.00700-08 10.1111/j.1365-2249.2011.04449.x 10.1056/NEJMra1212788 10.1111/1469-0691.12570 10.1086/421946 10.1084/jem.20082767 10.1513/AnnalsATS.201402-050AS 10.1128/AAC.00096-06 10.1186/1471-2334-11-183 10.4065/mcp.2011.0514 10.1038/nrmicro3308 10.1084/jem.20081463 10.1186/1471-2121-9-13 10.1073/pnas.0508961103 10.1111/j.1574-695X.2008.00531.x 10.1016/j.tim.2011.01.007 10.1097/00005792-200005000-00003 10.1093/cid/cis527 10.1016/S0929-693X(07)80008-X 10.1111/j.1365-2567.2011.03410.x 10.1371/journal.pone.0005234 10.1073/pnas.1222878110 10.1093/intimm/dxn134 10.1001/jama.2012.7139 10.4049/jimmunol.1201648 10.2500/aap.2012.33.3553 10.1086/606027 10.1016/j.jinf.2011.11.004 10.1097/PEC.0b013e318243fa36 10.1128/IAI.71.2.882-890.2003 10.1017/S0950268809991208 10.4049/jimmunol.179.10.6933 10.1371/journal.ppat.1000703 10.1038/nm1210-1389 10.3389/fimmu.2014.00041 10.1128/CMR.00081-09 10.1016/j.immuni.2012.08.024 10.1038/nri3010 10.4049/jimmunol.0902907 10.4161/hv.18946 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Dec 23, 2014 |
Copyright_xml | – notice: Copyright National Academy of Sciences Dec 23, 2014 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1415610111 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE - Academic Virology and AIDS Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | NDV-3 vaccine efficacy versus MRSA |
EISSN | 1091-6490 |
EndPage | E5563 |
ExternalDocumentID | 3540321541 10_1073_pnas_1415610111 25489065 111_51_E5555 US201600140092 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: AI-111661 – fundername: NIAID NIH HHS grantid: R21 AI111661 – fundername: NIAID NIH HHS grantid: R33 AI111661 – fundername: NIAID NIH HHS grantid: AI-063382 – fundername: NIAID NIH HHS grantid: R01 AI063382 – fundername: NovaDigm Therapeutics, Inc. grantid: NDV-3-SSSI – fundername: U.S. Department of Defense (DOD) grantid: W81XWH-10-2-0035 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ H13 KM PQEST X XHC ABXSQ ADACV AQVQM CGR CUY CVF ECM EIF IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c503t-bd93df78313216478fe0379a7e7c6c11478e6673fbb7236601829cfc221cd9e23 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:22:04 EDT 2024 Fri Oct 25 21:48:59 EDT 2024 Fri Oct 25 08:05:11 EDT 2024 Thu Oct 10 16:53:15 EDT 2024 Fri Aug 23 03:01:26 EDT 2024 Sat Nov 02 12:13:40 EDT 2024 Wed Nov 11 00:29:53 EST 2020 Wed Dec 27 19:11:22 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Keywords | skin vaccine Th22 Th17 Staphylococcus aureus |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c503t-bd93df78313216478fe0379a7e7c6c11478e6673fbb7236601829cfc221cd9e23 |
Notes | http://dx.doi.org/10.1073/pnas.1415610111 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited* by H. Ronald Kaback, University of California, Los Angeles, CA, and approved November 6, 2014 (received for review August 13, 2014) Author contributions: M.R.Y., S.G.F., J.P.H., C.S.S., J.E.E., and A.S.I. designed research; M.R.Y., S.C., K.B., H.W., D.K., Y.Q.X., and A.S.I. performed research; M.R.Y., S.G.F., J.P.H., Y.F., C.S.S., J.E.E., and A.S.I. contributed new reagents/analytic tools; M.R.Y., S.G.F., S.C., K.B., H.W., D.K., J.P.H., C.S.S., J.E.E., Y.Q.X., and A.S.I. analyzed data; and M.R.Y., S.G.F., S.C., J.P.H., C.S.S., J.E.E., Y.Q.X., and A.S.I. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/111/51/E5555.full.pdf |
PMID | 25489065 |
PQID | 1640984349 |
PQPubID | 42026 |
ParticipantIDs | crossref_primary_10_1073_pnas_1415610111 proquest_miscellaneous_1654673360 pnas_primary_111_51_E5555 fao_agris_US201600140092 proquest_miscellaneous_1640481232 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4280579 pubmed_primary_25489065 proquest_journals_1640984349 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2014-12-23 |
PublicationDateYYYYMMDD | 2014-12-23 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_3_3_75_2 e_1_3_3_71_2 e_1_3_3_77_2 e_1_3_3_79_2 (e_1_3_3_81_2) 2003; 52 Geria AN (e_1_3_3_5_2) 2010; 85 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_73_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_86_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_80_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_82_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_84_2 e_1_3_3_51_2 e_1_3_3_74_2 e_1_3_3_76_2 e_1_3_3_70_2 e_1_3_3_78_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_62_2 e_1_3_3_85_2 e_1_3_3_60_2 e_1_3_3_87_2 Takao K (e_1_3_3_54_2) 2014 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 e_1_3_3_83_2 |
References_xml | – ident: e_1_3_3_14_2 doi: 10.1016/S0140-6736(09)61999-1 – ident: e_1_3_3_19_2 doi: 10.1093/cid/cis199 – ident: e_1_3_3_56_2 doi: 10.1073/pnas.1002099107 – ident: e_1_3_3_41_2 doi: 10.1542/peds.2010-3081 – ident: e_1_3_3_82_2 doi: 10.1016/S0140-6736(06)68231-7 – ident: e_1_3_3_57_2 doi: 10.1371/journal.pone.0060900 – ident: e_1_3_3_74_2 doi: 10.1038/ni.1995 – ident: e_1_3_3_9_2 doi: 10.1001/jama.298.15.1763 – ident: e_1_3_3_38_2 doi: 10.3389/fcimb.2012.00016 – ident: e_1_3_3_43_2 doi: 10.1074/jbc.M401929200 – ident: e_1_3_3_63_2 doi: 10.1046/j.1365-2249.2003.02151.x – ident: e_1_3_3_26_2 doi: 10.1086/666329 – ident: e_1_3_3_71_2 doi: 10.1146/annurev-pharmtox-010611-134535 – ident: e_1_3_3_16_2 doi: 10.1128/CMR.05022-11 – ident: e_1_3_3_76_2 doi: 10.1038/nri2622 – ident: e_1_3_3_35_2 doi: 10.1016/j.iac.2008.01.005 – ident: e_1_3_3_79_2 doi: 10.3389/fimmu.2013.00507 – ident: e_1_3_3_67_2 doi: 10.1111/j.1365-2249.2009.03969.x – ident: e_1_3_3_18_2 doi: 10.1086/653519 – ident: e_1_3_3_85_2 doi: 10.1128/JB.00655-08 – ident: e_1_3_3_84_2 doi: 10.1086/509506 – ident: e_1_3_3_49_2 doi: 10.1016/j.vaccine.2012.10.038 – ident: e_1_3_3_65_2 doi: 10.1038/nri1310 – ident: e_1_3_3_61_2 doi: 10.1172/JCI40891 – ident: e_1_3_3_33_2 doi: 10.1084/jem.20080218 – ident: e_1_3_3_31_2 doi: 10.1186/1476-7961-9-10 – ident: e_1_3_3_22_2 doi: 10.1186/1471-2334-12-284 – year: 2014 ident: e_1_3_3_54_2 article-title: Genomic responses in mouse models greatly mimic human inflammatory diseases publication-title: Proc Natl Acad Sci USA contributor: fullname: Takao K – ident: e_1_3_3_83_2 doi: 10.1016/S0140-6736(02)08713-5 – ident: e_1_3_3_45_2 doi: 10.1086/504691 – ident: e_1_3_3_50_2 doi: 10.1128/IAI.67.7.3542-3547.1999 – ident: e_1_3_3_21_2 doi: 10.1016/j.amjsurg.2009.12.024 – ident: e_1_3_3_72_2 doi: 10.1016/j.vaccine.2013.09.016 – ident: e_1_3_3_86_2 doi: 10.1038/jid.2010.289 – ident: e_1_3_3_51_2 doi: 10.1128/IAI.01491-14 – ident: e_1_3_3_25_2 doi: 10.1002/lt.22378 – ident: e_1_3_3_42_2 doi: 10.1093/cid/cis033 – ident: e_1_3_3_44_2 doi: 10.3389/fimmu.2014.00463 – ident: e_1_3_3_64_2 doi: 10.1126/science.1200439 – ident: e_1_3_3_68_2 doi: 10.1097/QCO.0b013e328335b004 – ident: e_1_3_3_10_2 doi: 10.1089/dia.2011.0007 – ident: e_1_3_3_27_2 doi: 10.1111/j.1468-1293.2011.00978.x – ident: e_1_3_3_34_2 doi: 10.1038/nature06764 – ident: e_1_3_3_28_2 doi: 10.1016/j.jaci.2008.04.037 – ident: e_1_3_3_15_2 doi: 10.1038/nrmicro2200 – ident: e_1_3_3_46_2 doi: 10.1128/IAI.00700-08 – ident: e_1_3_3_29_2 doi: 10.1111/j.1365-2249.2011.04449.x – ident: e_1_3_3_1_2 doi: 10.1056/NEJMra1212788 – ident: e_1_3_3_52_2 doi: 10.1111/1469-0691.12570 – ident: e_1_3_3_11_2 doi: 10.1086/421946 – ident: e_1_3_3_36_2 doi: 10.1084/jem.20082767 – ident: e_1_3_3_32_2 doi: 10.1513/AnnalsATS.201402-050AS – ident: e_1_3_3_40_2 doi: 10.1128/AAC.00096-06 – ident: e_1_3_3_23_2 doi: 10.1186/1471-2334-11-183 – ident: e_1_3_3_17_2 doi: 10.4065/mcp.2011.0514 – ident: e_1_3_3_55_2 doi: 10.1038/nrmicro3308 – ident: e_1_3_3_59_2 doi: 10.1084/jem.20081463 – volume: 52 start-page: 88 year: 2003 ident: e_1_3_3_81_2 article-title: Outbreaks of community-associated methicillin-resistant Staphylococcus aureus skin infections—Los Angeles County, California, 2002-2003 publication-title: MMWR Morb Mortal Wkly Rep – ident: e_1_3_3_87_2 doi: 10.1186/1471-2121-9-13 – ident: e_1_3_3_60_2 doi: 10.1073/pnas.0508961103 – ident: e_1_3_3_47_2 doi: 10.1111/j.1574-695X.2008.00531.x – ident: e_1_3_3_3_2 doi: 10.1016/j.tim.2011.01.007 – volume: 85 start-page: 65 year: 2010 ident: e_1_3_3_5_2 article-title: Impetigo update: New challenges in the era of methicillin resistance publication-title: Cutis contributor: fullname: Geria AN – ident: e_1_3_3_37_2 doi: 10.1097/00005792-200005000-00003 – ident: e_1_3_3_12_2 doi: 10.1093/cid/cis527 – ident: e_1_3_3_39_2 doi: 10.1016/S0929-693X(07)80008-X – ident: e_1_3_3_62_2 doi: 10.1111/j.1365-2567.2011.03410.x – ident: e_1_3_3_30_2 doi: 10.1371/journal.pone.0005234 – ident: e_1_3_3_53_2 doi: 10.1073/pnas.1222878110 – ident: e_1_3_3_73_2 doi: 10.1093/intimm/dxn134 – ident: e_1_3_3_13_2 doi: 10.1001/jama.2012.7139 – ident: e_1_3_3_70_2 doi: 10.4049/jimmunol.1201648 – ident: e_1_3_3_7_2 doi: 10.2500/aap.2012.33.3553 – ident: e_1_3_3_20_2 doi: 10.1086/606027 – ident: e_1_3_3_6_2 doi: 10.1016/j.jinf.2011.11.004 – ident: e_1_3_3_8_2 doi: 10.1097/PEC.0b013e318243fa36 – ident: e_1_3_3_80_2 doi: 10.1128/IAI.71.2.882-890.2003 – ident: e_1_3_3_24_2 doi: 10.1017/S0950268809991208 – ident: e_1_3_3_75_2 doi: 10.4049/jimmunol.179.10.6933 – ident: e_1_3_3_48_2 doi: 10.1371/journal.ppat.1000703 – ident: e_1_3_3_77_2 doi: 10.1038/nm1210-1389 – ident: e_1_3_3_78_2 doi: 10.3389/fimmu.2014.00041 – ident: e_1_3_3_4_2 doi: 10.1128/CMR.00081-09 – ident: e_1_3_3_66_2 doi: 10.1016/j.immuni.2012.08.024 – ident: e_1_3_3_2_2 doi: 10.1038/nri3010 – ident: e_1_3_3_58_2 doi: 10.4049/jimmunol.0902907 – ident: e_1_3_3_69_2 doi: 10.4161/hv.18946 |
SSID | ssj0009580 |
Score | 2.454985 |
Snippet | Significance Staphylococcus aureus is an opportunistic pathogen of the normal human flora. It is among the most frequent causes of cutaneous abscesses, leading... Increasing rates of life-threatening infections and decreasing susceptibility to antibiotics urge development of an effective vaccine targeting Staphylococcus... Significance Staphylococcus aureus is an opportunistic pathogen of the normal human flora. It is among the most frequent causes of cutaneous abscesses, leading... Staphylococcus aureus is an opportunistic pathogen of the normal human flora. It is among the most frequent causes of cutaneous abscesses, leading to... |
SourceID | pubmedcentral proquest crossref pubmed pnas fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | E5555 |
SubjectTerms | Adaptive Immunity Animals Antigens Bacterial Vaccines - therapeutic use Biological Sciences Comparative analysis Disease Models, Animal Glycoproteins Interleukin-17 - metabolism Interleukin-22 Interleukins - metabolism Mice PNAS Plus Skin Diseases, Bacterial - therapy Staphylococcal Infections - prevention & control Staphylococcus aureus Staphylococcus infections T cell receptors T-Lymphocytes - immunology Vaccines |
Title | Mechanisms of NDV-3 vaccine efficacy in MRSA skin versus invasive infection |
URI | http://www.pnas.org/content/111/51/E5555.abstract https://www.ncbi.nlm.nih.gov/pubmed/25489065 https://www.proquest.com/docview/1640984349 https://search.proquest.com/docview/1640481232 https://search.proquest.com/docview/1654673360 https://pubmed.ncbi.nlm.nih.gov/PMC4280579 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51e-KCKK-GlspIHMoh3awfcXysSqtCtRWiLOotchy7rGCzq2a3Ev-embxoEeJATlE8iazxzHi-ePwZ4O0keAz7IcTK8BIBikzizMoQm0I57qQuRUn_IaeX6flMfrxW11ug-r0wTdG-K-ZH1Y_FUTX_1tRWrhZu3NeJjT9NTzBlpj2U4xGM0EB7iD4w7WbtvhOO4Vdy2fP5aDFeVbbG0DChnAF9nIiAMWE3Cc0s92alUbBL4jpF6b_lnX-WT96bj86ewOMukWTHbYd3YMtXT2Gnc9WaHXZ80u-ewcXU0_beeb2o2TKwy_dfY8HurKMldeaJQsK6n2xesennq2NWf8c7qtXY1PjszlJ5O-tLtqrnMDs7_XJyHndnKMROJWIdF6URZdAZMTQSdVgWfCK0sdprlzoEQzrzdPJnKArNRYrwLOPGBcf5xJXGc_ECtqtl5XeBhcwjttHKWp3KNNjCY3qigpG24NJPVASHvQ7zVUuVkTdL3FrkpMv8t-Yj2EUd5_YGA1k-u-JEc0dQLzE8gqgRHr6AAEVN8lOFVwT7_WjknavhV1OEqJkU0kTwZmhGJ6GVD1v55aaVkRllj_-SUThpCJEmEbxsB3joRG8mEegHQz8IEEn3wxa03Yasu7PVV__95h48Qv005JJc7MP2-nbjX2MitC4OEAJ8uDhozP8XwFkC4Q |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615QAXRHk1UMBIHMoh3cSPODlWpdVCmxWiXdRb5Dg2rGCzK7JbiX_PTB5LixAHcoriSWSNPY8vHn8GeBN7h27f-1BlvEKAIqMwNdKHWakst1JXoqL_kPkkGU_lhyt1tQVq2AvTFu3bcnZYf58f1rOvbW3lcm5HQ53Y6GN-jCkz7aEcbcMdtNdIDiB9w7WbdjtPODpgyeXA6KPFaFmbBp1DTFkDWjlRAWPKnkUUW27EpW1vFsR2itJ_yzz_LKC8EZFOH8D9PpVkR12Xd2HL1Q9htzfWhh30jNJvH8FZ7miD76yZN2zh2eTd51Cwa2NpUZ05IpEw9ieb1Sz_dHHEmm94R9Ua6wafXRsqcGdD0Vb9GKanJ5fH47A_RSG0KhKrsKwyUXmdEkcjkYel3kVCZ0Y7bROLcEinjs7-9GWpuUgQoKU8s95yHtsqc1w8gZ16Ubs9YD51iG60MkYnMvGmdJigKJ9JU3LpYhXAwaDDYtmRZRTtIrcWBemy-K35APZQx4X5gq6smF5wIrojsBdlPICgFd58ASGKiosThVcA-8NoFL2x4VcTBKmpFDIL4PWmGc2E1j5M7RbrTkamlD_-S0Zh2BAiiQJ42g3wphPDNAlA3xr6jQDRdN9uwdnb0nX3s_XZf7_5Cu6OL_Pz4vz95Ow53ENdtVSTXOzDzurH2r3AtGhVvmyN4Bdx8gU- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIiEuFeXVQAEjcSiHNIkfcXys2q4KZVcVZVFvkePYZUU3uyK7lfj3jPNiixAHcoriSWSNPY8vHn8GeJc4i27fuVAoWiJA4XGYae5CVQhDDZclK_1_yPEkPZvyj1fiauOor6Zo3xSzw-pmfljNvjW1lcu5ifo6sehifIwps99DGS1LF23BfbTZOO2B-sC3m7W7Tyg6YU55z-ojWbSsdI0OIvGZA1q6pwPGtF3FPr5sxKYtpxee8RSl_5Z9_llEuRGVRo9gp0snyVHb7V24Z6vHsNsZbE0OOlbp90_gfGz9Jt9ZPa_JwpHJydeQkVtt_MI6sZ5IQpufZFaR8efLI1J_xztfsbGu8dmt9kXupC_cqp7CdHT65fgs7E5SCI2I2SosSsVKJzPP0-gJxDJnYyaVllaa1CAkkpn153-6opCUpQjSMqqMM5QmplSWsmewXS0quwfEZRYRjhRay5SnThcWkxThFNcF5TYRARz0OsyXLWFG3ix0S5Z7Xea_NR_AHuo419fozvLpJfVkdx7wxYoGEDTCwxcQpogkPxV4BbDfj0beGRx-NUWgmnHGVQBvh2Y0Fb_-oSu7WLcyPPM55L9kBIYOxtI4gOftAA-d6KdJAPLO0A8Cnqr7bgvO4Iayu5uxL_77zTfw4OJklH_6MDl_CQ9RVQ3bJGX7sL36sbavMDNaFa8bG_gFTeEGUQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+NDV-3+vaccine+efficacy+in+MRSA+skin+versus+invasive+infection&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Michael+R.+Yeaman&rft.au=Scott+G.+Filler&rft.au=Siyang+Chaili&rft.au=Kevin+Barr&rft.date=2014-12-23&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=51&rft.spage=E5555&rft_id=info:doi/10.1073%2Fpnas.1415610111&rft_id=info%3Apmid%2F25489065&rft.externalDBID=n%2Fa&rft.externalDocID=111_51_E5555 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F51.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F51.cover.gif |