The Roles of Peroxiredoxin and Thioredoxin in Hydrogen Peroxide Sensing and in Signal Transduction

A challenge in the redox field is the elucidation of the molecular mechanisms, by which H2O2 mediates signal transduction in cells. This is relevant since redox pathways are disturbed in some pathologies. The transcription factor OxyR is the H2O2 sensor in bacteria, whereas Cys-based peroxidases are...

Full description

Saved in:
Bibliographic Details
Published inMolecules and cells Vol. 39; no. 1; pp. 65 - 71
Main Authors Netto, Luis E S, Antunes, Fernando
Format Journal Article
LanguageEnglish
Published United States Korean Society for Molecular and Cellular Biology 01.01.2016
한국분자세포생물학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A challenge in the redox field is the elucidation of the molecular mechanisms, by which H2O2 mediates signal transduction in cells. This is relevant since redox pathways are disturbed in some pathologies. The transcription factor OxyR is the H2O2 sensor in bacteria, whereas Cys-based peroxidases are involved in the perception of this oxidant in eukaryotic cells. Three possible mechanisms may be involved in H2O2 signaling that are not mutually exclusive. In the simplest pathway, H2O2 signals through direct oxidation of the signaling protein, such as a phosphatase or a transcription factor. Although signaling proteins are frequently observed in the oxidized state in biological systems, in most cases their direct oxidation by H2O2 is too slow (10(1) M(-1)s(-1) range) to outcompete Cys-based peroxidases and glutathione. In some particular cellular compartments (such as vicinity of NADPH oxidases), it is possible that a signaling protein faces extremely high H2O2 concentrations, making the direct oxidation feasible. Alternatively, high H2O2 levels can hyperoxidize peroxiredoxins leading to local building up of H2O2 that then could oxidize a signaling protein (floodgate hypothesis). In a second model, H2O2 oxidizes Cys-based peroxidases that then through thiol-disulfide reshuffling would transmit the oxidized equivalents to the signaling protein. The third model of signaling is centered on the reducing substrate of Cys-based peroxidases that in most cases is thioredoxin. Is this model, peroxiredoxins would signal by modulating the thioredoxin redox status. More kinetic data is required to allow the identification of the complex network of thiol switches.
AbstractList A challenge in the redox field is the elucidation of the molecular mechanisms, by which H 2 O 2 mediates signal transduction in cells. This is relevant since redox pathways are disturbed in some pathologies. The transcription factor OxyR is the H 2 O 2 sensor in bacteria, whereas Cys-based peroxidases are involved in the perception of this oxidant in eukaryotic cells. Three possible mechanisms may be involved in H 2 O 2 signaling that are not mutually exclusive. In the simplest pathway, H 2 O 2 signals through direct oxidation of the signaling protein, such as a phosphatase or a transcription factor. Although signaling proteins are frequently observed in the oxidized state in biological systems, in most cases their direct oxidation by H 2 O 2 is too slow (10 1 M −1 s −1 range) to outcompete Cys-based peroxidases and glutathione. In some particular cellular compartments (such as vicinity of NADPH oxidases), it is possible that a signaling protein faces extremely high H 2 O 2 concentrations, making the direct oxidation feasible. Alternatively, high H 2 O 2 levels can hyperoxidize peroxiredoxins leading to local building up of H 2 O 2 that then could oxidize a signaling protein (floodgate hypothesis). In a second model, H 2 O 2 oxidizes Cys-based peroxidases that then through thiol-disulfide reshuffling would transmit the oxidized equivalents to the signaling protein. The third model of signaling is centered on the reducing substrate of Cys-based peroxidases that in most cases is thioredoxin. Is this model, peroxiredoxins would signal by modulating the thioredoxin redox status. More kinetic data is required to allow the identification of the complex network of thiol switches.
A challenge in the redox field is the elucidation of the molecular mechanisms, by which H2O2 mediates signal transduction in cells. This is relevant since redox pathways are disturbed in some pathologies. The transcription factor OxyR is the H2O2 sensor in bacteria, whereas Cys-based peroxidases are involved in the perception of this oxidant in eukaryotic cells. Three possible mechanisms may be involved in H2O2 signaling that are not mutually exclusive. In the simplest pathway, H2O2 signals through direct oxidation of the signaling protein, such as a phosphatase or a transcription factor. Although signaling proteins are frequently observed in the oxidized state in biological systems, in most cases their direct oxidation by H2O2 is too slow (10(1) M(-1)s(-1) range) to outcompete Cys-based peroxidases and glutathione. In some particular cellular compartments (such as vicinity of NADPH oxidases), it is possible that a signaling protein faces extremely high H2O2 concentrations, making the direct oxidation feasible. Alternatively, high H2O2 levels can hyperoxidize peroxiredoxins leading to local building up of H2O2 that then could oxidize a signaling protein (floodgate hypothesis). In a second model, H2O2 oxidizes Cys-based peroxidases that then through thiol-disulfide reshuffling would transmit the oxidized equivalents to the signaling protein. The third model of signaling is centered on the reducing substrate of Cys-based peroxidases that in most cases is thioredoxin. Is this model, peroxiredoxins would signal by modulating the thioredoxin redox status. More kinetic data is required to allow the identification of the complex network of thiol switches.
A challenge in the redox field is the elucidation of the molecular mechanisms, by which H2O2 mediates signal transduction in cells. This is relevant since redox pathways are disturbed in some pathologies. The transcription factor OxyR is the H2O2 sensor in bacteria, whereas Cys-based peroxidases are involved in the perception of this oxidant in eukaryotic cells. Three possible mechanisms may be involved in H2O2 signaling that are not mutually exclusive. In the simplest pathway, H2O2 signals through direct oxidation of the signaling protein, such as a phosphatase or a transcription factor. Although signaling proteins are frequently observed in the oxidized state in biological systems, in most cases their direct oxidation by H2O2 is too slow (101 M-1 s-1 range) to outcompete Cys-based peroxidases and glutathione. In some particular cellular compartments (such as vicinity of NADPH oxidases), it is possible that a signaling protein faces extremely high H2O2 concentrations, making the direct oxidation feasible. Alternatively, high H2O2 levels can hyperoxidize peroxiredoxins leading to local building up of H2O2 that then could oxidize a signaling protein (floodgate hypothesis). In a second model, H2O2 oxidizes Cys-based peroxidases that then through thiol-disulfide reshuffling would transmit the oxidized equivalents to the signaling protein. The third model of signaling is centered on the reducing substrate of Cys-based peroxidases that in most cases is thioredoxin. Is this model, peroxiredoxins would signal by modulating the thioredoxin redox status. More kinetic data is required to allow the identification of the complex network of thiol switches. KCI Citation Count: 2
Author Netto, Luis E S
Antunes, Fernando
AuthorAffiliation 1 Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo – SP, Brazil
2 Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
AuthorAffiliation_xml – name: 1 Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo – SP, Brazil
– name: 2 Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
Author_xml – sequence: 1
  givenname: Luis E S
  surname: Netto
  fullname: Netto, Luis E S
  organization: Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo - SP, Brazil
– sequence: 2
  givenname: Fernando
  surname: Antunes
  fullname: Antunes, Fernando
  organization: Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26813662$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002077295$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNpVkV1LwzAUhoMobk5_gSC986ozX2vaG0GGXyAorl6HJE26YJeMZBP37806NxTCOeTkfd8TeM7AsfNOA3CJ4BhRQsubhe-U7ro4xhAVY0xodQSGEKMqR5DgYzBEaZ6XlJUDcBGjlZBWEBaYlKdggIsSkaLAQyDruc7efadj5k32poP_tkE3qbpMuCar59bv7-k8bZrgW-1-lY3OZtpF69penAQz2zrRZXUQLjZrtbLenYMTI7qoL377CHw83NfTp_zl9fF5eveSqwkkq1wiVpa6goYUklZoIgxGOH20gZCJhhkiFYNiQlVhsEDYKFUZJpEglZHIFJKMwPUu1wXDP5XlXti-t55_Bn73Xj9zhkhaNgK3O-VyLRe6Udqtguj4MtiFCJve9__F2XlK-eKU0apkLAWQXYAKPsagzcGLIO_58D0fvuXDt3yS6-rv2oNnT4P8AIKgkkk
CitedBy_id crossref_primary_10_1016_j_redox_2017_04_039
crossref_primary_10_1097_CEJ_0000000000000537
crossref_primary_10_3390_antiox13050555
crossref_primary_10_3390_antiox8060169
crossref_primary_10_2217_fon_2018_0001
crossref_primary_10_14348_molcells_2016_2368
crossref_primary_10_1021_acs_jpcb_2c07072
crossref_primary_10_1089_ars_2018_7678
crossref_primary_10_1186_s12886_018_0793_3
crossref_primary_10_3390_antiox12091738
crossref_primary_10_1089_ars_2018_7712
crossref_primary_10_1016_j_redox_2022_102527
crossref_primary_10_1016_j_psj_2021_101064
crossref_primary_10_1016_j_redox_2020_101679
crossref_primary_10_1038_s41598_018_24900_3
crossref_primary_10_1016_j_pharmthera_2020_107520
crossref_primary_10_1042_BCJ20160851
crossref_primary_10_3390_cells7100156
crossref_primary_10_1016_j_dci_2021_104213
crossref_primary_10_1016_j_preghy_2022_12_002
crossref_primary_10_1021_acsami_0c17957
crossref_primary_10_1073_pnas_1807918115
crossref_primary_10_3390_oxygen4010004
crossref_primary_10_3390_bios11020030
crossref_primary_10_3390_cancers12071706
crossref_primary_10_1038_s41598_017_06718_7
crossref_primary_10_1111_jre_12722
crossref_primary_10_3389_fmicb_2019_02438
crossref_primary_10_1016_j_freeradbiomed_2019_12_027
crossref_primary_10_3389_fcvm_2016_00036
crossref_primary_10_3389_fmolb_2022_889719
crossref_primary_10_1186_s40529_022_00349_6
crossref_primary_10_1038_s41429_021_00463_w
crossref_primary_10_1038_s41598_024_57852_y
crossref_primary_10_1021_acs_analchem_7b02544
crossref_primary_10_1016_j_redox_2017_11_003
crossref_primary_10_1177_0963689719891134
crossref_primary_10_1016_j_dci_2023_104691
crossref_primary_10_1074_jbc_R118_003214
crossref_primary_10_1074_jbc_RA118_001824
crossref_primary_10_1073_pnas_2201247119
crossref_primary_10_1007_s12038_019_9908_0
crossref_primary_10_1016_j_redox_2016_10_006
crossref_primary_10_1016_j_jcyt_2017_09_011
crossref_primary_10_3390_antiox7110159
crossref_primary_10_3390_ijerph16020180
crossref_primary_10_1158_0008_5472_CAN_18_2086
crossref_primary_10_18632_aging_103304
crossref_primary_10_3389_fcell_2017_00065
crossref_primary_10_1038_s41598_019_49841_3
crossref_primary_10_3389_fphar_2022_830554
crossref_primary_10_1016_j_freeradbiomed_2018_03_039
crossref_primary_10_1016_j_scienta_2019_05_042
crossref_primary_10_1101_cshperspect_a027698
crossref_primary_10_3390_atmos13091500
crossref_primary_10_3389_fimmu_2020_561724
crossref_primary_10_3390_antiox10071032
crossref_primary_10_3390_ijms20153673
crossref_primary_10_1021_acscentsci_0c01624
crossref_primary_10_1099_jmm_0_001542
crossref_primary_10_1016_j_redox_2017_01_003
crossref_primary_10_1016_j_pnpbp_2021_110481
crossref_primary_10_1007_s11064_016_1991_0
crossref_primary_10_1016_j_bbagen_2017_09_011
crossref_primary_10_1016_j_jddst_2023_104240
crossref_primary_10_1016_j_jconrel_2017_04_023
crossref_primary_10_1021_acs_analchem_7b04074
crossref_primary_10_1089_ars_2019_7962
crossref_primary_10_1016_j_freeradbiomed_2021_01_054
crossref_primary_10_1038_srep33133
crossref_primary_10_1134_S0006297920140047
crossref_primary_10_1146_annurev_pharmtox_012221_082339
crossref_primary_10_1016_j_semcdb_2017_09_019
crossref_primary_10_1111_febs_16466
crossref_primary_10_3389_fphys_2022_1004275
crossref_primary_10_3390_antiox9050434
crossref_primary_10_1016_j_freeradbiomed_2018_11_034
crossref_primary_10_1038_s41580_024_00730_2
crossref_primary_10_3389_fcvm_2017_00038
crossref_primary_10_3389_fcvm_2021_624796
crossref_primary_10_1089_ars_2016_6922
crossref_primary_10_1016_j_jbc_2024_105761
crossref_primary_10_1016_j_redox_2019_101227
crossref_primary_10_1016_j_freeradbiomed_2018_01_008
crossref_primary_10_1111_apha_14081
crossref_primary_10_1016_j_pnpbp_2018_08_013
crossref_primary_10_1071_FP16322
crossref_primary_10_1089_ars_2018_7515
crossref_primary_10_1016_j_freeradbiomed_2023_08_015
crossref_primary_10_1038_nchembio_2536
crossref_primary_10_1155_2017_8459402
crossref_primary_10_1016_j_jpsychires_2021_10_021
crossref_primary_10_1016_j_redox_2017_01_025
crossref_primary_10_1016_j_freeradbiomed_2019_05_035
crossref_primary_10_3390_w14244026
crossref_primary_10_1089_ars_2019_7985
crossref_primary_10_1016_j_cbpa_2024_102496
crossref_primary_10_1007_s11010_019_03593_w
crossref_primary_10_1038_s41467_021_22561_x
crossref_primary_10_1186_s12903_019_0877_3
crossref_primary_10_1016_j_aca_2019_10_022
crossref_primary_10_1089_ars_2020_8176
crossref_primary_10_14814_phy2_15137
crossref_primary_10_3390_microorganisms8111791
crossref_primary_10_1016_j_neuroscience_2023_12_002
crossref_primary_10_1016_j_freeradbiomed_2024_04_004
crossref_primary_10_1016_j_redox_2019_101340
crossref_primary_10_3390_molecules25184338
crossref_primary_10_3390_pathogens12101273
crossref_primary_10_1002_adfm_202113028
crossref_primary_10_1111_1440_1681_13585
crossref_primary_10_1016_j_freeradbiomed_2022_04_001
crossref_primary_10_1155_2019_4721950
crossref_primary_10_1089_ars_2017_7167
crossref_primary_10_3892_etm_2017_5220
crossref_primary_10_1016_j_freeradbiomed_2020_06_020
crossref_primary_10_1089_ars_2017_6997
crossref_primary_10_1007_s12551_021_00899_2
crossref_primary_10_14341_omet12804
crossref_primary_10_1089_ars_2022_0074
crossref_primary_10_1016_j_redox_2017_11_014
crossref_primary_10_1016_j_freeradbiomed_2016_04_199
crossref_primary_10_1016_j_biologicals_2022_08_004
crossref_primary_10_3390_molecules26072000
crossref_primary_10_22175_mmb_14492
crossref_primary_10_3390_ijms222312888
crossref_primary_10_1016_j_bbadis_2016_10_017
crossref_primary_10_1074_jbc_RA119_008825
crossref_primary_10_1080_10715762_2018_1457217
crossref_primary_10_1089_ars_2017_7162
crossref_primary_10_3390_antiox10010039
crossref_primary_10_3390_ijms18061126
crossref_primary_10_1111_nph_19018
crossref_primary_10_1089_ars_2017_7214
crossref_primary_10_3390_antiox7120177
crossref_primary_10_1016_j_teac_2023_e00196
crossref_primary_10_3390_ijms242216169
crossref_primary_10_1111_jcmm_12955
crossref_primary_10_1038_s41598_018_29163_6
crossref_primary_10_3390_antiox9040276
crossref_primary_10_1371_journal_pone_0274226
crossref_primary_10_3390_ijms21051880
crossref_primary_10_3389_fphys_2017_00439
crossref_primary_10_1007_s12551_023_01116_y
crossref_primary_10_1016_j_freeradbiomed_2019_01_038
crossref_primary_10_1016_j_abb_2016_09_011
crossref_primary_10_1016_j_bbagen_2020_129781
crossref_primary_10_1371_journal_pcbi_1005284
crossref_primary_10_1016_j_freeradbiomed_2017_10_378
crossref_primary_10_3389_fpls_2020_00211
crossref_primary_10_1371_journal_pone_0228134
crossref_primary_10_1016_j_ijbiomac_2020_01_114
crossref_primary_10_1016_j_freeradbiomed_2020_06_015
crossref_primary_10_1016_j_redox_2019_101200
crossref_primary_10_3390_ijms21239317
crossref_primary_10_1155_2021_6639199
crossref_primary_10_1002_1873_3468_13753
crossref_primary_10_36604_1998_5029_2019_73_112_124
Cites_doi 10.1161/CIRCRESAHA.112.267054
10.1074/jbc.M807583200
10.1016/j.jmb.2012.09.008
10.1016/S0891-5849(99)00051-9
10.1089/ars.2009.2683
10.1074/jbc.M700339200
10.1038/nchembio.85
10.1016/j.cell.2010.01.009
10.1016/S0303-7207(02)00178-8
10.1089/ars.2006.8.1865
10.1128/EC.00106-09
10.1089/ars.2010.3539
10.1089/ars.2010.3611
10.1073/pnas.96.11.6161
10.1146/annurev-genet-102108-134201
10.1021/tx100413v
10.1016/S0021-9258(18)47038-X
10.1371/journal.pone.0108123
10.1074/jbc.R111.283432
10.1016/S0092-8674(02)01048-6
10.1016/j.freeradbiomed.2008.05.004
10.1074/jbc.273.25.15366
10.1016/j.celrep.2013.11.027
10.1089/ars.2011.4258
10.1016/j.redox.2014.01.015
10.1073/pnas.1005776107
10.1089/ars.2010.3393
10.1074/jbc.M211107200
10.1016/j.freeradbiomed.2008.10.039
10.3389/fchem.2014.00082
10.1089/ars.2010.3624
10.1021/bi400451m
10.1016/j.freeradbiomed.2012.08.001
10.1152/ajpheart.01162.2006
10.1073/pnas.1504376112
10.1038/nchembio.736
10.1074/jbc.M112.414524
10.1073/pnas.1302891110
10.1074/jbc.M303542200
10.1016/j.celrep.2013.10.036
10.1073/pnas.0407396101
10.1126/science.1080405
10.1074/jbc.M113.512384
10.1083/jcb.200709049
10.1074/jbc.M311818200
10.1089/ars.2011.4322
10.1038/nchembio.1695
10.1074/jbc.M115.692798
10.1038/nsmb856
10.1016/j.cell.2004.05.002
10.1021/bi050448i
10.1101/gad.200006.112
10.1016/S0006-8993(02)04243-9
10.1016/S1097-2765(02)00445-8
10.1016/j.freeradbiomed.2006.10.042
10.1074/jbc.R113.544635
10.1038/onc.2012.624
10.1002/prot.22936
10.1074/jbc.C100109200
10.1038/emboj.2009.101
10.1093/emboj/17.9.2596
10.1093/nar/20.15.3821
10.1038/nchembio.1720
10.1021/bi973035t
10.1016/j.redox.2014.02.006
10.1073/pnas.1010721108
10.1074/jbc.M109.059246
10.1016/j.freeradbiomed.2011.02.020
10.1074/jbc.M113.495150
10.1016/j.freeradbiomed.2007.07.014
10.1111/j.1432-1033.1969.tb00721.x
10.1007/978-94-007-4716-6
10.1016/j.abb.2007.08.008
10.1007/s00125-014-3278-9
ContentType Journal Article
Copyright The Korean Society for Molecular and Cellular Biology. All rights reserved. 2016
Copyright_xml – notice: The Korean Society for Molecular and Cellular Biology. All rights reserved. 2016
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
5PM
ACYCR
DOI 10.14348/molcells.2016.2349
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
PubMed Central (Full Participant titles)
Korean Citation Index
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 0219-1032
EndPage 71
ExternalDocumentID oai_kci_go_kr_ARTI_71350
10_14348_molcells_2016_2349
26813662
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID .UV
ALMA_UNASSIGNED_HOLDINGS
CGR
CUY
CVF
ECM
EIF
NPM
---
0R~
0SF
0VY
123
1N0
29M
2VQ
2WC
30V
3V.
4.4
408
40D
53G
5VS
67N
67Z
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95.
9ZL
AALRI
AARHV
AAXUO
AAYXX
ABDBF
ABJNI
ABMNI
ABTEG
ABUWG
ACBXY
ACGFO
ACGFS
ACPRK
ACREN
ADBBV
ADINQ
ADKPE
ADVLN
AENEX
AFGCZ
AFJKZ
AFKRA
AFLOW
AGJBK
AHBYD
AHMBA
AHSBF
AITUG
AKRWK
ALIPV
AMKLP
AMRAJ
AMTXH
AOIJS
ASPBG
AVWKF
AZFZN
BBNVY
BENPR
BGNMA
BHPHI
BPHCQ
BVBZV
BVXVI
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DU5
E3Z
EAD
EAP
EBC
EBD
EBS
EJD
EMK
EMOBN
EST
ESX
F5P
FDB
FYUFA
GX1
H13
HCIFZ
HF~
HG6
HH5
HMCUK
HMJXF
HYE
HZ~
I09
I0C
IXC
I~X
JDI
KDC
KOV
KVFHK
LAS
LK8
M0L
M1P
M41
M4Y
M7P
MA-
NU0
OK1
P2P
PQQKQ
PROAC
PSQYO
Q2X
R9I
ROL
RPM
RSV
S1Z
S27
S3A
S3B
SBL
SDH
SJN
SOJ
SV3
T13
TSK
TUS
U2A
UKHRP
VC2
WK8
Z45
~A9
5PM
ACYCR
AFNRJ
ID FETCH-LOGICAL-c503t-b1788e90f36b4915af212268d007ad7f3bc70a54c6f2a12fcc9f7b1a39fb1f6b3
IEDL.DBID RPM
ISSN 1016-8478
IngestDate Fri Apr 19 03:47:34 EDT 2024
Tue Sep 17 20:39:36 EDT 2024
Thu Sep 26 19:32:52 EDT 2024
Tue Oct 29 09:29:11 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Peroxiredoxin
thiol
H2O2
signal transduction
thiol-disulfide exchange
thioredoxin
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-b1788e90f36b4915af212268d007ad7f3bc70a54c6f2a12fcc9f7b1a39fb1f6b3
Notes G704-000079.2016.39.1.011
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749877/
PMID 26813662
PageCount 7
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_71350
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4749877
crossref_primary_10_14348_molcells_2016_2349
pubmed_primary_26813662
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecules and cells
PublicationTitleAlternate Mol Cells
PublicationYear 2016
Publisher Korean Society for Molecular and Cellular Biology
한국분자세포생물학회
Publisher_xml – name: Korean Society for Molecular and Cellular Biology
– name: 한국분자세포생물학회
References Lee (10.14348/molcells.2016.2349_bib35) 2013; 18
Peskin (10.14348/molcells.2016.2349_bib58) 2016
Pedroso (10.14348/molcells.2016.2349_bib55) 2009; 46
Veal (10.14348/molcells.2016.2349_bib74) 2003; 278
Kwon (10.14348/molcells.2016.2349_bib32) 2004; 101
Aslund (10.14348/molcells.2016.2349_bib3) 1999; 96
MacDiarmid (10.14348/molcells.2016.2349_bib37) 2013; 288
Toledo (10.14348/molcells.2016.2349_bib71) 2011; 50
Nyström (10.14348/molcells.2016.2349_bib48) 2012; 26
Harald (10.14348/molcells.2016.2349_bib25) 2015; 10
Mahadev (10.14348/molcells.2016.2349_bib38) 2001; 276
Winterbourn (10.14348/molcells.2016.2349_bib76) 2008; 4
Boronat (10.14348/molcells.2016.2349_bib7) 2014; 2
Branco (10.14348/molcells.2016.2349_bib8) 2004; 279
Meng (10.14348/molcells.2016.2349_bib41) 2002; 9
Biteau (10.14348/molcells.2016.2349_bib5) 2003; 425
Marinho (10.14348/molcells.2016.2349_bib39) 2014; 2
Hall (10.14348/molcells.2016.2349_bib23) 2011; 15
Netto (10.14348/molcells.2016.2349_bib47) 2015; 16
Sobotta (10.14348/molcells.2016.2349_bib67) 2015; 11
Delaunay (10.14348/molcells.2016.2349_bib17) 2002; 111
Kaszubska (10.14348/molcells.2016.2349_bib30) 2002; 195
Woo (10.14348/molcells.2016.2349_bib79) 2010; 140
Fomenko (10.14348/molcells.2016.2349_bib21) 2011; 108
Turner-Ivey (10.14348/molcells.2016.2349_bib73) 2013; 32
Chae (10.14348/molcells.2016.2349_bib13) 1994; 269
Tairum (10.14348/molcells.2016.2349_bib69) 2012; 424
Matthews (10.14348/molcells.2016.2349_bib40) 1992; 20
Winterbourn (10.14348/molcells.2016.2349_bib78) 1999; 27
Ogusucu (10.14348/molcells.2016.2349_bib49) 2007; 42
Oliveira (10.14348/molcells.2016.2349_bib50) 2010; 49
10.14348/molcells.2016.2349_bib66
10.14348/molcells.2016.2349_bib26
Krapfenbauer (10.14348/molcells.2016.2349_bib31) 2003; 967
Trujillo (10.14348/molcells.2016.2349_bib72) 2007; 467
Winterbourn (10.14348/molcells.2016.2349_bib77) 2008; 45
Lee (10.14348/molcells.2016.2349_bib33) 1998; 273
Day (10.14348/molcells.2016.2349_bib16) 2012; 45
Schröder (10.14348/molcells.2016.2349_bib64) 2012; 110
Brito (10.14348/molcells.2016.2349_bib9) 2014; 2
Miller (10.14348/molcells.2016.2349_bib43) 2010; 107
Jarvis (10.14348/molcells.2016.2349_bib28) 2012; 53
Wood (10.14348/molcells.2016.2349_bib80) 2003; 300
Boisnard (10.14348/molcells.2016.2349_bib6) 2009; 8
Ferrer-Sueta (10.14348/molcells.2016.2349_bib20) 2011; 24
Hayashi (10.14348/molcells.2016.2349_bib24) 1993; 268
Dagnell (10.14348/molcells.2016.2349_bib15) 2013; 110
Watson (10.14348/molcells.2016.2349_bib75) 2003; 278
Parsonage (10.14348/molcells.2016.2349_bib52) 2005; 44
Paulsen (10.14348/molcells.2016.2349_bib54) 2012; 8
Cao (10.14348/molcells.2016.2349_bib12) 2009; 28
Jones (10.14348/molcells.2016.2349_bib29) 2006; 8
Jang (10.14348/molcells.2016.2349_bib27) 2004; 117
Ying (10.14348/molcells.2016.2349_bib81) 2007; 43
Tanner (10.14348/molcells.2016.2349_bib70) 2011; 15
Parsons (10.14348/molcells.2016.2349_bib53) 2013; 52
Mishina (10.14348/molcells.2016.2349_bib44) 2011; 14
Rhee (10.14348/molcells.2016.2349_bib62) 2012; 287
Peskin (10.14348/molcells.2016.2349_bib57) 2007; 282
Denu (10.14348/molcells.2016.2349_bib18) 1998; 37
Nelson (10.14348/molcells.2016.2349_bib45) 2011; 79
Saitoh (10.14348/molcells.2016.2349_bib63) 1998; 17
Sies (10.14348/molcells.2016.2349_bib65) 2014; 289
Gutscher (10.14348/molcells.2016.2349_bib22) 2009; 284
Rhee (10.14348/molcells.2016.2349_bib61) 2011; 15
Calvo (10.14348/molcells.2016.2349_bib11) 2013; 5
Du (10.14348/molcells.2016.2349_bib19) 2013; 288
Palde (10.14348/molcells.2016.2349_bib51) 2015; 112
Netto (10.14348/molcells.2016.2349_bib46) 1996; 271
Lee (10.14348/molcells.2016.2349_bib34) 2004; 11
Little (10.14348/molcells.2016.2349_bib36) 1969; 10
Brown (10.14348/molcells.2016.2349_bib10) 2013; 5
Chen (10.14348/molcells.2016.2349_bib14) 2008; 181
Peralta (10.14348/molcells.2016.2349_bib56) 2015; 11
Rawat (10.14348/molcells.2016.2349_bib59) 2013; 288
Ragu (10.14348/molcells.2016.2349_bib60) 2014; 9
Berndt (10.14348/molcells.2016.2349_bib4) 2007; 292
Tachibana (10.14348/molcells.2016.2349_bib68) 2009; 284
Abbasi (10.14348/molcells.2016.2349_bib1) 2014; 57
Ahsan (10.14348/molcells.2016.2349_bib2) 2009; 11
Meyer (10.14348/molcells.2016.2349_bib42) 2009; 43
References_xml – volume: 110
  start-page: 1217
  year: 2012
  ident: 10.14348/molcells.2016.2349_bib64
  article-title: Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.112.267054
  contributor:
    fullname: Schröder
– volume: 284
  start-page: 4464
  year: 2009
  ident: 10.14348/molcells.2016.2349_bib68
  article-title: A major peroxiredoxin-induced activation of Yap1 transcription factor is mediated by reduction-sensitive disulfide bonds and reveals a low level of transcriptional activation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M807583200
  contributor:
    fullname: Tachibana
– volume: 424
  start-page: 28
  year: 2012
  ident: 10.14348/molcells.2016.2349_bib69
  article-title: Disulfide biochemistry in 2-cys peroxiredoxin: requirement of Glu50 and Arg146 for the reduction of yeast Tsa1 by thioredoxin
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2012.09.008
  contributor:
    fullname: Tairum
– volume: 27
  start-page: 322
  year: 1999
  ident: 10.14348/molcells.2016.2349_bib78
  article-title: Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(99)00051-9
  contributor:
    fullname: Winterbourn
– volume: 11
  start-page: 2741
  year: 2009
  ident: 10.14348/molcells.2016.2349_bib2
  article-title: Redox regulation of cell survival by the thioredoxin superfamily: an implication of redox gene therapy in the heart Antioxid
  publication-title: Redox Signal.
  doi: 10.1089/ars.2009.2683
  contributor:
    fullname: Ahsan
– volume: 282
  start-page: 11885
  year: 2007
  ident: 10.14348/molcells.2016.2349_bib57
  article-title: The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M700339200
  contributor:
    fullname: Peskin
– volume: 4
  start-page: 278
  year: 2008
  ident: 10.14348/molcells.2016.2349_bib76
  article-title: Reconciling the chemistry and biology of reactive oxygen species
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.85
  contributor:
    fullname: Winterbourn
– volume: 140
  start-page: 517
  year: 2010
  ident: 10.14348/molcells.2016.2349_bib79
  article-title: Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.009
  contributor:
    fullname: Woo
– volume: 425
  start-page: 980
  year: 2003
  ident: 10.14348/molcells.2016.2349_bib5
  article-title: ATP-dependent reduction of cysteine-sulphinic acid by S
  publication-title: cerevisiae sulphire- doxin. Nature
  contributor:
    fullname: Biteau
– volume: 195
  start-page: 109
  year: 2002
  ident: 10.14348/molcells.2016.2349_bib30
  article-title: Protein tyrosine phosphatase 1B negatively regulates leptin signaling in a hypothalamic cell line
  publication-title: Mol. Cell. Endocrinol.
  doi: 10.1016/S0303-7207(02)00178-8
  contributor:
    fullname: Kaszubska
– volume: 8
  start-page: 1865
  year: 2006
  ident: 10.14348/molcells.2016.2349_bib29
  article-title: Redefining oxidative stress
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2006.8.1865
  contributor:
    fullname: Jones
– volume: 8
  start-page: 1429
  year: 2009
  ident: 10.14348/molcells.2016.2349_bib6
  article-title: H2O2 activates the nuclear localization of Msn2 and Maf1 through thioredoxins in Saccharomyces cerevisiae
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.00106-09
  contributor:
    fullname: Boisnard
– volume: 14
  start-page: 1
  year: 2011
  ident: 10.14348/molcells.2016.2349_bib44
  article-title: Does cellular hydrogen peroxide diffuse or act locally? Antioxid
  publication-title: Redox Signal.
  doi: 10.1089/ars.2010.3539
  contributor:
    fullname: Mishina
– volume: 49
  start-page: 3317
  year: 2010
  ident: 10.14348/molcells.2016.2349_bib50
  article-title: Insights into the specificity of thioredoxin reductase-thioredoxin interactions
  publication-title: A structural and functional investigation of the yeast thioredoxin system. Biochemistry
  contributor:
    fullname: Oliveira
– volume: 15
  start-page: 77
  year: 2011
  ident: 10.14348/molcells.2016.2349_bib70
  article-title: Redox regulation of protein tyrosine phosphatases: structural and chemical aspects
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2010.3611
  contributor:
    fullname: Tanner
– volume: 96
  start-page: 6161
  year: 1999
  ident: 10.14348/molcells.2016.2349_bib3
  article-title: Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.11.6161
  contributor:
    fullname: Aslund
– volume: 43
  start-page: 335
  year: 2009
  ident: 10.14348/molcells.2016.2349_bib42
  article-title: Thioredoxins and glutaredoxins: unifying elements in redox biology
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-102108-134201
  contributor:
    fullname: Meyer
– volume: 24
  start-page: 434
  year: 2011
  ident: 10.14348/molcells.2016.2349_bib20
  article-title: Factors affecting protein thiol reactivity and specificity in peroxide reduction
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx100413v
  contributor:
    fullname: Ferrer-Sueta
– volume: 269
  start-page: 27670
  year: 1994
  ident: 10.14348/molcells.2016.2349_bib13
  article-title: Thioredoxin- dependent peroxide reductase from yeast
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)47038-X
  contributor:
    fullname: Chae
– volume: 9
  start-page: e108123
  year: 2014
  ident: 10.14348/molcells.2016.2349_bib60
  article-title: Loss of the thioredoxin reductase Trr1 suppresses the genomic instability of peroxiredoxin tsa1 mutants
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0108123
  contributor:
    fullname: Ragu
– volume: 287
  start-page: 4403
  year: 2012
  ident: 10.14348/molcells.2016.2349_bib62
  article-title: Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides J
  publication-title: Biol. Chem.
  doi: 10.1074/jbc.R111.283432
  contributor:
    fullname: Rhee
– volume: 111
  start-page: 471
  year: 2002
  ident: 10.14348/molcells.2016.2349_bib17
  article-title: A thiol peroxidase is an H2O2 receptor and redoxtransducer in gene activation
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)01048-6
  contributor:
    fullname: Delaunay
– volume: 45
  start-page: 549
  year: 2008
  ident: 10.14348/molcells.2016.2349_bib77
  article-title: Thiol chemistry and specificity in redox signaling
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2008.05.004
  contributor:
    fullname: Winterbourn
– volume: 273
  start-page: 15366
  year: 1998
  ident: 10.14348/molcells.2016.2349_bib33
  article-title: Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.25.15366
  contributor:
    fullname: Lee
– volume: 5
  start-page: 1413
  year: 2013
  ident: 10.14348/molcells.2016.2349_bib11
  article-title: Dissection of a redox relay: H2O2-dependent activation of the transcription factor Pap1 through the peroxidatic Tpx1-thioredoxin cycle
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.11.027
  contributor:
    fullname: Calvo
– ident: 10.14348/molcells.2016.2349_bib26
  doi: 10.1089/ars.2011.4258
– volume: 2
  start-page: 395
  year: 2014
  ident: 10.14348/molcells.2016.2349_bib7
  article-title: Thiol-based H2O2 signalling in microbial systems
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2014.01.015
  contributor:
    fullname: Boronat
– volume: 107
  start-page: 15681
  year: 2010
  ident: 10.14348/molcells.2016.2349_bib43
  article-title: Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1005776107
  contributor:
    fullname: Miller
– volume: 15
  start-page: 781
  year: 2011
  ident: 10.14348/molcells.2016.2349_bib61
  article-title: Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H2O2, and protein chaperones
  publication-title: Antioxid. Redox Signal
  doi: 10.1089/ars.2010.3393
  contributor:
    fullname: Rhee
– volume: 278
  start-page: 33408
  year: 2003
  ident: 10.14348/molcells.2016.2349_bib75
  article-title: Redox potential of human thioredoxin 1 and identification of a second dithiol/disulfide motif
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M211107200
  contributor:
    fullname: Watson
– volume: 46
  start-page: 289
  year: 2009
  ident: 10.14348/molcells.2016.2349_bib55
  article-title: Modulation of plasma membrane lipid profile and microdomains by H2O2 in Saccharomyces cerevisiae
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2008.10.039
  contributor:
    fullname: Pedroso
– volume: 2
  start-page: 82
  year: 2014
  ident: 10.14348/molcells.2016.2349_bib9
  article-title: Estimation of kinetic parameters related to biochemical interactions between hydrogen peroxide and signal transduction proteins
  publication-title: Front Chem.
  doi: 10.3389/fchem.2014.00082
  contributor:
    fullname: Brito
– volume: 15
  start-page: 795
  year: 2011
  ident: 10.14348/molcells.2016.2349_bib23
  article-title: Structurebased insights into the catalytic power and conformational dexterity of peroxiredoxins
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2010.3624
  contributor:
    fullname: Hall
– volume: 268
  start-page: 11380
  year: 1993
  ident: 10.14348/molcells.2016.2349_bib24
  article-title: Oxidoreductive regulation of nuclear factor kappa B
  publication-title: Involvement of a cellular reducing catalyst thioredoxin. J. Biol. Chem.
  contributor:
    fullname: Hayashi
– volume: 52
  start-page: 6412
  year: 2013
  ident: 10.14348/molcells.2016.2349_bib53
  article-title: Thiol-dependent recovery of catalytic activity from oxidized protein tyrosine phosphatases
  publication-title: Biochemistry
  doi: 10.1021/bi400451m
  contributor:
    fullname: Parsons
– volume: 53
  start-page: 1522
  year: 2012
  ident: 10.14348/molcells.2016.2349_bib28
  article-title: Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2012.08.001
  contributor:
    fullname: Jarvis
– volume: 292
  start-page: H1227
  year: 2007
  ident: 10.14348/molcells.2016.2349_bib4
  article-title: Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.01162.2006
  contributor:
    fullname: Berndt
– volume: 112
  start-page: 7960
  year: 2015
  ident: 10.14348/molcells.2016.2349_bib51
  article-title: A universal entropy-driven mechanism for thioredoxin-target recognition
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1504376112
  contributor:
    fullname: Palde
– volume: 8
  start-page: 57
  year: 2012
  ident: 10.14348/molcells.2016.2349_bib54
  article-title: Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.736
  contributor:
    fullname: Paulsen
– volume: 288
  start-page: 8762
  year: 2013
  ident: 10.14348/molcells.2016.2349_bib59
  article-title: The tumor suppressor Mst1 promotes changes in the cellular redox state by phosphorylation and inactivation of peroxiredoxin- 1 protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.414524
  contributor:
    fullname: Rawat
– volume: 10
  start-page: 1130
  year: 2015
  ident: 10.14348/molcells.2016.2349_bib25
  article-title: Antioxidants in translational medicine
  publication-title: Antioxid. Redox Signal.
  contributor:
    fullname: Harald
– volume: 45
  start-page: 398
  year: 2012
  ident: 10.14348/molcells.2016.2349_bib16
  article-title: Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival. Mol
  publication-title: Cell
  contributor:
    fullname: Day
– volume: 110
  start-page: 13398
  year: 2013
  ident: 10.14348/molcells.2016.2349_bib15
  article-title: Selective activation of oxidized PTP1B by the thioredoxin system modulates PDGF-receptor tyrosine kinase signaling
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1302891110
  contributor:
    fullname: Dagnell
– volume: 271
  start-page: 15315
  year: 1996
  ident: 10.14348/molcells.2016.2349_bib46
  article-title: Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties
  publication-title: TSA possesses thiol peroxidase activity. J. Biol. Chem.
  contributor:
    fullname: Netto
– volume: 278
  start-page: 30896
  year: 2003
  ident: 10.14348/molcells.2016.2349_bib74
  article-title: Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M303542200
  contributor:
    fullname: Veal
– volume: 5
  start-page: 1425
  year: 2013
  ident: 10.14348/molcells.2016.2349_bib10
  article-title: A peroxiredoxin promotes H2O2 signaling and oxidative stress resistance by oxidizing a thioredoxin family protein
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.10.036
  contributor:
    fullname: Brown
– volume: 101
  start-page: 16419
  year: 2004
  ident: 10.14348/molcells.2016.2349_bib32
  article-title: Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0407396101
  contributor:
    fullname: Kwon
– volume: 300
  start-page: 650
  year: 2003
  ident: 10.14348/molcells.2016.2349_bib80
  article-title: Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling
  publication-title: Science
  doi: 10.1126/science.1080405
  contributor:
    fullname: Wood
– volume: 288
  start-page: 31313
  year: 2013
  ident: 10.14348/molcells.2016.2349_bib37
  article-title: Peroxiredoxin chaperone activity is critical for protein homeostasis in zinc-deficient yeast
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.512384
  contributor:
    fullname: MacDiarmid
– volume: 181
  start-page: 1129
  year: 2008
  ident: 10.14348/molcells.2016.2349_bib14
  article-title: Regulation of ROS signal transduction by NADPH oxidase 4 localization
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200709049
  contributor:
    fullname: Chen
– volume: 279
  start-page: 6501
  year: 2004
  ident: 10.14348/molcells.2016.2349_bib8
  article-title: Decrease of H2O2 plasma membrane permeability during adaptation to H2O2 in Saccharomyces cerevisiae
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M311818200
  contributor:
    fullname: Branco
– volume: 18
  start-page: 1165
  year: 2013
  ident: 10.14348/molcells.2016.2349_bib35
  article-title: Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance
  publication-title: Antioxid. Redox Signal
  doi: 10.1089/ars.2011.4322
  contributor:
    fullname: Lee
– volume: 16
  start-page: 1
  year: 2015
  ident: 10.14348/molcells.2016.2349_bib47
  article-title: Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions
  publication-title: Free Radic. Res.
  contributor:
    fullname: Netto
– volume: 11
  start-page: 64
  year: 2015
  ident: 10.14348/molcells.2016.2349_bib67
  article-title: Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1695
  contributor:
    fullname: Sobotta
– year: 2016
  ident: 10.14348/molcells.2016.2349_bib58
  article-title: Glutathionylation of the active site cysteines of peroxiredoxin 2 and recycling by glutaredoxin
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.692798
  contributor:
    fullname: Peskin
– volume: 11
  start-page: 1179
  year: 2004
  ident: 10.14348/molcells.2016.2349_bib34
  article-title: Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb856
  contributor:
    fullname: Lee
– volume: 117
  start-page: 625
  year: 2004
  ident: 10.14348/molcells.2016.2349_bib27
  article-title: Two enzymes in one: two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function
  publication-title: Cell
  doi: 10.1016/j.cell.2004.05.002
  contributor:
    fullname: Jang
– volume: 44
  start-page: 10583
  year: 2005
  ident: 10.14348/molcells.2016.2349_bib52
  article-title: Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin
  publication-title: Biochemistry
  doi: 10.1021/bi050448i
  contributor:
    fullname: Parsonage
– volume: 26
  start-page: 2001
  year: 2012
  ident: 10.14348/molcells.2016.2349_bib48
  article-title: Peroxiredoxins, geron- togenes linking aging to genome instability and cancer
  publication-title: Genes Dev.
  doi: 10.1101/gad.200006.112
  contributor:
    fullname: Nyström
– volume: 967
  start-page: 152
  year: 2003
  ident: 10.14348/molcells.2016.2349_bib31
  article-title: Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders
  publication-title: Brain Res.
  doi: 10.1016/S0006-8993(02)04243-9
  contributor:
    fullname: Krapfenbauer
– volume: 9
  start-page: 387
  year: 2002
  ident: 10.14348/molcells.2016.2349_bib41
  article-title: Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00445-8
  contributor:
    fullname: Meng
– volume: 42
  start-page: 326
  year: 2007
  ident: 10.14348/molcells.2016.2349_bib49
  article-title: Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2006.10.042
  contributor:
    fullname: Ogusucu
– volume: 289
  start-page: 8735
  year: 2014
  ident: 10.14348/molcells.2016.2349_bib65
  article-title: Role of metabolic H2O2 generation: redox signaling and oxidative stress
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R113.544635
  contributor:
    fullname: Sies
– volume: 32
  start-page: 5302
  year: 2013
  ident: 10.14348/molcells.2016.2349_bib73
  article-title: Role for Prdx1 as a specific sensor in redox-regulated senescence in breast cancer
  publication-title: Oncogene
  doi: 10.1038/onc.2012.624
  contributor:
    fullname: Turner-Ivey
– volume: 79
  start-page: 947
  year: 2011
  ident: 10.14348/molcells.2016.2349_bib45
  article-title: Analysis of the peroxiredoxin family: using active-site structure and sequence information for global classification and residue analysis
  publication-title: Proteins
  doi: 10.1002/prot.22936
  contributor:
    fullname: Nelson
– volume: 276
  start-page: 21938
  year: 2001
  ident: 10.14348/molcells.2016.2349_bib38
  article-title: Insulin-stimulated hydrogen peroxide reversibly inhibits proteintyrosine phosphatase 1b in vivo and enhances the early insulin action cascade
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C100109200
  contributor:
    fullname: Mahadev
– volume: 28
  start-page: 1505
  year: 2009
  ident: 10.14348/molcells.2016.2349_bib12
  article-title: Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.101
  contributor:
    fullname: Cao
– volume: 17
  start-page: 2596
  year: 1998
  ident: 10.14348/molcells.2016.2349_bib63
  article-title: Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK)
  publication-title: EMBO J.
  doi: 10.1093/emboj/17.9.2596
  contributor:
    fullname: Saitoh
– volume: 20
  start-page: 3821
  year: 1992
  ident: 10.14348/molcells.2016.2349_bib40
  article-title: Thioredoxin regulates the DNA binding activity of NF-κB by reduction of a disulphide bond involving cysteine 62
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/20.15.3821
  contributor:
    fullname: Matthews
– volume: 11
  start-page: 156
  year: 2015
  ident: 10.14348/molcells.2016.2349_bib56
  article-title: A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1720
  contributor:
    fullname: Peralta
– volume: 37
  start-page: 5633
  year: 1998
  ident: 10.14348/molcells.2016.2349_bib18
  article-title: Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation
  publication-title: Biochemistry
  doi: 10.1021/bi973035t
  contributor:
    fullname: Denu
– volume: 2
  start-page: 535
  year: 2014
  ident: 10.14348/molcells.2016.2349_bib39
  article-title: Hydrogen peroxide sensing, signaling and regulation of transcription factors
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2014.02.006
  contributor:
    fullname: Marinho
– volume: 108
  start-page: 2729
  year: 2011
  ident: 10.14348/molcells.2016.2349_bib21
  article-title: Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1010721108
  contributor:
    fullname: Fomenko
– volume: 284
  start-page: 31532
  year: 2009
  ident: 10.14348/molcells.2016.2349_bib22
  article-title: Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.059246
  contributor:
    fullname: Gutscher
– volume: 50
  start-page: 1032
  year: 2011
  ident: 10.14348/molcells.2016.2349_bib71
  article-title: Horseradish peroxidase compound I as a tool to investigate reactive protein-cysteine residues: from quantification to kinetics
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2011.02.020
  contributor:
    fullname: Toledo
– volume: 288
  start-page: 32241
  year: 2013
  ident: 10.14348/molcells.2016.2349_bib19
  article-title: Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.495150
  contributor:
    fullname: Du
– volume: 43
  start-page: 1099
  year: 2007
  ident: 10.14348/molcells.2016.2349_bib81
  article-title: Thiol oxidation in signaling and response to stress: detection and quantification of physiological and pathophysiological thiol modifications
  publication-title: Free Radic. Biol. Med
  doi: 10.1016/j.freeradbiomed.2007.07.014
  contributor:
    fullname: Ying
– volume: 10
  start-page: 533
  year: 1969
  ident: 10.14348/molcells.2016.2349_bib36
  article-title: Mechanism of peroxideinactivation of the sulphydryl enzyme glyceraldehyde-3- phophate dehydrogenase
  publication-title: Eur. J. Biochem
  doi: 10.1111/j.1432-1033.1969.tb00721.x
  contributor:
    fullname: Little
– ident: 10.14348/molcells.2016.2349_bib66
  doi: 10.1007/978-94-007-4716-6
– volume: 467
  start-page: 95
  year: 2007
  ident: 10.14348/molcells.2016.2349_bib72
  article-title: Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2007.08.008
  contributor:
    fullname: Trujillo
– volume: 57
  start-page: 1842
  year: 2014
  ident: 10.14348/molcells.2016.2349_bib1
  article-title: Circulating peroxiredoxin 4 and type 2 diabetes risk: the Prevention of Renal and Vascular Endstage Disease (PREVEND) study
  publication-title: Diabetologia
  doi: 10.1007/s00125-014-3278-9
  contributor:
    fullname: Abbasi
SSID ssib049006238
ssib053376808
ssj0017628
Score 2.5448556
SecondaryResourceType review_article
Snippet A challenge in the redox field is the elucidation of the molecular mechanisms, by which H2O2 mediates signal transduction in cells. This is relevant since...
A challenge in the redox field is the elucidation of the molecular mechanisms, by which H 2 O 2 mediates signal transduction in cells. This is relevant since...
SourceID nrf
pubmedcentral
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 65
SubjectTerms Hydrogen Peroxide - metabolism
Kinetics
Minireview
Models, Biological
Peroxiredoxins - metabolism
Signal Transduction
Thioredoxins - metabolism
생물학
Title The Roles of Peroxiredoxin and Thioredoxin in Hydrogen Peroxide Sensing and in Signal Transduction
URI https://www.ncbi.nlm.nih.gov/pubmed/26813662
https://pubmed.ncbi.nlm.nih.gov/PMC4749877
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002077295
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Molecules and Cells, 2016, 39(1), , pp.65-71
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbZQKGX0qav7SPokGO9a1uyZB9DaNgENixNFnIT1mtjkpWD2UDy7zvjxza-FoyN8Vi2RmPPjDTzDSEnjDkncVWX58xGnEsdaeeKCJR37LjLfdlWnlteicWaX95mtwckG3Jh2qB9o6tZeNjOQnXXxlY-bs18iBObr5ZnXHJwleV8QiYgoGMXnReYFvhPqMCckVheYr-0AF9_lx-XiAh-zXkPRcQZz-fb-gHnyxHGOxGzlHEEFU1FnjAh0pHmmoTGv1Ja44DKVxrq_D1515uW9LTrwgdy4MIRedMVm3z5SDRIBP2D-E209nTlmvq5QrTQ5yrQMlh6c1fVwzlsixfb1CBdPaV19Bpj3cOmJQaC62qDj2uVne0waD-R9fnvm7NF1FdYiEwWs12kE_CAXRF7JjQvkqz0oMmgvxYsh9JKz7SRcZlxI3xaJqk3pvBSJyUrvE680OwzOQx1cF8JFZmPvSniEo0yW2RlyqTlDuzPzOaxl1Pya-CeeuyANBQ6IMh3NfBdId8V8n1KKHBY3ZtKIQA2Hje1um8UmPkXCusKxlPypeP6vr1hpKZEjsZjT4BNja-AiLWY2r1IffvvO7-Tt_jy3ezMD3K4a57cT7BXdvqYTK5Wy-NWSmG_Tk__AvMK6eY
link.rule.ids 230,315,730,783,787,888,27938,27939,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RQguvAvLMweOZDeJHTs5oopqC92qolvUmxW_ttF2k2q1lSi_npk8loYbSJGiyBNbzmdnZuzxNwAfGXNO0q4uz5gNOZc61M7lISrvyHGX-aLJPDc7EdNz_vUivdiBtD8L0wTtG12Oq6vVuCovm9jK65WZ9HFik9PZAZccXWU52YV7OF8jMXTSeU4HA_8MKzRoJCWY2G4u4PxvT8jFIsSfc9aREXHGs8mqvqIVcyLyjsU4YZxoRRORxUyIZKC7dqu1v6O2hiGVd3TU4WP40feuDU1Zjm82emx-_UX8-M_dfwKPOqs1-NwWP4UdVz2D-20ey9vnoHGwBd-JGiqofXDqsP2SiEh_llVQVDaYX5Z1_4zX9Nauaxy4naR1wRmF0VeLRhgFzsoFNdfoUdvS276A88Mv84Np2CVvCE0asU2oY3SuXR55JjTP47TwqCTxQ1o0SgorPdNGRkXKjfBJESfemNxLHRcs9zr2QrN92Kvqyr2CQKQ-8iaPCrL3bJ4WCZOWOzRtU5tFXo7gUw-Lum45OhT5NgSo6gFVBKgiQEcQIHRqaUpF3Np0X9RquVboQRwpSlkYjeBlC-e2vn4IjEAOgN4KUFXDEoSvoevu4Hr9329-gAfT-exYHR-dfHsDD6kj7SLQW9jbrG_cOzSLNvp9Mwl-AwMTCgY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEBZNSktfkt7dpocf-lifkiX7sSRZNm0TliaB0BdhXRuzWXtZNpD013fGx3bdx4DBGI8P6ZM0M9LoG0K-UGqtwFVdllHjMyaUr6zNfVDekWU2c0WTee70jE8u2fer9Gor1VcTtK9VGVQ3i6Aqr5vYyuVCh32cWDg9PWSCgasswqVx4Q55DH02yoaOOstxc-C_pgVGjcAkE5sFBhgD2l1yMfdhgM46QiJGWRYu6hucNUcy75gHCWVILZrwLKacJwP9tVOt3JbqGoZVbump8T753ZewDU-ZB7drFeg__5E_PqgKnpO9znr1vrUiL8gjW70kT9p8lveviIJG5_1Ciiivdt7Uwj-USEh6V1ZeURnv4rqs-2s4JvdmVUMD7iSN9c4xnL6aNcIgcF7O8HONPjUtze1rcjk-vjic-F0SB1-nEV37KgYn2-aRo1yxPE4LB8oSKtOAcVIY4ajSIipSprlLijhxWudOqLiguVOx44q-IbtVXdl3xOOpi5zOowLtPpOnRUKFYRZM3NRkkRMj8rWHRi5brg6JPg6CKntQJYIqEdQR8QA-OdelRI5tPM9qOV9J8CROJKYujEbkbQvp5n19MxgRMQB7I4CvGt4BCBva7g6y9w9-8jN5Oj0ay58nZz8OyDMsRzsX9IHsrle39iNYR2v1qekHfwFghAyG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Roles+of+Peroxiredoxin+and+Thioredoxin+in+Hydrogen+Peroxide+Sensing+and+in+Signal+Transduction&rft.jtitle=Molecules+and+cells&rft.au=Luis+E.S.+Netto&rft.au=Fernando+Antunes&rft.date=2016-01-01&rft.pub=%ED%95%9C%EA%B5%AD%EB%B6%84%EC%9E%90%EC%84%B8%ED%8F%AC%EC%83%9D%EB%AC%BC%ED%95%99%ED%9A%8C&rft.issn=1016-8478&rft.eissn=0219-1032&rft.spage=65&rft.epage=71&rft_id=info:doi/10.14348%2Fmolcells.2016.2349&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_71350
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-8478&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-8478&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-8478&client=summon