Quercetin inhibits intestinal non-haem iron absorption by regulating iron metabolism genes in the tissues
Purpose There is general agreement that some dietary polyphenols block non-haem iron uptake, but the mechanisms by which they achieve this action are poorly understood. Since the polyphenol quercetin is ingested daily in significant amounts, we have investigated the effect of quercetin on duodenal n...
Saved in:
Published in | European journal of nutrition Vol. 58; no. 2; pp. 743 - 753 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
There is general agreement that some dietary polyphenols block non-haem iron uptake, but the mechanisms by which they achieve this action are poorly understood. Since the polyphenol quercetin is ingested daily in significant amounts, we have investigated the effect of quercetin on duodenal non-haem iron absorption in vivo, as well as its effect on factors known to be involved in systemic iron metabolism.
Methods
Rats were subject to gastric gavage and systemic quercetin administration. Treatments were followed with uptake studies using radiolabeled iron, serum iron and transferrin saturation measurements, LC-MS/MS analysis of quercetin metabolites in serum, determination of tissue non-haem iron content and analysis of gene expression of iron-related proteins.
Results
Both oral and intraperitoneal (IP) quercetin caused serum and tissue iron depletion by two means, first by increasing mucosal iron uptake and inhibiting iron efflux from duodenal mucosa, and second by decreasing levels of duodenal DMT1, Dcytb and FPN. Additionally, IP quercetin induced highly significant increased liver expression of hepcidin, a hormone known to inhibit intestinal iron uptake.
Conclusions
Oral quercetin significantly inhibited iron absorption, while IP quercetin significantly affected iron-related genes. These results could lead to development of new effective ways of preventing and treating iron deficiency anaemia, the most widespread nutritional disorder in the world. |
---|---|
AbstractList | There is general agreement that some dietary polyphenols block non-haem iron uptake, but the mechanisms by which they achieve this action are poorly understood. Since the polyphenol quercetin is ingested daily in significant amounts, we have investigated the effect of quercetin on duodenal non-haem iron absorption in vivo, as well as its effect on factors known to be involved in systemic iron metabolism.
Rats were subject to gastric gavage and systemic quercetin administration. Treatments were followed with uptake studies using radiolabeled iron, serum iron and transferrin saturation measurements, LC-MS/MS analysis of quercetin metabolites in serum, determination of tissue non-haem iron content and analysis of gene expression of iron-related proteins.
Both oral and intraperitoneal (IP) quercetin caused serum and tissue iron depletion by two means, first by increasing mucosal iron uptake and inhibiting iron efflux from duodenal mucosa, and second by decreasing levels of duodenal DMT1, Dcytb and FPN. Additionally, IP quercetin induced highly significant increased liver expression of hepcidin, a hormone known to inhibit intestinal iron uptake.
Oral quercetin significantly inhibited iron absorption, while IP quercetin significantly affected iron-related genes. These results could lead to development of new effective ways of preventing and treating iron deficiency anaemia, the most widespread nutritional disorder in the world. There is general agreement that some dietary polyphenols block non-haem iron uptake, but the mechanisms by which they achieve this action are poorly understood. Since the polyphenol quercetin is ingested daily in significant amounts, we have investigated the effect of quercetin on duodenal non-haem iron absorption in vivo, as well as its effect on factors known to be involved in systemic iron metabolism.PURPOSEThere is general agreement that some dietary polyphenols block non-haem iron uptake, but the mechanisms by which they achieve this action are poorly understood. Since the polyphenol quercetin is ingested daily in significant amounts, we have investigated the effect of quercetin on duodenal non-haem iron absorption in vivo, as well as its effect on factors known to be involved in systemic iron metabolism.Rats were subject to gastric gavage and systemic quercetin administration. Treatments were followed with uptake studies using radiolabeled iron, serum iron and transferrin saturation measurements, LC-MS/MS analysis of quercetin metabolites in serum, determination of tissue non-haem iron content and analysis of gene expression of iron-related proteins.METHODSRats were subject to gastric gavage and systemic quercetin administration. Treatments were followed with uptake studies using radiolabeled iron, serum iron and transferrin saturation measurements, LC-MS/MS analysis of quercetin metabolites in serum, determination of tissue non-haem iron content and analysis of gene expression of iron-related proteins.Both oral and intraperitoneal (IP) quercetin caused serum and tissue iron depletion by two means, first by increasing mucosal iron uptake and inhibiting iron efflux from duodenal mucosa, and second by decreasing levels of duodenal DMT1, Dcytb and FPN. Additionally, IP quercetin induced highly significant increased liver expression of hepcidin, a hormone known to inhibit intestinal iron uptake.RESULTSBoth oral and intraperitoneal (IP) quercetin caused serum and tissue iron depletion by two means, first by increasing mucosal iron uptake and inhibiting iron efflux from duodenal mucosa, and second by decreasing levels of duodenal DMT1, Dcytb and FPN. Additionally, IP quercetin induced highly significant increased liver expression of hepcidin, a hormone known to inhibit intestinal iron uptake.Oral quercetin significantly inhibited iron absorption, while IP quercetin significantly affected iron-related genes. These results could lead to development of new effective ways of preventing and treating iron deficiency anaemia, the most widespread nutritional disorder in the world.CONCLUSIONSOral quercetin significantly inhibited iron absorption, while IP quercetin significantly affected iron-related genes. These results could lead to development of new effective ways of preventing and treating iron deficiency anaemia, the most widespread nutritional disorder in the world. PurposeThere is general agreement that some dietary polyphenols block non-haem iron uptake, but the mechanisms by which they achieve this action are poorly understood. Since the polyphenol quercetin is ingested daily in significant amounts, we have investigated the effect of quercetin on duodenal non-haem iron absorption in vivo, as well as its effect on factors known to be involved in systemic iron metabolism.MethodsRats were subject to gastric gavage and systemic quercetin administration. Treatments were followed with uptake studies using radiolabeled iron, serum iron and transferrin saturation measurements, LC-MS/MS analysis of quercetin metabolites in serum, determination of tissue non-haem iron content and analysis of gene expression of iron-related proteins.ResultsBoth oral and intraperitoneal (IP) quercetin caused serum and tissue iron depletion by two means, first by increasing mucosal iron uptake and inhibiting iron efflux from duodenal mucosa, and second by decreasing levels of duodenal DMT1, Dcytb and FPN. Additionally, IP quercetin induced highly significant increased liver expression of hepcidin, a hormone known to inhibit intestinal iron uptake.ConclusionsOral quercetin significantly inhibited iron absorption, while IP quercetin significantly affected iron-related genes. These results could lead to development of new effective ways of preventing and treating iron deficiency anaemia, the most widespread nutritional disorder in the world. Purpose There is general agreement that some dietary polyphenols block non-haem iron uptake, but the mechanisms by which they achieve this action are poorly understood. Since the polyphenol quercetin is ingested daily in significant amounts, we have investigated the effect of quercetin on duodenal non-haem iron absorption in vivo, as well as its effect on factors known to be involved in systemic iron metabolism. Methods Rats were subject to gastric gavage and systemic quercetin administration. Treatments were followed with uptake studies using radiolabeled iron, serum iron and transferrin saturation measurements, LC-MS/MS analysis of quercetin metabolites in serum, determination of tissue non-haem iron content and analysis of gene expression of iron-related proteins. Results Both oral and intraperitoneal (IP) quercetin caused serum and tissue iron depletion by two means, first by increasing mucosal iron uptake and inhibiting iron efflux from duodenal mucosa, and second by decreasing levels of duodenal DMT1, Dcytb and FPN. Additionally, IP quercetin induced highly significant increased liver expression of hepcidin, a hormone known to inhibit intestinal iron uptake. Conclusions Oral quercetin significantly inhibited iron absorption, while IP quercetin significantly affected iron-related genes. These results could lead to development of new effective ways of preventing and treating iron deficiency anaemia, the most widespread nutritional disorder in the world. PURPOSE: There is general agreement that some dietary polyphenols block non-haem iron uptake, but the mechanisms by which they achieve this action are poorly understood. Since the polyphenol quercetin is ingested daily in significant amounts, we have investigated the effect of quercetin on duodenal non-haem iron absorption in vivo, as well as its effect on factors known to be involved in systemic iron metabolism. METHODS: Rats were subject to gastric gavage and systemic quercetin administration. Treatments were followed with uptake studies using radiolabeled iron, serum iron and transferrin saturation measurements, LC-MS/MS analysis of quercetin metabolites in serum, determination of tissue non-haem iron content and analysis of gene expression of iron-related proteins. RESULTS: Both oral and intraperitoneal (IP) quercetin caused serum and tissue iron depletion by two means, first by increasing mucosal iron uptake and inhibiting iron efflux from duodenal mucosa, and second by decreasing levels of duodenal DMT1, Dcytb and FPN. Additionally, IP quercetin induced highly significant increased liver expression of hepcidin, a hormone known to inhibit intestinal iron uptake. CONCLUSIONS: Oral quercetin significantly inhibited iron absorption, while IP quercetin significantly affected iron-related genes. These results could lead to development of new effective ways of preventing and treating iron deficiency anaemia, the most widespread nutritional disorder in the world. |
Author | Lesjak, Marija Srai, Surjit Kaila S. Balesaria, Sara Skinner, Vernon Debnam, Edward S. |
Author_xml | – sequence: 1 givenname: Marija orcidid: 0000-0001-9764-9903 surname: Lesjak fullname: Lesjak, Marija email: marija.lesjak@dh.uns.ac.rs organization: Division of Biosciences, Research Department of Structural and Molecular Biology, University College London, Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad – sequence: 2 givenname: Sara surname: Balesaria fullname: Balesaria, Sara organization: Division of Biosciences, Research Department of Structural and Molecular Biology, University College London – sequence: 3 givenname: Vernon surname: Skinner fullname: Skinner, Vernon organization: Division of Biosciences, Research Department of Structural and Molecular Biology, University College London – sequence: 4 givenname: Edward S. surname: Debnam fullname: Debnam, Edward S. organization: Division of Biosciences, Research Department of Neuroscience, Physiology and Pharmacology, University College London – sequence: 5 givenname: Surjit Kaila S. surname: Srai fullname: Srai, Surjit Kaila S. email: k.srai@ucl.ac.uk organization: Division of Biosciences, Research Department of Structural and Molecular Biology, University College London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29594477$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUt1r1zAUDTJxH_oH-CIFX_bSLR9N0rwIMpwOBkPQ55Cmt_1ltMnPJB3svzel29SB-pRL7jnnnuSeY3TggweE3hJ8RjCW5wljppoak7YmosW1fIGOSMNELSjhB081lofoOKVbjDFlgrxCh1Rx1TRSHiH3dYFoITtfOb9zncupFBlSuTFTVQbWOwNz5WLwlelSiPvsStndVxHGZTIFN27dGbLpwuTSXI3gYdWp8g6q7FJaIL1GLwczJXjzcJ6g75efvl18qa9vPl9dfLyuLccs14Zi0XIqydDbhhDeG-CS0B63Q9MJaHshGCGlz3qLBzWQlg6GKWs6pRixAztBHzbd_dLN0FvwOZpJ76ObTbzXwTj9Z8e7nR7DnRYNk1SxInD6IBDDj2I869klC9NkPIQlaUo5o5gJTv8PxUS1WHDFC_T9M-htWGL54w1FlOBynf3ud_NPrh8XVgByA9gYUoowaOuyWVdS3uImTbBeo6G3aOgSDb1GQ69M8oz5KP4vDt04qWD9CPGX6b-TfgJAi8ws |
CitedBy_id | crossref_primary_10_1016_j_ejmech_2021_114068 crossref_primary_10_1016_j_freeradbiomed_2020_02_007 crossref_primary_10_29328_journal_jhcr_1001026 crossref_primary_10_3390_molecules28010029 crossref_primary_10_18632_oncotarget_27866 crossref_primary_10_54133_ajms_v7i1_Special__883 crossref_primary_10_1080_10408363_2024_2331477 crossref_primary_10_3390_nu15051205 crossref_primary_10_1007_s10534_022_00445_x crossref_primary_10_1016_j_jtemb_2023_127203 crossref_primary_10_1016_j_fbio_2020_100834 crossref_primary_10_1021_acsomega_2c01833 crossref_primary_10_1016_j_freeradbiomed_2021_03_019 crossref_primary_10_3390_plants12152889 crossref_primary_10_1002_ptr_7352 crossref_primary_10_3390_ijms22041883 crossref_primary_10_1007_s12035_025_04687_x crossref_primary_10_3390_nu15245081 crossref_primary_10_1016_j_carbpol_2020_116812 crossref_primary_10_1021_acs_jafc_8b02974 crossref_primary_10_3390_ijms21103505 crossref_primary_10_1016_j_molstruc_2022_132392 crossref_primary_10_3839_jabc_2022_014 crossref_primary_10_3390_ph12030119 crossref_primary_10_7762_cnr_2020_9_1_11 crossref_primary_10_1002_mnfr_202300343 crossref_primary_10_1080_10286020_2022_2045965 crossref_primary_10_1080_87559129_2020_1721530 crossref_primary_10_1039_D1FO00482D crossref_primary_10_1111_1541_4337_12669 crossref_primary_10_1016_j_jtemb_2020_126687 crossref_primary_10_1016_j_foodchem_2021_131904 crossref_primary_10_1016_j_foodchem_2025_143688 crossref_primary_10_3390_nu14010220 crossref_primary_10_1016_j_jare_2025_01_014 crossref_primary_10_1186_s12951_021_01059_0 crossref_primary_10_3390_nu13103501 crossref_primary_10_3390_jcm10112306 crossref_primary_10_1002_fft2_244 crossref_primary_10_1016_j_jnutbio_2024_109767 crossref_primary_10_1002_mco2_298 crossref_primary_10_1016_j_jff_2024_106601 crossref_primary_10_3390_antiox9121172 crossref_primary_10_1111_jfpp_15617 crossref_primary_10_3390_nu12051515 |
Cites_doi | 10.1016/j.cell.2010.06.028 10.1093/ajcn/61.4.800 10.1016/j.jnutbio.2015.10.015 10.1016/j.jff.2017.10.047 10.1002/hep.26490 10.1016/j.tox.2011.10.017 10.1016/S0163-7258(02)00298-X 10.1080/14786419.2010.495070 10.1021/jf3001857 10.1021/jf060986h 10.3945/jn.108.102905 10.1371/journal.pone.0102900 10.1016/j.freeradbiomed.2015.11.001 10.1016/j.bbamcr.2012.01.014 10.1182/blood-2005-03-1159 10.1021/acs.jafc.5b00531 10.1146/annurev.nutr.28.061807.155521 10.1016/B978-0-12-398456-2.00024-4 10.1182/blood-2003-03-0953 10.1017/S0007114599000537 10.1152/ajpgi.00122.2007 10.1021/acs.jafc.6b05755 10.1096/fj.07-9574LSF 10.1016/j.jnutbio.2014.02.009 10.1093/jn/133.6.1806 10.1182/blood-2004-03-0829 10.1093/jn/138.9.1647 10.1053/j.gastro.2010.12.037 10.1021/bi300752r 10.1080/10408399209527576 10.1002/bdd.605 10.3945/jn.110.134031 10.1126/science.1104742 10.1016/j.bcmd.2016.05.004 10.1126/science.aah3862 10.1093/ajcn/73.3.607 10.3892/ijmm.2016.2545 10.1136/gut.2003.037416 10.1016/j.abb.2004.09.007 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 European Journal of Nutrition is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: European Journal of Nutrition is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7RQ 7RV 7TS 7X7 7XB 88E 8AO 8C1 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9- K9. KB0 M0R M0S M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 7S9 L.6 5PM |
DOI | 10.1007/s00394-018-1680-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Career & Technical Education Database Nursing & Allied Health Database Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) Consumer Health Database (Alumni Edition) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Consumer Health Database ProQuest Health & Medical Collection PML(ProQuest Medical Library) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Family Health (Alumni Edition) ProQuest Central China Physical Education Index ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest Central Basic ProQuest Family Health ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Career and Technical Education ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Academic Middle East (New) AGRICOLA |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Diet & Clinical Nutrition |
EISSN | 1436-6215 |
EndPage | 753 |
ExternalDocumentID | PMC6437293 29594477 10_1007_s00394_018_1680_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja grantid: 172058 funderid: http://dx.doi.org/10.13039/501100004564 – fundername: Society for Medicinal Plant and Natural Product Research – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/H003576/1 funderid: http://dx.doi.org/10.13039/501100000268 – fundername: Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja grantid: 172058 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/H003576/1 – fundername: ; – fundername: ; grantid: BB/H003576/1 – fundername: ; grantid: 172058 |
GroupedDBID | --- -58 -5G -BR -EM -~C .86 .VR 04C 06C 06D 0R~ 0VY 1N0 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2QV 2~H 30V 36B 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 6PF 7RQ 7RV 7X7 88E 8AO 8C1 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACUHS ACZOJ ADBBV ADHIR ADIMF ADINQ ADKNI ADKPE ADOJX ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BENPR BGNMA BKEYQ BKNYI BMSDO BPHCQ BSONS BVXVI C6C CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO DXH EAD EAP EAS EBB EBC EBD EBLON EBS EBX ECF ECGQY ECT EHN EIHBH EIOEI EJD EMB EMK EMOBN EPL EPT ESBYG ESTFP ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K9- KDC KOV LAS LLZTM M0R M1P M4Y MA- N9A NAPCQ NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P9N PCD PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOR QOS Q~Q R89 R9I ROL RPX RRX RSV S16 S27 S3B SAP SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z5O Z7U Z7V Z7W Z81 Z82 Z83 Z85 Z86 Z87 Z8O Z8P Z8Q Z8U Z8V Z8W Z8Z Z91 ZMTXR ~8M ~KM -Y2 2.D 2P1 2VQ AAIKT AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACSTC ADHKG ADPHR AEBTG AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGJBK AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BDATZ CAG CITATION COF FINBP FSGXE H13 HZ~ IHE N2Q NDZJH O9- PHGZM PHGZT RIG RNI RZK S1Z S26 S28 SCLPG T16 Y6R ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7QP 7TS 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c503t-a20685271fdc4115dae5712d08f4b6e8d663112713dc0f9f182fa39cab9931cf3 |
IEDL.DBID | 7X7 |
ISSN | 1436-6207 1436-6215 |
IngestDate | Thu Aug 21 14:37:48 EDT 2025 Fri Jul 11 13:10:37 EDT 2025 Fri Jul 11 15:19:12 EDT 2025 Sat Aug 16 08:51:09 EDT 2025 Mon Jul 21 06:05:45 EDT 2025 Thu Apr 24 23:08:23 EDT 2025 Tue Jul 01 02:53:34 EDT 2025 Fri Feb 21 02:35:39 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Polyphenols Absorption Duodenum Non-haem iron Quercetin Iron deficiency anaemia |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c503t-a20685271fdc4115dae5712d08f4b6e8d663112713dc0f9f182fa39cab9931cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9764-9903 |
OpenAccessLink | https://link.springer.com/10.1007/s00394-018-1680-7 |
PMID | 29594477 |
PQID | 2019196573 |
PQPubID | 34175 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6437293 proquest_miscellaneous_2253203652 proquest_miscellaneous_2019806595 proquest_journals_2019196573 pubmed_primary_29594477 crossref_citationtrail_10_1007_s00394_018_1680_7 crossref_primary_10_1007_s00394_018_1680_7 springer_journals_10_1007_s00394_018_1680_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | European journal of nutrition |
PublicationTitleAbbrev | Eur J Nutr |
PublicationTitleAlternate | Eur J Nutr |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Yamaji, Sharp, Ramesh, Srai (CR33) 2004; 104 (CR4) 2008 Bayele, Balesaria, Srai (CR18) 2015; 89 Olthof, Hollman, Buijsman, Amelsvoort, Katan (CR21) 2003; 133 Lee, Mitchell (CR39) 2012; 60 Tang, Li, Yu, Gao, Liu, Chen, Xing, Liu, Yao (CR27) 2014; 25 Brasse-Lagnel, Karim, Letteron, Bekri, Bado, Beaumont (CR35) 2011; 140 Kim, Ham, Shigenaga, Han (CR12) 2008; 138 Zhen, Nguyen, Gibert, Motola, Buckett, Wessling-Resnick, Fraenkel, Fraenkel (CR17) 2013; 58 Laftah, Ramesh, Simpson, Solanky, Bahram, Schümann, Debnam, Srai (CR30) 2004; 103 Zhang, Liu, Guo, Liu, Liu, Yin (CR42) 2016; 37 Hentze, Muckenthaler, Galy, Camaschella (CR1) 2010; 142 Carpenter, Mahoney (CR3) 1992; 31 Grillo, SantaMaria, Kafina, Cioffi, Huston, Han, Seo, Yien, Nardone, Menon, Fan, Svoboda, Anderson, Hong, Nicolau, Subedi, Gewirth, Wessling-Resnick, Kim, Paw, Burke (CR41) 2017; 356 Moon, Wang, DiCenzo, Morris (CR26) 2008; 29 Samman, Sandström, Toft, Bukhave, Jensen, Sørensen, Hansen (CR11) 2001; 73 Frazer, Inglis, Wilkins, Millard, Steele, McLaren, McKie, Vulpe, Anderson (CR32) 2004; 53 Cook, Reddy, Hurrell (CR9) 1995; 61 Hurrell, Reddy, Cook (CR10) 1999; 81 Nemeth, Tuttle, Powelson, Vaughn, Donovan, Ward, Ganz, Kaplan (CR6) 2004; 306 Petry, Watson, Preedy, Zibadi (CR7) 2014 Lesjak, Hoque, Balesaria, Skinner, Debnam, Srai, Sharp (CR14) 2014; 9 Leopoldini, Russo, Chiodo, Toscano (CR20) 2006; 54 Pantopoulos, Porwal, Tartakoff, Devireddy (CR5) 2012; 51 Chung, Chaston, Marks, Srai, Sharp (CR34) 2009; 139 Lesjak, Beara, Simin, Pintać, Majkić, Bekvalac, Orčić, Mimica-Dukić (CR24) 2018; 40 Reagan-Shaw, Nihal, Ahmad (CR23) 2008; 22 Kemna, Pickkers, Nemeth, van der Hoeven, Swinkels (CR37) 2005; 106 Hart, Tako, Glahn (CR16) 2017; 65 Zhang, Gao, Liu, Xu (CR28) 2011; 25 Hart, Tako, Kochian, Glahn (CR15) 2015; 63 Bhagwat, Haytowitz, Holden (CR22) 2014 Muckenthaler, Galy, Hentze (CR36) 2008; 28 Kim, Ham, Bradke, Ma, Han (CR13) 2011; 141 Vanhees, Godschalk, Sanders, vanvan WaalwijkDoorn-Khosrovani, van Schooten (CR29) 2011; 290 Patchen, Koppe, Cheng, Seo, Wessling-Resnick, Fraenkel (CR40) 2016; 60 Justino, Santos, Canário, Borges, Florêncio, Mira (CR38) 2004; 432 Torrance, Bothwell, Cook (CR25) 1980 Mena, Esparza, Tapia, Valdés, Núñez (CR31) 2008; 294 Ganz, Nemeth (CR2) 2012; 1823 Havsteen (CR8) 2002; 96 Mu, An, Wu, Shen, Shao, Wang, Zhang, Zhang, Yao, Min, Wang (CR19) 2016; 30 AW Zhen (1680_CR17) 2013; 58 JJ Hart (1680_CR16) 2017; 65 MR Olthof (1680_CR21) 2003; 133 MW Hentze (1680_CR1) 2010; 142 Y Tang (1680_CR27) 2014; 25 Y Zhang (1680_CR28) 2011; 25 K Vanhees (1680_CR29) 2011; 290 S Reagan-Shaw (1680_CR23) 2008; 22 JD Torrance (1680_CR25) 1980 YJ Moon (1680_CR26) 2008; 29 C Brasse-Lagnel (1680_CR35) 2011; 140 BH Havsteen (1680_CR8) 2002; 96 E Kemna (1680_CR37) 2005; 106 B Patchen (1680_CR40) 2016; 60 WHO (1680_CR4) 2008 AS Grillo (1680_CR41) 2017; 356 T Ganz (1680_CR2) 2012; 1823 E Kim (1680_CR12) 2008; 138 S Yamaji (1680_CR33) 2004; 104 JJ Hart (1680_CR15) 2015; 63 AH Laftah (1680_CR30) 2004; 103 N Petry (1680_CR7) 2014 S Bhagwat (1680_CR22) 2014 MU Muckenthaler (1680_CR36) 2008; 28 K Pantopoulos (1680_CR5) 2012; 51 M Mu (1680_CR19) 2016; 30 JD Cook (1680_CR9) 1995; 61 J Lee (1680_CR39) 2012; 60 S Samman (1680_CR11) 2001; 73 B Chung (1680_CR34) 2009; 139 RF Hurrell (1680_CR10) 1999; 81 NP Mena (1680_CR31) 2008; 294 M Zhang (1680_CR42) 2016; 37 CE Carpenter (1680_CR3) 1992; 31 E Nemeth (1680_CR6) 2004; 306 HK Bayele (1680_CR18) 2015; 89 M Lesjak (1680_CR14) 2014; 9 GC Justino (1680_CR38) 2004; 432 EY Kim (1680_CR13) 2011; 141 M Lesjak (1680_CR24) 2018; 40 DM Frazer (1680_CR32) 2004; 53 M Leopoldini (1680_CR20) 2006; 54 |
References_xml | – volume: 142 start-page: 24 year: 2010 end-page: 38 ident: CR1 article-title: Two to tango: regulation of Mammalian iron metabolism publication-title: Cell doi: 10.1016/j.cell.2010.06.028 – volume: 61 start-page: 800 year: 1995 end-page: 804 ident: CR9 article-title: The effect of red and white wines on nonheme-iron absorption in humans publication-title: Am J Clin Nutr doi: 10.1093/ajcn/61.4.800 – volume: 30 start-page: 53 year: 2016 end-page: 61 ident: CR19 article-title: The dietary flavonoid myricetin regulates iron homeostasis by suppressing hepcidin expression publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2015.10.015 – volume: 40 start-page: 68 year: 2018 end-page: 75 ident: CR24 article-title: Antioxidant and anti-inflammatory activities of quercetin and its derivatives publication-title: J Funct Foods doi: 10.1016/j.jff.2017.10.047 – volume: 58 start-page: 1315 year: 2013 end-page: 1325 ident: CR17 article-title: The small molecule, genistein, increases hepcidin expression in human hepatocytes publication-title: Hepatology doi: 10.1002/hep.26490 – volume: 290 start-page: 350 year: 2011 end-page: 358 ident: CR29 article-title: Maternal quercetin intake during pregnancy results in an adapted iron homeostasis at adulthood publication-title: Toxicology doi: 10.1016/j.tox.2011.10.017 – year: 2008 ident: CR4 publication-title: Worldwide prevalence of anaemia 1993–2005. WHO global database on anaemia – volume: 96 start-page: 67 year: 2002 end-page: 202 ident: CR8 article-title: The biochemistry and medical significance of the flavonoids publication-title: Pharmacol Ther doi: 10.1016/S0163-7258(02)00298-X – start-page: 90 year: 1980 end-page: 115 ident: CR25 article-title: Tissue iron stores publication-title: Methods in hematology: iron – volume: 25 start-page: 1150 year: 2011 end-page: 1160 ident: CR28 article-title: Protective effects of baicalin and quercetin on an iron-overloaded mouse: comparison of liver, kidney and heart tissues publication-title: Nat Prod Res doi: 10.1080/14786419.2010.495070 – volume: 60 start-page: 3874 year: 2012 end-page: 3881 ident: CR39 article-title: Pharmacokinetics of quercetin absorption from apples and onions in healthy humans publication-title: J Agric Food Chem doi: 10.1021/jf3001857 – volume: 54 start-page: 6343 year: 2006 end-page: 6351 ident: CR20 article-title: Iron chelation by the powerful antioxidant flavonoid quercetin publication-title: J Agric Food Chem doi: 10.1021/jf060986h – volume: 139 start-page: 1457 year: 2009 end-page: 1462 ident: CR34 article-title: Hepcidin decreases iron transporter expression in vivo in mouse duodenum and spleen and in vitro in THP-1 macrophages and intestinal Caco-2 cells publication-title: J Nutr doi: 10.3945/jn.108.102905 – volume: 9 start-page: e102900 year: 2014 ident: CR14 article-title: Quercetin inhibits intestinal iron absorption and ferroportin transporter expression in vivo and in vitro publication-title: PLoS One doi: 10.1371/journal.pone.0102900 – volume: 89 start-page: 1192 year: 2015 end-page: 1202 ident: CR18 article-title: Phytoestrogens modulate hepcidin expression by Nrf2: implications for dietary control of iron absorption publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2015.11.001 – volume: 1823 start-page: 1434 year: 2012 end-page: 1443 ident: CR2 article-title: Hepcidin and iron homeostasis publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2012.01.014 – year: 2014 ident: CR22 publication-title: USDA database for the flavonoid content of selected foods – volume: 106 start-page: 1864 year: 2005 end-page: 1866 ident: CR37 article-title: Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS publication-title: Blood doi: 10.1182/blood-2005-03-1159 – volume: 63 start-page: 5950 year: 2015 end-page: 5956 ident: CR15 article-title: Identification of black bean ( L.) polyphenols that inhibit and promote iron uptake by Caco-2 cells publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.5b00531 – volume: 28 start-page: 197 year: 2008 end-page: 213 ident: CR36 article-title: Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network publication-title: Annu Rev Nutr doi: 10.1146/annurev.nutr.28.061807.155521 – start-page: 311 year: 2014 end-page: 322 ident: CR7 article-title: Polyphenols and low iron bioavailability publication-title: Polyphenols in human health and disease doi: 10.1016/B978-0-12-398456-2.00024-4 – volume: 103 start-page: 3940 year: 2004 end-page: 3954 ident: CR30 article-title: Effect of hepcidin on intestinal iron absorption in mice publication-title: Blood doi: 10.1182/blood-2003-03-0953 – volume: 81 start-page: 289 year: 1999 end-page: 295 ident: CR10 article-title: Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages publication-title: Br J Nutr doi: 10.1017/S0007114599000537 – volume: 294 start-page: G192 year: 2008 end-page: G198 ident: CR31 article-title: Hepcidin inhibits apical iron uptake in intestinal cells publication-title: Am J Physiol Gastrointest Liver Physiol doi: 10.1152/ajpgi.00122.2007 – volume: 65 start-page: 3285 year: 2017 end-page: 3294 ident: CR16 article-title: Characterization of polyphenol effects on inhibition and promotion of iron uptake by Caco‑2 cells publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.6b05755 – volume: 22 start-page: 659 year: 2008 end-page: 661 ident: CR23 article-title: Dose translation from animal to human studies revisited publication-title: FASEB J doi: 10.1096/fj.07-9574LSF – volume: 25 start-page: 675 year: 2014 end-page: 682 ident: CR27 article-title: Quercetin prevents ethanol-induced iron overload by regulating hepcidin through the BMP6/SMAD4 signaling pathway publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2014.02.009 – volume: 133 start-page: 1806 year: 2003 end-page: 1814 ident: CR21 article-title: Chlorogenic acid, quercetin-3-rutinoside and black tea polyphenols are extensively metabolized in humans publication-title: J Nutr doi: 10.1093/jn/133.6.1806 – volume: 104 start-page: 2178 year: 2004 end-page: 2180 ident: CR33 article-title: Inhibition of iron transport across human intestinal epithelial cells by hepcidin publication-title: Blood doi: 10.1182/blood-2004-03-0829 – volume: 138 start-page: 1647 year: 2008 end-page: 1651 ident: CR12 article-title: The inhibiting bioactive dietary polyphenolic compounds reduce nonheme iron transport across human intestinal cell monolayers publication-title: J Nutr doi: 10.1093/jn/138.9.1647 – volume: 140 start-page: 1261 year: 2011 end-page: 1271 ident: CR35 article-title: Intestinal DMT1 cotransporter is down-regulated by hepcidin via proteasome internalization and degradation publication-title: Gastroenterology doi: 10.1053/j.gastro.2010.12.037 – volume: 51 start-page: 5705 year: 2012 end-page: 5724 ident: CR5 article-title: Mechanisms of mammalian iron homeostasis publication-title: Biochemistry doi: 10.1021/bi300752r – volume: 31 start-page: 333 year: 1992 end-page: 367 ident: CR3 article-title: Contributions of heme and nonheme iron to human nutrition publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408399209527576 – volume: 29 start-page: 205 year: 2008 end-page: 217 ident: CR26 article-title: Quercetin pharmacokinetics in humans publication-title: Biopharm Drug Dispos doi: 10.1002/bdd.605 – volume: 141 start-page: 828 year: 2011 end-page: 834 ident: CR13 article-title: Ascorbic acid offsets the inhibitory effect of bioactive dietary polyphenolic compounds on transepithelial iron transport in Caco-2 intestinal cells publication-title: J Nutr doi: 10.3945/jn.110.134031 – volume: 306 start-page: 2090 year: 2004 end-page: 2093 ident: CR6 article-title: Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization publication-title: Science doi: 10.1126/science.1104742 – volume: 60 start-page: 36 year: 2016 end-page: 43 ident: CR40 article-title: Dietary supplementation with ipriflavone decreases hepatic iron stores in wild type mice publication-title: Blood Cells Mol Dis doi: 10.1016/j.bcmd.2016.05.004 – volume: 356 start-page: 608 year: 2017 end-page: 616 ident: CR41 article-title: Restored iron transport by a small molecule promotes absorption and hemoglobinization in animals publication-title: Science doi: 10.1126/science.aah3862 – volume: 73 start-page: 607 year: 2001 end-page: 612 ident: CR11 article-title: Green tea or rosemary extract added to foods reduces nonheme-iron absorption publication-title: Am J Clin Nutr doi: 10.1093/ajcn/73.3.607 – volume: 37 start-page: 1379 year: 2016 end-page: 1388 ident: CR42 article-title: Icariin regulates systemic iron metabolism by increasing hepatic hepcidin expression through Stat3 and Smad1/5/8 signaling publication-title: Int J Mol Med doi: 10.3892/ijmm.2016.2545 – volume: 53 start-page: 1509 year: 2004 end-page: 1515 ident: CR32 article-title: Delayed hepcidin response explains the lag period in iron absorption following a stimulus to increase erythropoiesis publication-title: Gut doi: 10.1136/gut.2003.037416 – volume: 432 start-page: 109 year: 2004 end-page: 121 ident: CR38 article-title: Plasma quercetin metabolites: structure-antioxidant activity relationships publication-title: Arch Biochem Biophys doi: 10.1016/j.abb.2004.09.007 – volume: 40 start-page: 68 year: 2018 ident: 1680_CR24 publication-title: J Funct Foods doi: 10.1016/j.jff.2017.10.047 – volume: 432 start-page: 109 year: 2004 ident: 1680_CR38 publication-title: Arch Biochem Biophys doi: 10.1016/j.abb.2004.09.007 – volume: 140 start-page: 1261 year: 2011 ident: 1680_CR35 publication-title: Gastroenterology doi: 10.1053/j.gastro.2010.12.037 – volume: 141 start-page: 828 year: 2011 ident: 1680_CR13 publication-title: J Nutr doi: 10.3945/jn.110.134031 – volume: 142 start-page: 24 year: 2010 ident: 1680_CR1 publication-title: Cell doi: 10.1016/j.cell.2010.06.028 – volume: 104 start-page: 2178 year: 2004 ident: 1680_CR33 publication-title: Blood doi: 10.1182/blood-2004-03-0829 – volume: 96 start-page: 67 year: 2002 ident: 1680_CR8 publication-title: Pharmacol Ther doi: 10.1016/S0163-7258(02)00298-X – volume: 31 start-page: 333 year: 1992 ident: 1680_CR3 publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408399209527576 – volume-title: Worldwide prevalence of anaemia 1993–2005. WHO global database on anaemia year: 2008 ident: 1680_CR4 – volume: 106 start-page: 1864 year: 2005 ident: 1680_CR37 publication-title: Blood doi: 10.1182/blood-2005-03-1159 – volume: 61 start-page: 800 year: 1995 ident: 1680_CR9 publication-title: Am J Clin Nutr doi: 10.1093/ajcn/61.4.800 – volume: 103 start-page: 3940 year: 2004 ident: 1680_CR30 publication-title: Blood doi: 10.1182/blood-2003-03-0953 – volume: 28 start-page: 197 year: 2008 ident: 1680_CR36 publication-title: Annu Rev Nutr doi: 10.1146/annurev.nutr.28.061807.155521 – volume: 356 start-page: 608 year: 2017 ident: 1680_CR41 publication-title: Science doi: 10.1126/science.aah3862 – volume: 139 start-page: 1457 year: 2009 ident: 1680_CR34 publication-title: J Nutr doi: 10.3945/jn.108.102905 – volume: 58 start-page: 1315 year: 2013 ident: 1680_CR17 publication-title: Hepatology doi: 10.1002/hep.26490 – volume: 37 start-page: 1379 year: 2016 ident: 1680_CR42 publication-title: Int J Mol Med doi: 10.3892/ijmm.2016.2545 – volume: 306 start-page: 2090 year: 2004 ident: 1680_CR6 publication-title: Science doi: 10.1126/science.1104742 – volume: 89 start-page: 1192 year: 2015 ident: 1680_CR18 publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2015.11.001 – volume: 9 start-page: e102900 year: 2014 ident: 1680_CR14 publication-title: PLoS One doi: 10.1371/journal.pone.0102900 – volume: 133 start-page: 1806 year: 2003 ident: 1680_CR21 publication-title: J Nutr doi: 10.1093/jn/133.6.1806 – volume: 60 start-page: 3874 year: 2012 ident: 1680_CR39 publication-title: J Agric Food Chem doi: 10.1021/jf3001857 – volume: 29 start-page: 205 year: 2008 ident: 1680_CR26 publication-title: Biopharm Drug Dispos doi: 10.1002/bdd.605 – volume: 54 start-page: 6343 year: 2006 ident: 1680_CR20 publication-title: J Agric Food Chem doi: 10.1021/jf060986h – start-page: 311 volume-title: Polyphenols in human health and disease year: 2014 ident: 1680_CR7 doi: 10.1016/B978-0-12-398456-2.00024-4 – volume: 294 start-page: G192 year: 2008 ident: 1680_CR31 publication-title: Am J Physiol Gastrointest Liver Physiol doi: 10.1152/ajpgi.00122.2007 – volume: 60 start-page: 36 year: 2016 ident: 1680_CR40 publication-title: Blood Cells Mol Dis doi: 10.1016/j.bcmd.2016.05.004 – volume: 1823 start-page: 1434 year: 2012 ident: 1680_CR2 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2012.01.014 – volume: 51 start-page: 5705 year: 2012 ident: 1680_CR5 publication-title: Biochemistry doi: 10.1021/bi300752r – volume: 65 start-page: 3285 year: 2017 ident: 1680_CR16 publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.6b05755 – volume: 22 start-page: 659 year: 2008 ident: 1680_CR23 publication-title: FASEB J doi: 10.1096/fj.07-9574LSF – volume: 290 start-page: 350 year: 2011 ident: 1680_CR29 publication-title: Toxicology doi: 10.1016/j.tox.2011.10.017 – volume: 73 start-page: 607 year: 2001 ident: 1680_CR11 publication-title: Am J Clin Nutr doi: 10.1093/ajcn/73.3.607 – volume: 138 start-page: 1647 year: 2008 ident: 1680_CR12 publication-title: J Nutr doi: 10.1093/jn/138.9.1647 – volume: 30 start-page: 53 year: 2016 ident: 1680_CR19 publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2015.10.015 – start-page: 90 volume-title: Methods in hematology: iron year: 1980 ident: 1680_CR25 – volume-title: USDA database for the flavonoid content of selected foods year: 2014 ident: 1680_CR22 – volume: 25 start-page: 675 year: 2014 ident: 1680_CR27 publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2014.02.009 – volume: 25 start-page: 1150 year: 2011 ident: 1680_CR28 publication-title: Nat Prod Res doi: 10.1080/14786419.2010.495070 – volume: 53 start-page: 1509 year: 2004 ident: 1680_CR32 publication-title: Gut doi: 10.1136/gut.2003.037416 – volume: 81 start-page: 289 year: 1999 ident: 1680_CR10 publication-title: Br J Nutr doi: 10.1017/S0007114599000537 – volume: 63 start-page: 5950 year: 2015 ident: 1680_CR15 publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.5b00531 |
SSID | ssj0002361 |
Score | 2.4326758 |
Snippet | Purpose
There is general agreement that some dietary polyphenols block non-haem iron uptake, but the mechanisms by which they achieve this action are poorly... There is general agreement that some dietary polyphenols block non-haem iron uptake, but the mechanisms by which they achieve this action are poorly... PurposeThere is general agreement that some dietary polyphenols block non-haem iron uptake, but the mechanisms by which they achieve this action are poorly... PURPOSE: There is general agreement that some dietary polyphenols block non-haem iron uptake, but the mechanisms by which they achieve this action are poorly... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 743 |
SubjectTerms | Anemia Animals Antioxidants - pharmacology blood serum Chemistry Chemistry and Materials Science Divalent metal transporter-1 Duodenum - drug effects Duodenum - metabolism Gene expression Gene Expression - drug effects genes Hepcidin Intestinal Absorption - drug effects Intestinal Mucosa - drug effects Intestinal Mucosa - metabolism Intestine intestines Iron Iron - metabolism iron absorption Iron deficiency iron deficiency anemia liquid chromatography Liver Male Metabolism Metabolites Models, Animal Mucosa nutrient deficiencies Nutrient deficiency Nutrition Original Contribution Polyphenols Quercetin Quercetin - pharmacology radiolabeling Rats Rats, Sprague-Dawley Rodents tandem mass spectrometry transferrin Transferrins |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEB70fNAX0T1_VE-JID4ogTZpkvZxOT0OHw4EF-6tpG3qFna7su0-3H_vTNJW1tMDnzPbTpnJ5JudmS8A7zM6dbNS8DqzkmPAS7hVQnNh89qkOq516La40per9Ou1uh7nuPup230qSfpIPQ-70RgpdUxg1qOzmJv78EBR6o5OvBLLOfwSm4gfKZKaaxGbqZT5t0ccH0a3EObtRsk_qqX-ELp4Ao9H9MiWwdxP4Z7rFnC67DBz3t6wD8z3c_o_yhfw8Hy6y20B0efWDbg-soBu2NVEwn8K7bcDNbcMbcfabt2W7dAzIpHAvU_v6nYdX1u3ZTQPx2zZ7_Y-yrDyhu3DRfaoaljdugF9atP2W_aDYig-hyHAZIO3bv8MVhdfvp9f8vECBl6pWA7cilhnSpikqasUoWNtnTKJqOOsSUvtshrhCuI1zHPrKm7yBnOVxsq8siWinqRq5HM4QS3dS2AmcUmT60rWpkqtSspMOJrZFbJxCjFOBPFkiaIa2cnpkoxNMfMqe-MVaLyCjFeYCD7OP_kZqDnuEj6bzFuMu7QvEPzkxKhoZATv5mU0DRVNbOd2hyDji8_qDhlB12tIrUQEL4LHzBqJXOVpalABc-RLswDxex-vdO3a83yHmirq9mnyut-q__NDX_2X9Gt4RB8YmurO4GTYH9wbRFlD-dbvql99xh6E priority: 102 providerName: Springer Nature |
Title | Quercetin inhibits intestinal non-haem iron absorption by regulating iron metabolism genes in the tissues |
URI | https://link.springer.com/article/10.1007/s00394-018-1680-7 https://www.ncbi.nlm.nih.gov/pubmed/29594477 https://www.proquest.com/docview/2019196573 https://www.proquest.com/docview/2019806595 https://www.proquest.com/docview/2253203652 https://pubmed.ncbi.nlm.nih.gov/PMC6437293 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge-EFwcZH2ZiMhHgAWUrs2E6eUCkdE0gVICqVp8iJHRqpTUeTPuy_353zMZWJviRK7FiX3Pl857v8jpC3Ma66ccaZjY1goPBCZiRXjJvE6kgFVrXZFjN1NY--LuSi23Cru7TKXid6RW03Oe6Rg5MOnkWipBYfr_8yrBqF0dWuhMZDcozQZZjSpReDw4Xg6N7hioRiige6j2oGHkRUIChuCD6UigOm99ele8bm_ZzJfwKnfj26fEIed4YkHbecf0oeuOqEnI4rcKLXN_Qd9amdfs_8hIw-l66Bex0I6IrOegz-U1L-2GFuS1NWtKyWZVY2NUUMCZj6OH61qdjSuDXF3-GoyerN1isZmt3QbVvHHshrW9euAZFalfWa_kEVCuNQsC9p45lbPyPzy-mvyRXr6i-wXAaiYYYHKpZch4XNI7AcrXFSh9wGcRFlysUWrBUw18DNtXlQJAW4KoURSW4yMHrCvBDPyRFQ6V4SqkMXFonKhdV5ZGSYxdzhL7tcFE6CiTMiQf_107wDJ8caGat0gFX2DEuBYSkyLNUj8n545LpF5jjU-bxnadpN0jq9E6kReTM0w_TCmImp3GbX9vGxZ3mgD8fqGkJJPiIvWikZKOKJTKJIAwF6T36GDgjvvd9SlUsP892GVIG2D72k3ZH-3xd9dfhFz8gjvGiT6M7JUbPduddgVTXZhZ86cIwn4QU5Hn_5_W0K50_T2fefcHeiJnCc8_Et4yIj6g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXBC2PQAEjAQeQpcSO7eSAUKGttrSsALVSb6kTO7uRdrNlkxXaP8VvZOw8qqVib73GjjXJjOfhGX-D0JvIWt0opURHihFQeAFRnApCVaxlKHwtmmqLkRieh18v-MUW-tPdhbFllZ1OdIpazzN7Rg5BOkQWseCSfbr6RWzXKJtd7VpoNGJxYla_IWSrPh4fAH_fUnp0ePZlSNquAiTjPquJor6IOJVBrrMQ_CGtDJcB1X6Uh6kwkQYbDE4IBG868_M4Bwc8VyzOVAqmPMhyBuveQdshg1BmgLY_H46-_-x1v4UycfeZmCCC-rLLo_oOtpRZGN4AojYR-USuW8Ib7u3NKs1_UrXOAh49QPdb1xXvN7L2EG2Zcgft7pcQts9W-B12xaTulH4HeQeFqeFZCzs6xaMO9X8XFT-WtpqmLkpclJMiLeoKW9QKUDZ2_XJekokyM2wv4GGVVvOFU2s4XeGFGbt2Y-W4GZ2ZGoR4WlQzPLZKG9bB4NHi2olT9Qid3wpvHqMBUGmeIiwDE-SxyJiWWah4kEbU2EvClOWGg1PlIb_7-0nWwqHbrhzTpAdydgxLgGGJZVgiPfS-f-WqwQLZNHmvY2nSqoUquRZiD73uh2FD2yyNKs182cxx2W6-YQ61_TyY4NRDTxop6SmiMY_DUAIBck1--gkWUHx9pCwmDli8SeICbR86Sbsm_b8f-mzzh75Cd4dn306T0-PRyXN0zw40JXx7aFAvluYF-HR1-rLdSBhd3vbe_QvBpVu2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkBAvCDY-CgOMBDyArCV2bCcPCE2UamOoAolJfQtO4rSR2nQ0qVD_Nf467pyPqUz0ba-xa11637nz7wh5HaLXDRPOstAIBgbPZ0ZyxbiJMh0oL1NNt8VYnV4EXyZyskf-dHdhsK2ys4nOUGfLFL-RQ5IOmUWkpBbHedsW8W04-nj5i-EEKay0duM0GhE5t5vfkL5VH86GwOs3nI8-__h0ytoJAyyVnqiZ4Z4KJdd-nqUBxEaZsVL7PPPCPEiUDTPwxxCQQCKXpV4e5RCM50ZEqUnArftpLuDcW-S2FtJHHdOTPtlDYHaX7AVCMcU93VVUPQdgKhCQ14f8TYUe09s-8Vqge71f85-irfOFo_vkXhvE0pNG6h6QPVsekMOTEhL4xYa-pa6t1H2vPyCDYWFreNYCkM7puMP_PyTF9zX21dRFSYtyViRFXVHErwCzg-eXy5LNjF1QvIpHTVItV87A0WRDV3bqBo-V02Z1YWsQ53lRLegUzTecQyG2pbUTrOohubgRzjwi-0ClfUKo9q2fRyoVmU4DI_0k5BavC3ORWwnh1YB43b8fpy0wOs7nmMc9pLNjWAwMi5FhsR6Qd_1PLhtUkF2bjzqWxq2BqOIrcR6QV_0yqDbWa0xpl-tmj6t7yx17OE72EEryAXncSElPEY9kFAQaCNBb8tNvQGjx7ZWymDmI8aacC7S97yTtivT_vujT3S_6ktwBjY2_no3Pn5G7-Lzp5Tsi-_VqbZ9DcFcnL5wWUfLzptX2LyjwXoY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quercetin+inhibits+intestinal+non-haem+iron+absorption+by+regulating+iron+metabolism+genes+in+the+tissues&rft.jtitle=European+journal+of+nutrition&rft.au=Lesjak%2C+Marija&rft.au=Balesaria%2C+Sara&rft.au=Skinner%2C+Vernon&rft.au=Debnam%2C+Edward+S&rft.date=2019-03-01&rft.eissn=1436-6215&rft.volume=58&rft.issue=2&rft.spage=743&rft_id=info:doi/10.1007%2Fs00394-018-1680-7&rft_id=info%3Apmid%2F29594477&rft.externalDocID=29594477 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-6207&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-6207&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-6207&client=summon |