Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt

Soil-borne plant diseases are increasingly causing devastating losses in agricultural production. The development of a more refined model for disease prediction can aid in reducing crop losses through the use of preventative control measures or soil fallowing for a planting season. The emergence of...

Full description

Saved in:
Bibliographic Details
Published inThe ISME Journal Vol. 14; no. 12; pp. 2936 - 2950
Main Authors Yuan, Jun, Wen, Tao, Zhang, He, Zhao, Mengli, Penton, C. Ryan, Thomashow, Linda S., Shen, Qirong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.12.2020
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil-borne plant diseases are increasingly causing devastating losses in agricultural production. The development of a more refined model for disease prediction can aid in reducing crop losses through the use of preventative control measures or soil fallowing for a planting season. The emergence of high-throughput DNA sequencing technology has provided unprecedented insight into the microbial composition of diseased versus healthy soils. However, a single independent case study rarely yields a general conclusion predictive of the disease in a particular soil. Here, we attempt to account for the differences among various studies and plant varieties using a machine-learning approach based on 24 independent bacterial data sets comprising 758 samples and 22 independent fungal data sets comprising 279 samples of healthy or Fusarium wilt-diseased soils from eight different countries. We found that soil bacterial and fungal communities were both clearly separated between diseased and healthy soil samples that originated from six crops across nine countries or regions. Alpha diversity was consistently greater in the fungal community of healthy soils. While diseased soil microbiomes harbored higher abundances of Xanthomonadaceae , Bacillaceae , Gibberella , and Fusarium oxysporum , the healthy soil microbiome contained more Streptomyces Mirabilis , Bradyrhizobiaceae , Comamonadaceae , Mortierella , and nonpathogenic fungi of Fusarium . Furthermore, a random forest method identified 45 bacterial OTUs and 40 fungal OTUs that categorized the health status of the soil with an accuracy >80%. We conclude that these models can be applied to predict the potential for occurrence of F. oxysporum wilt by revealing key biological indicators and features common to the wilt-diseased soil microbiome.
AbstractList Soil-borne plant diseases are increasingly causing devastating losses in agricultural production. The development of a more refined model for disease prediction can aid in reducing crop losses through the use of preventative control measures or soil fallowing for a planting season. The emergence of high-throughput DNA sequencing technology has provided unprecedented insight into the microbial composition of diseased versus healthy soils. However, a single independent case study rarely yields a general conclusion predictive of the disease in a particular soil. Here, we attempt to account for the differences among various studies and plant varieties using a machine-learning approach based on 24 independent bacterial data sets comprising 758 samples and 22 independent fungal data sets comprising 279 samples of healthy or Fusarium wilt-diseased soils from eight different countries. We found that soil bacterial and fungal communities were both clearly separated between diseased and healthy soil samples that originated from six crops across nine countries or regions. Alpha diversity was consistently greater in the fungal community of healthy soils. While diseased soil microbiomes harbored higher abundances of Xanthomonadaceae, Bacillaceae, Gibberella, and Fusarium oxysporum, the healthy soil microbiome contained more Streptomyces Mirabilis, Bradyrhizobiaceae, Comamonadaceae, Mortierella, and nonpathogenic fungi of Fusarium. Furthermore, a random forest method identified 45 bacterial OTUs and 40 fungal OTUs that categorized the health status of the soil with an accuracy >80%. We conclude that these models can be applied to predict the potential for occurrence of F. oxysporum wilt by revealing key biological indicators and features common to the wilt-diseased soil microbiome.
Soil-borne plant diseases are increasingly causing devastating losses in agricultural production. The development of a more refined model for disease prediction can aid in reducing crop losses through the use of preventative control measures or soil fallowing for a planting season. The emergence of high-throughput DNA sequencing technology has provided unprecedented insight into the microbial composition of diseased versus healthy soils. However, a single independent case study rarely yields a general conclusion predictive of the disease in a particular soil. Here, we attempt to account for the differences among various studies and plant varieties using a machine-learning approach based on 24 independent bacterial data sets comprising 758 samples and 22 independent fungal data sets comprising 279 samples of healthy or Fusarium wilt-diseased soils from eight different countries. We found that soil bacterial and fungal communities were both clearly separated between diseased and healthy soil samples that originated from six crops across nine countries or regions. Alpha diversity was consistently greater in the fungal community of healthy soils. While diseased soil microbiomes harbored higher abundances of Xanthomonadaceae , Bacillaceae , Gibberella , and Fusarium oxysporum , the healthy soil microbiome contained more Streptomyces Mirabilis , Bradyrhizobiaceae , Comamonadaceae , Mortierella , and nonpathogenic fungi of Fusarium . Furthermore, a random forest method identified 45 bacterial OTUs and 40 fungal OTUs that categorized the health status of the soil with an accuracy >80%. We conclude that these models can be applied to predict the potential for occurrence of F. oxysporum wilt by revealing key biological indicators and features common to the wilt-diseased soil microbiome.
Soil-borne plant diseases are increasingly causing devastating losses in agricultural production. The development of a more refined model for disease prediction can aid in reducing crop losses through the use of preventative control measures or soil fallowing for a planting season. The emergence of high-throughput DNA sequencing technology has provided unprecedented insight into the microbial composition of diseased versus healthy soils. However, a single independent case study rarely yields a general conclusion predictive of the disease in a particular soil. Here, we attempt to account for the differences among various studies and plant varieties using a machine-learning approach based on 24 independent bacterial data sets comprising 758 samples and 22 independent fungal data sets comprising 279 samples of healthy or Fusarium wilt-diseased soils from eight different countries. We found that soil bacterial and fungal communities were both clearly separated between diseased and healthy soil samples that originated from six crops across nine countries or regions. Alpha diversity was consistently greater in the fungal community of healthy soils. While diseased soil microbiomes harbored higher abundances of Xanthomonadaceae, Bacillaceae, Gibberella, and Fusarium oxysporum, the healthy soil microbiome contained more Streptomyces Mirabilis, Bradyrhizobiaceae, Comamonadaceae, Mortierella, and nonpathogenic fungi of Fusarium. Furthermore, a random forest method identified 45 bacterial OTUs and 40 fungal OTUs that categorized the health status of the soil with an accuracy >80%. We conclude that these models can be applied to predict the potential for occurrence of F. oxysporum wilt by revealing key biological indicators and features common to the wilt-diseased soil microbiome.Soil-borne plant diseases are increasingly causing devastating losses in agricultural production. The development of a more refined model for disease prediction can aid in reducing crop losses through the use of preventative control measures or soil fallowing for a planting season. The emergence of high-throughput DNA sequencing technology has provided unprecedented insight into the microbial composition of diseased versus healthy soils. However, a single independent case study rarely yields a general conclusion predictive of the disease in a particular soil. Here, we attempt to account for the differences among various studies and plant varieties using a machine-learning approach based on 24 independent bacterial data sets comprising 758 samples and 22 independent fungal data sets comprising 279 samples of healthy or Fusarium wilt-diseased soils from eight different countries. We found that soil bacterial and fungal communities were both clearly separated between diseased and healthy soil samples that originated from six crops across nine countries or regions. Alpha diversity was consistently greater in the fungal community of healthy soils. While diseased soil microbiomes harbored higher abundances of Xanthomonadaceae, Bacillaceae, Gibberella, and Fusarium oxysporum, the healthy soil microbiome contained more Streptomyces Mirabilis, Bradyrhizobiaceae, Comamonadaceae, Mortierella, and nonpathogenic fungi of Fusarium. Furthermore, a random forest method identified 45 bacterial OTUs and 40 fungal OTUs that categorized the health status of the soil with an accuracy >80%. We conclude that these models can be applied to predict the potential for occurrence of F. oxysporum wilt by revealing key biological indicators and features common to the wilt-diseased soil microbiome.
An increasing number of soil-borne plant diseases are causing devastating losses in agricultural production. While, a single independent case study rarely yields a general conclusion concerning a disease in a particular soil. Here, we attempt to account for the differences among various studies and plant varieties using a machine-learning approach based on global meta-sequencing data. We found that alpha-diversity was consistently greater in the fungal community of healthy soils. While diseased soil microbiomes harbored higher abundances of Xanthomonadaceae and Fusarium oxysporum, the healthy soil microbiome contained more Streptomyces and non-pathogenic Fusarium. Furthermore, a random forest method identified 45 bacterial OTUs and 40 fungal OTUs that categorized the health status of the soil with an accuracy greater than 80%. We conclude that these models can be utilized to predict the incidence of Fusarium wilt by revealing features common to the wilt-diseased soil microbiome through the identification of key biological indicators.
Author Zhao, Mengli
Wen, Tao
Penton, C. Ryan
Shen, Qirong
Thomashow, Linda S.
Yuan, Jun
Zhang, He
Author_xml – sequence: 1
  givenname: Jun
  surname: Yuan
  fullname: Yuan, Jun
  organization: The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University
– sequence: 2
  givenname: Tao
  surname: Wen
  fullname: Wen, Tao
  organization: The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University
– sequence: 3
  givenname: He
  surname: Zhang
  fullname: Zhang, He
  organization: The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University
– sequence: 4
  givenname: Mengli
  surname: Zhao
  fullname: Zhao, Mengli
  organization: The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University
– sequence: 5
  givenname: C. Ryan
  orcidid: 0000-0001-9166-7852
  surname: Penton
  fullname: Penton, C. Ryan
  organization: Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University
– sequence: 6
  givenname: Linda S.
  surname: Thomashow
  fullname: Thomashow, Linda S.
  organization: US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit
– sequence: 7
  givenname: Qirong
  orcidid: 0000-0002-5662-9620
  surname: Shen
  fullname: Shen, Qirong
  email: shenqirong@njau.edu.cn
  organization: The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32681158$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1TAQhi1URC_wAGyQJTZsAnbsxMkGCVUUkCrBol1bzmSSuErsg-0U9e1xdNpCK1Gx8EX29_-eGc8xOXDeISGvOXvPmWg-RMlFWxesZAVTeaqekSOuKl4oodjB_b4uD8lxjFeMVaqu1QtyKMq64bxqjsj0I2BvIVk30t5GNBGpB1hDQAdIf9k00cmOEzXboYEb2mWkp97R6O1MFwPBI_jZjxbMTHcmJQwuUj_QszWaYNclu8zpJXk-mDniq9v1hFyefb44_Vqcf__y7fTTeQEVE6loZY5XqAH7DqtWtr1RIIduMAxAAfAhZyNZXfcyD4GApQTZDJ1BpRpEJk7Ix73vbu0W7AFdCmbWu2AXE260N1Y_vHF20qO_1lkv23IzeHdrEPzPFWPSi42A82wc-jXqUrZNKZuWif9AM9zWtdjQt4_QK78GlyuRKcUryfPjmXrzd_D3Ud_9VwbUHshVjzHgoMEmk6zfcrGz5kxvnaH3naFzZ-itM3SVlfyR8s78KU2518TMuhHDn6D_LfoNsJTMrw
CitedBy_id crossref_primary_10_3389_fmicb_2024_1386417
crossref_primary_10_3390_agriengineering5020042
crossref_primary_10_1007_s11104_022_05445_x
crossref_primary_10_7717_peerj_18505
crossref_primary_10_1016_j_fbio_2024_104942
crossref_primary_10_1111_nph_18793
crossref_primary_10_1016_j_apsoil_2024_105369
crossref_primary_10_3390_agronomy14102393
crossref_primary_10_1021_acs_est_1c01770
crossref_primary_10_3389_fvets_2021_756486
crossref_primary_10_1016_j_scitotenv_2024_172494
crossref_primary_10_1021_acs_jafc_4c04077
crossref_primary_10_31548_plant2_2024_09
crossref_primary_10_1016_j_patter_2021_100323
crossref_primary_10_3390_agronomy14010161
crossref_primary_10_1016_j_wasman_2022_07_007
crossref_primary_10_34133_2022_9818073
crossref_primary_10_1016_j_fcr_2022_108712
crossref_primary_10_1016_j_scitotenv_2022_159204
crossref_primary_10_1128_mbio_02050_23
crossref_primary_10_3389_fmicb_2024_1470081
crossref_primary_10_3389_fmicb_2024_1455880
crossref_primary_10_3389_fcimb_2024_1445751
crossref_primary_10_1016_j_biortech_2023_130118
crossref_primary_10_1016_j_biortech_2024_132034
crossref_primary_10_1021_acs_jafc_3c09160
crossref_primary_10_3390_agriculture13061272
crossref_primary_10_3389_fmicb_2022_851450
crossref_primary_10_3390_agriculture12091430
crossref_primary_10_1016_j_scitotenv_2022_154412
crossref_primary_10_1016_j_jhazmat_2021_128126
crossref_primary_10_1016_j_apsoil_2024_105532
crossref_primary_10_1016_j_greenca_2024_11_001
crossref_primary_10_1038_s41467_022_35452_6
crossref_primary_10_3389_fenvs_2022_979922
crossref_primary_10_3389_fmicb_2024_1448675
crossref_primary_10_3389_fmicb_2024_1448950
crossref_primary_10_3389_fmicb_2021_676880
crossref_primary_10_1021_acs_jafc_2c08758
crossref_primary_10_1128_msystems_00564_23
crossref_primary_10_1128_spectrum_01059_23
crossref_primary_10_3389_fmicb_2021_756100
crossref_primary_10_1007_s13205_023_03780_z
crossref_primary_10_1111_1462_2920_15902
crossref_primary_10_1094_PBIOMES_12_22_0101_R
crossref_primary_10_1002_imt2_83
crossref_primary_10_1038_s41564_024_01872_x
crossref_primary_10_1094_PBIOMES_10_22_0072_R
crossref_primary_10_1007_s11356_021_16189_z
crossref_primary_10_1016_j_scitotenv_2022_154524
crossref_primary_10_1590_1809_4430_eng_agric_v42nepe20210144_2022
crossref_primary_10_3389_fmicb_2022_988692
crossref_primary_10_1016_j_apsoil_2023_105101
crossref_primary_10_3389_fmicb_2024_1348680
crossref_primary_10_1016_j_biortech_2022_128502
crossref_primary_10_1007_s11368_023_03634_4
crossref_primary_10_1128_msphere_00803_23
crossref_primary_10_1007_s11427_022_2279_5
crossref_primary_10_3390_pathogens12111322
crossref_primary_10_3389_fmicb_2023_1218205
crossref_primary_10_3390_plants11212834
crossref_primary_10_1007_s42773_023_00291_1
crossref_primary_10_1016_j_soilbio_2022_108599
crossref_primary_10_1007_s42729_023_01583_y
crossref_primary_10_1016_j_jhazmat_2023_131013
crossref_primary_10_1186_s40168_021_01138_2
crossref_primary_10_1016_j_ecoenv_2022_113862
crossref_primary_10_1007_s42832_024_0258_y
crossref_primary_10_1016_j_funeco_2023_101225
crossref_primary_10_1007_s13399_022_02318_2
crossref_primary_10_3389_fpls_2022_1006303
crossref_primary_10_1016_j_apsoil_2023_105174
crossref_primary_10_1038_s43705_023_00213_z
crossref_primary_10_3389_fmicb_2022_964039
crossref_primary_10_7717_peerj_14359
crossref_primary_10_1016_j_lwt_2021_111333
crossref_primary_10_1139_cjm_2023_0105
crossref_primary_10_3390_su16219212
crossref_primary_10_1016_j_fmre_2021_12_016
crossref_primary_10_3390_d13090413
crossref_primary_10_1128_spectrum_01909_21
crossref_primary_10_3390_microorganisms13030578
crossref_primary_10_1016_j_scienta_2023_112296
crossref_primary_10_1111_nph_70064
crossref_primary_10_1007_s11104_022_05797_4
crossref_primary_10_1080_01490451_2024_2412002
crossref_primary_10_1016_j_tim_2024_02_003
crossref_primary_10_1016_j_apsoil_2021_104335
crossref_primary_10_1038_s42003_024_07059_8
crossref_primary_10_1016_j_ecoenv_2021_112362
crossref_primary_10_1038_s41522_022_00367_z
crossref_primary_10_3389_fmicb_2020_605622
crossref_primary_10_1016_j_funeco_2023_101295
crossref_primary_10_1186_s40168_022_01375_z
crossref_primary_10_7717_peerj_11231
crossref_primary_10_1007_s00253_021_11464_y
crossref_primary_10_1016_j_indcrop_2024_118385
crossref_primary_10_3389_fpls_2023_1228749
crossref_primary_10_1007_s11104_023_06433_5
crossref_primary_10_1002_imt2_135
crossref_primary_10_3390_microorganisms13020444
crossref_primary_10_3390_ijms231810303
crossref_primary_10_1016_j_apsoil_2023_104915
crossref_primary_10_1186_s40168_021_01150_6
crossref_primary_10_3390_jof10010084
crossref_primary_10_1007_s00374_021_01594_w
crossref_primary_10_3390_ijms24065701
crossref_primary_10_3390_toxics12120839
crossref_primary_10_1016_j_envint_2023_108291
crossref_primary_10_1111_ejss_13402
crossref_primary_10_1128_mSystems_01116_20
crossref_primary_10_3389_fgene_2022_853612
crossref_primary_10_1016_j_rhisph_2024_100912
crossref_primary_10_3389_fmicb_2022_1053153
crossref_primary_10_3390_jof10110771
crossref_primary_10_1007_s10068_023_01484_x
crossref_primary_10_1093_ismejo_wrae158
crossref_primary_10_1093_jambio_lxac001
crossref_primary_10_1016_j_ecoleng_2023_107061
crossref_primary_10_1016_j_scitotenv_2021_148475
crossref_primary_10_1128_spectrum_01722_23
crossref_primary_10_2139_ssrn_3969067
crossref_primary_10_3390_plants11152070
crossref_primary_10_1007_s12571_024_01499_0
crossref_primary_10_1016_j_apsoil_2022_104522
crossref_primary_10_1016_j_ecoenv_2024_116726
crossref_primary_10_3390_pathogens12020277
crossref_primary_10_3390_jof8030234
crossref_primary_10_1016_j_agee_2021_107659
crossref_primary_10_1007_s11104_022_05299_3
crossref_primary_10_3161_15052249PJE2020_69_2_004
crossref_primary_10_1016_j_scitotenv_2023_163694
crossref_primary_10_3389_fmicb_2022_906732
crossref_primary_10_1021_acsestwater_3c00369
crossref_primary_10_1111_1462_2920_16232
crossref_primary_10_1016_j_scitotenv_2022_157119
crossref_primary_10_3389_fmicb_2021_738734
crossref_primary_10_1007_s11104_024_06688_6
crossref_primary_10_1016_j_jenvman_2024_123534
crossref_primary_10_1016_j_chemosphere_2023_139280
crossref_primary_10_3389_fenvs_2023_1128187
crossref_primary_10_1002_imt2_8
crossref_primary_10_1007_s00248_024_02484_y
crossref_primary_10_1016_j_csbj_2023_10_043
crossref_primary_10_1038_s41396_021_00966_2
crossref_primary_10_1007_s00248_021_01932_3
crossref_primary_10_1111_ppa_13641
crossref_primary_10_1016_j_apsoil_2022_104418
crossref_primary_10_3390_agronomy14051053
crossref_primary_10_1016_j_apsoil_2020_103832
crossref_primary_10_3389_fmicb_2024_1460729
crossref_primary_10_1007_s00248_022_02030_8
crossref_primary_10_1007_s00374_024_01836_7
crossref_primary_10_1128_spectrum_03097_22
crossref_primary_10_3389_fmicb_2022_842372
crossref_primary_10_1080_00071668_2021_2003753
crossref_primary_10_1128_spectrum_00852_24
crossref_primary_10_1016_j_envpol_2022_119528
crossref_primary_10_1038_s41559_023_02071_3
crossref_primary_10_1016_j_soilbio_2023_109246
crossref_primary_10_1128_msystems_01337_21
crossref_primary_10_3390_agronomy14122856
crossref_primary_10_3390_agronomy14050888
crossref_primary_10_1016_j_scitotenv_2022_155807
crossref_primary_10_1186_s12870_024_04910_2
crossref_primary_10_1016_j_jia_2022_12_011
crossref_primary_10_3390_microorganisms12010041
crossref_primary_10_1128_spectrum_03525_22
crossref_primary_10_3390_agronomy13122976
crossref_primary_10_3390_ijms24054545
crossref_primary_10_1094_PDIS_03_21_0653_RE
crossref_primary_10_1016_j_rhisph_2022_100535
crossref_primary_10_1111_1462_2920_16175
crossref_primary_10_1016_j_heliyon_2024_e40517
crossref_primary_10_3389_fmicb_2025_1521064
crossref_primary_10_1007_s00248_022_02121_6
crossref_primary_10_1016_j_jhazmat_2023_132035
crossref_primary_10_1073_pnas_2110669118
crossref_primary_10_1080_19490976_2024_2350151
crossref_primary_10_1111_gcbb_12845
crossref_primary_10_3389_fmicb_2023_1133025
crossref_primary_10_3389_fpls_2023_1136833
crossref_primary_10_1051_e3sconf_202129203093
crossref_primary_10_1016_j_chemosphere_2023_138504
crossref_primary_10_1016_j_indcrop_2024_119706
crossref_primary_10_1016_j_fmre_2025_02_008
crossref_primary_10_1016_j_jhazmat_2023_132835
crossref_primary_10_1016_j_mib_2023_102349
crossref_primary_10_3389_fpls_2023_1129508
crossref_primary_10_1016_j_envpol_2022_119015
crossref_primary_10_1016_j_scitotenv_2022_158904
Cites_doi 10.1007/s00374-015-1038-8
10.1016/j.cell.2006.02.017
10.1007/s00374-012-0675-4
10.1016/j.pbi.2017.04.018
10.1186/s13073-016-0290-3
10.1007/s00374-018-1303-8
10.1128/mSystems.00009-15
10.1111/j.1461-0248.2005.00802.x
10.1016/j.soilbio.2015.02.021
10.3390/md8030438
10.1111/j.1461-0248.2007.01139.x
10.1016/j.tplants.2012.04.001
10.1186/2049-2618-1-11
10.1111/j.2517-6161.1996.tb02080.x
10.1371/journal.pcbi.1002687
10.1038/s41564-017-0062-x
10.1126/science.1071148
10.1038/ismej.2015.95
10.1186/2047-217X-1-7
10.1094/PHYTO-96-0653
10.1016/j.cropro.2019.104870
10.1016/j.biocontrol.2019.104065
10.1038/s41467-018-05516-7
10.3389/fmicb.2019.01505
10.1038/s41467-017-01973-8
10.1038/s41396-018-0234-6
10.7717/peerj.2584
10.3389/fmicb.2018.03272
10.1093/bioinformatics/bti623
10.1038/nature24628
10.1146/annurev-phyto-080615-095919
10.1094/PHYTO-04-15-0101-RVW
10.1016/j.biocontrol.2016.06.011
10.1111/j.1744-7348.2009.00335.x
10.1007/s11274-016-2051-2
10.1007/BF00994018
10.1111/j.1365-2338.1988.tb00347.x
10.1071/AP99008
10.1038/s41592-018-0141-9
10.1007/s11274-019-2720-z
10.1186/s40168-018-0537-x
10.1007/s00374-008-0296-0
10.1073/pnas.0507535103
10.1186/s12866-019-1531-6
10.1038/nmeth.f.303
10.1073/pnas.95.12.6578
10.1094/PDIS-04-19-0833-RE
10.1016/j.soilbio.2017.07.016
10.1016/j.mycres.2006.03.008
10.1016/j.apsoil.2020.103601
10.1177/00220345900690050101
10.1016/j.soilbio.2016.10.008
10.1016/j.soilbio.2017.01.010
10.1186/s40168-015-0108-3
10.1038/s41587-019-0104-4
10.1126/science.aau5812
10.1038/ismej.2009.47
10.1016/j.funbio.2011.11.011
10.1186/1471-2164-10-616
10.1094/PHYTO-12-11-0349
10.7717/peerj.5382
10.1890/ES15-00217.1
10.1016/0261-2194(91)90006-D
10.1023/A:1008774221919
10.1186/s40168-020-00824-x
10.1137/S003614450342480
10.3389/fmicb.2018.01006
10.3390/genes9020104
10.1371/journal.pcbi.1002863
10.1007/s00374-012-0691-4
ContentType Journal Article
Copyright The Author(s), under exclusive licence to International Society for Microbial Ecology 2020
The Author(s), under exclusive licence to International Society for Microbial Ecology 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to International Society for Microbial Ecology 2020
– notice: The Author(s), under exclusive licence to International Society for Microbial Ecology 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7SN
7ST
7T7
7TM
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
SOI
7X8
7S9
L.6
5PM
DOI 10.1038/s41396-020-0720-5
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Natural Science Collection (ProQuest)
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database ProQuest
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (ProQuest)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
AGRICOLA
CrossRef
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1751-7370
EndPage 2950
ExternalDocumentID PMC7784920
32681158
10_1038_s41396_020_0720_5
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 31902107
  funderid: https://doi.org/10.13039/501100001809
– fundername: ;
  grantid: 31902107
GroupedDBID ---
-Q-
0R~
123
29J
39C
3V.
4.4
406
53G
70F
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAHBH
AANZL
AAZLF
ABAKF
ABAWZ
ABDBF
ABEJV
ABGNP
ABJNI
ABLJU
ABUWG
ABXVV
ACGFS
ACKTT
ACPRK
ACRQY
ACUHS
ACZOJ
ADBBV
ADHDB
AEFQL
AEJRE
AENEX
AEUYN
AEVLU
AEXYK
AFKRA
AFRAH
AFSHS
AGAYW
AGHAI
AGQEE
AHMBA
AHSBF
AILAN
AJRNO
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AMYLF
AOIJS
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DNIVK
DPUIP
DU5
EBS
EDH
EE.
EIOEI
EJD
EMOBN
ESX
F5P
FDQFY
FEDTE
FERAY
FIZPM
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HYE
HZ~
I-F
IWAJR
JSO
KQ8
LK8
M1P
M7P
MM.
NAO
NQJWS
O9-
OK1
PATMY
PQQKQ
PROAC
PSQYO
PYCSY
RNT
RNTTT
ROX
RPM
SNX
SNYQT
SOHCF
SRMVM
SV3
SWTZT
TAOOD
TBHMF
TDRGL
TOX
TR2
TSG
TUS
UKHRP
~02
~8M
AAYXX
ACSTC
AYFIA
CITATION
JZLTJ
PHGZM
PHGZT
CGR
CUY
CVF
ECGQY
ECM
EIF
GROUPED_DOAJ
NPM
PJZUB
PPXIY
PQGLB
7QL
7SN
7ST
7T7
7TM
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H13
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
SOI
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c503t-9473637fedbe5949da7c4fbfa0cc7cc1f3624066d466d3ece24c48fbae778ee03
IEDL.DBID 7X7
ISSN 1751-7362
1751-7370
IngestDate Thu Aug 21 13:47:53 EDT 2025
Fri Jul 11 05:38:46 EDT 2025
Fri Jul 11 01:27:49 EDT 2025
Wed Aug 13 10:08:14 EDT 2025
Mon Jul 21 06:00:20 EDT 2025
Thu Apr 24 23:12:58 EDT 2025
Tue Jul 01 01:04:26 EDT 2025
Fri Feb 21 02:39:19 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-9473637fedbe5949da7c4fbfa0cc7cc1f3624066d466d3ece24c48fbae778ee03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9166-7852
0000-0002-5662-9620
OpenAccessLink https://www.nature.com/articles/s41396-020-0720-5.pdf
PMID 32681158
PQID 2471541492
PQPubID 536304
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7784920
proquest_miscellaneous_2498248903
proquest_miscellaneous_2424996633
proquest_journals_2471541492
pubmed_primary_32681158
crossref_citationtrail_10_1038_s41396_020_0720_5
crossref_primary_10_1038_s41396_020_0720_5
springer_journals_10_1038_s41396_020_0720_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle Multidisciplinary Journal of Microbial Ecology
PublicationTitle The ISME Journal
PublicationTitleAbbrev ISME J
PublicationTitleAlternate ISME J
PublicationYear 2020
Publisher Nature Publishing Group UK
Oxford University Press
Publisher_xml – name: Nature Publishing Group UK
– name: Oxford University Press
References Cha, Han, Hong, Cho, Kim, Kwon (CR16) 2016; 10
Shang, Yang, Wang, Wu, Zhao, Hao (CR73) 2016; 32
Shen, Ruan, Xue, Zhong, Li, Shen (CR26) 2015; 393
Classen, Sundqvist, Henning, Newman, Moore, Cregger (CR7) 2015; 6
Liaw, Wiener (CR41) 2002; 2
Shen, Xue, Taylor, Ou, Wang, Zhao (CR64) 2018; 54
Adams, Bateman, Bik, Meadow (CR53) 2015; 3
Baxter, Ruffin, Rogers, Schloss (CR59) 2016; 8
CR37
Li, Zhang, Ding, Jia, He, Zhang (CR71) 2015; 51
Tahvonen (CR76) 2010; 18
Zhang, Raza, Yang, Hu, Huang, Xu (CR24) 2008; 44
Csardi, Nepusz (CR49) 2006; 1695
Wilck, Matus, Kearney, Olesen, Forslund, Bartolomaeus (CR61) 2017; 551
Xiong, Li, Ren, Liu, Zhao, Wu (CR22) 2017; 107
Sing, Sander, Beerenwinkel, Lengauer (CR45) 2005; 21
Liu, Kong, Cui, Zhang, Wang, Cai (CR69) 2016; 101
CR30
Newman (CR50) 2003; 45
Gentile, Weir (CR3) 2018; 362
Ramirez, Knight, de Hollander, Brearley, Constantinides, Cotton (CR32) 2018; 3
Klein, Ofek, Katan, Minz, Gamliel (CR20) 2012; 103
Ploetz (CR63) 2006; 96
CR2
Friedman, Alm (CR48) 2012; 8
Laurence, Burgess, Summerell, Liew (CR18) 2012; 116
Koren, Knights, Gonzalez, Waldron, Segata, Knight (CR55) 2013; 9
Abbasi, Safaie, Sadeghi, Shamsbakhsh (CR74) 2019; 10
Manici, Caputo (CR62) 2009; 155
Yang, Zhang, Li (CR77) 2019; 35
Wang, Li, Ruan, Ou, Zhao, Shen (CR65) 2015; 86
Caporaso, Kuczynski, Stombaugh, Bittinger, Bushman, Costello (CR38) 2010; 7
Cha, Han, Hong, Cho, Kim, Kwon (CR78) 2015; 10
CR43
Ley, Peterson, Gordon (CR1) 2006; 124
Liotti, da Silva Figueiredo, Soares (CR75) 2019; 138
de Vries, Griffiths, Bailey, Craig, Girlanda, Gweon (CR8) 2018; 9
Yuan, Zhao, Wen, Zhao, Li, Goossens (CR11) 2018; 6
Finkel, Castrillo, Paredes, González, Dangl (CR13) 2017; 38
De Corato, Patruno, Avella, Salimbeni, Lacolla, Cucci (CR27) 2020; 154
Chaparro, Sheflin, Manter, Vivanco (CR5) 2012; 48
Zhang, Liu, Zhang, Hu, Jin, Xu (CR47) 2019; 37
Gonzalez, Navas-Molina, Kosciolek, McDonald, Vázquez-Baeza, Ackermann (CR58) 2018; 15
Lemanceau, Alabouvette (CR68) 1991; 10
Rognes, Flouri, Nichols, Quince, Mahé (CR39) 2016; 4
Van Der Heijden, Bardgett, Van Straalen (CR9) 2008; 11
Mercado-Blanco, Abrantes, Barra Caracciolo, Bevivino, Ciancio, Grenni (CR31) 2018; 9
Wang, Li, Ruan, Ou, Zhao, Shen (CR34) 2015; 86
Penesyan, Kjelleberg, Egan (CR4) 2010; 8
Ploetz (CR15) 2015; 105
Fu, Penton, Ruan, Shen, Xue, Li (CR25) 2017; 104
Nyvad, Fejerskov (CR19) 1990; 69
Mendes, Mendes, Raaijmakers, Tsai (CR21) 2018; 12
Forsyth, Smith, Aitken (CR67) 2006; 110
Ye, Li, Luo, Wang, Li, Li (CR23) 2020; 8
Cortes, Vapnik (CR42) 1995; 20
Rocca, Simonin, Blaszczak, Ernakovich, Gibbons, Midani (CR57) 2018; 9
Mäder, Fliessbach, Dubois, Gunst, Fried, Niggli (CR6) 2002; 296
Belk, Xu, Carter, Lynne, Bucheli, Knight (CR60) 2018; 9
Pieretti, Royer, Barbe, Carrere, Koebnik, Cociancich (CR70) 2009; 10
Alabouvette (CR35) 1999; 28
Wu, Yang, Li, Chen, Xiao, Wu (CR72) 2019; 104
Berendsen, Pieterse, Bakker (CR14) 2012; 17
McDonald, Clemente, Kuczynski, Rideout, Stombaugh, Wendel (CR40) 2012; 1
Tibshirani (CR44) 1996; 58
McKay, Brown, Bjourson, Mercer (CR52) 1999; 105
Hawkes, Wren, Herman, Firestone (CR10) 2005; 8
Walters, Hyde, Berg-Lyons, Ackermann, Humphrey, Parada (CR51) 2016; 1
Wu, Guo, Jousset, Zhao, Shen (CR66) 2017; 114
Qiu, Zhang, Xue, Zhang, Li, Zhang (CR33) 2012; 48
Cornejo-Granados, Gallardo-Becerra, Leonardo-Reza, Ochoa-Romo, Ochoa-Leyva (CR54) 2018; 6
Duvallet, Gibbons, Gurry, Irizarry, Alm (CR56) 2017; 8
Zhou, Jing, Chen, Wang, Qi, Feng (CR28) 2019; 19
De Corato, Patruno, Avella, Lacolla, Cucci (CR12) 2019; 124
da C Jesus, Marsh, Tiedje, de S Moreira (CR29) 2009; 3
Hornby (CR36) 1983; 21
Statnikov, Henaff, Narendra, Konganti, Li, Yang (CR46) 2013; 1
Gordon (CR17) 2017; 55
Mercado-Blanco (2024011300402335600_CR31) 2018; 9
Cha (2024011300402335600_CR78) 2015; 10
Classen (2024011300402335600_CR7) 2015; 6
Wright (2024011300402335600_CR43) 1995
Berendsen (2024011300402335600_CR14) 2012; 17
Klein (2024011300402335600_CR20) 2012; 103
Baxter (2024011300402335600_CR59) 2016; 8
Ploetz (2024011300402335600_CR63) 2006; 96
Manici (2024011300402335600_CR62) 2009; 155
Laurence (2024011300402335600_CR18) 2012; 116
McKay (2024011300402335600_CR52) 1999; 105
De Corato (2024011300402335600_CR12) 2019; 124
Abbasi (2024011300402335600_CR74) 2019; 10
de Vries (2024011300402335600_CR8) 2018; 9
Zhang (2024011300402335600_CR47) 2019; 37
Belk (2024011300402335600_CR60) 2018; 9
Ye (2024011300402335600_CR23) 2020; 8
Csardi (2024011300402335600_CR49) 2006; 1695
Statnikov (2024011300402335600_CR46) 2013; 1
Shang (2024011300402335600_CR73) 2016; 32
2024011300402335600_CR37
Gordon (2024011300402335600_CR17) 2017; 55
Sing (2024011300402335600_CR45) 2005; 21
Zhang (2024011300402335600_CR24) 2008; 44
Nyvad (2024011300402335600_CR19) 1990; 69
Chaparro (2024011300402335600_CR5) 2012; 48
Cortes (2024011300402335600_CR42) 1995; 20
Rognes (2024011300402335600_CR39) 2016; 4
Li (2024011300402335600_CR71) 2015; 51
Friedman (2024011300402335600_CR48) 2012; 8
Wilck (2024011300402335600_CR61) 2017; 551
Mäder (2024011300402335600_CR6) 2002; 296
Whitman (2024011300402335600_CR2) 1998; 95
Finkel (2024011300402335600_CR13) 2017; 38
Shen (2024011300402335600_CR26) 2015; 393
Wang (2024011300402335600_CR34) 2015; 86
Van Der Heijden (2024011300402335600_CR9) 2008; 11
Fierer (2024011300402335600_CR30) 2006; 103
Tahvonen (2024011300402335600_CR76) 2010; 18
Penesyan (2024011300402335600_CR4) 2010; 8
Qiu (2024011300402335600_CR33) 2012; 48
Koren (2024011300402335600_CR55) 2013; 9
Gonzalez (2024011300402335600_CR58) 2018; 15
Yuan (2024011300402335600_CR11) 2018; 6
Cha (2024011300402335600_CR16) 2016; 10
Wu (2024011300402335600_CR66) 2017; 114
Yang (2024011300402335600_CR77) 2019; 35
Walters (2024011300402335600_CR51) 2016; 1
McDonald (2024011300402335600_CR40) 2012; 1
Forsyth (2024011300402335600_CR67) 2006; 110
Adams (2024011300402335600_CR53) 2015; 3
Duvallet (2024011300402335600_CR56) 2017; 8
Wu (2024011300402335600_CR72) 2019; 104
Mendes (2024011300402335600_CR21) 2018; 12
Wang (2024011300402335600_CR65) 2015; 86
Liu (2024011300402335600_CR69) 2016; 101
Zhou (2024011300402335600_CR28) 2019; 19
da C Jesus (2024011300402335600_CR29) 2009; 3
Cornejo-Granados (2024011300402335600_CR54) 2018; 6
Xiong (2024011300402335600_CR22) 2017; 107
Newman (2024011300402335600_CR50) 2003; 45
Tibshirani (2024011300402335600_CR44) 1996; 58
Pieretti (2024011300402335600_CR70) 2009; 10
De Corato (2024011300402335600_CR27) 2020; 154
Ramirez (2024011300402335600_CR32) 2018; 3
Liaw (2024011300402335600_CR41) 2002; 2
Ploetz (2024011300402335600_CR15) 2015; 105
Gentile (2024011300402335600_CR3) 2018; 362
Rocca (2024011300402335600_CR57) 2018; 9
Liotti (2024011300402335600_CR75) 2019; 138
Caporaso (2024011300402335600_CR38) 2010; 7
Fu (2024011300402335600_CR25) 2017; 104
Hawkes (2024011300402335600_CR10) 2005; 8
Lemanceau (2024011300402335600_CR68) 1991; 10
Hornby (2024011300402335600_CR36) 1983; 21
Alabouvette (2024011300402335600_CR35) 1999; 28
Ley (2024011300402335600_CR1) 2006; 124
Shen (2024011300402335600_CR64) 2018; 54
References_xml – volume: 8
  year: 2017
  ident: CR56
  article-title: Meta-analysis of gut microbiome studies identifies disease-specific and shared responses
  publication-title: Nat Commun
– volume: 38
  start-page: 155
  year: 2017
  end-page: 63
  ident: CR13
  article-title: Understanding and exploiting plant beneficial microbes
  publication-title: Curr Opin Plant Biol
– volume: 9
  start-page: 3272
  year: 2018
  ident: CR57
  article-title: The Microbiome Stress Project: towards a global meta-analysis of environmental stressors and their effects on microbial communities
  publication-title: Front Microbiol
– volume: 8
  year: 2016
  ident: CR59
  article-title: Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions
  publication-title: Genome Med
– volume: 69
  start-page: 1118
  year: 1990
  end-page: 25
  ident: CR19
  article-title: An ultrastructural-study of bacterial invasion and tissue breakdown in human experimental root-surface caries
  publication-title: J Dent Res
– volume: 6
  start-page: 1
  year: 2015
  end-page: 21
  ident: CR7
  article-title: Direct and indirect effects of climate change on soil microbial and soil microbial‐plant interactions: what lies ahead?
  publication-title: Ecosphere
– volume: 10
  start-page: 279
  year: 1991
  end-page: 86
  ident: CR68
  article-title: Biological control of fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium
  publication-title: Crop Prot
– volume: 9
  start-page: 1006
  year: 2018
  ident: CR31
  article-title: Belowground microbiota and the health of tree crops
  publication-title: Front Microbiol
– volume: 124
  start-page: 837
  year: 2006
  end-page: 48
  ident: CR1
  article-title: Ecological and evolutionary forces shaping microbial diversity in the human intestine
  publication-title: Cell
– volume: 11
  start-page: 296
  year: 2008
  end-page: 310
  ident: CR9
  article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems
  publication-title: Ecol Lett
– volume: 8
  start-page: 976
  year: 2005
  end-page: 85
  ident: CR10
  article-title: Plant invasion alters nitrogen cycling by modifying the soil nitrifying community
  publication-title: Ecol Lett
– volume: 101
  start-page: 103
  year: 2016
  end-page: 13
  ident: CR69
  article-title: Relationships of decomposability and C/N ratio in different types of organic matter with suppression of Fusarium oxysporum and microbial communities during reductive soil disinfestation
  publication-title: Biol Control
– volume: 19
  year: 2019
  ident: CR28
  article-title: Deciphering microbial diversity associated with Fusarium wilt-diseased and disease-free banana rhizosphere soil
  publication-title: BMC Microbiol
– volume: 110
  start-page: 929
  year: 2006
  end-page: 35
  ident: CR67
  article-title: Identification and characterization of non-pathogenic Fusarium oxysporum capable of increasing and decreasing Fusarium wilt severity
  publication-title: Mycological Res
– volume: 393
  start-page: 21
  year: 2015
  end-page: 33
  ident: CR26
  article-title: Soils naturally suppressive to banana Fusarium wilt disease harbor unique bacterial communities
  publication-title: Plant
– volume: 28
  start-page: 57
  year: 1999
  end-page: 64
  ident: CR35
  article-title: Fusarium wilt suppressive soils: an example of disease-suppressive soils
  publication-title: Australas Plant Pathol
– volume: 8
  start-page: 438
  year: 2010
  end-page: 59
  ident: CR4
  article-title: Development of novel drugs from marine surface associated microorganisms
  publication-title: Mar drugs
– volume: 116
  start-page: 289
  year: 2012
  end-page: 97
  ident: CR18
  article-title: High levels of diversity in Fusarium oxysporum from non-cultivated ecosystems in Australia
  publication-title: Fungal Biol
– volume: 3
  start-page: 1004
  year: 2009
  end-page: 11
  ident: CR29
  article-title: Changes in land use alter the structure of bacterial communities in Western Amazon soils
  publication-title: ISME J
– volume: 296
  start-page: 1694
  year: 2002
  end-page: 7
  ident: CR6
  article-title: Soil fertility and biodiversity in organic farming
  publication-title: Science
– volume: 55
  start-page: 23
  year: 2017
  end-page: 39
  ident: CR17
  article-title: Fusarium oxysporum and the Fusarium Wilt Syndrome
  publication-title: Annu Rev Phytopathol
– volume: 138
  start-page: 104065
  year: 2019
  ident: CR75
  article-title: Streptomyces griseocarneus R132 controls phytopathogens and promotes growth of pepper (Capsicum annuum)
  publication-title: Biol Control
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: CR41
  article-title: Classification and regression by randomForest
  publication-title: R N
– volume: 104
  start-page: 25
  year: 2019
  end-page: 34
  ident: CR72
  article-title: Modification of rhizosphere bacterial community structure and functional potentials to control pseudostellaria heterophylla replant disease
  publication-title: Plant Dis
– volume: 124
  start-page: 104870
  year: 2019
  ident: CR12
  article-title: Composts from green sources show an increased suppressiveness to soilborne plant pathogenic fungi: Relationships between physicochemical properties, disease suppression, and the microbiome
  publication-title: Crop Prot
– volume: 12
  start-page: 3038
  year: 2018
  end-page: 42
  ident: CR21
  article-title: Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean
  publication-title: ISME J
– volume: 362
  start-page: 776
  year: 2018
  end-page: 80
  ident: CR3
  article-title: The gut microbiota at the intersection of diet and human health
  publication-title: Science
– volume: 3
  year: 2015
  ident: CR53
  article-title: Microbiota of the indoor environment: a meta-analysis
  publication-title: Microbiome
– volume: 8
  start-page: e1002687
  year: 2012
  ident: CR48
  article-title: Inferring correlation networks from genomic survey data
  publication-title: PLoS Comput Biol
– volume: 96
  start-page: 653
  year: 2006
  end-page: 6
  ident: CR63
  article-title: Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense
  publication-title: Phytopathology
– volume: 10
  start-page: 1505
  year: 2019
  ident: CR74
  article-title: Streptomyces strains induce resistance to Fusarium oxysporum f. sp. lycopersici race 3 in tomato through different molecular mechanisms
  publication-title: Front Microbiol
– volume: 44
  start-page: 1073
  year: 2008
  ident: CR24
  article-title: Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer
  publication-title: Biol Fertil Soils
– volume: 51
  start-page: 935
  year: 2015
  end-page: 46
  ident: CR71
  article-title: Declined soil suppressiveness to Fusarium oxysporum by rhizosphere microflora of cotton in soil sickness
  publication-title: Biol Fertil soils
– volume: 86
  start-page: 77
  year: 2015
  end-page: 86
  ident: CR65
  article-title: Pineapple–banana rotation reduced the amount of Fusarium oxysporum more than maize–banana rotation mainly through modulating fungal communities
  publication-title: Soil Biol Biochem
– volume: 21
  start-page: 3940
  year: 2005
  end-page: 1
  ident: CR45
  article-title: ROCR: visualizing classifier performance in R
  publication-title: Bioinformatics
– volume: 9
  start-page: e1002863
  year: 2013
  ident: CR55
  article-title: A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets
  publication-title: PLoS Comput Biol
– volume: 4
  start-page: e2584
  year: 2016
  ident: CR39
  article-title: VSEARCH: a versatile open source tool for metagenomics
  publication-title: PeerJ
– ident: CR43
– ident: CR2
– ident: CR37
– volume: 18
  start-page: 55
  year: 2010
  end-page: 9
  ident: CR76
  article-title: Microbial control of plant diseases with Streptomyces spp. 1
  publication-title: Eppo Bull
– ident: CR30
– volume: 20
  start-page: 273
  year: 1995
  end-page: 97
  ident: CR42
  article-title: Support-vector networks
  publication-title: Mach Learn
– volume: 1695
  start-page: 1
  year: 2006
  end-page: 9
  ident: CR49
  article-title: The igraph software package for complex network research
  publication-title: Int J Complex Syst
– volume: 32
  start-page: 95
  year: 2016
  ident: CR73
  article-title: Illumina-based analysis of the rhizosphere microbial communities associated with healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants grown in the field
  publication-title: World J Microbiol Biotechnol
– volume: 105
  start-page: 157
  year: 1999
  end-page: 66
  ident: CR52
  article-title: Molecular characterisation of Alternaria linicola and its detection in linseed
  publication-title: Eur J Plant Pathol
– volume: 45
  start-page: 167
  year: 2003
  end-page: 56
  ident: CR50
  article-title: The structure and function of complex networks
  publication-title: SIAM Rev
– volume: 114
  start-page: 238
  year: 2017
  end-page: 47
  ident: CR66
  article-title: Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome
  publication-title: Soil Biol Biochem
– volume: 48
  start-page: 807
  year: 2012
  end-page: 16
  ident: CR33
  article-title: Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil
  publication-title: Biol Fertil Soils
– volume: 105
  start-page: 1512
  year: 2015
  end-page: 21
  ident: CR15
  article-title: Fusarium wilt of banana
  publication-title: Phytopathology
– volume: 3
  start-page: 189
  year: 2018
  end-page: 96
  ident: CR32
  article-title: Detecting macroecological patterns in bacterial communities across independent studies of global soils
  publication-title: Nat Microbiol
– volume: 104
  start-page: 39
  year: 2017
  end-page: 48
  ident: CR25
  article-title: Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease
  publication-title: Soil Biol Biochem
– volume: 54
  start-page: 793
  year: 2018
  end-page: 806
  ident: CR64
  article-title: Soil pre-fumigation could effectively improve the disease suppressiveness of biofertilizer to banana Fusarium wilt disease by reshaping the soil microbiome
  publication-title: Biol Fertil Soils
– volume: 8
  year: 2020
  ident: CR23
  article-title: A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community
  publication-title: Microbiome
– volume: 37
  start-page: 676
  year: 2019
  end-page: 84
  ident: CR47
  article-title: NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice
  publication-title: Nat Biotechnol
– volume: 6
  year: 2018
  ident: CR11
  article-title: Root exudates drive the soil-borne legacy of aboveground pathogen infection
  publication-title: Microbiome
– volume: 1
  start-page: e00009
  year: 2016
  end-page: 15
  ident: CR51
  article-title: Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys
  publication-title: Msystems
– volume: 10
  start-page: 119
  year: 2015
  end-page: 29
  ident: CR78
  article-title: Microbial and biochemical basis of a Fusarium wilt-suppressive soil
  publication-title: ISME J.
– volume: 9
  year: 2018
  ident: CR8
  article-title: Soil bacterial networks are less stable under drought than fungal networks
  publication-title: Nat Commun
– volume: 48
  start-page: 489
  year: 2012
  end-page: 99
  ident: CR5
  article-title: Manipulating the soil microbiome to increase soil health and plant fertility
  publication-title: Biol Fertil Soils
– volume: 1
  year: 2013
  ident: CR46
  article-title: A comprehensive evaluation of multicategory classification methods for microbiomic data
  publication-title: Microbiome
– volume: 154
  start-page: 103601
  year: 2020
  ident: CR27
  article-title: Soil management under tomato-wheat rotation increases the suppressive response against Fusarium wilt and tomato shoot growth by changing the microbial composition and chemical parameters
  publication-title: Appl Soil Ecol
– volume: 35
  start-page: 145
  year: 2019
  ident: CR77
  article-title: Antagonistic activity and mechanism of an isolated Streptomyces corchorusii stain AUH-1 against phytopathogenic fungi
  publication-title: World J Microbiol Biotechnol
– volume: 155
  start-page: 245
  year: 2009
  end-page: 58
  ident: CR62
  article-title: Fungal community diversity and soil health in intensive potato cropping systems of the east Po valley, northern Italy
  publication-title: Ann Appl Biol
– volume: 15
  start-page: 796
  year: 2018
  end-page: 8
  ident: CR58
  article-title: Qiita: rapid, web-enabled microbiome meta-analysis
  publication-title: Nat Methods
– volume: 103
  start-page: 23
  year: 2012
  end-page: 33
  ident: CR20
  article-title: Soil suppressiveness to Fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization
  publication-title: Phytopathology
– volume: 1
  year: 2012
  ident: CR40
  article-title: The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome
  publication-title: GigaScience
– volume: 10
  year: 2009
  ident: CR70
  article-title: The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae
  publication-title: BMC genomics
– volume: 6
  start-page: e5382
  year: 2018
  ident: CR54
  article-title: A meta-analysis reveals the environmental and host factors shaping the structure and function of the shrimp microbiota
  publication-title: PeerJ
– volume: 86
  start-page: 77
  year: 2015
  end-page: 86
  ident: CR34
  article-title: Pineapple–banana rotation reduced the amount of Fusarium oxysporum more than maize–banana rotation mainly through modulating fungal communities
  publication-title: Soil Biol Biochem
– volume: 9
  start-page: 104
  year: 2018
  ident: CR60
  article-title: Microbiome data accurately predicts the postmortem interval using random forest regression models
  publication-title: Genes
– volume: 21
  start-page: 65
  year: 1983
  end-page: 85
  ident: CR36
  article-title: Suppressive soils
  publication-title: Australas Plant Pathol
– volume: 551
  start-page: 585
  year: 2017
  end-page: 9
  ident: CR61
  article-title: Salt-responsive gut commensal modulates TH17 axis and disease
  publication-title: Nature
– volume: 58
  start-page: 267
  year: 1996
  end-page: 88
  ident: CR44
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Stat Soc
– volume: 10
  start-page: 119
  year: 2016
  ident: CR16
  article-title: Microbial and biochemical basis of a Fusarium wilt-suppressive soil
  publication-title: ISME J
– volume: 107
  start-page: 198
  year: 2017
  end-page: 207
  ident: CR22
  article-title: Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease
  publication-title: Soil Biol Biochem
– volume: 17
  start-page: 478
  year: 2012
  end-page: 86
  ident: CR14
  article-title: The rhizosphere microbiome and plant health
  publication-title: Trends plant Sci
– volume: 7
  start-page: 335
  year: 2010
  ident: CR38
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nat Methods
– volume: 51
  start-page: 935
  year: 2015
  ident: 2024011300402335600_CR71
  article-title: Declined soil suppressiveness to Fusarium oxysporum by rhizosphere microflora of cotton in soil sickness
  publication-title: Biol Fertil soils
  doi: 10.1007/s00374-015-1038-8
– volume: 124
  start-page: 837
  year: 2006
  ident: 2024011300402335600_CR1
  article-title: Ecological and evolutionary forces shaping microbial diversity in the human intestine
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.017
– volume: 48
  start-page: 807
  year: 2012
  ident: 2024011300402335600_CR33
  article-title: Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-012-0675-4
– volume: 38
  start-page: 155
  year: 2017
  ident: 2024011300402335600_CR13
  article-title: Understanding and exploiting plant beneficial microbes
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2017.04.018
– volume: 8
  year: 2016
  ident: 2024011300402335600_CR59
  article-title: Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions
  publication-title: Genome Med
  doi: 10.1186/s13073-016-0290-3
– volume: 21
  start-page: 65
  year: 1983
  ident: 2024011300402335600_CR36
  article-title: Suppressive soils
  publication-title: Australas Plant Pathol
– volume: 54
  start-page: 793
  year: 2018
  ident: 2024011300402335600_CR64
  article-title: Soil pre-fumigation could effectively improve the disease suppressiveness of biofertilizer to banana Fusarium wilt disease by reshaping the soil microbiome
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-018-1303-8
– ident: 2024011300402335600_CR37
– volume: 1695
  start-page: 1
  year: 2006
  ident: 2024011300402335600_CR49
  article-title: The igraph software package for complex network research
  publication-title: Int J Complex Syst
– volume: 1
  start-page: e00009
  year: 2016
  ident: 2024011300402335600_CR51
  article-title: Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys
  publication-title: Msystems
  doi: 10.1128/mSystems.00009-15
– volume: 8
  start-page: 976
  year: 2005
  ident: 2024011300402335600_CR10
  article-title: Plant invasion alters nitrogen cycling by modifying the soil nitrifying community
  publication-title: Ecol Lett
  doi: 10.1111/j.1461-0248.2005.00802.x
– volume: 86
  start-page: 77
  year: 2015
  ident: 2024011300402335600_CR65
  article-title: Pineapple–banana rotation reduced the amount of Fusarium oxysporum more than maize–banana rotation mainly through modulating fungal communities
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2015.02.021
– volume: 8
  start-page: 438
  year: 2010
  ident: 2024011300402335600_CR4
  article-title: Development of novel drugs from marine surface associated microorganisms
  publication-title: Mar drugs
  doi: 10.3390/md8030438
– volume: 11
  start-page: 296
  year: 2008
  ident: 2024011300402335600_CR9
  article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems
  publication-title: Ecol Lett
  doi: 10.1111/j.1461-0248.2007.01139.x
– volume: 17
  start-page: 478
  year: 2012
  ident: 2024011300402335600_CR14
  article-title: The rhizosphere microbiome and plant health
  publication-title: Trends plant Sci
  doi: 10.1016/j.tplants.2012.04.001
– volume: 1
  year: 2013
  ident: 2024011300402335600_CR46
  article-title: A comprehensive evaluation of multicategory classification methods for microbiomic data
  publication-title: Microbiome
  doi: 10.1186/2049-2618-1-11
– volume: 58
  start-page: 267
  year: 1996
  ident: 2024011300402335600_CR44
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Stat Soc
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 8
  start-page: e1002687
  year: 2012
  ident: 2024011300402335600_CR48
  article-title: Inferring correlation networks from genomic survey data
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002687
– volume: 3
  start-page: 189
  year: 2018
  ident: 2024011300402335600_CR32
  article-title: Detecting macroecological patterns in bacterial communities across independent studies of global soils
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-017-0062-x
– volume: 296
  start-page: 1694
  year: 2002
  ident: 2024011300402335600_CR6
  article-title: Soil fertility and biodiversity in organic farming
  publication-title: Science
  doi: 10.1126/science.1071148
– volume: 10
  start-page: 119
  year: 2016
  ident: 2024011300402335600_CR16
  article-title: Microbial and biochemical basis of a Fusarium wilt-suppressive soil
  publication-title: ISME J
  doi: 10.1038/ismej.2015.95
– volume: 1
  year: 2012
  ident: 2024011300402335600_CR40
  article-title: The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome
  publication-title: GigaScience
  doi: 10.1186/2047-217X-1-7
– volume: 96
  start-page: 653
  year: 2006
  ident: 2024011300402335600_CR63
  article-title: Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-96-0653
– volume: 124
  start-page: 104870
  year: 2019
  ident: 2024011300402335600_CR12
  article-title: Composts from green sources show an increased suppressiveness to soilborne plant pathogenic fungi: Relationships between physicochemical properties, disease suppression, and the microbiome
  publication-title: Crop Prot
  doi: 10.1016/j.cropro.2019.104870
– volume: 138
  start-page: 104065
  year: 2019
  ident: 2024011300402335600_CR75
  article-title: Streptomyces griseocarneus R132 controls phytopathogens and promotes growth of pepper (Capsicum annuum)
  publication-title: Biol Control
  doi: 10.1016/j.biocontrol.2019.104065
– volume: 9
  year: 2018
  ident: 2024011300402335600_CR8
  article-title: Soil bacterial networks are less stable under drought than fungal networks
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05516-7
– volume: 10
  start-page: 1505
  year: 2019
  ident: 2024011300402335600_CR74
  article-title: Streptomyces strains induce resistance to Fusarium oxysporum f. sp. lycopersici race 3 in tomato through different molecular mechanisms
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.01505
– volume: 8
  year: 2017
  ident: 2024011300402335600_CR56
  article-title: Meta-analysis of gut microbiome studies identifies disease-specific and shared responses
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01973-8
– volume: 12
  start-page: 3038
  year: 2018
  ident: 2024011300402335600_CR21
  article-title: Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean
  publication-title: ISME J
  doi: 10.1038/s41396-018-0234-6
– volume: 4
  start-page: e2584
  year: 2016
  ident: 2024011300402335600_CR39
  article-title: VSEARCH: a versatile open source tool for metagenomics
  publication-title: PeerJ
  doi: 10.7717/peerj.2584
– volume: 9
  start-page: 3272
  year: 2018
  ident: 2024011300402335600_CR57
  article-title: The Microbiome Stress Project: towards a global meta-analysis of environmental stressors and their effects on microbial communities
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.03272
– volume: 21
  start-page: 3940
  year: 2005
  ident: 2024011300402335600_CR45
  article-title: ROCR: visualizing classifier performance in R
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti623
– volume: 551
  start-page: 585
  year: 2017
  ident: 2024011300402335600_CR61
  article-title: Salt-responsive gut commensal modulates TH17 axis and disease
  publication-title: Nature
  doi: 10.1038/nature24628
– volume: 55
  start-page: 23
  year: 2017
  ident: 2024011300402335600_CR17
  article-title: Fusarium oxysporum and the Fusarium Wilt Syndrome
  publication-title: Annu Rev Phytopathol
  doi: 10.1146/annurev-phyto-080615-095919
– volume: 105
  start-page: 1512
  year: 2015
  ident: 2024011300402335600_CR15
  article-title: Fusarium wilt of banana
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-04-15-0101-RVW
– volume: 101
  start-page: 103
  year: 2016
  ident: 2024011300402335600_CR69
  article-title: Relationships of decomposability and C/N ratio in different types of organic matter with suppression of Fusarium oxysporum and microbial communities during reductive soil disinfestation
  publication-title: Biol Control
  doi: 10.1016/j.biocontrol.2016.06.011
– volume: 2
  start-page: 18
  year: 2002
  ident: 2024011300402335600_CR41
  article-title: Classification and regression by randomForest
  publication-title: R N
– volume: 155
  start-page: 245
  year: 2009
  ident: 2024011300402335600_CR62
  article-title: Fungal community diversity and soil health in intensive potato cropping systems of the east Po valley, northern Italy
  publication-title: Ann Appl Biol
  doi: 10.1111/j.1744-7348.2009.00335.x
– volume: 32
  start-page: 95
  year: 2016
  ident: 2024011300402335600_CR73
  article-title: Illumina-based analysis of the rhizosphere microbial communities associated with healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants grown in the field
  publication-title: World J Microbiol Biotechnol
  doi: 10.1007/s11274-016-2051-2
– volume: 20
  start-page: 273
  year: 1995
  ident: 2024011300402335600_CR42
  article-title: Support-vector networks
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– volume: 18
  start-page: 55
  year: 2010
  ident: 2024011300402335600_CR76
  article-title: Microbial control of plant diseases with Streptomyces spp. 1
  publication-title: Eppo Bull
  doi: 10.1111/j.1365-2338.1988.tb00347.x
– volume: 28
  start-page: 57
  year: 1999
  ident: 2024011300402335600_CR35
  article-title: Fusarium wilt suppressive soils: an example of disease-suppressive soils
  publication-title: Australas Plant Pathol
  doi: 10.1071/AP99008
– volume: 15
  start-page: 796
  year: 2018
  ident: 2024011300402335600_CR58
  article-title: Qiita: rapid, web-enabled microbiome meta-analysis
  publication-title: Nat Methods
  doi: 10.1038/s41592-018-0141-9
– volume: 35
  start-page: 145
  year: 2019
  ident: 2024011300402335600_CR77
  article-title: Antagonistic activity and mechanism of an isolated Streptomyces corchorusii stain AUH-1 against phytopathogenic fungi
  publication-title: World J Microbiol Biotechnol
  doi: 10.1007/s11274-019-2720-z
– volume: 6
  year: 2018
  ident: 2024011300402335600_CR11
  article-title: Root exudates drive the soil-borne legacy of aboveground pathogen infection
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0537-x
– volume: 44
  start-page: 1073
  year: 2008
  ident: 2024011300402335600_CR24
  article-title: Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-008-0296-0
– volume: 103
  start-page: 626
  year: 2006
  ident: 2024011300402335600_CR30
  article-title: The diversity and biogeography of soil bacterial communities
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0507535103
– volume: 19
  year: 2019
  ident: 2024011300402335600_CR28
  article-title: Deciphering microbial diversity associated with Fusarium wilt-diseased and disease-free banana rhizosphere soil
  publication-title: BMC Microbiol
  doi: 10.1186/s12866-019-1531-6
– volume: 7
  start-page: 335
  year: 2010
  ident: 2024011300402335600_CR38
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nat Methods
  doi: 10.1038/nmeth.f.303
– volume: 95
  start-page: 6578
  year: 1998
  ident: 2024011300402335600_CR2
  article-title: Prokaryotes: the unseen majority
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.12.6578
– volume: 104
  start-page: 25
  year: 2019
  ident: 2024011300402335600_CR72
  article-title: Modification of rhizosphere bacterial community structure and functional potentials to control pseudostellaria heterophylla replant disease
  publication-title: Plant Dis
  doi: 10.1094/PDIS-04-19-0833-RE
– volume: 114
  start-page: 238
  year: 2017
  ident: 2024011300402335600_CR66
  article-title: Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2017.07.016
– volume: 110
  start-page: 929
  year: 2006
  ident: 2024011300402335600_CR67
  article-title: Identification and characterization of non-pathogenic Fusarium oxysporum capable of increasing and decreasing Fusarium wilt severity
  publication-title: Mycological Res
  doi: 10.1016/j.mycres.2006.03.008
– volume: 154
  start-page: 103601
  year: 2020
  ident: 2024011300402335600_CR27
  article-title: Soil management under tomato-wheat rotation increases the suppressive response against Fusarium wilt and tomato shoot growth by changing the microbial composition and chemical parameters
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2020.103601
– volume: 69
  start-page: 1118
  year: 1990
  ident: 2024011300402335600_CR19
  article-title: An ultrastructural-study of bacterial invasion and tissue breakdown in human experimental root-surface caries
  publication-title: J Dent Res
  doi: 10.1177/00220345900690050101
– volume: 104
  start-page: 39
  year: 2017
  ident: 2024011300402335600_CR25
  article-title: Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2016.10.008
– volume: 86
  start-page: 77
  year: 2015
  ident: 2024011300402335600_CR34
  article-title: Pineapple–banana rotation reduced the amount of Fusarium oxysporum more than maize–banana rotation mainly through modulating fungal communities
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2015.02.021
– volume: 107
  start-page: 198
  year: 2017
  ident: 2024011300402335600_CR22
  article-title: Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2017.01.010
– volume: 3
  year: 2015
  ident: 2024011300402335600_CR53
  article-title: Microbiota of the indoor environment: a meta-analysis
  publication-title: Microbiome
  doi: 10.1186/s40168-015-0108-3
– volume: 37
  start-page: 676
  year: 2019
  ident: 2024011300402335600_CR47
  article-title: NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0104-4
– volume: 362
  start-page: 776
  year: 2018
  ident: 2024011300402335600_CR3
  article-title: The gut microbiota at the intersection of diet and human health
  publication-title: Science
  doi: 10.1126/science.aau5812
– volume: 3
  start-page: 1004
  year: 2009
  ident: 2024011300402335600_CR29
  article-title: Changes in land use alter the structure of bacterial communities in Western Amazon soils
  publication-title: ISME J
  doi: 10.1038/ismej.2009.47
– volume: 116
  start-page: 289
  year: 2012
  ident: 2024011300402335600_CR18
  article-title: High levels of diversity in Fusarium oxysporum from non-cultivated ecosystems in Australia
  publication-title: Fungal Biol
  doi: 10.1016/j.funbio.2011.11.011
– volume: 10
  year: 2009
  ident: 2024011300402335600_CR70
  article-title: The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae
  publication-title: BMC genomics
  doi: 10.1186/1471-2164-10-616
– volume: 103
  start-page: 23
  year: 2012
  ident: 2024011300402335600_CR20
  article-title: Soil suppressiveness to Fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-12-11-0349
– volume: 6
  start-page: e5382
  year: 2018
  ident: 2024011300402335600_CR54
  article-title: A meta-analysis reveals the environmental and host factors shaping the structure and function of the shrimp microbiota
  publication-title: PeerJ
  doi: 10.7717/peerj.5382
– volume: 6
  start-page: 1
  year: 2015
  ident: 2024011300402335600_CR7
  article-title: Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead?
  publication-title: Ecosphere
  doi: 10.1890/ES15-00217.1
– volume: 10
  start-page: 279
  year: 1991
  ident: 2024011300402335600_CR68
  article-title: Biological control of fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium
  publication-title: Crop Prot
  doi: 10.1016/0261-2194(91)90006-D
– volume: 393
  start-page: 21
  year: 2015
  ident: 2024011300402335600_CR26
  article-title: Soils naturally suppressive to banana Fusarium wilt disease harbor unique bacterial communities
  publication-title: Plant
– volume: 105
  start-page: 157
  year: 1999
  ident: 2024011300402335600_CR52
  article-title: Molecular characterisation of Alternaria linicola and its detection in linseed
  publication-title: Eur J Plant Pathol
  doi: 10.1023/A:1008774221919
– volume: 8
  year: 2020
  ident: 2024011300402335600_CR23
  article-title: A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community
  publication-title: Microbiome
  doi: 10.1186/s40168-020-00824-x
– volume: 45
  start-page: 167
  year: 2003
  ident: 2024011300402335600_CR50
  article-title: The structure and function of complex networks
  publication-title: SIAM Rev
  doi: 10.1137/S003614450342480
– volume: 9
  start-page: 1006
  year: 2018
  ident: 2024011300402335600_CR31
  article-title: Belowground microbiota and the health of tree crops
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.01006
– volume: 9
  start-page: 104
  year: 2018
  ident: 2024011300402335600_CR60
  article-title: Microbiome data accurately predicts the postmortem interval using random forest regression models
  publication-title: Genes
  doi: 10.3390/genes9020104
– start-page: 217
  volume-title: Reading and understanding multivariate statistics
  year: 1995
  ident: 2024011300402335600_CR43
– volume: 10
  start-page: 119
  year: 2015
  ident: 2024011300402335600_CR78
  article-title: Microbial and biochemical basis of a Fusarium wilt-suppressive soil
  publication-title: ISME J.
  doi: 10.1038/ismej.2015.95
– volume: 9
  start-page: e1002863
  year: 2013
  ident: 2024011300402335600_CR55
  article-title: A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002863
– volume: 48
  start-page: 489
  year: 2012
  ident: 2024011300402335600_CR5
  article-title: Manipulating the soil microbiome to increase soil health and plant fertility
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-012-0691-4
SSID ssj0057667
Score 2.6648664
Snippet Soil-borne plant diseases are increasingly causing devastating losses in agricultural production. The development of a more refined model for disease...
An increasing number of soil-borne plant diseases are causing devastating losses in agricultural production. While, a single independent case study rarely...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2936
SubjectTerms 45/23
631/326/2521
704/158/2452
accuracy
Agricultural production
artificial intelligence
Bacteria
Biomedical and Life Sciences
case studies
Datasets
decision support systems
disease occurrence
DNA sequencing
Ecology
Evolutionary Biology
Fallowing
fungal communities
Fungi
Fusarium
Fusarium - genetics
Fusarium oxysporum
Fusarium wilt
health status
incidence
indicator species
Learning algorithms
Life Sciences
Machine learning
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Microbiomes
Microorganisms
Model accuracy
Otus
Plant Diseases
Planting season
prediction
Soil
Soil Microbiology
Soil microorganisms
Soils
species diversity
Streptomyces
varieties
Wilt
Xanthomonadaceae
yields
Title Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt
URI https://link.springer.com/article/10.1038/s41396-020-0720-5
https://www.ncbi.nlm.nih.gov/pubmed/32681158
https://www.proquest.com/docview/2471541492
https://www.proquest.com/docview/2424996633
https://www.proquest.com/docview/2498248903
https://pubmed.ncbi.nlm.nih.gov/PMC7784920
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9wwzGwtg72MfS9bVzzY04apEztn52lso0cZrCujhXsLjmLTwjW5NXcP_feTnI9yK7uHBJIoQbZkfViKxNjHLECau5ALYysQ2qLPam2qBGgyT2YklulH4Z-ns5ML_WORL4YNt25IqxxlYhTUdQu0R36UoRSlltVF9mX1R1DXKIquDi00HrJ9Kl1GXG0Wk8OFpnTsIIsaMhUGJfUY1VT2qEPhHdNvpZAGT_m2XrpnbN7PmfwncBr10fwpezIYkvxrT_ln7IFvnrNHfWvJ2xfs8uyGQjCU1MyHIAxvAWI1JvCctl85lSrmjm46uOWkz2reNrxrr5b82iGeHkbRyFexDmfT8Tbw-aZDD3tzjV9Zrl-yi_nx-fcTMXRVEJBLtRaFxqlQJvi68nmhi9oZ0KEKTgIYgDTgRKGWn9UaD-XBZxq0DZXzxljvpXrF9pq28W8Yr41Fg8FZJatagwoWUIynVVr5GUVXfcLkOKclDCXHqfPFsoyhb2XLngwlkqEkMpR5wj5Nr6z6ehu7gA9GQpXD0uvKO0ZJ2IfpMS4aioS4xrcbgkGvEx09pXbBFDbTtpAI87qn_YQR2rwWTWmbMLPFFRMAFe3eftJcXcbi3TiJiJpM2OeRf-5Q_-9A3-4e6Dv2OCNOjlk2B2xvfbPx79FWWleHcUEcsv1vx6dnv_Hq_NfiLxfwFR4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKEFwQzxIoYCS4gKI6sbN2DgghYLWlD3Fopb2FZOKolbbJ0uwK7U_xjczkVS0Ve-shOcSTxPaM5-EZzwC8DQsMorSIfGMz9LUlm9XaQPmoWT0ZMVvmg8JHx6PJqf4-jaZb8Kc_C8NhlT1PbBh1XiHvke-FxEW5ZHUcfpr_8rlqFHtX-xIaLVkcuNVvMtnqj_tfCb_vwnD87eTLxO-qCvgYSbXwY23USJnC5ZmLYh3nqUFdZEUqEQ1iUBBLJyk3yjVdyqELNWpbZKkzxjonFX33FtwmwSvZ2DPTwcAj1b2pWEsSOfDpJ2HvRVV2ryZh0YT7Sl8aukXrcvCacns9RvMfR20j_8YP4H6nuIrPLaU9hC1XPoI7bSnL1WM4-3HJLh8Oohad00dUiE32J3SCt3sFp0YWKT9McSVYfuaiKkVdnc_ERUr9dNizYjFv8n6WtagKMV7WZNEvL-grs8UTOL2R-X4K22VVumcgcmNJQUmtklmuURUWSWwEWZC5EXtznQeyn9MEuxTnXGljljSudmWTFg0JoSFhNCSRB--HV-Ztfo9NwLs9opJuqdfJFWF68GZopkXKnpe0dNWSYcjKJcNSqU0wsQ21jSXB7LS4H3pEOrYl1d16YNaoYgDgJOHrLeX5WZMsnCaRuiY9-NDTz1XX_zvQ55sH-hruTk6ODpPD_eODF3AvZKpuInx2YXtxuXQvSU9bZK-axSHg502vxr9NuVEJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFRSgbgg3rgUWCS4gKzY3rV3fUAIaKOWQhQhKvVm7PFarZTaaZ0I5df4Omb8SBUqcuvBPthje3fn7ZmdAXgTFOiHaRG62mToKkM-qzG-dFGxeRKxWOaNwt_H0cGx-noSnmzBn34vDKdV9jKxEdR5hfyPfBiQFOWW1XEwLLq0iMne6OPswuUOUhxp7dtptCRyZJe_yX2rPxzuEa7fBsFo_-eXA7frMOBi6Mm5GystI6kLm2c2jFWcpxpVkRWph6gR_YLEO2m8KFd0SIs2UKhMkaVWa2OtJ-m9t2Bbs1c0gO3P--PJj14PkCHf9K8l_ey79Jmgj6lKM6xJdTTJv57raTqF61rxmql7PWPzn7Btow1H9-FeZ8aKTy3dPYAtWz6E221jy-UjOJ1ccgCIU6pFFwISFWJTCwqt4J-_ggsli5QvprgUrE1zUZWirs6m4jylcVrsBbOYNVVAy1pUhRgtavLvF-f0lun8MRzfyIo_gUFZlfYZiFwbMldSI70sVygLg6RE_MzPbMSxXeuA169pgl3Bc-67MU2awLs0SYuGhNCQMBqS0IF3q0dmbbWPTcC7PaKSjvHr5IpMHXi9uk0sy3GYtLTVgmHI5yU3U8pNMLEJlIk9gnna4n41IrK4DRnyxgG9RhUrAC4Zvn6nPDttSofTItLQPAfe9_RzNfT_TnRn80RfwR3ixOTb4fjoOdwNmKibdJ9dGMwvF_YFGW3z7GXHHQJ-3TRD_gWstFak
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+disease+occurrence+with+high+accuracy+based+on+soil+macroecological+patterns+of+Fusarium+wilt&rft.jtitle=The+ISME+Journal&rft.au=Yuan%2C+Jun&rft.au=Wen%2C+Tao&rft.au=Zhang%2C+He&rft.au=Zhao%2C+Mengli&rft.date=2020-12-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1751-7362&rft.eissn=1751-7370&rft.volume=14&rft.issue=12&rft.spage=2936&rft.epage=2950&rft_id=info:doi/10.1038%2Fs41396-020-0720-5&rft.externalDocID=10_1038_s41396_020_0720_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-7362&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-7362&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-7362&client=summon