The Roles of Peroxiredoxin and Thioredoxin in Hydrogen Peroxide Sensing and in Signal Transduction
A challenge in the redox field is the elucidation of the molecular mechanisms, by which H2O2 mediates signal transduction in cells. This is relevant since redox pathways are disturbed in some pathologies. The transcription factor OxyR is the H2O2 sensor in bacteria, whereas Cys-based peroxidases are...
Saved in:
Published in | Molecules and cells Vol. 39; no. 1; pp. 65 - 71 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Korean Society for Molecular and Cellular Biology
01.01.2016
한국분자세포생물학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A challenge in the redox field is the elucidation of the molecular mechanisms, by which H2O2 mediates signal transduction in cells. This is relevant since redox pathways are disturbed in some pathologies. The transcription factor OxyR is the H2O2 sensor in bacteria, whereas Cys-based peroxidases are involved in the perception of this oxidant in eukaryotic cells. Three possible mechanisms may be involved in H2O2 signaling that are not mutually exclusive. In the simplest pathway, H2O2 signals through direct oxidation of the signaling protein, such as a phosphatase or a transcription factor. Although signaling proteins are frequently observed in the oxidized state in biological systems, in most cases their direct oxidation by H2O2 is too slow (10(1) M(-1)s(-1) range) to outcompete Cys-based peroxidases and glutathione. In some particular cellular compartments (such as vicinity of NADPH oxidases), it is possible that a signaling protein faces extremely high H2O2 concentrations, making the direct oxidation feasible. Alternatively, high H2O2 levels can hyperoxidize peroxiredoxins leading to local building up of H2O2 that then could oxidize a signaling protein (floodgate hypothesis). In a second model, H2O2 oxidizes Cys-based peroxidases that then through thiol-disulfide reshuffling would transmit the oxidized equivalents to the signaling protein. The third model of signaling is centered on the reducing substrate of Cys-based peroxidases that in most cases is thioredoxin. Is this model, peroxiredoxins would signal by modulating the thioredoxin redox status. More kinetic data is required to allow the identification of the complex network of thiol switches. |
---|---|
AbstractList | A challenge in the redox field is the elucidation of the molecular mechanisms, by which H
2
O
2
mediates signal transduction in cells. This is relevant since redox pathways are disturbed in some pathologies. The transcription factor OxyR is the H
2
O
2
sensor in bacteria, whereas Cys-based peroxidases are involved in the perception of this oxidant in eukaryotic cells. Three possible mechanisms may be involved in H
2
O
2
signaling that are not mutually exclusive. In the simplest pathway, H
2
O
2
signals through direct oxidation of the signaling protein, such as a phosphatase or a transcription factor. Although signaling proteins are frequently observed in the oxidized state in biological systems, in most cases their direct oxidation by H
2
O
2
is too slow (10
1
M
−1
s
−1
range) to outcompete Cys-based peroxidases and glutathione. In some particular cellular compartments (such as vicinity of NADPH oxidases), it is possible that a signaling protein faces extremely high H
2
O
2
concentrations, making the direct oxidation feasible. Alternatively, high H
2
O
2
levels can hyperoxidize peroxiredoxins leading to local building up of H
2
O
2
that then could oxidize a signaling protein (floodgate hypothesis). In a second model, H
2
O
2
oxidizes Cys-based peroxidases that then through thiol-disulfide reshuffling would transmit the oxidized equivalents to the signaling protein. The third model of signaling is centered on the reducing substrate of Cys-based peroxidases that in most cases is thioredoxin. Is this model, peroxiredoxins would signal by modulating the thioredoxin redox status. More kinetic data is required to allow the identification of the complex network of thiol switches. A challenge in the redox field is the elucidation of the molecular mechanisms, by which H2O2 mediates signal transduction in cells. This is relevant since redox pathways are disturbed in some pathologies. The transcription factor OxyR is the H2O2 sensor in bacteria, whereas Cys-based peroxidases are involved in the perception of this oxidant in eukaryotic cells. Three possible mechanisms may be involved in H2O2 signaling that are not mutually exclusive. In the simplest pathway, H2O2 signals through direct oxidation of the signaling protein, such as a phosphatase or a transcription factor. Although signaling proteins are frequently observed in the oxidized state in biological systems, in most cases their direct oxidation by H2O2 is too slow (10(1) M(-1)s(-1) range) to outcompete Cys-based peroxidases and glutathione. In some particular cellular compartments (such as vicinity of NADPH oxidases), it is possible that a signaling protein faces extremely high H2O2 concentrations, making the direct oxidation feasible. Alternatively, high H2O2 levels can hyperoxidize peroxiredoxins leading to local building up of H2O2 that then could oxidize a signaling protein (floodgate hypothesis). In a second model, H2O2 oxidizes Cys-based peroxidases that then through thiol-disulfide reshuffling would transmit the oxidized equivalents to the signaling protein. The third model of signaling is centered on the reducing substrate of Cys-based peroxidases that in most cases is thioredoxin. Is this model, peroxiredoxins would signal by modulating the thioredoxin redox status. More kinetic data is required to allow the identification of the complex network of thiol switches. A challenge in the redox field is the elucidation of the molecular mechanisms, by which H2O2 mediates signal transduction in cells. This is relevant since redox pathways are disturbed in some pathologies. The transcription factor OxyR is the H2O2 sensor in bacteria, whereas Cys-based peroxidases are involved in the perception of this oxidant in eukaryotic cells. Three possible mechanisms may be involved in H2O2 signaling that are not mutually exclusive. In the simplest pathway, H2O2 signals through direct oxidation of the signaling protein, such as a phosphatase or a transcription factor. Although signaling proteins are frequently observed in the oxidized state in biological systems, in most cases their direct oxidation by H2O2 is too slow (101 M-1 s-1 range) to outcompete Cys-based peroxidases and glutathione. In some particular cellular compartments (such as vicinity of NADPH oxidases), it is possible that a signaling protein faces extremely high H2O2 concentrations, making the direct oxidation feasible. Alternatively, high H2O2 levels can hyperoxidize peroxiredoxins leading to local building up of H2O2 that then could oxidize a signaling protein (floodgate hypothesis). In a second model, H2O2 oxidizes Cys-based peroxidases that then through thiol-disulfide reshuffling would transmit the oxidized equivalents to the signaling protein. The third model of signaling is centered on the reducing substrate of Cys-based peroxidases that in most cases is thioredoxin. Is this model, peroxiredoxins would signal by modulating the thioredoxin redox status. More kinetic data is required to allow the identification of the complex network of thiol switches. KCI Citation Count: 2 |
Author | Netto, Luis E S Antunes, Fernando |
AuthorAffiliation | 1 Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo – SP, Brazil 2 Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal |
AuthorAffiliation_xml | – name: 1 Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo – SP, Brazil – name: 2 Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal |
Author_xml | – sequence: 1 givenname: Luis E S surname: Netto fullname: Netto, Luis E S organization: Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo - SP, Brazil – sequence: 2 givenname: Fernando surname: Antunes fullname: Antunes, Fernando organization: Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26813662$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002077295$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNpVkV1LwzAUhoMobk5_gSC986ozX2vaG0GGXyAorl6HJE26YJeMZBP37806NxTCOeTkfd8TeM7AsfNOA3CJ4BhRQsubhe-U7ro4xhAVY0xodQSGEKMqR5DgYzBEaZ6XlJUDcBGjlZBWEBaYlKdggIsSkaLAQyDruc7efadj5k32poP_tkE3qbpMuCar59bv7-k8bZrgW-1-lY3OZtpF69penAQz2zrRZXUQLjZrtbLenYMTI7qoL377CHw83NfTp_zl9fF5eveSqwkkq1wiVpa6goYUklZoIgxGOH20gZCJhhkiFYNiQlVhsEDYKFUZJpEglZHIFJKMwPUu1wXDP5XlXti-t55_Bn73Xj9zhkhaNgK3O-VyLRe6Udqtguj4MtiFCJve9__F2XlK-eKU0apkLAWQXYAKPsagzcGLIO_58D0fvuXDt3yS6-rv2oNnT4P8AIKgkkk |
CitedBy_id | crossref_primary_10_1016_j_redox_2017_04_039 crossref_primary_10_1097_CEJ_0000000000000537 crossref_primary_10_3390_antiox13050555 crossref_primary_10_3390_antiox8060169 crossref_primary_10_2217_fon_2018_0001 crossref_primary_10_14348_molcells_2016_2368 crossref_primary_10_1021_acs_jpcb_2c07072 crossref_primary_10_1089_ars_2018_7678 crossref_primary_10_1186_s12886_018_0793_3 crossref_primary_10_3390_antiox12091738 crossref_primary_10_1089_ars_2018_7712 crossref_primary_10_1016_j_redox_2022_102527 crossref_primary_10_1016_j_psj_2021_101064 crossref_primary_10_1016_j_redox_2020_101679 crossref_primary_10_1038_s41598_018_24900_3 crossref_primary_10_1016_j_pharmthera_2020_107520 crossref_primary_10_1042_BCJ20160851 crossref_primary_10_3390_cells7100156 crossref_primary_10_1016_j_dci_2021_104213 crossref_primary_10_1016_j_preghy_2022_12_002 crossref_primary_10_1021_acsami_0c17957 crossref_primary_10_1073_pnas_1807918115 crossref_primary_10_3390_oxygen4010004 crossref_primary_10_3390_bios11020030 crossref_primary_10_3390_cancers12071706 crossref_primary_10_1038_s41598_017_06718_7 crossref_primary_10_1111_jre_12722 crossref_primary_10_3389_fmicb_2019_02438 crossref_primary_10_1016_j_freeradbiomed_2019_12_027 crossref_primary_10_3389_fcvm_2016_00036 crossref_primary_10_3389_fmolb_2022_889719 crossref_primary_10_1186_s40529_022_00349_6 crossref_primary_10_1038_s41429_021_00463_w crossref_primary_10_1038_s41598_024_57852_y crossref_primary_10_1021_acs_analchem_7b02544 crossref_primary_10_1016_j_redox_2017_11_003 crossref_primary_10_1177_0963689719891134 crossref_primary_10_1016_j_dci_2023_104691 crossref_primary_10_1074_jbc_R118_003214 crossref_primary_10_1074_jbc_RA118_001824 crossref_primary_10_1073_pnas_2201247119 crossref_primary_10_1007_s12038_019_9908_0 crossref_primary_10_1016_j_redox_2016_10_006 crossref_primary_10_1016_j_jcyt_2017_09_011 crossref_primary_10_3390_antiox7110159 crossref_primary_10_3390_ijerph16020180 crossref_primary_10_1158_0008_5472_CAN_18_2086 crossref_primary_10_18632_aging_103304 crossref_primary_10_3389_fcell_2017_00065 crossref_primary_10_1038_s41598_019_49841_3 crossref_primary_10_3389_fphar_2022_830554 crossref_primary_10_1016_j_freeradbiomed_2018_03_039 crossref_primary_10_1016_j_scienta_2019_05_042 crossref_primary_10_1101_cshperspect_a027698 crossref_primary_10_3390_atmos13091500 crossref_primary_10_3389_fimmu_2020_561724 crossref_primary_10_3390_antiox10071032 crossref_primary_10_3390_ijms20153673 crossref_primary_10_1021_acscentsci_0c01624 crossref_primary_10_1099_jmm_0_001542 crossref_primary_10_1016_j_redox_2017_01_003 crossref_primary_10_1016_j_pnpbp_2021_110481 crossref_primary_10_1007_s11064_016_1991_0 crossref_primary_10_1016_j_bbagen_2017_09_011 crossref_primary_10_1016_j_jddst_2023_104240 crossref_primary_10_1016_j_jconrel_2017_04_023 crossref_primary_10_1021_acs_analchem_7b04074 crossref_primary_10_1089_ars_2019_7962 crossref_primary_10_1016_j_freeradbiomed_2021_01_054 crossref_primary_10_1038_srep33133 crossref_primary_10_1134_S0006297920140047 crossref_primary_10_1146_annurev_pharmtox_012221_082339 crossref_primary_10_1016_j_semcdb_2017_09_019 crossref_primary_10_1111_febs_16466 crossref_primary_10_3389_fphys_2022_1004275 crossref_primary_10_3390_antiox9050434 crossref_primary_10_1016_j_freeradbiomed_2018_11_034 crossref_primary_10_1038_s41580_024_00730_2 crossref_primary_10_3389_fcvm_2017_00038 crossref_primary_10_3389_fcvm_2021_624796 crossref_primary_10_1089_ars_2016_6922 crossref_primary_10_1016_j_jbc_2024_105761 crossref_primary_10_1016_j_redox_2019_101227 crossref_primary_10_1016_j_freeradbiomed_2018_01_008 crossref_primary_10_1111_apha_14081 crossref_primary_10_1016_j_pnpbp_2018_08_013 crossref_primary_10_1071_FP16322 crossref_primary_10_1089_ars_2018_7515 crossref_primary_10_1016_j_freeradbiomed_2023_08_015 crossref_primary_10_1038_nchembio_2536 crossref_primary_10_1155_2017_8459402 crossref_primary_10_1016_j_jpsychires_2021_10_021 crossref_primary_10_1016_j_redox_2017_01_025 crossref_primary_10_1016_j_freeradbiomed_2019_05_035 crossref_primary_10_3390_w14244026 crossref_primary_10_1089_ars_2019_7985 crossref_primary_10_1016_j_cbpa_2024_102496 crossref_primary_10_1007_s11010_019_03593_w crossref_primary_10_1038_s41467_021_22561_x crossref_primary_10_1186_s12903_019_0877_3 crossref_primary_10_1016_j_aca_2019_10_022 crossref_primary_10_1089_ars_2020_8176 crossref_primary_10_14814_phy2_15137 crossref_primary_10_3390_microorganisms8111791 crossref_primary_10_1016_j_neuroscience_2023_12_002 crossref_primary_10_1016_j_freeradbiomed_2024_04_004 crossref_primary_10_1016_j_redox_2019_101340 crossref_primary_10_3390_molecules25184338 crossref_primary_10_3390_pathogens12101273 crossref_primary_10_1002_adfm_202113028 crossref_primary_10_1111_1440_1681_13585 crossref_primary_10_1016_j_freeradbiomed_2022_04_001 crossref_primary_10_1155_2019_4721950 crossref_primary_10_1089_ars_2017_7167 crossref_primary_10_3892_etm_2017_5220 crossref_primary_10_1016_j_freeradbiomed_2020_06_020 crossref_primary_10_1089_ars_2017_6997 crossref_primary_10_1007_s12551_021_00899_2 crossref_primary_10_14341_omet12804 crossref_primary_10_1089_ars_2022_0074 crossref_primary_10_1016_j_redox_2017_11_014 crossref_primary_10_1016_j_freeradbiomed_2016_04_199 crossref_primary_10_1016_j_biologicals_2022_08_004 crossref_primary_10_3390_molecules26072000 crossref_primary_10_22175_mmb_14492 crossref_primary_10_3390_ijms222312888 crossref_primary_10_1016_j_bbadis_2016_10_017 crossref_primary_10_1074_jbc_RA119_008825 crossref_primary_10_1080_10715762_2018_1457217 crossref_primary_10_1089_ars_2017_7162 crossref_primary_10_3390_antiox10010039 crossref_primary_10_3390_ijms18061126 crossref_primary_10_1111_nph_19018 crossref_primary_10_1089_ars_2017_7214 crossref_primary_10_3390_antiox7120177 crossref_primary_10_1016_j_teac_2023_e00196 crossref_primary_10_3390_ijms242216169 crossref_primary_10_1111_jcmm_12955 crossref_primary_10_1038_s41598_018_29163_6 crossref_primary_10_3390_antiox9040276 crossref_primary_10_1371_journal_pone_0274226 crossref_primary_10_3390_ijms21051880 crossref_primary_10_3389_fphys_2017_00439 crossref_primary_10_1007_s12551_023_01116_y crossref_primary_10_1016_j_freeradbiomed_2019_01_038 crossref_primary_10_1016_j_abb_2016_09_011 crossref_primary_10_1016_j_bbagen_2020_129781 crossref_primary_10_1371_journal_pcbi_1005284 crossref_primary_10_1016_j_freeradbiomed_2017_10_378 crossref_primary_10_3389_fpls_2020_00211 crossref_primary_10_1371_journal_pone_0228134 crossref_primary_10_1016_j_ijbiomac_2020_01_114 crossref_primary_10_1016_j_freeradbiomed_2020_06_015 crossref_primary_10_1016_j_redox_2019_101200 crossref_primary_10_3390_ijms21239317 crossref_primary_10_1155_2021_6639199 crossref_primary_10_1002_1873_3468_13753 crossref_primary_10_36604_1998_5029_2019_73_112_124 |
Cites_doi | 10.1161/CIRCRESAHA.112.267054 10.1074/jbc.M807583200 10.1016/j.jmb.2012.09.008 10.1016/S0891-5849(99)00051-9 10.1089/ars.2009.2683 10.1074/jbc.M700339200 10.1038/nchembio.85 10.1016/j.cell.2010.01.009 10.1016/S0303-7207(02)00178-8 10.1089/ars.2006.8.1865 10.1128/EC.00106-09 10.1089/ars.2010.3539 10.1089/ars.2010.3611 10.1073/pnas.96.11.6161 10.1146/annurev-genet-102108-134201 10.1021/tx100413v 10.1016/S0021-9258(18)47038-X 10.1371/journal.pone.0108123 10.1074/jbc.R111.283432 10.1016/S0092-8674(02)01048-6 10.1016/j.freeradbiomed.2008.05.004 10.1074/jbc.273.25.15366 10.1016/j.celrep.2013.11.027 10.1089/ars.2011.4258 10.1016/j.redox.2014.01.015 10.1073/pnas.1005776107 10.1089/ars.2010.3393 10.1074/jbc.M211107200 10.1016/j.freeradbiomed.2008.10.039 10.3389/fchem.2014.00082 10.1089/ars.2010.3624 10.1021/bi400451m 10.1016/j.freeradbiomed.2012.08.001 10.1152/ajpheart.01162.2006 10.1073/pnas.1504376112 10.1038/nchembio.736 10.1074/jbc.M112.414524 10.1073/pnas.1302891110 10.1074/jbc.M303542200 10.1016/j.celrep.2013.10.036 10.1073/pnas.0407396101 10.1126/science.1080405 10.1074/jbc.M113.512384 10.1083/jcb.200709049 10.1074/jbc.M311818200 10.1089/ars.2011.4322 10.1038/nchembio.1695 10.1074/jbc.M115.692798 10.1038/nsmb856 10.1016/j.cell.2004.05.002 10.1021/bi050448i 10.1101/gad.200006.112 10.1016/S0006-8993(02)04243-9 10.1016/S1097-2765(02)00445-8 10.1016/j.freeradbiomed.2006.10.042 10.1074/jbc.R113.544635 10.1038/onc.2012.624 10.1002/prot.22936 10.1074/jbc.C100109200 10.1038/emboj.2009.101 10.1093/emboj/17.9.2596 10.1093/nar/20.15.3821 10.1038/nchembio.1720 10.1021/bi973035t 10.1016/j.redox.2014.02.006 10.1073/pnas.1010721108 10.1074/jbc.M109.059246 10.1016/j.freeradbiomed.2011.02.020 10.1074/jbc.M113.495150 10.1016/j.freeradbiomed.2007.07.014 10.1111/j.1432-1033.1969.tb00721.x 10.1007/978-94-007-4716-6 10.1016/j.abb.2007.08.008 10.1007/s00125-014-3278-9 |
ContentType | Journal Article |
Copyright | The Korean Society for Molecular and Cellular Biology. All rights reserved. 2016 |
Copyright_xml | – notice: The Korean Society for Molecular and Cellular Biology. All rights reserved. 2016 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 5PM ACYCR |
DOI | 10.14348/molcells.2016.2349 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef PubMed Central (Full Participant titles) Korean Citation Index |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 0219-1032 |
EndPage | 71 |
ExternalDocumentID | oai_kci_go_kr_ARTI_71350 10_14348_molcells_2016_2349 26813662 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | .UV ALMA_UNASSIGNED_HOLDINGS CGR CUY CVF ECM EIF NPM --- 0R~ 0SF 0VY 123 1N0 29M 2VQ 2WC 30V 3V. 4.4 408 40D 53G 5VS 67N 67Z 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95. 9ZL AALRI AARHV AAXUO AAYXX ABDBF ABJNI ABMNI ABTEG ABUWG ACBXY ACGFO ACGFS ACPRK ACREN ADBBV ADINQ ADKPE ADVLN AENEX AFGCZ AFJKZ AFKRA AFLOW AGJBK AHBYD AHMBA AHSBF AITUG AKRWK ALIPV AMKLP AMRAJ AMTXH AOIJS ASPBG AVWKF AZFZN BBNVY BENPR BGNMA BHPHI BPHCQ BVBZV BVXVI CAG CCPQU CITATION COF CS3 CSCUP DU5 E3Z EAD EAP EBC EBD EBS EJD EMK EMOBN EST ESX F5P FDB FYUFA GX1 H13 HCIFZ HF~ HG6 HH5 HMCUK HMJXF HYE HZ~ I09 I0C IXC I~X JDI KDC KOV KVFHK LAS LK8 M0L M1P M41 M4Y M7P MA- NU0 OK1 P2P PQQKQ PROAC PSQYO Q2X R9I ROL RPM RSV S1Z S27 S3A S3B SBL SDH SJN SOJ SV3 T13 TSK TUS U2A UKHRP VC2 WK8 Z45 ~A9 5PM ACYCR AFNRJ |
ID | FETCH-LOGICAL-c503t-b1788e90f36b4915af212268d007ad7f3bc70a54c6f2a12fcc9f7b1a39fb1f6b3 |
IEDL.DBID | RPM |
ISSN | 1016-8478 |
IngestDate | Fri Apr 19 03:47:34 EDT 2024 Tue Sep 17 20:39:36 EDT 2024 Thu Sep 26 19:32:52 EDT 2024 Tue Oct 29 09:29:11 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Peroxiredoxin thiol H2O2 signal transduction thiol-disulfide exchange thioredoxin |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c503t-b1788e90f36b4915af212268d007ad7f3bc70a54c6f2a12fcc9f7b1a39fb1f6b3 |
Notes | G704-000079.2016.39.1.011 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749877/ |
PMID | 26813662 |
PageCount | 7 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_71350 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4749877 crossref_primary_10_14348_molcells_2016_2349 pubmed_primary_26813662 |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecules and cells |
PublicationTitleAlternate | Mol Cells |
PublicationYear | 2016 |
Publisher | Korean Society for Molecular and Cellular Biology 한국분자세포생물학회 |
Publisher_xml | – name: Korean Society for Molecular and Cellular Biology – name: 한국분자세포생물학회 |
References | Lee (10.14348/molcells.2016.2349_bib35) 2013; 18 Peskin (10.14348/molcells.2016.2349_bib58) 2016 Pedroso (10.14348/molcells.2016.2349_bib55) 2009; 46 Veal (10.14348/molcells.2016.2349_bib74) 2003; 278 Kwon (10.14348/molcells.2016.2349_bib32) 2004; 101 Aslund (10.14348/molcells.2016.2349_bib3) 1999; 96 MacDiarmid (10.14348/molcells.2016.2349_bib37) 2013; 288 Toledo (10.14348/molcells.2016.2349_bib71) 2011; 50 Nyström (10.14348/molcells.2016.2349_bib48) 2012; 26 Harald (10.14348/molcells.2016.2349_bib25) 2015; 10 Mahadev (10.14348/molcells.2016.2349_bib38) 2001; 276 Winterbourn (10.14348/molcells.2016.2349_bib76) 2008; 4 Boronat (10.14348/molcells.2016.2349_bib7) 2014; 2 Branco (10.14348/molcells.2016.2349_bib8) 2004; 279 Meng (10.14348/molcells.2016.2349_bib41) 2002; 9 Biteau (10.14348/molcells.2016.2349_bib5) 2003; 425 Marinho (10.14348/molcells.2016.2349_bib39) 2014; 2 Hall (10.14348/molcells.2016.2349_bib23) 2011; 15 Netto (10.14348/molcells.2016.2349_bib47) 2015; 16 Sobotta (10.14348/molcells.2016.2349_bib67) 2015; 11 Delaunay (10.14348/molcells.2016.2349_bib17) 2002; 111 Kaszubska (10.14348/molcells.2016.2349_bib30) 2002; 195 Woo (10.14348/molcells.2016.2349_bib79) 2010; 140 Fomenko (10.14348/molcells.2016.2349_bib21) 2011; 108 Turner-Ivey (10.14348/molcells.2016.2349_bib73) 2013; 32 Chae (10.14348/molcells.2016.2349_bib13) 1994; 269 Tairum (10.14348/molcells.2016.2349_bib69) 2012; 424 Matthews (10.14348/molcells.2016.2349_bib40) 1992; 20 Winterbourn (10.14348/molcells.2016.2349_bib78) 1999; 27 Ogusucu (10.14348/molcells.2016.2349_bib49) 2007; 42 Oliveira (10.14348/molcells.2016.2349_bib50) 2010; 49 10.14348/molcells.2016.2349_bib66 10.14348/molcells.2016.2349_bib26 Krapfenbauer (10.14348/molcells.2016.2349_bib31) 2003; 967 Trujillo (10.14348/molcells.2016.2349_bib72) 2007; 467 Winterbourn (10.14348/molcells.2016.2349_bib77) 2008; 45 Lee (10.14348/molcells.2016.2349_bib33) 1998; 273 Day (10.14348/molcells.2016.2349_bib16) 2012; 45 Schröder (10.14348/molcells.2016.2349_bib64) 2012; 110 Brito (10.14348/molcells.2016.2349_bib9) 2014; 2 Miller (10.14348/molcells.2016.2349_bib43) 2010; 107 Jarvis (10.14348/molcells.2016.2349_bib28) 2012; 53 Wood (10.14348/molcells.2016.2349_bib80) 2003; 300 Boisnard (10.14348/molcells.2016.2349_bib6) 2009; 8 Ferrer-Sueta (10.14348/molcells.2016.2349_bib20) 2011; 24 Hayashi (10.14348/molcells.2016.2349_bib24) 1993; 268 Dagnell (10.14348/molcells.2016.2349_bib15) 2013; 110 Watson (10.14348/molcells.2016.2349_bib75) 2003; 278 Parsonage (10.14348/molcells.2016.2349_bib52) 2005; 44 Paulsen (10.14348/molcells.2016.2349_bib54) 2012; 8 Cao (10.14348/molcells.2016.2349_bib12) 2009; 28 Jones (10.14348/molcells.2016.2349_bib29) 2006; 8 Jang (10.14348/molcells.2016.2349_bib27) 2004; 117 Ying (10.14348/molcells.2016.2349_bib81) 2007; 43 Tanner (10.14348/molcells.2016.2349_bib70) 2011; 15 Parsons (10.14348/molcells.2016.2349_bib53) 2013; 52 Mishina (10.14348/molcells.2016.2349_bib44) 2011; 14 Rhee (10.14348/molcells.2016.2349_bib62) 2012; 287 Peskin (10.14348/molcells.2016.2349_bib57) 2007; 282 Denu (10.14348/molcells.2016.2349_bib18) 1998; 37 Nelson (10.14348/molcells.2016.2349_bib45) 2011; 79 Saitoh (10.14348/molcells.2016.2349_bib63) 1998; 17 Sies (10.14348/molcells.2016.2349_bib65) 2014; 289 Gutscher (10.14348/molcells.2016.2349_bib22) 2009; 284 Rhee (10.14348/molcells.2016.2349_bib61) 2011; 15 Calvo (10.14348/molcells.2016.2349_bib11) 2013; 5 Du (10.14348/molcells.2016.2349_bib19) 2013; 288 Palde (10.14348/molcells.2016.2349_bib51) 2015; 112 Netto (10.14348/molcells.2016.2349_bib46) 1996; 271 Lee (10.14348/molcells.2016.2349_bib34) 2004; 11 Little (10.14348/molcells.2016.2349_bib36) 1969; 10 Brown (10.14348/molcells.2016.2349_bib10) 2013; 5 Chen (10.14348/molcells.2016.2349_bib14) 2008; 181 Peralta (10.14348/molcells.2016.2349_bib56) 2015; 11 Rawat (10.14348/molcells.2016.2349_bib59) 2013; 288 Ragu (10.14348/molcells.2016.2349_bib60) 2014; 9 Berndt (10.14348/molcells.2016.2349_bib4) 2007; 292 Tachibana (10.14348/molcells.2016.2349_bib68) 2009; 284 Abbasi (10.14348/molcells.2016.2349_bib1) 2014; 57 Ahsan (10.14348/molcells.2016.2349_bib2) 2009; 11 Meyer (10.14348/molcells.2016.2349_bib42) 2009; 43 |
References_xml | – volume: 110 start-page: 1217 year: 2012 ident: 10.14348/molcells.2016.2349_bib64 article-title: Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.112.267054 contributor: fullname: Schröder – volume: 284 start-page: 4464 year: 2009 ident: 10.14348/molcells.2016.2349_bib68 article-title: A major peroxiredoxin-induced activation of Yap1 transcription factor is mediated by reduction-sensitive disulfide bonds and reveals a low level of transcriptional activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M807583200 contributor: fullname: Tachibana – volume: 424 start-page: 28 year: 2012 ident: 10.14348/molcells.2016.2349_bib69 article-title: Disulfide biochemistry in 2-cys peroxiredoxin: requirement of Glu50 and Arg146 for the reduction of yeast Tsa1 by thioredoxin publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2012.09.008 contributor: fullname: Tairum – volume: 27 start-page: 322 year: 1999 ident: 10.14348/molcells.2016.2349_bib78 article-title: Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(99)00051-9 contributor: fullname: Winterbourn – volume: 11 start-page: 2741 year: 2009 ident: 10.14348/molcells.2016.2349_bib2 article-title: Redox regulation of cell survival by the thioredoxin superfamily: an implication of redox gene therapy in the heart Antioxid publication-title: Redox Signal. doi: 10.1089/ars.2009.2683 contributor: fullname: Ahsan – volume: 282 start-page: 11885 year: 2007 ident: 10.14348/molcells.2016.2349_bib57 article-title: The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents publication-title: J. Biol. Chem. doi: 10.1074/jbc.M700339200 contributor: fullname: Peskin – volume: 4 start-page: 278 year: 2008 ident: 10.14348/molcells.2016.2349_bib76 article-title: Reconciling the chemistry and biology of reactive oxygen species publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.85 contributor: fullname: Winterbourn – volume: 140 start-page: 517 year: 2010 ident: 10.14348/molcells.2016.2349_bib79 article-title: Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling publication-title: Cell doi: 10.1016/j.cell.2010.01.009 contributor: fullname: Woo – volume: 425 start-page: 980 year: 2003 ident: 10.14348/molcells.2016.2349_bib5 article-title: ATP-dependent reduction of cysteine-sulphinic acid by S publication-title: cerevisiae sulphire- doxin. Nature contributor: fullname: Biteau – volume: 195 start-page: 109 year: 2002 ident: 10.14348/molcells.2016.2349_bib30 article-title: Protein tyrosine phosphatase 1B negatively regulates leptin signaling in a hypothalamic cell line publication-title: Mol. Cell. Endocrinol. doi: 10.1016/S0303-7207(02)00178-8 contributor: fullname: Kaszubska – volume: 8 start-page: 1865 year: 2006 ident: 10.14348/molcells.2016.2349_bib29 article-title: Redefining oxidative stress publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2006.8.1865 contributor: fullname: Jones – volume: 8 start-page: 1429 year: 2009 ident: 10.14348/molcells.2016.2349_bib6 article-title: H2O2 activates the nuclear localization of Msn2 and Maf1 through thioredoxins in Saccharomyces cerevisiae publication-title: Eukaryot. Cell doi: 10.1128/EC.00106-09 contributor: fullname: Boisnard – volume: 14 start-page: 1 year: 2011 ident: 10.14348/molcells.2016.2349_bib44 article-title: Does cellular hydrogen peroxide diffuse or act locally? Antioxid publication-title: Redox Signal. doi: 10.1089/ars.2010.3539 contributor: fullname: Mishina – volume: 49 start-page: 3317 year: 2010 ident: 10.14348/molcells.2016.2349_bib50 article-title: Insights into the specificity of thioredoxin reductase-thioredoxin interactions publication-title: A structural and functional investigation of the yeast thioredoxin system. Biochemistry contributor: fullname: Oliveira – volume: 15 start-page: 77 year: 2011 ident: 10.14348/molcells.2016.2349_bib70 article-title: Redox regulation of protein tyrosine phosphatases: structural and chemical aspects publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2010.3611 contributor: fullname: Tanner – volume: 96 start-page: 6161 year: 1999 ident: 10.14348/molcells.2016.2349_bib3 article-title: Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.11.6161 contributor: fullname: Aslund – volume: 43 start-page: 335 year: 2009 ident: 10.14348/molcells.2016.2349_bib42 article-title: Thioredoxins and glutaredoxins: unifying elements in redox biology publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-102108-134201 contributor: fullname: Meyer – volume: 24 start-page: 434 year: 2011 ident: 10.14348/molcells.2016.2349_bib20 article-title: Factors affecting protein thiol reactivity and specificity in peroxide reduction publication-title: Chem. Res. Toxicol. doi: 10.1021/tx100413v contributor: fullname: Ferrer-Sueta – volume: 269 start-page: 27670 year: 1994 ident: 10.14348/molcells.2016.2349_bib13 article-title: Thioredoxin- dependent peroxide reductase from yeast publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)47038-X contributor: fullname: Chae – volume: 9 start-page: e108123 year: 2014 ident: 10.14348/molcells.2016.2349_bib60 article-title: Loss of the thioredoxin reductase Trr1 suppresses the genomic instability of peroxiredoxin tsa1 mutants publication-title: PLoS One doi: 10.1371/journal.pone.0108123 contributor: fullname: Ragu – volume: 287 start-page: 4403 year: 2012 ident: 10.14348/molcells.2016.2349_bib62 article-title: Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides J publication-title: Biol. Chem. doi: 10.1074/jbc.R111.283432 contributor: fullname: Rhee – volume: 111 start-page: 471 year: 2002 ident: 10.14348/molcells.2016.2349_bib17 article-title: A thiol peroxidase is an H2O2 receptor and redoxtransducer in gene activation publication-title: Cell doi: 10.1016/S0092-8674(02)01048-6 contributor: fullname: Delaunay – volume: 45 start-page: 549 year: 2008 ident: 10.14348/molcells.2016.2349_bib77 article-title: Thiol chemistry and specificity in redox signaling publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2008.05.004 contributor: fullname: Winterbourn – volume: 273 start-page: 15366 year: 1998 ident: 10.14348/molcells.2016.2349_bib33 article-title: Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.25.15366 contributor: fullname: Lee – volume: 5 start-page: 1413 year: 2013 ident: 10.14348/molcells.2016.2349_bib11 article-title: Dissection of a redox relay: H2O2-dependent activation of the transcription factor Pap1 through the peroxidatic Tpx1-thioredoxin cycle publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.11.027 contributor: fullname: Calvo – ident: 10.14348/molcells.2016.2349_bib26 doi: 10.1089/ars.2011.4258 – volume: 2 start-page: 395 year: 2014 ident: 10.14348/molcells.2016.2349_bib7 article-title: Thiol-based H2O2 signalling in microbial systems publication-title: Redox Biol. doi: 10.1016/j.redox.2014.01.015 contributor: fullname: Boronat – volume: 107 start-page: 15681 year: 2010 ident: 10.14348/molcells.2016.2349_bib43 article-title: Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1005776107 contributor: fullname: Miller – volume: 15 start-page: 781 year: 2011 ident: 10.14348/molcells.2016.2349_bib61 article-title: Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H2O2, and protein chaperones publication-title: Antioxid. Redox Signal doi: 10.1089/ars.2010.3393 contributor: fullname: Rhee – volume: 278 start-page: 33408 year: 2003 ident: 10.14348/molcells.2016.2349_bib75 article-title: Redox potential of human thioredoxin 1 and identification of a second dithiol/disulfide motif publication-title: J. Biol. Chem. doi: 10.1074/jbc.M211107200 contributor: fullname: Watson – volume: 46 start-page: 289 year: 2009 ident: 10.14348/molcells.2016.2349_bib55 article-title: Modulation of plasma membrane lipid profile and microdomains by H2O2 in Saccharomyces cerevisiae publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2008.10.039 contributor: fullname: Pedroso – volume: 2 start-page: 82 year: 2014 ident: 10.14348/molcells.2016.2349_bib9 article-title: Estimation of kinetic parameters related to biochemical interactions between hydrogen peroxide and signal transduction proteins publication-title: Front Chem. doi: 10.3389/fchem.2014.00082 contributor: fullname: Brito – volume: 15 start-page: 795 year: 2011 ident: 10.14348/molcells.2016.2349_bib23 article-title: Structurebased insights into the catalytic power and conformational dexterity of peroxiredoxins publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2010.3624 contributor: fullname: Hall – volume: 268 start-page: 11380 year: 1993 ident: 10.14348/molcells.2016.2349_bib24 article-title: Oxidoreductive regulation of nuclear factor kappa B publication-title: Involvement of a cellular reducing catalyst thioredoxin. J. Biol. Chem. contributor: fullname: Hayashi – volume: 52 start-page: 6412 year: 2013 ident: 10.14348/molcells.2016.2349_bib53 article-title: Thiol-dependent recovery of catalytic activity from oxidized protein tyrosine phosphatases publication-title: Biochemistry doi: 10.1021/bi400451m contributor: fullname: Parsons – volume: 53 start-page: 1522 year: 2012 ident: 10.14348/molcells.2016.2349_bib28 article-title: Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2012.08.001 contributor: fullname: Jarvis – volume: 292 start-page: H1227 year: 2007 ident: 10.14348/molcells.2016.2349_bib4 article-title: Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.01162.2006 contributor: fullname: Berndt – volume: 112 start-page: 7960 year: 2015 ident: 10.14348/molcells.2016.2349_bib51 article-title: A universal entropy-driven mechanism for thioredoxin-target recognition publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1504376112 contributor: fullname: Palde – volume: 8 start-page: 57 year: 2012 ident: 10.14348/molcells.2016.2349_bib54 article-title: Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.736 contributor: fullname: Paulsen – volume: 288 start-page: 8762 year: 2013 ident: 10.14348/molcells.2016.2349_bib59 article-title: The tumor suppressor Mst1 promotes changes in the cellular redox state by phosphorylation and inactivation of peroxiredoxin- 1 protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.414524 contributor: fullname: Rawat – volume: 10 start-page: 1130 year: 2015 ident: 10.14348/molcells.2016.2349_bib25 article-title: Antioxidants in translational medicine publication-title: Antioxid. Redox Signal. contributor: fullname: Harald – volume: 45 start-page: 398 year: 2012 ident: 10.14348/molcells.2016.2349_bib16 article-title: Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival. Mol publication-title: Cell contributor: fullname: Day – volume: 110 start-page: 13398 year: 2013 ident: 10.14348/molcells.2016.2349_bib15 article-title: Selective activation of oxidized PTP1B by the thioredoxin system modulates PDGF-receptor tyrosine kinase signaling publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1302891110 contributor: fullname: Dagnell – volume: 271 start-page: 15315 year: 1996 ident: 10.14348/molcells.2016.2349_bib46 article-title: Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties publication-title: TSA possesses thiol peroxidase activity. J. Biol. Chem. contributor: fullname: Netto – volume: 278 start-page: 30896 year: 2003 ident: 10.14348/molcells.2016.2349_bib74 article-title: Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor publication-title: J. Biol. Chem. doi: 10.1074/jbc.M303542200 contributor: fullname: Veal – volume: 5 start-page: 1425 year: 2013 ident: 10.14348/molcells.2016.2349_bib10 article-title: A peroxiredoxin promotes H2O2 signaling and oxidative stress resistance by oxidizing a thioredoxin family protein publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.10.036 contributor: fullname: Brown – volume: 101 start-page: 16419 year: 2004 ident: 10.14348/molcells.2016.2349_bib32 article-title: Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0407396101 contributor: fullname: Kwon – volume: 300 start-page: 650 year: 2003 ident: 10.14348/molcells.2016.2349_bib80 article-title: Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling publication-title: Science doi: 10.1126/science.1080405 contributor: fullname: Wood – volume: 288 start-page: 31313 year: 2013 ident: 10.14348/molcells.2016.2349_bib37 article-title: Peroxiredoxin chaperone activity is critical for protein homeostasis in zinc-deficient yeast publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.512384 contributor: fullname: MacDiarmid – volume: 181 start-page: 1129 year: 2008 ident: 10.14348/molcells.2016.2349_bib14 article-title: Regulation of ROS signal transduction by NADPH oxidase 4 localization publication-title: J. Cell Biol. doi: 10.1083/jcb.200709049 contributor: fullname: Chen – volume: 279 start-page: 6501 year: 2004 ident: 10.14348/molcells.2016.2349_bib8 article-title: Decrease of H2O2 plasma membrane permeability during adaptation to H2O2 in Saccharomyces cerevisiae publication-title: J. Biol. Chem. doi: 10.1074/jbc.M311818200 contributor: fullname: Branco – volume: 18 start-page: 1165 year: 2013 ident: 10.14348/molcells.2016.2349_bib35 article-title: Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance publication-title: Antioxid. Redox Signal doi: 10.1089/ars.2011.4322 contributor: fullname: Lee – volume: 16 start-page: 1 year: 2015 ident: 10.14348/molcells.2016.2349_bib47 article-title: Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions publication-title: Free Radic. Res. contributor: fullname: Netto – volume: 11 start-page: 64 year: 2015 ident: 10.14348/molcells.2016.2349_bib67 article-title: Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1695 contributor: fullname: Sobotta – year: 2016 ident: 10.14348/molcells.2016.2349_bib58 article-title: Glutathionylation of the active site cysteines of peroxiredoxin 2 and recycling by glutaredoxin publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.692798 contributor: fullname: Peskin – volume: 11 start-page: 1179 year: 2004 ident: 10.14348/molcells.2016.2349_bib34 article-title: Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb856 contributor: fullname: Lee – volume: 117 start-page: 625 year: 2004 ident: 10.14348/molcells.2016.2349_bib27 article-title: Two enzymes in one: two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function publication-title: Cell doi: 10.1016/j.cell.2004.05.002 contributor: fullname: Jang – volume: 44 start-page: 10583 year: 2005 ident: 10.14348/molcells.2016.2349_bib52 article-title: Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin publication-title: Biochemistry doi: 10.1021/bi050448i contributor: fullname: Parsonage – volume: 26 start-page: 2001 year: 2012 ident: 10.14348/molcells.2016.2349_bib48 article-title: Peroxiredoxins, geron- togenes linking aging to genome instability and cancer publication-title: Genes Dev. doi: 10.1101/gad.200006.112 contributor: fullname: Nyström – volume: 967 start-page: 152 year: 2003 ident: 10.14348/molcells.2016.2349_bib31 article-title: Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders publication-title: Brain Res. doi: 10.1016/S0006-8993(02)04243-9 contributor: fullname: Krapfenbauer – volume: 9 start-page: 387 year: 2002 ident: 10.14348/molcells.2016.2349_bib41 article-title: Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo publication-title: Mol. Cell doi: 10.1016/S1097-2765(02)00445-8 contributor: fullname: Meng – volume: 42 start-page: 326 year: 2007 ident: 10.14348/molcells.2016.2349_bib49 article-title: Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2006.10.042 contributor: fullname: Ogusucu – volume: 289 start-page: 8735 year: 2014 ident: 10.14348/molcells.2016.2349_bib65 article-title: Role of metabolic H2O2 generation: redox signaling and oxidative stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.R113.544635 contributor: fullname: Sies – volume: 32 start-page: 5302 year: 2013 ident: 10.14348/molcells.2016.2349_bib73 article-title: Role for Prdx1 as a specific sensor in redox-regulated senescence in breast cancer publication-title: Oncogene doi: 10.1038/onc.2012.624 contributor: fullname: Turner-Ivey – volume: 79 start-page: 947 year: 2011 ident: 10.14348/molcells.2016.2349_bib45 article-title: Analysis of the peroxiredoxin family: using active-site structure and sequence information for global classification and residue analysis publication-title: Proteins doi: 10.1002/prot.22936 contributor: fullname: Nelson – volume: 276 start-page: 21938 year: 2001 ident: 10.14348/molcells.2016.2349_bib38 article-title: Insulin-stimulated hydrogen peroxide reversibly inhibits proteintyrosine phosphatase 1b in vivo and enhances the early insulin action cascade publication-title: J. Biol. Chem. doi: 10.1074/jbc.C100109200 contributor: fullname: Mahadev – volume: 28 start-page: 1505 year: 2009 ident: 10.14348/molcells.2016.2349_bib12 article-title: Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity publication-title: EMBO J. doi: 10.1038/emboj.2009.101 contributor: fullname: Cao – volume: 17 start-page: 2596 year: 1998 ident: 10.14348/molcells.2016.2349_bib63 article-title: Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) publication-title: EMBO J. doi: 10.1093/emboj/17.9.2596 contributor: fullname: Saitoh – volume: 20 start-page: 3821 year: 1992 ident: 10.14348/molcells.2016.2349_bib40 article-title: Thioredoxin regulates the DNA binding activity of NF-κB by reduction of a disulphide bond involving cysteine 62 publication-title: Nucleic Acids Res. doi: 10.1093/nar/20.15.3821 contributor: fullname: Matthews – volume: 11 start-page: 156 year: 2015 ident: 10.14348/molcells.2016.2349_bib56 article-title: A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1720 contributor: fullname: Peralta – volume: 37 start-page: 5633 year: 1998 ident: 10.14348/molcells.2016.2349_bib18 article-title: Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation publication-title: Biochemistry doi: 10.1021/bi973035t contributor: fullname: Denu – volume: 2 start-page: 535 year: 2014 ident: 10.14348/molcells.2016.2349_bib39 article-title: Hydrogen peroxide sensing, signaling and regulation of transcription factors publication-title: Redox Biol. doi: 10.1016/j.redox.2014.02.006 contributor: fullname: Marinho – volume: 108 start-page: 2729 year: 2011 ident: 10.14348/molcells.2016.2349_bib21 article-title: Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1010721108 contributor: fullname: Fomenko – volume: 284 start-page: 31532 year: 2009 ident: 10.14348/molcells.2016.2349_bib22 article-title: Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.059246 contributor: fullname: Gutscher – volume: 50 start-page: 1032 year: 2011 ident: 10.14348/molcells.2016.2349_bib71 article-title: Horseradish peroxidase compound I as a tool to investigate reactive protein-cysteine residues: from quantification to kinetics publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2011.02.020 contributor: fullname: Toledo – volume: 288 start-page: 32241 year: 2013 ident: 10.14348/molcells.2016.2349_bib19 article-title: Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.495150 contributor: fullname: Du – volume: 43 start-page: 1099 year: 2007 ident: 10.14348/molcells.2016.2349_bib81 article-title: Thiol oxidation in signaling and response to stress: detection and quantification of physiological and pathophysiological thiol modifications publication-title: Free Radic. Biol. Med doi: 10.1016/j.freeradbiomed.2007.07.014 contributor: fullname: Ying – volume: 10 start-page: 533 year: 1969 ident: 10.14348/molcells.2016.2349_bib36 article-title: Mechanism of peroxideinactivation of the sulphydryl enzyme glyceraldehyde-3- phophate dehydrogenase publication-title: Eur. J. Biochem doi: 10.1111/j.1432-1033.1969.tb00721.x contributor: fullname: Little – ident: 10.14348/molcells.2016.2349_bib66 doi: 10.1007/978-94-007-4716-6 – volume: 467 start-page: 95 year: 2007 ident: 10.14348/molcells.2016.2349_bib72 article-title: Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2007.08.008 contributor: fullname: Trujillo – volume: 57 start-page: 1842 year: 2014 ident: 10.14348/molcells.2016.2349_bib1 article-title: Circulating peroxiredoxin 4 and type 2 diabetes risk: the Prevention of Renal and Vascular Endstage Disease (PREVEND) study publication-title: Diabetologia doi: 10.1007/s00125-014-3278-9 contributor: fullname: Abbasi |
SSID | ssib049006238 ssib053376808 ssj0017628 |
Score | 2.5448556 |
SecondaryResourceType | review_article |
Snippet | A challenge in the redox field is the elucidation of the molecular mechanisms, by which H2O2 mediates signal transduction in cells. This is relevant since... A challenge in the redox field is the elucidation of the molecular mechanisms, by which H 2 O 2 mediates signal transduction in cells. This is relevant since... |
SourceID | nrf pubmedcentral crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 65 |
SubjectTerms | Hydrogen Peroxide - metabolism Kinetics Minireview Models, Biological Peroxiredoxins - metabolism Signal Transduction Thioredoxins - metabolism 생물학 |
Title | The Roles of Peroxiredoxin and Thioredoxin in Hydrogen Peroxide Sensing and in Signal Transduction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26813662 https://pubmed.ncbi.nlm.nih.gov/PMC4749877 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002077295 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Molecules and Cells, 2016, 39(1), , pp.65-71 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbZQKGX0qav7SPokGO9a1uyZB9DaNgENixNFnIT1mtjkpWD2UDy7zvjxza-FoyN8Vi2RmPPjDTzDSEnjDkncVWX58xGnEsdaeeKCJR37LjLfdlWnlteicWaX95mtwckG3Jh2qB9o6tZeNjOQnXXxlY-bs18iBObr5ZnXHJwleV8QiYgoGMXnReYFvhPqMCckVheYr-0AF9_lx-XiAh-zXkPRcQZz-fb-gHnyxHGOxGzlHEEFU1FnjAh0pHmmoTGv1Ja44DKVxrq_D1515uW9LTrwgdy4MIRedMVm3z5SDRIBP2D-E209nTlmvq5QrTQ5yrQMlh6c1fVwzlsixfb1CBdPaV19Bpj3cOmJQaC62qDj2uVne0waD-R9fnvm7NF1FdYiEwWs12kE_CAXRF7JjQvkqz0oMmgvxYsh9JKz7SRcZlxI3xaJqk3pvBSJyUrvE680OwzOQx1cF8JFZmPvSniEo0yW2RlyqTlDuzPzOaxl1Pya-CeeuyANBQ6IMh3NfBdId8V8n1KKHBY3ZtKIQA2Hje1um8UmPkXCusKxlPypeP6vr1hpKZEjsZjT4BNja-AiLWY2r1IffvvO7-Tt_jy3ezMD3K4a57cT7BXdvqYTK5Wy-NWSmG_Tk__AvMK6eY |
link.rule.ids | 230,315,730,783,787,888,27938,27939,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RQguvAvLMweOZDeJHTs5oopqC92qolvUmxW_ttF2k2q1lSi_npk8loYbSJGiyBNbzmdnZuzxNwAfGXNO0q4uz5gNOZc61M7lISrvyHGX-aLJPDc7EdNz_vUivdiBtD8L0wTtG12Oq6vVuCovm9jK65WZ9HFik9PZAZccXWU52YV7OF8jMXTSeU4HA_8MKzRoJCWY2G4u4PxvT8jFIsSfc9aREXHGs8mqvqIVcyLyjsU4YZxoRRORxUyIZKC7dqu1v6O2hiGVd3TU4WP40feuDU1Zjm82emx-_UX8-M_dfwKPOqs1-NwWP4UdVz2D-20ey9vnoHGwBd-JGiqofXDqsP2SiEh_llVQVDaYX5Z1_4zX9Nauaxy4naR1wRmF0VeLRhgFzsoFNdfoUdvS276A88Mv84Np2CVvCE0asU2oY3SuXR55JjTP47TwqCTxQ1o0SgorPdNGRkXKjfBJESfemNxLHRcs9zr2QrN92Kvqyr2CQKQ-8iaPCrL3bJ4WCZOWOzRtU5tFXo7gUw-Lum45OhT5NgSo6gFVBKgiQEcQIHRqaUpF3Np0X9RquVboQRwpSlkYjeBlC-e2vn4IjEAOgN4KUFXDEoSvoevu4Hr9329-gAfT-exYHR-dfHsDD6kj7SLQW9jbrG_cOzSLNvp9Mwl-AwMTCgY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEBZNSktfkt7dpocf-lifkiX7sSRZNm0TliaB0BdhXRuzWXtZNpD013fGx3bdx4DBGI8P6ZM0M9LoG0K-UGqtwFVdllHjMyaUr6zNfVDekWU2c0WTee70jE8u2fer9Gor1VcTtK9VGVQ3i6Aqr5vYyuVCh32cWDg9PWSCgasswqVx4Q55DH02yoaOOstxc-C_pgVGjcAkE5sFBhgD2l1yMfdhgM46QiJGWRYu6hucNUcy75gHCWVILZrwLKacJwP9tVOt3JbqGoZVbump8T753ZewDU-ZB7drFeg__5E_PqgKnpO9znr1vrUiL8gjW70kT9p8lveviIJG5_1Ciiivdt7Uwj-USEh6V1ZeURnv4rqs-2s4JvdmVUMD7iSN9c4xnL6aNcIgcF7O8HONPjUtze1rcjk-vjic-F0SB1-nEV37KgYn2-aRo1yxPE4LB8oSKtOAcVIY4ajSIipSprlLijhxWudOqLiguVOx44q-IbtVXdl3xOOpi5zOowLtPpOnRUKFYRZM3NRkkRMj8rWHRi5brg6JPg6CKntQJYIqEdQR8QA-OdelRI5tPM9qOV9J8CROJKYujEbkbQvp5n19MxgRMQB7I4CvGt4BCBva7g6y9w9-8jN5Oj0ay58nZz8OyDMsRzsX9IHsrle39iNYR2v1qekHfwFghAyG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Roles+of+Peroxiredoxin+and+Thioredoxin+in+Hydrogen+Peroxide+Sensing+and+in+Signal+Transduction&rft.jtitle=Molecules+and+cells&rft.au=Luis+E.S.+Netto&rft.au=Fernando+Antunes&rft.date=2016-01-01&rft.pub=%ED%95%9C%EA%B5%AD%EB%B6%84%EC%9E%90%EC%84%B8%ED%8F%AC%EC%83%9D%EB%AC%BC%ED%95%99%ED%9A%8C&rft.issn=1016-8478&rft.eissn=0219-1032&rft.spage=65&rft.epage=71&rft_id=info:doi/10.14348%2Fmolcells.2016.2349&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_71350 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-8478&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-8478&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-8478&client=summon |