Basal ganglia circuits for reward value-guided behavior

The basal ganglia are equipped with inhibitory and disinhibitory mechanisms that enable a subject to choose valuable objects and actions. Notably, a value can be determined flexibly by recent experience or stably by prolonged experience. Recent studies have revealed that the head and tail of the cau...

Full description

Saved in:
Bibliographic Details
Published inAnnual review of neuroscience Vol. 37; p. 289
Main Authors Hikosaka, Okihide, Kim, Hyoung F, Yasuda, Masaharu, Yamamoto, Shinya
Format Journal Article
LanguageEnglish
Published United States 01.01.2014
Subjects
Online AccessGet more information

Cover

Loading…
Abstract The basal ganglia are equipped with inhibitory and disinhibitory mechanisms that enable a subject to choose valuable objects and actions. Notably, a value can be determined flexibly by recent experience or stably by prolonged experience. Recent studies have revealed that the head and tail of the caudate nucleus selectively and differentially process flexible and stable values of visual objects. These signals are sent to the superior colliculus through different parts of the substantia nigra so that the animal looks preferentially at high-valued objects, but in different manners. Thus, relying on short-term value memories, the caudate head circuit allows the subject's gaze to move expectantly to recently valued objects. Relying on long-term value memories, the caudate tail circuit allows the subject's gaze to move automatically to previously valued objects. The basal ganglia also contain an equivalent parallel mechanism for action values. Such flexible-stable parallel mechanisms for object and action values create a highly adaptable system for decision making.
AbstractList The basal ganglia are equipped with inhibitory and disinhibitory mechanisms that enable a subject to choose valuable objects and actions. Notably, a value can be determined flexibly by recent experience or stably by prolonged experience. Recent studies have revealed that the head and tail of the caudate nucleus selectively and differentially process flexible and stable values of visual objects. These signals are sent to the superior colliculus through different parts of the substantia nigra so that the animal looks preferentially at high-valued objects, but in different manners. Thus, relying on short-term value memories, the caudate head circuit allows the subject's gaze to move expectantly to recently valued objects. Relying on long-term value memories, the caudate tail circuit allows the subject's gaze to move automatically to previously valued objects. The basal ganglia also contain an equivalent parallel mechanism for action values. Such flexible-stable parallel mechanisms for object and action values create a highly adaptable system for decision making.
Author Kim, Hyoung F
Yamamoto, Shinya
Yasuda, Masaharu
Hikosaka, Okihide
Author_xml – sequence: 1
  givenname: Okihide
  surname: Hikosaka
  fullname: Hikosaka, Okihide
  email: oh@lsr.nei.nih.gov
  organization: Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892; email: oh@lsr.nei.nih.gov
– sequence: 2
  givenname: Hyoung F
  surname: Kim
  fullname: Kim, Hyoung F
– sequence: 3
  givenname: Masaharu
  surname: Yasuda
  fullname: Yasuda, Masaharu
– sequence: 4
  givenname: Shinya
  surname: Yamamoto
  fullname: Yamamoto, Shinya
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25032497$$D View this record in MEDLINE/PubMed
BookMark eNo1j0tLAzEURoMo9qF_QQKuo7l5TpZafEHBja5LHndqZDpTMs2I_96Cuvg4u3P4FuS0H3ok5Br4DYAyt77va8GJ9VjLwLgFDpId54Q6IXPQSjMFwszIYhw_OedOSndOZkJzKZSzc2Lv_eg7uvX9tsuexlxizYeRtkOhBb98SXTyXUW2rTlhogE__JSHckHOWt-NePnHJXl_fHhbPbP169PL6m7N4jFxYN6mRglpAm-kRMsNFxoitE3jg9YqSgDgWjm0IWrXcpesaLQyWrYGU4hiSa5-vfsadpg2-5J3vnxv_h-IH5KaS0k
CitedBy_id crossref_primary_10_1038_s41598_020_57595_6
crossref_primary_10_1038_s41467_018_03994_3
crossref_primary_10_1146_annurev_neuro_072116_031548
crossref_primary_10_1016_j_cobeha_2018_09_015
crossref_primary_10_1016_j_neuron_2018_01_006
crossref_primary_10_2174_1570159X22666240131114225
crossref_primary_10_1016_j_isci_2023_107521
crossref_primary_10_3389_fpsyt_2021_668019
crossref_primary_10_1016_j_neubiorev_2021_08_009
crossref_primary_10_1038_s41467_017_01833_5
crossref_primary_10_1371_journal_pbio_2000638
crossref_primary_10_3389_fnins_2022_976209
crossref_primary_10_1523_ENEURO_0022_16_2016
crossref_primary_10_1007_s11055_020_00978_z
crossref_primary_10_7554_eLife_32353
crossref_primary_10_3233_JPD_181460
crossref_primary_10_1016_j_neubiorev_2018_01_004
crossref_primary_10_1093_brain_awaa296
crossref_primary_10_3389_fpsyt_2023_1163421
crossref_primary_10_1016_j_neuroimage_2017_05_062
crossref_primary_10_1111_jpr_12530
crossref_primary_10_1186_s42466_019_0013_5
crossref_primary_10_1073_pnas_1707695115
crossref_primary_10_1111_ejn_15408
crossref_primary_10_3390_brainsci10060396
crossref_primary_10_1016_j_cub_2023_09_034
crossref_primary_10_1016_j_neubiorev_2024_105719
crossref_primary_10_1111_ejn_12897
crossref_primary_10_1016_j_jaac_2017_10_014
crossref_primary_10_1523_JNEUROSCI_0610_19_2019
crossref_primary_10_1016_j_neuroimage_2017_12_093
crossref_primary_10_1016_j_neuroimage_2021_118846
crossref_primary_10_1038_s44159_024_00385_y
crossref_primary_10_2174_1570159X21666230911103520
crossref_primary_10_7554_eLife_16135
crossref_primary_10_1146_annurev_vision_100419_103842
crossref_primary_10_1152_jn_00831_2014
crossref_primary_10_1016_j_cub_2016_06_041
crossref_primary_10_1016_j_neuron_2021_03_017
crossref_primary_10_7554_eLife_46080
crossref_primary_10_1007_s13164_015_0240_9
crossref_primary_10_1016_j_bpsc_2021_10_011
crossref_primary_10_1016_j_neuron_2016_04_036
crossref_primary_10_1007_s11245_022_09812_2
crossref_primary_10_1007_s12204_022_2420_y
crossref_primary_10_1038_s41467_022_33514_3
crossref_primary_10_1007_s00702_017_1691_1
crossref_primary_10_1111_jcpp_13118
crossref_primary_10_1111_ejn_15532
crossref_primary_10_1016_j_celrep_2021_109437
crossref_primary_10_3389_fnins_2015_00037
crossref_primary_10_1016_j_neuropharm_2022_109205
crossref_primary_10_1523_JNEUROSCI_2084_17_2018
crossref_primary_10_3758_s13423_017_1380_y
crossref_primary_10_1016_j_neures_2017_05_002
crossref_primary_10_1080_09637486_2022_2137784
crossref_primary_10_31857_S013116462360026X
crossref_primary_10_1038_s41598_018_28176_5
crossref_primary_10_1038_s41467_020_15802_y
crossref_primary_10_3389_fnins_2016_00413
crossref_primary_10_1093_scan_nsw141
crossref_primary_10_3389_fnins_2016_00378
crossref_primary_10_7554_eLife_34929
crossref_primary_10_1016_j_visres_2015_01_020
crossref_primary_10_1002_cne_70003
crossref_primary_10_3389_fnana_2017_00003
crossref_primary_10_1152_jn_00414_2021
crossref_primary_10_1016_j_visres_2017_10_003
crossref_primary_10_1038_s41380_018_0077_6
crossref_primary_10_1016_j_neuroimage_2023_120413
crossref_primary_10_1371_journal_pone_0316453
crossref_primary_10_1523_JNEUROSCI_3159_15_2016
crossref_primary_10_1097_WCO_0000000000000159
crossref_primary_10_3389_fncel_2025_1572657
crossref_primary_10_1016_j_neuron_2018_01_049
crossref_primary_10_1016_j_brs_2022_01_014
crossref_primary_10_1155_2024_5550362
crossref_primary_10_1016_j_cortex_2017_09_027
crossref_primary_10_1016_j_tins_2020_10_016
crossref_primary_10_1038_s41398_019_0421_x
crossref_primary_10_7554_eLife_91650
crossref_primary_10_1016_j_neuropsychologia_2022_108365
crossref_primary_10_1016_j_neulet_2018_11_047
crossref_primary_10_1093_brain_awv134
crossref_primary_10_1007_s12576_016_0445_4
crossref_primary_10_1523_JNEUROSCI_1033_23_2023
crossref_primary_10_1073_pnas_1906662116
crossref_primary_10_7554_eLife_91650_3
crossref_primary_10_1016_j_neuropsychologia_2018_07_030
crossref_primary_10_3389_fnagi_2022_912967
crossref_primary_10_1093_bib_bbad060
crossref_primary_10_1016_j_neuropsychologia_2016_03_019
crossref_primary_10_1038_npjschz_2016_20
crossref_primary_10_1162_netn_a_00235
crossref_primary_10_1371_journal_pbio_2005339
crossref_primary_10_1371_journal_pbio_3000876
crossref_primary_10_7554_eLife_63721
crossref_primary_10_1016_j_neurol_2024_09_004
crossref_primary_10_1038_s41398_017_0071_9
crossref_primary_10_3389_fnana_2017_00106
crossref_primary_10_1016_j_neuroimage_2021_118006
crossref_primary_10_7554_eLife_16572
crossref_primary_10_1134_S0362119723700421
crossref_primary_10_1371_journal_pone_0144530
crossref_primary_10_1016_j_neuron_2017_04_033
crossref_primary_10_1016_j_jpain_2024_01_343
crossref_primary_10_1038_ncomms12554
crossref_primary_10_1016_j_cell_2020_08_032
crossref_primary_10_1093_cercor_bhad122
crossref_primary_10_1007_s11571_016_9376_2
crossref_primary_10_1016_j_neuropharm_2017_05_001
crossref_primary_10_1093_cercor_bhz218
crossref_primary_10_1523_ENEURO_0345_18_2019
crossref_primary_10_3389_fnana_2017_00035
crossref_primary_10_1007_s11571_020_09661_y
crossref_primary_10_1016_j_cub_2018_05_017
crossref_primary_10_3389_fnana_2014_00120
crossref_primary_10_1152_jn_00262_2015
crossref_primary_10_1016_j_conb_2022_102650
crossref_primary_10_1038_s41467_021_23747_z
crossref_primary_10_1016_j_pnpbp_2015_10_006
crossref_primary_10_1001_jamanetworkopen_2020_4928
crossref_primary_10_1152_jn_00119_2016
crossref_primary_10_3389_fnins_2018_00396
crossref_primary_10_1038_d41586_018_02589_8
crossref_primary_10_7554_eLife_53998
crossref_primary_10_1093_texcom_tgaa034
crossref_primary_10_1080_15622975_2016_1237040
crossref_primary_10_1038_srep27056
crossref_primary_10_1016_j_crmeth_2022_100296
crossref_primary_10_3330_hikakuseiriseika_35_158
crossref_primary_10_3389_fpsyg_2015_00016
crossref_primary_10_1016_j_mri_2015_10_036
crossref_primary_10_1523_ENEURO_0381_19_2020
crossref_primary_10_1002_jnr_24480
crossref_primary_10_1080_21622965_2017_1317486
crossref_primary_10_1523_JNEUROSCI_2569_17_2017
crossref_primary_10_1016_j_jbc_2023_104583
crossref_primary_10_1038_s41588_019_0511_y
crossref_primary_10_3390_brainsci13020158
crossref_primary_10_1111_ejn_13726
crossref_primary_10_7554_eLife_21492
crossref_primary_10_1111_ejn_13964
crossref_primary_10_7554_eLife_56694
crossref_primary_10_1038_s41467_024_53176_7
crossref_primary_10_1146_annurev_vision_100720_125029
crossref_primary_10_1016_j_neures_2022_12_011
crossref_primary_10_1016_j_brainres_2014_12_023
crossref_primary_10_1016_j_tics_2020_04_002
crossref_primary_10_1007_s00422_019_00803_y
crossref_primary_10_1016_j_neuron_2018_06_021
crossref_primary_10_1016_j_neuropsychologia_2018_10_014
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1146/annurev-neuro-071013-013924
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1545-4126
ExternalDocumentID 25032497
Genre Journal Article
Research Support, N.I.H., Intramural
Review
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: ZIA EY000415
GroupedDBID ---
-QD
-QH
-~X
.GJ
0R~
1KX
23M
2FS
36B
39C
3O-
4.4
51A
53G
5FA
5FB
5FC
5FD
5FE
5FF
5FH
5GY
5RE
6J9
70K
70N
70Q
70S
70W
79.
7A.
7B-
7X7
88E
88I
8AF
8AO
8FE
8FH
8FI
8FJ
8G5
8NG
8R4
8R5
AABJL
AAGWO
AALHT
AALUV
AAOHI
AAQMF
AARJV
AAWJP
AAXSQ
AAYIS
ABDBF
ABDOG
ABGRM
ABIPL
ABIVO
ABJNI
ABKGM
ABPPZ
ABUWG
ABVYV
ABZNY
ACAHA
ACCNS
ACDVT
ACGFS
ACGOD
ACIWK
ACJYF
ACKHT
ACMXS
ACNCT
ACPHO
ACPRK
ACQCJ
ACQLW
ACRLM
ACSOE
ACUHS
ADBBV
ADEJD
ADHEY
ADHGD
ADIYS
ADLON
ADNJN
ADSVE
AEAIQ
AEKBM
AENEX
AEPIK
AFCZG
AFERR
AFKDQ
AFKEJ
AFKRA
AFONB
AHDLI
AHIXL
AHKZM
AHMBA
AHVNO
AI.
AICBU
AIDEK
AIJFW
AJAAW
ALAFQ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTJG
AOUBY
AQQLW
ATAUN
AZQEC
B0M
B9D
B9E
B9F
B9G
B9H
B9L
B9N
BBNVY
BCFVH
BENPR
BES
BHPHI
BJPMW
BMYRD
BPHCQ
BVXVI
CCPQU
CGR
CS3
CUY
CVF
DWQXO
EAP
EBC
EBD
EBS
ECM
EIF
EJD
EMB
EMK
EMOBN
EPS
ESX
F-Q
F-S
F-V
F-X
F-Y
F-Z
F5P
FEDTE
FIWKU
FIXEU
FMZAJ
FQMFW
FT0
FU.
FUEKT
FXG
FYUFA
GJQJI
GLOEX
GNDDA
GNUQQ
GOAVI
GQXMV
GUQSH
H13
HCIFZ
HMCUK
HVGLF
HZ~
H~9
J1V
L7B
LK8
M1P
M22
M2M
M2O
M2P
M7P
MVM
N9A
NPM
O9-
P0P
P2P
PADUT
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q2X
RAR
RAV
RNS
SV3
TUS
UKHRP
UKR
VH1
WH7
WHG
X7N
XOL
XSW
YZZ
ZGI
ZYWBE
~8M
~KM
ID FETCH-LOGICAL-c503t-a7d84236b0833e7060251c1f88ab554c31110549e7bc59f09d72854653f6edbc2
IngestDate Mon Jul 21 06:05:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords caudate nucleus
flexible value
substantia nigra
stable value
visual object
superior colliculus
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c503t-a7d84236b0833e7060251c1f88ab554c31110549e7bc59f09d72854653f6edbc2
PMID 25032497
ParticipantIDs pubmed_primary_25032497
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Annual review of neuroscience
PublicationTitleAlternate Annu Rev Neurosci
PublicationYear 2014
SSID ssj0009339
Score 2.505656
SecondaryResourceType review_article
Snippet The basal ganglia are equipped with inhibitory and disinhibitory mechanisms that enable a subject to choose valuable objects and actions. Notably, a value can...
SourceID pubmed
SourceType Index Database
StartPage 289
SubjectTerms Animals
Basal Ganglia - physiology
Basal Ganglia - physiopathology
Basal Ganglia Diseases - physiopathology
Brain Mapping
Decision Making - physiology
Humans
Memory - physiology
Neural Pathways - physiology
Reward
Saccades - physiology
Superior Colliculi - physiology
Visual Perception - physiology
Title Basal ganglia circuits for reward value-guided behavior
URI https://www.ncbi.nlm.nih.gov/pubmed/25032497
Volume 37
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEG5GF2Qvi699uCoNihdpN9l0Hn1UUQZh3YMKepJ-OmGYzDAzOYy_fqsfMcFV2fUwYUhB6PRXqXzdqfoKof08FtQUWUQYlYzAT5OiiDlhTGlu0kynwiXIXmb9G3pxm972eqaTtVTPxZF8fLGu5D2owjnA1VbJ_geyTxeFE_Af8IUjIAzHf8L4hM9ghh-4LcXlh7Kcytp-B7CZg1Nt02EPrZa3Jg91qSzTDCX5XUIa9PXbCpaOwGWLeTkcz_jQ8czfw3JQqidT6MbcX9io0aYJ3_FZrbgvBprxAZ_WrWXEwT3cDu3VoKwWvLvxENPOxoMOwZKmhMa-4r2Jpl7CpQmHvj3Q32G6q09M3I3ZSirXaQIoqa-q7gA4GTkEga4B__P5vG9bn2loN6YltASrCdse1e7pNNLMScJW0F4Y1483RmWVo8OVnq1CHBu5XkWfwjICH3ufWEM9Xa2jjeOKz8ejBT7ALrHXfTFZRyu_Qv7EBsqdx-DgMbjxGAweg73H4K7H4MZjNtHN-dn1aZ-E1hlEwgDnhOeqAKKcCWDYibYKScBjZWyKggsgkDKBVxyQdaZzIVNmIqZyW0qbpYnJtBLy52e0XI0r_RVhESkj8kxq4Dg0FkxEGafaUBklqYLV6jf0xc_E_cTro9w3c7T1quU7-th61Db6YOCB1DvA7uZi14HzBz_hTtE
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Basal+ganglia+circuits+for+reward+value-guided+behavior&rft.jtitle=Annual+review+of+neuroscience&rft.au=Hikosaka%2C+Okihide&rft.au=Kim%2C+Hyoung+F&rft.au=Yasuda%2C+Masaharu&rft.au=Yamamoto%2C+Shinya&rft.date=2014-01-01&rft.eissn=1545-4126&rft.volume=37&rft.spage=289&rft_id=info:doi/10.1146%2Fannurev-neuro-071013-013924&rft_id=info%3Apmid%2F25032497&rft_id=info%3Apmid%2F25032497&rft.externalDocID=25032497