Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt
Soil-borne plant diseases are increasingly causing devastating losses in agricultural production. The development of a more refined model for disease prediction can aid in reducing crop losses through the use of preventative control measures or soil fallowing for a planting season. The emergence of...
Saved in:
Published in | The ISME Journal Vol. 14; no. 12; pp. 2936 - 2950 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2020
Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil-borne plant diseases are increasingly causing devastating losses in agricultural production. The development of a more refined model for disease prediction can aid in reducing crop losses through the use of preventative control measures or soil fallowing for a planting season. The emergence of high-throughput DNA sequencing technology has provided unprecedented insight into the microbial composition of diseased versus healthy soils. However, a single independent case study rarely yields a general conclusion predictive of the disease in a particular soil. Here, we attempt to account for the differences among various studies and plant varieties using a machine-learning approach based on 24 independent bacterial data sets comprising 758 samples and 22 independent fungal data sets comprising 279 samples of healthy or
Fusarium
wilt-diseased soils from eight different countries. We found that soil bacterial and fungal communities were both clearly separated between diseased and healthy soil samples that originated from six crops across nine countries or regions.
Alpha
diversity was consistently greater in the fungal community of healthy soils. While diseased soil microbiomes harbored higher abundances of
Xanthomonadaceae
,
Bacillaceae
,
Gibberella
, and
Fusarium oxysporum
, the healthy soil microbiome contained more
Streptomyces Mirabilis
,
Bradyrhizobiaceae
,
Comamonadaceae
,
Mortierella
, and nonpathogenic fungi of
Fusarium
. Furthermore, a random forest method identified 45 bacterial OTUs and 40 fungal OTUs that categorized the health status of the soil with an accuracy >80%. We conclude that these models can be applied to predict the potential for occurrence of
F. oxysporum
wilt by revealing key biological indicators and features common to the wilt-diseased soil microbiome. |
---|---|
AbstractList | Soil-borne plant diseases are increasingly causing devastating losses in agricultural production. The development of a more refined model for disease prediction can aid in reducing crop losses through the use of preventative control measures or soil fallowing for a planting season. The emergence of high-throughput DNA sequencing technology has provided unprecedented insight into the microbial composition of diseased versus healthy soils. However, a single independent case study rarely yields a general conclusion predictive of the disease in a particular soil. Here, we attempt to account for the differences among various studies and plant varieties using a machine-learning approach based on 24 independent bacterial data sets comprising 758 samples and 22 independent fungal data sets comprising 279 samples of healthy or Fusarium wilt-diseased soils from eight different countries. We found that soil bacterial and fungal communities were both clearly separated between diseased and healthy soil samples that originated from six crops across nine countries or regions. Alpha diversity was consistently greater in the fungal community of healthy soils. While diseased soil microbiomes harbored higher abundances of Xanthomonadaceae, Bacillaceae, Gibberella, and Fusarium oxysporum, the healthy soil microbiome contained more Streptomyces Mirabilis, Bradyrhizobiaceae, Comamonadaceae, Mortierella, and nonpathogenic fungi of Fusarium. Furthermore, a random forest method identified 45 bacterial OTUs and 40 fungal OTUs that categorized the health status of the soil with an accuracy >80%. We conclude that these models can be applied to predict the potential for occurrence of F. oxysporum wilt by revealing key biological indicators and features common to the wilt-diseased soil microbiome. Soil-borne plant diseases are increasingly causing devastating losses in agricultural production. The development of a more refined model for disease prediction can aid in reducing crop losses through the use of preventative control measures or soil fallowing for a planting season. The emergence of high-throughput DNA sequencing technology has provided unprecedented insight into the microbial composition of diseased versus healthy soils. However, a single independent case study rarely yields a general conclusion predictive of the disease in a particular soil. Here, we attempt to account for the differences among various studies and plant varieties using a machine-learning approach based on 24 independent bacterial data sets comprising 758 samples and 22 independent fungal data sets comprising 279 samples of healthy or Fusarium wilt-diseased soils from eight different countries. We found that soil bacterial and fungal communities were both clearly separated between diseased and healthy soil samples that originated from six crops across nine countries or regions. Alpha diversity was consistently greater in the fungal community of healthy soils. While diseased soil microbiomes harbored higher abundances of Xanthomonadaceae , Bacillaceae , Gibberella , and Fusarium oxysporum , the healthy soil microbiome contained more Streptomyces Mirabilis , Bradyrhizobiaceae , Comamonadaceae , Mortierella , and nonpathogenic fungi of Fusarium . Furthermore, a random forest method identified 45 bacterial OTUs and 40 fungal OTUs that categorized the health status of the soil with an accuracy >80%. We conclude that these models can be applied to predict the potential for occurrence of F. oxysporum wilt by revealing key biological indicators and features common to the wilt-diseased soil microbiome. Soil-borne plant diseases are increasingly causing devastating losses in agricultural production. The development of a more refined model for disease prediction can aid in reducing crop losses through the use of preventative control measures or soil fallowing for a planting season. The emergence of high-throughput DNA sequencing technology has provided unprecedented insight into the microbial composition of diseased versus healthy soils. However, a single independent case study rarely yields a general conclusion predictive of the disease in a particular soil. Here, we attempt to account for the differences among various studies and plant varieties using a machine-learning approach based on 24 independent bacterial data sets comprising 758 samples and 22 independent fungal data sets comprising 279 samples of healthy or Fusarium wilt-diseased soils from eight different countries. We found that soil bacterial and fungal communities were both clearly separated between diseased and healthy soil samples that originated from six crops across nine countries or regions. Alpha diversity was consistently greater in the fungal community of healthy soils. While diseased soil microbiomes harbored higher abundances of Xanthomonadaceae, Bacillaceae, Gibberella, and Fusarium oxysporum, the healthy soil microbiome contained more Streptomyces Mirabilis, Bradyrhizobiaceae, Comamonadaceae, Mortierella, and nonpathogenic fungi of Fusarium. Furthermore, a random forest method identified 45 bacterial OTUs and 40 fungal OTUs that categorized the health status of the soil with an accuracy >80%. We conclude that these models can be applied to predict the potential for occurrence of F. oxysporum wilt by revealing key biological indicators and features common to the wilt-diseased soil microbiome.Soil-borne plant diseases are increasingly causing devastating losses in agricultural production. The development of a more refined model for disease prediction can aid in reducing crop losses through the use of preventative control measures or soil fallowing for a planting season. The emergence of high-throughput DNA sequencing technology has provided unprecedented insight into the microbial composition of diseased versus healthy soils. However, a single independent case study rarely yields a general conclusion predictive of the disease in a particular soil. Here, we attempt to account for the differences among various studies and plant varieties using a machine-learning approach based on 24 independent bacterial data sets comprising 758 samples and 22 independent fungal data sets comprising 279 samples of healthy or Fusarium wilt-diseased soils from eight different countries. We found that soil bacterial and fungal communities were both clearly separated between diseased and healthy soil samples that originated from six crops across nine countries or regions. Alpha diversity was consistently greater in the fungal community of healthy soils. While diseased soil microbiomes harbored higher abundances of Xanthomonadaceae, Bacillaceae, Gibberella, and Fusarium oxysporum, the healthy soil microbiome contained more Streptomyces Mirabilis, Bradyrhizobiaceae, Comamonadaceae, Mortierella, and nonpathogenic fungi of Fusarium. Furthermore, a random forest method identified 45 bacterial OTUs and 40 fungal OTUs that categorized the health status of the soil with an accuracy >80%. We conclude that these models can be applied to predict the potential for occurrence of F. oxysporum wilt by revealing key biological indicators and features common to the wilt-diseased soil microbiome. An increasing number of soil-borne plant diseases are causing devastating losses in agricultural production. While, a single independent case study rarely yields a general conclusion concerning a disease in a particular soil. Here, we attempt to account for the differences among various studies and plant varieties using a machine-learning approach based on global meta-sequencing data. We found that alpha-diversity was consistently greater in the fungal community of healthy soils. While diseased soil microbiomes harbored higher abundances of Xanthomonadaceae and Fusarium oxysporum, the healthy soil microbiome contained more Streptomyces and non-pathogenic Fusarium. Furthermore, a random forest method identified 45 bacterial OTUs and 40 fungal OTUs that categorized the health status of the soil with an accuracy greater than 80%. We conclude that these models can be utilized to predict the incidence of Fusarium wilt by revealing features common to the wilt-diseased soil microbiome through the identification of key biological indicators. |
Author | Zhao, Mengli Wen, Tao Penton, C. Ryan Shen, Qirong Thomashow, Linda S. Yuan, Jun Zhang, He |
Author_xml | – sequence: 1 givenname: Jun surname: Yuan fullname: Yuan, Jun organization: The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University – sequence: 2 givenname: Tao surname: Wen fullname: Wen, Tao organization: The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University – sequence: 3 givenname: He surname: Zhang fullname: Zhang, He organization: The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University – sequence: 4 givenname: Mengli surname: Zhao fullname: Zhao, Mengli organization: The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University – sequence: 5 givenname: C. Ryan orcidid: 0000-0001-9166-7852 surname: Penton fullname: Penton, C. Ryan organization: Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University – sequence: 6 givenname: Linda S. surname: Thomashow fullname: Thomashow, Linda S. organization: US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit – sequence: 7 givenname: Qirong orcidid: 0000-0002-5662-9620 surname: Shen fullname: Shen, Qirong email: shenqirong@njau.edu.cn organization: The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32681158$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstu1TAQhi1URC_wAGyQJTZsAnbsxMkGCVUUkCrBol1bzmSSuErsg-0U9e1xdNpCK1Gx8EX29_-eGc8xOXDeISGvOXvPmWg-RMlFWxesZAVTeaqekSOuKl4oodjB_b4uD8lxjFeMVaqu1QtyKMq64bxqjsj0I2BvIVk30t5GNBGpB1hDQAdIf9k00cmOEzXboYEb2mWkp97R6O1MFwPBI_jZjxbMTHcmJQwuUj_QszWaYNclu8zpJXk-mDniq9v1hFyefb44_Vqcf__y7fTTeQEVE6loZY5XqAH7DqtWtr1RIIduMAxAAfAhZyNZXfcyD4GApQTZDJ1BpRpEJk7Ix73vbu0W7AFdCmbWu2AXE260N1Y_vHF20qO_1lkv23IzeHdrEPzPFWPSi42A82wc-jXqUrZNKZuWif9AM9zWtdjQt4_QK78GlyuRKcUryfPjmXrzd_D3Ud_9VwbUHshVjzHgoMEmk6zfcrGz5kxvnaH3naFzZ-itM3SVlfyR8s78KU2518TMuhHDn6D_LfoNsJTMrw |
CitedBy_id | crossref_primary_10_3389_fmicb_2024_1386417 crossref_primary_10_3390_agriengineering5020042 crossref_primary_10_1007_s11104_022_05445_x crossref_primary_10_7717_peerj_18505 crossref_primary_10_1016_j_fbio_2024_104942 crossref_primary_10_1111_nph_18793 crossref_primary_10_1016_j_apsoil_2024_105369 crossref_primary_10_3390_agronomy14102393 crossref_primary_10_1021_acs_est_1c01770 crossref_primary_10_3389_fvets_2021_756486 crossref_primary_10_1016_j_scitotenv_2024_172494 crossref_primary_10_1021_acs_jafc_4c04077 crossref_primary_10_31548_plant2_2024_09 crossref_primary_10_1016_j_patter_2021_100323 crossref_primary_10_3390_agronomy14010161 crossref_primary_10_1016_j_wasman_2022_07_007 crossref_primary_10_34133_2022_9818073 crossref_primary_10_1016_j_fcr_2022_108712 crossref_primary_10_1016_j_scitotenv_2022_159204 crossref_primary_10_1128_mbio_02050_23 crossref_primary_10_3389_fmicb_2024_1470081 crossref_primary_10_3389_fmicb_2024_1455880 crossref_primary_10_3389_fcimb_2024_1445751 crossref_primary_10_1016_j_biortech_2023_130118 crossref_primary_10_1016_j_biortech_2024_132034 crossref_primary_10_1021_acs_jafc_3c09160 crossref_primary_10_3390_agriculture13061272 crossref_primary_10_3389_fmicb_2022_851450 crossref_primary_10_3390_agriculture12091430 crossref_primary_10_1016_j_scitotenv_2022_154412 crossref_primary_10_1016_j_jhazmat_2021_128126 crossref_primary_10_1016_j_apsoil_2024_105532 crossref_primary_10_1016_j_greenca_2024_11_001 crossref_primary_10_1038_s41467_022_35452_6 crossref_primary_10_3389_fenvs_2022_979922 crossref_primary_10_3389_fmicb_2024_1448675 crossref_primary_10_3389_fmicb_2024_1448950 crossref_primary_10_3389_fmicb_2021_676880 crossref_primary_10_1021_acs_jafc_2c08758 crossref_primary_10_1128_msystems_00564_23 crossref_primary_10_1128_spectrum_01059_23 crossref_primary_10_3389_fmicb_2021_756100 crossref_primary_10_1007_s13205_023_03780_z crossref_primary_10_1111_1462_2920_15902 crossref_primary_10_1094_PBIOMES_12_22_0101_R crossref_primary_10_1002_imt2_83 crossref_primary_10_1038_s41564_024_01872_x crossref_primary_10_1094_PBIOMES_10_22_0072_R crossref_primary_10_1007_s11356_021_16189_z crossref_primary_10_1016_j_scitotenv_2022_154524 crossref_primary_10_1590_1809_4430_eng_agric_v42nepe20210144_2022 crossref_primary_10_3389_fmicb_2022_988692 crossref_primary_10_1016_j_apsoil_2023_105101 crossref_primary_10_3389_fmicb_2024_1348680 crossref_primary_10_1016_j_biortech_2022_128502 crossref_primary_10_1007_s11368_023_03634_4 crossref_primary_10_1128_msphere_00803_23 crossref_primary_10_1007_s11427_022_2279_5 crossref_primary_10_3390_pathogens12111322 crossref_primary_10_3389_fmicb_2023_1218205 crossref_primary_10_3390_plants11212834 crossref_primary_10_1007_s42773_023_00291_1 crossref_primary_10_1016_j_soilbio_2022_108599 crossref_primary_10_1007_s42729_023_01583_y crossref_primary_10_1016_j_jhazmat_2023_131013 crossref_primary_10_1186_s40168_021_01138_2 crossref_primary_10_1016_j_ecoenv_2022_113862 crossref_primary_10_1007_s42832_024_0258_y crossref_primary_10_1016_j_funeco_2023_101225 crossref_primary_10_1007_s13399_022_02318_2 crossref_primary_10_3389_fpls_2022_1006303 crossref_primary_10_1016_j_apsoil_2023_105174 crossref_primary_10_1038_s43705_023_00213_z crossref_primary_10_3389_fmicb_2022_964039 crossref_primary_10_7717_peerj_14359 crossref_primary_10_1016_j_lwt_2021_111333 crossref_primary_10_1139_cjm_2023_0105 crossref_primary_10_3390_su16219212 crossref_primary_10_1016_j_fmre_2021_12_016 crossref_primary_10_3390_d13090413 crossref_primary_10_1128_spectrum_01909_21 crossref_primary_10_3390_microorganisms13030578 crossref_primary_10_1016_j_scienta_2023_112296 crossref_primary_10_1111_nph_70064 crossref_primary_10_1007_s11104_022_05797_4 crossref_primary_10_1080_01490451_2024_2412002 crossref_primary_10_1016_j_tim_2024_02_003 crossref_primary_10_1016_j_apsoil_2021_104335 crossref_primary_10_1038_s42003_024_07059_8 crossref_primary_10_1016_j_ecoenv_2021_112362 crossref_primary_10_1038_s41522_022_00367_z crossref_primary_10_3389_fmicb_2020_605622 crossref_primary_10_1016_j_funeco_2023_101295 crossref_primary_10_1186_s40168_022_01375_z crossref_primary_10_7717_peerj_11231 crossref_primary_10_1007_s00253_021_11464_y crossref_primary_10_1016_j_indcrop_2024_118385 crossref_primary_10_3389_fpls_2023_1228749 crossref_primary_10_1007_s11104_023_06433_5 crossref_primary_10_1002_imt2_135 crossref_primary_10_3390_microorganisms13020444 crossref_primary_10_3390_ijms231810303 crossref_primary_10_1016_j_apsoil_2023_104915 crossref_primary_10_1186_s40168_021_01150_6 crossref_primary_10_3390_jof10010084 crossref_primary_10_1007_s00374_021_01594_w crossref_primary_10_3390_ijms24065701 crossref_primary_10_3390_toxics12120839 crossref_primary_10_1016_j_envint_2023_108291 crossref_primary_10_1111_ejss_13402 crossref_primary_10_1128_mSystems_01116_20 crossref_primary_10_3389_fgene_2022_853612 crossref_primary_10_1016_j_rhisph_2024_100912 crossref_primary_10_3389_fmicb_2022_1053153 crossref_primary_10_3390_jof10110771 crossref_primary_10_1007_s10068_023_01484_x crossref_primary_10_1093_ismejo_wrae158 crossref_primary_10_1093_jambio_lxac001 crossref_primary_10_1016_j_ecoleng_2023_107061 crossref_primary_10_1016_j_scitotenv_2021_148475 crossref_primary_10_1128_spectrum_01722_23 crossref_primary_10_2139_ssrn_3969067 crossref_primary_10_3390_plants11152070 crossref_primary_10_1007_s12571_024_01499_0 crossref_primary_10_1016_j_apsoil_2022_104522 crossref_primary_10_1016_j_ecoenv_2024_116726 crossref_primary_10_3390_pathogens12020277 crossref_primary_10_3390_jof8030234 crossref_primary_10_1016_j_agee_2021_107659 crossref_primary_10_1007_s11104_022_05299_3 crossref_primary_10_3161_15052249PJE2020_69_2_004 crossref_primary_10_1016_j_scitotenv_2023_163694 crossref_primary_10_3389_fmicb_2022_906732 crossref_primary_10_1021_acsestwater_3c00369 crossref_primary_10_1111_1462_2920_16232 crossref_primary_10_1016_j_scitotenv_2022_157119 crossref_primary_10_3389_fmicb_2021_738734 crossref_primary_10_1007_s11104_024_06688_6 crossref_primary_10_1016_j_jenvman_2024_123534 crossref_primary_10_1016_j_chemosphere_2023_139280 crossref_primary_10_3389_fenvs_2023_1128187 crossref_primary_10_1002_imt2_8 crossref_primary_10_1007_s00248_024_02484_y crossref_primary_10_1016_j_csbj_2023_10_043 crossref_primary_10_1038_s41396_021_00966_2 crossref_primary_10_1007_s00248_021_01932_3 crossref_primary_10_1111_ppa_13641 crossref_primary_10_1016_j_apsoil_2022_104418 crossref_primary_10_3390_agronomy14051053 crossref_primary_10_1016_j_apsoil_2020_103832 crossref_primary_10_3389_fmicb_2024_1460729 crossref_primary_10_1007_s00248_022_02030_8 crossref_primary_10_1007_s00374_024_01836_7 crossref_primary_10_1128_spectrum_03097_22 crossref_primary_10_3389_fmicb_2022_842372 crossref_primary_10_1080_00071668_2021_2003753 crossref_primary_10_1128_spectrum_00852_24 crossref_primary_10_1016_j_envpol_2022_119528 crossref_primary_10_1038_s41559_023_02071_3 crossref_primary_10_1016_j_soilbio_2023_109246 crossref_primary_10_1128_msystems_01337_21 crossref_primary_10_3390_agronomy14122856 crossref_primary_10_3390_agronomy14050888 crossref_primary_10_1016_j_scitotenv_2022_155807 crossref_primary_10_1186_s12870_024_04910_2 crossref_primary_10_1016_j_jia_2022_12_011 crossref_primary_10_3390_microorganisms12010041 crossref_primary_10_1128_spectrum_03525_22 crossref_primary_10_3390_agronomy13122976 crossref_primary_10_3390_ijms24054545 crossref_primary_10_1094_PDIS_03_21_0653_RE crossref_primary_10_1016_j_rhisph_2022_100535 crossref_primary_10_1111_1462_2920_16175 crossref_primary_10_1016_j_heliyon_2024_e40517 crossref_primary_10_3389_fmicb_2025_1521064 crossref_primary_10_1007_s00248_022_02121_6 crossref_primary_10_1016_j_jhazmat_2023_132035 crossref_primary_10_1073_pnas_2110669118 crossref_primary_10_1080_19490976_2024_2350151 crossref_primary_10_1111_gcbb_12845 crossref_primary_10_3389_fmicb_2023_1133025 crossref_primary_10_3389_fpls_2023_1136833 crossref_primary_10_1051_e3sconf_202129203093 crossref_primary_10_1016_j_chemosphere_2023_138504 crossref_primary_10_1016_j_indcrop_2024_119706 crossref_primary_10_1016_j_fmre_2025_02_008 crossref_primary_10_1016_j_jhazmat_2023_132835 crossref_primary_10_1016_j_mib_2023_102349 crossref_primary_10_3389_fpls_2023_1129508 crossref_primary_10_1016_j_envpol_2022_119015 crossref_primary_10_1016_j_scitotenv_2022_158904 |
Cites_doi | 10.1007/s00374-015-1038-8 10.1016/j.cell.2006.02.017 10.1007/s00374-012-0675-4 10.1016/j.pbi.2017.04.018 10.1186/s13073-016-0290-3 10.1007/s00374-018-1303-8 10.1128/mSystems.00009-15 10.1111/j.1461-0248.2005.00802.x 10.1016/j.soilbio.2015.02.021 10.3390/md8030438 10.1111/j.1461-0248.2007.01139.x 10.1016/j.tplants.2012.04.001 10.1186/2049-2618-1-11 10.1111/j.2517-6161.1996.tb02080.x 10.1371/journal.pcbi.1002687 10.1038/s41564-017-0062-x 10.1126/science.1071148 10.1038/ismej.2015.95 10.1186/2047-217X-1-7 10.1094/PHYTO-96-0653 10.1016/j.cropro.2019.104870 10.1016/j.biocontrol.2019.104065 10.1038/s41467-018-05516-7 10.3389/fmicb.2019.01505 10.1038/s41467-017-01973-8 10.1038/s41396-018-0234-6 10.7717/peerj.2584 10.3389/fmicb.2018.03272 10.1093/bioinformatics/bti623 10.1038/nature24628 10.1146/annurev-phyto-080615-095919 10.1094/PHYTO-04-15-0101-RVW 10.1016/j.biocontrol.2016.06.011 10.1111/j.1744-7348.2009.00335.x 10.1007/s11274-016-2051-2 10.1007/BF00994018 10.1111/j.1365-2338.1988.tb00347.x 10.1071/AP99008 10.1038/s41592-018-0141-9 10.1007/s11274-019-2720-z 10.1186/s40168-018-0537-x 10.1007/s00374-008-0296-0 10.1073/pnas.0507535103 10.1186/s12866-019-1531-6 10.1038/nmeth.f.303 10.1073/pnas.95.12.6578 10.1094/PDIS-04-19-0833-RE 10.1016/j.soilbio.2017.07.016 10.1016/j.mycres.2006.03.008 10.1016/j.apsoil.2020.103601 10.1177/00220345900690050101 10.1016/j.soilbio.2016.10.008 10.1016/j.soilbio.2017.01.010 10.1186/s40168-015-0108-3 10.1038/s41587-019-0104-4 10.1126/science.aau5812 10.1038/ismej.2009.47 10.1016/j.funbio.2011.11.011 10.1186/1471-2164-10-616 10.1094/PHYTO-12-11-0349 10.7717/peerj.5382 10.1890/ES15-00217.1 10.1016/0261-2194(91)90006-D 10.1023/A:1008774221919 10.1186/s40168-020-00824-x 10.1137/S003614450342480 10.3389/fmicb.2018.01006 10.3390/genes9020104 10.1371/journal.pcbi.1002863 10.1007/s00374-012-0691-4 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to International Society for Microbial Ecology 2020 The Author(s), under exclusive licence to International Society for Microbial Ecology 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to International Society for Microbial Ecology 2020 – notice: The Author(s), under exclusive licence to International Society for Microbial Ecology 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7SN 7ST 7T7 7TM 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7N M7P P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PYCSY SOI 7X8 7S9 L.6 5PM |
DOI | 10.1038/s41396-020-0720-5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central Natural Science Collection (ProQuest) Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (ProQuest) Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA CrossRef ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1751-7370 |
EndPage | 2950 |
ExternalDocumentID | PMC7784920 32681158 10_1038_s41396_020_0720_5 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 31902107 funderid: https://doi.org/10.13039/501100001809 – fundername: ; grantid: 31902107 |
GroupedDBID | --- -Q- 0R~ 123 29J 39C 3V. 4.4 406 53G 70F 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAHBH AANZL AAZLF ABAKF ABAWZ ABDBF ABEJV ABGNP ABJNI ABLJU ABUWG ABXVV ACGFS ACKTT ACPRK ACRQY ACUHS ACZOJ ADBBV ADHDB AEFQL AEJRE AENEX AEUYN AEVLU AEXYK AFKRA AFRAH AFSHS AGAYW AGHAI AGQEE AHMBA AHSBF AILAN AJRNO ALFFA ALMA_UNASSIGNED_HOLDINGS AMNDL AMYLF AOIJS ASPBG ATCPS AVWKF AXYYD AZFZN BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DNIVK DPUIP DU5 EBS EDH EE. EIOEI EJD EMOBN ESX F5P FDQFY FEDTE FERAY FIZPM FSGXE FYUFA HCIFZ HMCUK HVGLF HYE HZ~ I-F IWAJR JSO KQ8 LK8 M1P M7P MM. NAO NQJWS O9- OK1 PATMY PQQKQ PROAC PSQYO PYCSY RNT RNTTT ROX RPM SNX SNYQT SOHCF SRMVM SV3 SWTZT TAOOD TBHMF TDRGL TOX TR2 TSG TUS UKHRP ~02 ~8M AAYXX ACSTC AYFIA CITATION JZLTJ PHGZM PHGZT CGR CUY CVF ECGQY ECM EIF GROUPED_DOAJ NPM PJZUB PPXIY PQGLB 7QL 7SN 7ST 7T7 7TM 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H13 K9. M7N P64 PKEHL PQEST PQUKI PRINS SOI 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c503t-9473637fedbe5949da7c4fbfa0cc7cc1f3624066d466d3ece24c48fbae778ee03 |
IEDL.DBID | 7X7 |
ISSN | 1751-7362 1751-7370 |
IngestDate | Thu Aug 21 13:47:53 EDT 2025 Fri Jul 11 05:38:46 EDT 2025 Fri Jul 11 01:27:49 EDT 2025 Wed Aug 13 10:08:14 EDT 2025 Mon Jul 21 06:00:20 EDT 2025 Thu Apr 24 23:12:58 EDT 2025 Tue Jul 01 01:04:26 EDT 2025 Fri Feb 21 02:39:19 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c503t-9473637fedbe5949da7c4fbfa0cc7cc1f3624066d466d3ece24c48fbae778ee03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9166-7852 0000-0002-5662-9620 |
OpenAccessLink | https://www.nature.com/articles/s41396-020-0720-5.pdf |
PMID | 32681158 |
PQID | 2471541492 |
PQPubID | 536304 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7784920 proquest_miscellaneous_2498248903 proquest_miscellaneous_2424996633 proquest_journals_2471541492 pubmed_primary_32681158 crossref_citationtrail_10_1038_s41396_020_0720_5 crossref_primary_10_1038_s41396_020_0720_5 springer_journals_10_1038_s41396_020_0720_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | Multidisciplinary Journal of Microbial Ecology |
PublicationTitle | The ISME Journal |
PublicationTitleAbbrev | ISME J |
PublicationTitleAlternate | ISME J |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Oxford University Press |
Publisher_xml | – name: Nature Publishing Group UK – name: Oxford University Press |
References | Cha, Han, Hong, Cho, Kim, Kwon (CR16) 2016; 10 Shang, Yang, Wang, Wu, Zhao, Hao (CR73) 2016; 32 Shen, Ruan, Xue, Zhong, Li, Shen (CR26) 2015; 393 Classen, Sundqvist, Henning, Newman, Moore, Cregger (CR7) 2015; 6 Liaw, Wiener (CR41) 2002; 2 Shen, Xue, Taylor, Ou, Wang, Zhao (CR64) 2018; 54 Adams, Bateman, Bik, Meadow (CR53) 2015; 3 Baxter, Ruffin, Rogers, Schloss (CR59) 2016; 8 CR37 Li, Zhang, Ding, Jia, He, Zhang (CR71) 2015; 51 Tahvonen (CR76) 2010; 18 Zhang, Raza, Yang, Hu, Huang, Xu (CR24) 2008; 44 Csardi, Nepusz (CR49) 2006; 1695 Wilck, Matus, Kearney, Olesen, Forslund, Bartolomaeus (CR61) 2017; 551 Xiong, Li, Ren, Liu, Zhao, Wu (CR22) 2017; 107 Sing, Sander, Beerenwinkel, Lengauer (CR45) 2005; 21 Liu, Kong, Cui, Zhang, Wang, Cai (CR69) 2016; 101 CR30 Newman (CR50) 2003; 45 Gentile, Weir (CR3) 2018; 362 Ramirez, Knight, de Hollander, Brearley, Constantinides, Cotton (CR32) 2018; 3 Klein, Ofek, Katan, Minz, Gamliel (CR20) 2012; 103 Ploetz (CR63) 2006; 96 CR2 Friedman, Alm (CR48) 2012; 8 Laurence, Burgess, Summerell, Liew (CR18) 2012; 116 Koren, Knights, Gonzalez, Waldron, Segata, Knight (CR55) 2013; 9 Abbasi, Safaie, Sadeghi, Shamsbakhsh (CR74) 2019; 10 Manici, Caputo (CR62) 2009; 155 Yang, Zhang, Li (CR77) 2019; 35 Wang, Li, Ruan, Ou, Zhao, Shen (CR65) 2015; 86 Caporaso, Kuczynski, Stombaugh, Bittinger, Bushman, Costello (CR38) 2010; 7 Cha, Han, Hong, Cho, Kim, Kwon (CR78) 2015; 10 CR43 Ley, Peterson, Gordon (CR1) 2006; 124 Liotti, da Silva Figueiredo, Soares (CR75) 2019; 138 de Vries, Griffiths, Bailey, Craig, Girlanda, Gweon (CR8) 2018; 9 Yuan, Zhao, Wen, Zhao, Li, Goossens (CR11) 2018; 6 Finkel, Castrillo, Paredes, González, Dangl (CR13) 2017; 38 De Corato, Patruno, Avella, Salimbeni, Lacolla, Cucci (CR27) 2020; 154 Chaparro, Sheflin, Manter, Vivanco (CR5) 2012; 48 Zhang, Liu, Zhang, Hu, Jin, Xu (CR47) 2019; 37 Gonzalez, Navas-Molina, Kosciolek, McDonald, Vázquez-Baeza, Ackermann (CR58) 2018; 15 Lemanceau, Alabouvette (CR68) 1991; 10 Rognes, Flouri, Nichols, Quince, Mahé (CR39) 2016; 4 Van Der Heijden, Bardgett, Van Straalen (CR9) 2008; 11 Mercado-Blanco, Abrantes, Barra Caracciolo, Bevivino, Ciancio, Grenni (CR31) 2018; 9 Wang, Li, Ruan, Ou, Zhao, Shen (CR34) 2015; 86 Penesyan, Kjelleberg, Egan (CR4) 2010; 8 Ploetz (CR15) 2015; 105 Fu, Penton, Ruan, Shen, Xue, Li (CR25) 2017; 104 Nyvad, Fejerskov (CR19) 1990; 69 Mendes, Mendes, Raaijmakers, Tsai (CR21) 2018; 12 Forsyth, Smith, Aitken (CR67) 2006; 110 Ye, Li, Luo, Wang, Li, Li (CR23) 2020; 8 Cortes, Vapnik (CR42) 1995; 20 Rocca, Simonin, Blaszczak, Ernakovich, Gibbons, Midani (CR57) 2018; 9 Mäder, Fliessbach, Dubois, Gunst, Fried, Niggli (CR6) 2002; 296 Belk, Xu, Carter, Lynne, Bucheli, Knight (CR60) 2018; 9 Pieretti, Royer, Barbe, Carrere, Koebnik, Cociancich (CR70) 2009; 10 Alabouvette (CR35) 1999; 28 Wu, Yang, Li, Chen, Xiao, Wu (CR72) 2019; 104 Berendsen, Pieterse, Bakker (CR14) 2012; 17 McDonald, Clemente, Kuczynski, Rideout, Stombaugh, Wendel (CR40) 2012; 1 Tibshirani (CR44) 1996; 58 McKay, Brown, Bjourson, Mercer (CR52) 1999; 105 Hawkes, Wren, Herman, Firestone (CR10) 2005; 8 Walters, Hyde, Berg-Lyons, Ackermann, Humphrey, Parada (CR51) 2016; 1 Wu, Guo, Jousset, Zhao, Shen (CR66) 2017; 114 Qiu, Zhang, Xue, Zhang, Li, Zhang (CR33) 2012; 48 Cornejo-Granados, Gallardo-Becerra, Leonardo-Reza, Ochoa-Romo, Ochoa-Leyva (CR54) 2018; 6 Duvallet, Gibbons, Gurry, Irizarry, Alm (CR56) 2017; 8 Zhou, Jing, Chen, Wang, Qi, Feng (CR28) 2019; 19 De Corato, Patruno, Avella, Lacolla, Cucci (CR12) 2019; 124 da C Jesus, Marsh, Tiedje, de S Moreira (CR29) 2009; 3 Hornby (CR36) 1983; 21 Statnikov, Henaff, Narendra, Konganti, Li, Yang (CR46) 2013; 1 Gordon (CR17) 2017; 55 Mercado-Blanco (2024011300402335600_CR31) 2018; 9 Cha (2024011300402335600_CR78) 2015; 10 Classen (2024011300402335600_CR7) 2015; 6 Wright (2024011300402335600_CR43) 1995 Berendsen (2024011300402335600_CR14) 2012; 17 Klein (2024011300402335600_CR20) 2012; 103 Baxter (2024011300402335600_CR59) 2016; 8 Ploetz (2024011300402335600_CR63) 2006; 96 Manici (2024011300402335600_CR62) 2009; 155 Laurence (2024011300402335600_CR18) 2012; 116 McKay (2024011300402335600_CR52) 1999; 105 De Corato (2024011300402335600_CR12) 2019; 124 Abbasi (2024011300402335600_CR74) 2019; 10 de Vries (2024011300402335600_CR8) 2018; 9 Zhang (2024011300402335600_CR47) 2019; 37 Belk (2024011300402335600_CR60) 2018; 9 Ye (2024011300402335600_CR23) 2020; 8 Csardi (2024011300402335600_CR49) 2006; 1695 Statnikov (2024011300402335600_CR46) 2013; 1 Shang (2024011300402335600_CR73) 2016; 32 2024011300402335600_CR37 Gordon (2024011300402335600_CR17) 2017; 55 Sing (2024011300402335600_CR45) 2005; 21 Zhang (2024011300402335600_CR24) 2008; 44 Nyvad (2024011300402335600_CR19) 1990; 69 Chaparro (2024011300402335600_CR5) 2012; 48 Cortes (2024011300402335600_CR42) 1995; 20 Rognes (2024011300402335600_CR39) 2016; 4 Li (2024011300402335600_CR71) 2015; 51 Friedman (2024011300402335600_CR48) 2012; 8 Wilck (2024011300402335600_CR61) 2017; 551 Mäder (2024011300402335600_CR6) 2002; 296 Whitman (2024011300402335600_CR2) 1998; 95 Finkel (2024011300402335600_CR13) 2017; 38 Shen (2024011300402335600_CR26) 2015; 393 Wang (2024011300402335600_CR34) 2015; 86 Van Der Heijden (2024011300402335600_CR9) 2008; 11 Fierer (2024011300402335600_CR30) 2006; 103 Tahvonen (2024011300402335600_CR76) 2010; 18 Penesyan (2024011300402335600_CR4) 2010; 8 Qiu (2024011300402335600_CR33) 2012; 48 Koren (2024011300402335600_CR55) 2013; 9 Gonzalez (2024011300402335600_CR58) 2018; 15 Yuan (2024011300402335600_CR11) 2018; 6 Cha (2024011300402335600_CR16) 2016; 10 Wu (2024011300402335600_CR66) 2017; 114 Yang (2024011300402335600_CR77) 2019; 35 Walters (2024011300402335600_CR51) 2016; 1 McDonald (2024011300402335600_CR40) 2012; 1 Forsyth (2024011300402335600_CR67) 2006; 110 Adams (2024011300402335600_CR53) 2015; 3 Duvallet (2024011300402335600_CR56) 2017; 8 Wu (2024011300402335600_CR72) 2019; 104 Mendes (2024011300402335600_CR21) 2018; 12 Wang (2024011300402335600_CR65) 2015; 86 Liu (2024011300402335600_CR69) 2016; 101 Zhou (2024011300402335600_CR28) 2019; 19 da C Jesus (2024011300402335600_CR29) 2009; 3 Cornejo-Granados (2024011300402335600_CR54) 2018; 6 Xiong (2024011300402335600_CR22) 2017; 107 Newman (2024011300402335600_CR50) 2003; 45 Tibshirani (2024011300402335600_CR44) 1996; 58 Pieretti (2024011300402335600_CR70) 2009; 10 De Corato (2024011300402335600_CR27) 2020; 154 Ramirez (2024011300402335600_CR32) 2018; 3 Liaw (2024011300402335600_CR41) 2002; 2 Ploetz (2024011300402335600_CR15) 2015; 105 Gentile (2024011300402335600_CR3) 2018; 362 Rocca (2024011300402335600_CR57) 2018; 9 Liotti (2024011300402335600_CR75) 2019; 138 Caporaso (2024011300402335600_CR38) 2010; 7 Fu (2024011300402335600_CR25) 2017; 104 Hawkes (2024011300402335600_CR10) 2005; 8 Lemanceau (2024011300402335600_CR68) 1991; 10 Hornby (2024011300402335600_CR36) 1983; 21 Alabouvette (2024011300402335600_CR35) 1999; 28 Ley (2024011300402335600_CR1) 2006; 124 Shen (2024011300402335600_CR64) 2018; 54 |
References_xml | – volume: 8 year: 2017 ident: CR56 article-title: Meta-analysis of gut microbiome studies identifies disease-specific and shared responses publication-title: Nat Commun – volume: 38 start-page: 155 year: 2017 end-page: 63 ident: CR13 article-title: Understanding and exploiting plant beneficial microbes publication-title: Curr Opin Plant Biol – volume: 9 start-page: 3272 year: 2018 ident: CR57 article-title: The Microbiome Stress Project: towards a global meta-analysis of environmental stressors and their effects on microbial communities publication-title: Front Microbiol – volume: 8 year: 2016 ident: CR59 article-title: Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions publication-title: Genome Med – volume: 69 start-page: 1118 year: 1990 end-page: 25 ident: CR19 article-title: An ultrastructural-study of bacterial invasion and tissue breakdown in human experimental root-surface caries publication-title: J Dent Res – volume: 6 start-page: 1 year: 2015 end-page: 21 ident: CR7 article-title: Direct and indirect effects of climate change on soil microbial and soil microbial‐plant interactions: what lies ahead? publication-title: Ecosphere – volume: 10 start-page: 279 year: 1991 end-page: 86 ident: CR68 article-title: Biological control of fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium publication-title: Crop Prot – volume: 9 start-page: 1006 year: 2018 ident: CR31 article-title: Belowground microbiota and the health of tree crops publication-title: Front Microbiol – volume: 124 start-page: 837 year: 2006 end-page: 48 ident: CR1 article-title: Ecological and evolutionary forces shaping microbial diversity in the human intestine publication-title: Cell – volume: 11 start-page: 296 year: 2008 end-page: 310 ident: CR9 article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems publication-title: Ecol Lett – volume: 8 start-page: 976 year: 2005 end-page: 85 ident: CR10 article-title: Plant invasion alters nitrogen cycling by modifying the soil nitrifying community publication-title: Ecol Lett – volume: 101 start-page: 103 year: 2016 end-page: 13 ident: CR69 article-title: Relationships of decomposability and C/N ratio in different types of organic matter with suppression of Fusarium oxysporum and microbial communities during reductive soil disinfestation publication-title: Biol Control – volume: 19 year: 2019 ident: CR28 article-title: Deciphering microbial diversity associated with Fusarium wilt-diseased and disease-free banana rhizosphere soil publication-title: BMC Microbiol – volume: 110 start-page: 929 year: 2006 end-page: 35 ident: CR67 article-title: Identification and characterization of non-pathogenic Fusarium oxysporum capable of increasing and decreasing Fusarium wilt severity publication-title: Mycological Res – volume: 393 start-page: 21 year: 2015 end-page: 33 ident: CR26 article-title: Soils naturally suppressive to banana Fusarium wilt disease harbor unique bacterial communities publication-title: Plant – volume: 28 start-page: 57 year: 1999 end-page: 64 ident: CR35 article-title: Fusarium wilt suppressive soils: an example of disease-suppressive soils publication-title: Australas Plant Pathol – volume: 8 start-page: 438 year: 2010 end-page: 59 ident: CR4 article-title: Development of novel drugs from marine surface associated microorganisms publication-title: Mar drugs – volume: 116 start-page: 289 year: 2012 end-page: 97 ident: CR18 article-title: High levels of diversity in Fusarium oxysporum from non-cultivated ecosystems in Australia publication-title: Fungal Biol – volume: 3 start-page: 1004 year: 2009 end-page: 11 ident: CR29 article-title: Changes in land use alter the structure of bacterial communities in Western Amazon soils publication-title: ISME J – volume: 296 start-page: 1694 year: 2002 end-page: 7 ident: CR6 article-title: Soil fertility and biodiversity in organic farming publication-title: Science – volume: 55 start-page: 23 year: 2017 end-page: 39 ident: CR17 article-title: Fusarium oxysporum and the Fusarium Wilt Syndrome publication-title: Annu Rev Phytopathol – volume: 138 start-page: 104065 year: 2019 ident: CR75 article-title: Streptomyces griseocarneus R132 controls phytopathogens and promotes growth of pepper (Capsicum annuum) publication-title: Biol Control – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: CR41 article-title: Classification and regression by randomForest publication-title: R N – volume: 104 start-page: 25 year: 2019 end-page: 34 ident: CR72 article-title: Modification of rhizosphere bacterial community structure and functional potentials to control pseudostellaria heterophylla replant disease publication-title: Plant Dis – volume: 124 start-page: 104870 year: 2019 ident: CR12 article-title: Composts from green sources show an increased suppressiveness to soilborne plant pathogenic fungi: Relationships between physicochemical properties, disease suppression, and the microbiome publication-title: Crop Prot – volume: 12 start-page: 3038 year: 2018 end-page: 42 ident: CR21 article-title: Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean publication-title: ISME J – volume: 362 start-page: 776 year: 2018 end-page: 80 ident: CR3 article-title: The gut microbiota at the intersection of diet and human health publication-title: Science – volume: 3 year: 2015 ident: CR53 article-title: Microbiota of the indoor environment: a meta-analysis publication-title: Microbiome – volume: 8 start-page: e1002687 year: 2012 ident: CR48 article-title: Inferring correlation networks from genomic survey data publication-title: PLoS Comput Biol – volume: 96 start-page: 653 year: 2006 end-page: 6 ident: CR63 article-title: Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense publication-title: Phytopathology – volume: 10 start-page: 1505 year: 2019 ident: CR74 article-title: Streptomyces strains induce resistance to Fusarium oxysporum f. sp. lycopersici race 3 in tomato through different molecular mechanisms publication-title: Front Microbiol – volume: 44 start-page: 1073 year: 2008 ident: CR24 article-title: Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer publication-title: Biol Fertil Soils – volume: 51 start-page: 935 year: 2015 end-page: 46 ident: CR71 article-title: Declined soil suppressiveness to Fusarium oxysporum by rhizosphere microflora of cotton in soil sickness publication-title: Biol Fertil soils – volume: 86 start-page: 77 year: 2015 end-page: 86 ident: CR65 article-title: Pineapple–banana rotation reduced the amount of Fusarium oxysporum more than maize–banana rotation mainly through modulating fungal communities publication-title: Soil Biol Biochem – volume: 21 start-page: 3940 year: 2005 end-page: 1 ident: CR45 article-title: ROCR: visualizing classifier performance in R publication-title: Bioinformatics – volume: 9 start-page: e1002863 year: 2013 ident: CR55 article-title: A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets publication-title: PLoS Comput Biol – volume: 4 start-page: e2584 year: 2016 ident: CR39 article-title: VSEARCH: a versatile open source tool for metagenomics publication-title: PeerJ – ident: CR43 – ident: CR2 – ident: CR37 – volume: 18 start-page: 55 year: 2010 end-page: 9 ident: CR76 article-title: Microbial control of plant diseases with Streptomyces spp. 1 publication-title: Eppo Bull – ident: CR30 – volume: 20 start-page: 273 year: 1995 end-page: 97 ident: CR42 article-title: Support-vector networks publication-title: Mach Learn – volume: 1695 start-page: 1 year: 2006 end-page: 9 ident: CR49 article-title: The igraph software package for complex network research publication-title: Int J Complex Syst – volume: 32 start-page: 95 year: 2016 ident: CR73 article-title: Illumina-based analysis of the rhizosphere microbial communities associated with healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants grown in the field publication-title: World J Microbiol Biotechnol – volume: 105 start-page: 157 year: 1999 end-page: 66 ident: CR52 article-title: Molecular characterisation of Alternaria linicola and its detection in linseed publication-title: Eur J Plant Pathol – volume: 45 start-page: 167 year: 2003 end-page: 56 ident: CR50 article-title: The structure and function of complex networks publication-title: SIAM Rev – volume: 114 start-page: 238 year: 2017 end-page: 47 ident: CR66 article-title: Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome publication-title: Soil Biol Biochem – volume: 48 start-page: 807 year: 2012 end-page: 16 ident: CR33 article-title: Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil publication-title: Biol Fertil Soils – volume: 105 start-page: 1512 year: 2015 end-page: 21 ident: CR15 article-title: Fusarium wilt of banana publication-title: Phytopathology – volume: 3 start-page: 189 year: 2018 end-page: 96 ident: CR32 article-title: Detecting macroecological patterns in bacterial communities across independent studies of global soils publication-title: Nat Microbiol – volume: 104 start-page: 39 year: 2017 end-page: 48 ident: CR25 article-title: Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease publication-title: Soil Biol Biochem – volume: 54 start-page: 793 year: 2018 end-page: 806 ident: CR64 article-title: Soil pre-fumigation could effectively improve the disease suppressiveness of biofertilizer to banana Fusarium wilt disease by reshaping the soil microbiome publication-title: Biol Fertil Soils – volume: 8 year: 2020 ident: CR23 article-title: A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community publication-title: Microbiome – volume: 37 start-page: 676 year: 2019 end-page: 84 ident: CR47 article-title: NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice publication-title: Nat Biotechnol – volume: 6 year: 2018 ident: CR11 article-title: Root exudates drive the soil-borne legacy of aboveground pathogen infection publication-title: Microbiome – volume: 1 start-page: e00009 year: 2016 end-page: 15 ident: CR51 article-title: Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys publication-title: Msystems – volume: 10 start-page: 119 year: 2015 end-page: 29 ident: CR78 article-title: Microbial and biochemical basis of a Fusarium wilt-suppressive soil publication-title: ISME J. – volume: 9 year: 2018 ident: CR8 article-title: Soil bacterial networks are less stable under drought than fungal networks publication-title: Nat Commun – volume: 48 start-page: 489 year: 2012 end-page: 99 ident: CR5 article-title: Manipulating the soil microbiome to increase soil health and plant fertility publication-title: Biol Fertil Soils – volume: 1 year: 2013 ident: CR46 article-title: A comprehensive evaluation of multicategory classification methods for microbiomic data publication-title: Microbiome – volume: 154 start-page: 103601 year: 2020 ident: CR27 article-title: Soil management under tomato-wheat rotation increases the suppressive response against Fusarium wilt and tomato shoot growth by changing the microbial composition and chemical parameters publication-title: Appl Soil Ecol – volume: 35 start-page: 145 year: 2019 ident: CR77 article-title: Antagonistic activity and mechanism of an isolated Streptomyces corchorusii stain AUH-1 against phytopathogenic fungi publication-title: World J Microbiol Biotechnol – volume: 155 start-page: 245 year: 2009 end-page: 58 ident: CR62 article-title: Fungal community diversity and soil health in intensive potato cropping systems of the east Po valley, northern Italy publication-title: Ann Appl Biol – volume: 15 start-page: 796 year: 2018 end-page: 8 ident: CR58 article-title: Qiita: rapid, web-enabled microbiome meta-analysis publication-title: Nat Methods – volume: 103 start-page: 23 year: 2012 end-page: 33 ident: CR20 article-title: Soil suppressiveness to Fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization publication-title: Phytopathology – volume: 1 year: 2012 ident: CR40 article-title: The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome publication-title: GigaScience – volume: 10 year: 2009 ident: CR70 article-title: The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae publication-title: BMC genomics – volume: 6 start-page: e5382 year: 2018 ident: CR54 article-title: A meta-analysis reveals the environmental and host factors shaping the structure and function of the shrimp microbiota publication-title: PeerJ – volume: 86 start-page: 77 year: 2015 end-page: 86 ident: CR34 article-title: Pineapple–banana rotation reduced the amount of Fusarium oxysporum more than maize–banana rotation mainly through modulating fungal communities publication-title: Soil Biol Biochem – volume: 9 start-page: 104 year: 2018 ident: CR60 article-title: Microbiome data accurately predicts the postmortem interval using random forest regression models publication-title: Genes – volume: 21 start-page: 65 year: 1983 end-page: 85 ident: CR36 article-title: Suppressive soils publication-title: Australas Plant Pathol – volume: 551 start-page: 585 year: 2017 end-page: 9 ident: CR61 article-title: Salt-responsive gut commensal modulates TH17 axis and disease publication-title: Nature – volume: 58 start-page: 267 year: 1996 end-page: 88 ident: CR44 article-title: Regression shrinkage and selection via the lasso publication-title: J R Stat Soc – volume: 10 start-page: 119 year: 2016 ident: CR16 article-title: Microbial and biochemical basis of a Fusarium wilt-suppressive soil publication-title: ISME J – volume: 107 start-page: 198 year: 2017 end-page: 207 ident: CR22 article-title: Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease publication-title: Soil Biol Biochem – volume: 17 start-page: 478 year: 2012 end-page: 86 ident: CR14 article-title: The rhizosphere microbiome and plant health publication-title: Trends plant Sci – volume: 7 start-page: 335 year: 2010 ident: CR38 article-title: QIIME allows analysis of high-throughput community sequencing data publication-title: Nat Methods – volume: 51 start-page: 935 year: 2015 ident: 2024011300402335600_CR71 article-title: Declined soil suppressiveness to Fusarium oxysporum by rhizosphere microflora of cotton in soil sickness publication-title: Biol Fertil soils doi: 10.1007/s00374-015-1038-8 – volume: 124 start-page: 837 year: 2006 ident: 2024011300402335600_CR1 article-title: Ecological and evolutionary forces shaping microbial diversity in the human intestine publication-title: Cell doi: 10.1016/j.cell.2006.02.017 – volume: 48 start-page: 807 year: 2012 ident: 2024011300402335600_CR33 article-title: Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil publication-title: Biol Fertil Soils doi: 10.1007/s00374-012-0675-4 – volume: 38 start-page: 155 year: 2017 ident: 2024011300402335600_CR13 article-title: Understanding and exploiting plant beneficial microbes publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2017.04.018 – volume: 8 year: 2016 ident: 2024011300402335600_CR59 article-title: Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions publication-title: Genome Med doi: 10.1186/s13073-016-0290-3 – volume: 21 start-page: 65 year: 1983 ident: 2024011300402335600_CR36 article-title: Suppressive soils publication-title: Australas Plant Pathol – volume: 54 start-page: 793 year: 2018 ident: 2024011300402335600_CR64 article-title: Soil pre-fumigation could effectively improve the disease suppressiveness of biofertilizer to banana Fusarium wilt disease by reshaping the soil microbiome publication-title: Biol Fertil Soils doi: 10.1007/s00374-018-1303-8 – ident: 2024011300402335600_CR37 – volume: 1695 start-page: 1 year: 2006 ident: 2024011300402335600_CR49 article-title: The igraph software package for complex network research publication-title: Int J Complex Syst – volume: 1 start-page: e00009 year: 2016 ident: 2024011300402335600_CR51 article-title: Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys publication-title: Msystems doi: 10.1128/mSystems.00009-15 – volume: 8 start-page: 976 year: 2005 ident: 2024011300402335600_CR10 article-title: Plant invasion alters nitrogen cycling by modifying the soil nitrifying community publication-title: Ecol Lett doi: 10.1111/j.1461-0248.2005.00802.x – volume: 86 start-page: 77 year: 2015 ident: 2024011300402335600_CR65 article-title: Pineapple–banana rotation reduced the amount of Fusarium oxysporum more than maize–banana rotation mainly through modulating fungal communities publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.02.021 – volume: 8 start-page: 438 year: 2010 ident: 2024011300402335600_CR4 article-title: Development of novel drugs from marine surface associated microorganisms publication-title: Mar drugs doi: 10.3390/md8030438 – volume: 11 start-page: 296 year: 2008 ident: 2024011300402335600_CR9 article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems publication-title: Ecol Lett doi: 10.1111/j.1461-0248.2007.01139.x – volume: 17 start-page: 478 year: 2012 ident: 2024011300402335600_CR14 article-title: The rhizosphere microbiome and plant health publication-title: Trends plant Sci doi: 10.1016/j.tplants.2012.04.001 – volume: 1 year: 2013 ident: 2024011300402335600_CR46 article-title: A comprehensive evaluation of multicategory classification methods for microbiomic data publication-title: Microbiome doi: 10.1186/2049-2618-1-11 – volume: 58 start-page: 267 year: 1996 ident: 2024011300402335600_CR44 article-title: Regression shrinkage and selection via the lasso publication-title: J R Stat Soc doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 8 start-page: e1002687 year: 2012 ident: 2024011300402335600_CR48 article-title: Inferring correlation networks from genomic survey data publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002687 – volume: 3 start-page: 189 year: 2018 ident: 2024011300402335600_CR32 article-title: Detecting macroecological patterns in bacterial communities across independent studies of global soils publication-title: Nat Microbiol doi: 10.1038/s41564-017-0062-x – volume: 296 start-page: 1694 year: 2002 ident: 2024011300402335600_CR6 article-title: Soil fertility and biodiversity in organic farming publication-title: Science doi: 10.1126/science.1071148 – volume: 10 start-page: 119 year: 2016 ident: 2024011300402335600_CR16 article-title: Microbial and biochemical basis of a Fusarium wilt-suppressive soil publication-title: ISME J doi: 10.1038/ismej.2015.95 – volume: 1 year: 2012 ident: 2024011300402335600_CR40 article-title: The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome publication-title: GigaScience doi: 10.1186/2047-217X-1-7 – volume: 96 start-page: 653 year: 2006 ident: 2024011300402335600_CR63 article-title: Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense publication-title: Phytopathology doi: 10.1094/PHYTO-96-0653 – volume: 124 start-page: 104870 year: 2019 ident: 2024011300402335600_CR12 article-title: Composts from green sources show an increased suppressiveness to soilborne plant pathogenic fungi: Relationships between physicochemical properties, disease suppression, and the microbiome publication-title: Crop Prot doi: 10.1016/j.cropro.2019.104870 – volume: 138 start-page: 104065 year: 2019 ident: 2024011300402335600_CR75 article-title: Streptomyces griseocarneus R132 controls phytopathogens and promotes growth of pepper (Capsicum annuum) publication-title: Biol Control doi: 10.1016/j.biocontrol.2019.104065 – volume: 9 year: 2018 ident: 2024011300402335600_CR8 article-title: Soil bacterial networks are less stable under drought than fungal networks publication-title: Nat Commun doi: 10.1038/s41467-018-05516-7 – volume: 10 start-page: 1505 year: 2019 ident: 2024011300402335600_CR74 article-title: Streptomyces strains induce resistance to Fusarium oxysporum f. sp. lycopersici race 3 in tomato through different molecular mechanisms publication-title: Front Microbiol doi: 10.3389/fmicb.2019.01505 – volume: 8 year: 2017 ident: 2024011300402335600_CR56 article-title: Meta-analysis of gut microbiome studies identifies disease-specific and shared responses publication-title: Nat Commun doi: 10.1038/s41467-017-01973-8 – volume: 12 start-page: 3038 year: 2018 ident: 2024011300402335600_CR21 article-title: Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean publication-title: ISME J doi: 10.1038/s41396-018-0234-6 – volume: 4 start-page: e2584 year: 2016 ident: 2024011300402335600_CR39 article-title: VSEARCH: a versatile open source tool for metagenomics publication-title: PeerJ doi: 10.7717/peerj.2584 – volume: 9 start-page: 3272 year: 2018 ident: 2024011300402335600_CR57 article-title: The Microbiome Stress Project: towards a global meta-analysis of environmental stressors and their effects on microbial communities publication-title: Front Microbiol doi: 10.3389/fmicb.2018.03272 – volume: 21 start-page: 3940 year: 2005 ident: 2024011300402335600_CR45 article-title: ROCR: visualizing classifier performance in R publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti623 – volume: 551 start-page: 585 year: 2017 ident: 2024011300402335600_CR61 article-title: Salt-responsive gut commensal modulates TH17 axis and disease publication-title: Nature doi: 10.1038/nature24628 – volume: 55 start-page: 23 year: 2017 ident: 2024011300402335600_CR17 article-title: Fusarium oxysporum and the Fusarium Wilt Syndrome publication-title: Annu Rev Phytopathol doi: 10.1146/annurev-phyto-080615-095919 – volume: 105 start-page: 1512 year: 2015 ident: 2024011300402335600_CR15 article-title: Fusarium wilt of banana publication-title: Phytopathology doi: 10.1094/PHYTO-04-15-0101-RVW – volume: 101 start-page: 103 year: 2016 ident: 2024011300402335600_CR69 article-title: Relationships of decomposability and C/N ratio in different types of organic matter with suppression of Fusarium oxysporum and microbial communities during reductive soil disinfestation publication-title: Biol Control doi: 10.1016/j.biocontrol.2016.06.011 – volume: 2 start-page: 18 year: 2002 ident: 2024011300402335600_CR41 article-title: Classification and regression by randomForest publication-title: R N – volume: 155 start-page: 245 year: 2009 ident: 2024011300402335600_CR62 article-title: Fungal community diversity and soil health in intensive potato cropping systems of the east Po valley, northern Italy publication-title: Ann Appl Biol doi: 10.1111/j.1744-7348.2009.00335.x – volume: 32 start-page: 95 year: 2016 ident: 2024011300402335600_CR73 article-title: Illumina-based analysis of the rhizosphere microbial communities associated with healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants grown in the field publication-title: World J Microbiol Biotechnol doi: 10.1007/s11274-016-2051-2 – volume: 20 start-page: 273 year: 1995 ident: 2024011300402335600_CR42 article-title: Support-vector networks publication-title: Mach Learn doi: 10.1007/BF00994018 – volume: 18 start-page: 55 year: 2010 ident: 2024011300402335600_CR76 article-title: Microbial control of plant diseases with Streptomyces spp. 1 publication-title: Eppo Bull doi: 10.1111/j.1365-2338.1988.tb00347.x – volume: 28 start-page: 57 year: 1999 ident: 2024011300402335600_CR35 article-title: Fusarium wilt suppressive soils: an example of disease-suppressive soils publication-title: Australas Plant Pathol doi: 10.1071/AP99008 – volume: 15 start-page: 796 year: 2018 ident: 2024011300402335600_CR58 article-title: Qiita: rapid, web-enabled microbiome meta-analysis publication-title: Nat Methods doi: 10.1038/s41592-018-0141-9 – volume: 35 start-page: 145 year: 2019 ident: 2024011300402335600_CR77 article-title: Antagonistic activity and mechanism of an isolated Streptomyces corchorusii stain AUH-1 against phytopathogenic fungi publication-title: World J Microbiol Biotechnol doi: 10.1007/s11274-019-2720-z – volume: 6 year: 2018 ident: 2024011300402335600_CR11 article-title: Root exudates drive the soil-borne legacy of aboveground pathogen infection publication-title: Microbiome doi: 10.1186/s40168-018-0537-x – volume: 44 start-page: 1073 year: 2008 ident: 2024011300402335600_CR24 article-title: Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer publication-title: Biol Fertil Soils doi: 10.1007/s00374-008-0296-0 – volume: 103 start-page: 626 year: 2006 ident: 2024011300402335600_CR30 article-title: The diversity and biogeography of soil bacterial communities publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0507535103 – volume: 19 year: 2019 ident: 2024011300402335600_CR28 article-title: Deciphering microbial diversity associated with Fusarium wilt-diseased and disease-free banana rhizosphere soil publication-title: BMC Microbiol doi: 10.1186/s12866-019-1531-6 – volume: 7 start-page: 335 year: 2010 ident: 2024011300402335600_CR38 article-title: QIIME allows analysis of high-throughput community sequencing data publication-title: Nat Methods doi: 10.1038/nmeth.f.303 – volume: 95 start-page: 6578 year: 1998 ident: 2024011300402335600_CR2 article-title: Prokaryotes: the unseen majority publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.12.6578 – volume: 104 start-page: 25 year: 2019 ident: 2024011300402335600_CR72 article-title: Modification of rhizosphere bacterial community structure and functional potentials to control pseudostellaria heterophylla replant disease publication-title: Plant Dis doi: 10.1094/PDIS-04-19-0833-RE – volume: 114 start-page: 238 year: 2017 ident: 2024011300402335600_CR66 article-title: Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2017.07.016 – volume: 110 start-page: 929 year: 2006 ident: 2024011300402335600_CR67 article-title: Identification and characterization of non-pathogenic Fusarium oxysporum capable of increasing and decreasing Fusarium wilt severity publication-title: Mycological Res doi: 10.1016/j.mycres.2006.03.008 – volume: 154 start-page: 103601 year: 2020 ident: 2024011300402335600_CR27 article-title: Soil management under tomato-wheat rotation increases the suppressive response against Fusarium wilt and tomato shoot growth by changing the microbial composition and chemical parameters publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2020.103601 – volume: 69 start-page: 1118 year: 1990 ident: 2024011300402335600_CR19 article-title: An ultrastructural-study of bacterial invasion and tissue breakdown in human experimental root-surface caries publication-title: J Dent Res doi: 10.1177/00220345900690050101 – volume: 104 start-page: 39 year: 2017 ident: 2024011300402335600_CR25 article-title: Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.10.008 – volume: 86 start-page: 77 year: 2015 ident: 2024011300402335600_CR34 article-title: Pineapple–banana rotation reduced the amount of Fusarium oxysporum more than maize–banana rotation mainly through modulating fungal communities publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.02.021 – volume: 107 start-page: 198 year: 2017 ident: 2024011300402335600_CR22 article-title: Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2017.01.010 – volume: 3 year: 2015 ident: 2024011300402335600_CR53 article-title: Microbiota of the indoor environment: a meta-analysis publication-title: Microbiome doi: 10.1186/s40168-015-0108-3 – volume: 37 start-page: 676 year: 2019 ident: 2024011300402335600_CR47 article-title: NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0104-4 – volume: 362 start-page: 776 year: 2018 ident: 2024011300402335600_CR3 article-title: The gut microbiota at the intersection of diet and human health publication-title: Science doi: 10.1126/science.aau5812 – volume: 3 start-page: 1004 year: 2009 ident: 2024011300402335600_CR29 article-title: Changes in land use alter the structure of bacterial communities in Western Amazon soils publication-title: ISME J doi: 10.1038/ismej.2009.47 – volume: 116 start-page: 289 year: 2012 ident: 2024011300402335600_CR18 article-title: High levels of diversity in Fusarium oxysporum from non-cultivated ecosystems in Australia publication-title: Fungal Biol doi: 10.1016/j.funbio.2011.11.011 – volume: 10 year: 2009 ident: 2024011300402335600_CR70 article-title: The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae publication-title: BMC genomics doi: 10.1186/1471-2164-10-616 – volume: 103 start-page: 23 year: 2012 ident: 2024011300402335600_CR20 article-title: Soil suppressiveness to Fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization publication-title: Phytopathology doi: 10.1094/PHYTO-12-11-0349 – volume: 6 start-page: e5382 year: 2018 ident: 2024011300402335600_CR54 article-title: A meta-analysis reveals the environmental and host factors shaping the structure and function of the shrimp microbiota publication-title: PeerJ doi: 10.7717/peerj.5382 – volume: 6 start-page: 1 year: 2015 ident: 2024011300402335600_CR7 article-title: Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead? publication-title: Ecosphere doi: 10.1890/ES15-00217.1 – volume: 10 start-page: 279 year: 1991 ident: 2024011300402335600_CR68 article-title: Biological control of fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium publication-title: Crop Prot doi: 10.1016/0261-2194(91)90006-D – volume: 393 start-page: 21 year: 2015 ident: 2024011300402335600_CR26 article-title: Soils naturally suppressive to banana Fusarium wilt disease harbor unique bacterial communities publication-title: Plant – volume: 105 start-page: 157 year: 1999 ident: 2024011300402335600_CR52 article-title: Molecular characterisation of Alternaria linicola and its detection in linseed publication-title: Eur J Plant Pathol doi: 10.1023/A:1008774221919 – volume: 8 year: 2020 ident: 2024011300402335600_CR23 article-title: A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community publication-title: Microbiome doi: 10.1186/s40168-020-00824-x – volume: 45 start-page: 167 year: 2003 ident: 2024011300402335600_CR50 article-title: The structure and function of complex networks publication-title: SIAM Rev doi: 10.1137/S003614450342480 – volume: 9 start-page: 1006 year: 2018 ident: 2024011300402335600_CR31 article-title: Belowground microbiota and the health of tree crops publication-title: Front Microbiol doi: 10.3389/fmicb.2018.01006 – volume: 9 start-page: 104 year: 2018 ident: 2024011300402335600_CR60 article-title: Microbiome data accurately predicts the postmortem interval using random forest regression models publication-title: Genes doi: 10.3390/genes9020104 – start-page: 217 volume-title: Reading and understanding multivariate statistics year: 1995 ident: 2024011300402335600_CR43 – volume: 10 start-page: 119 year: 2015 ident: 2024011300402335600_CR78 article-title: Microbial and biochemical basis of a Fusarium wilt-suppressive soil publication-title: ISME J. doi: 10.1038/ismej.2015.95 – volume: 9 start-page: e1002863 year: 2013 ident: 2024011300402335600_CR55 article-title: A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002863 – volume: 48 start-page: 489 year: 2012 ident: 2024011300402335600_CR5 article-title: Manipulating the soil microbiome to increase soil health and plant fertility publication-title: Biol Fertil Soils doi: 10.1007/s00374-012-0691-4 |
SSID | ssj0057667 |
Score | 2.6648664 |
Snippet | Soil-borne plant diseases are increasingly causing devastating losses in agricultural production. The development of a more refined model for disease... An increasing number of soil-borne plant diseases are causing devastating losses in agricultural production. While, a single independent case study rarely... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2936 |
SubjectTerms | 45/23 631/326/2521 704/158/2452 accuracy Agricultural production artificial intelligence Bacteria Biomedical and Life Sciences case studies Datasets decision support systems disease occurrence DNA sequencing Ecology Evolutionary Biology Fallowing fungal communities Fungi Fusarium Fusarium - genetics Fusarium oxysporum Fusarium wilt health status incidence indicator species Learning algorithms Life Sciences Machine learning Microbial Ecology Microbial Genetics and Genomics Microbiology Microbiomes Microorganisms Model accuracy Otus Plant Diseases Planting season prediction Soil Soil Microbiology Soil microorganisms Soils species diversity Streptomyces varieties Wilt Xanthomonadaceae yields |
Title | Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt |
URI | https://link.springer.com/article/10.1038/s41396-020-0720-5 https://www.ncbi.nlm.nih.gov/pubmed/32681158 https://www.proquest.com/docview/2471541492 https://www.proquest.com/docview/2424996633 https://www.proquest.com/docview/2498248903 https://pubmed.ncbi.nlm.nih.gov/PMC7784920 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9wwzGwtg72MfS9bVzzY04apEztn52lso0cZrCujhXsLjmLTwjW5NXcP_feTnI9yK7uHBJIoQbZkfViKxNjHLECau5ALYysQ2qLPam2qBGgyT2YklulH4Z-ns5ML_WORL4YNt25IqxxlYhTUdQu0R36UoRSlltVF9mX1R1DXKIquDi00HrJ9Kl1GXG0Wk8OFpnTsIIsaMhUGJfUY1VT2qEPhHdNvpZAGT_m2XrpnbN7PmfwncBr10fwpezIYkvxrT_ln7IFvnrNHfWvJ2xfs8uyGQjCU1MyHIAxvAWI1JvCctl85lSrmjm46uOWkz2reNrxrr5b82iGeHkbRyFexDmfT8Tbw-aZDD3tzjV9Zrl-yi_nx-fcTMXRVEJBLtRaFxqlQJvi68nmhi9oZ0KEKTgIYgDTgRKGWn9UaD-XBZxq0DZXzxljvpXrF9pq28W8Yr41Fg8FZJatagwoWUIynVVr5GUVXfcLkOKclDCXHqfPFsoyhb2XLngwlkqEkMpR5wj5Nr6z6ehu7gA9GQpXD0uvKO0ZJ2IfpMS4aioS4xrcbgkGvEx09pXbBFDbTtpAI87qn_YQR2rwWTWmbMLPFFRMAFe3eftJcXcbi3TiJiJpM2OeRf-5Q_-9A3-4e6Dv2OCNOjlk2B2xvfbPx79FWWleHcUEcsv1vx6dnv_Hq_NfiLxfwFR4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKEFwQzxIoYCS4gKI6sbN2DgghYLWlD3Fopb2FZOKolbbJ0uwK7U_xjczkVS0Ve-shOcSTxPaM5-EZzwC8DQsMorSIfGMz9LUlm9XaQPmoWT0ZMVvmg8JHx6PJqf4-jaZb8Kc_C8NhlT1PbBh1XiHvke-FxEW5ZHUcfpr_8rlqFHtX-xIaLVkcuNVvMtnqj_tfCb_vwnD87eTLxO-qCvgYSbXwY23USJnC5ZmLYh3nqUFdZEUqEQ1iUBBLJyk3yjVdyqELNWpbZKkzxjonFX33FtwmwSvZ2DPTwcAj1b2pWEsSOfDpJ2HvRVV2ryZh0YT7Sl8aukXrcvCacns9RvMfR20j_8YP4H6nuIrPLaU9hC1XPoI7bSnL1WM4-3HJLh8Oohad00dUiE32J3SCt3sFp0YWKT9McSVYfuaiKkVdnc_ERUr9dNizYjFv8n6WtagKMV7WZNEvL-grs8UTOL2R-X4K22VVumcgcmNJQUmtklmuURUWSWwEWZC5EXtznQeyn9MEuxTnXGljljSudmWTFg0JoSFhNCSRB--HV-Ztfo9NwLs9opJuqdfJFWF68GZopkXKnpe0dNWSYcjKJcNSqU0wsQ21jSXB7LS4H3pEOrYl1d16YNaoYgDgJOHrLeX5WZMsnCaRuiY9-NDTz1XX_zvQ55sH-hruTk6ODpPD_eODF3AvZKpuInx2YXtxuXQvSU9bZK-axSHg502vxr9NuVEJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFRSgbgg3rgUWCS4gKzY3rV3fUAIaKOWQhQhKvVm7PFarZTaaZ0I5df4Omb8SBUqcuvBPthje3fn7ZmdAXgTFOiHaRG62mToKkM-qzG-dFGxeRKxWOaNwt_H0cGx-noSnmzBn34vDKdV9jKxEdR5hfyPfBiQFOWW1XEwLLq0iMne6OPswuUOUhxp7dtptCRyZJe_yX2rPxzuEa7fBsFo_-eXA7frMOBi6Mm5GystI6kLm2c2jFWcpxpVkRWph6gR_YLEO2m8KFd0SIs2UKhMkaVWa2OtJ-m9t2Bbs1c0gO3P--PJj14PkCHf9K8l_ey79Jmgj6lKM6xJdTTJv57raTqF61rxmql7PWPzn7Btow1H9-FeZ8aKTy3dPYAtWz6E221jy-UjOJ1ccgCIU6pFFwISFWJTCwqt4J-_ggsli5QvprgUrE1zUZWirs6m4jylcVrsBbOYNVVAy1pUhRgtavLvF-f0lun8MRzfyIo_gUFZlfYZiFwbMldSI70sVygLg6RE_MzPbMSxXeuA169pgl3Bc-67MU2awLs0SYuGhNCQMBqS0IF3q0dmbbWPTcC7PaKSjvHr5IpMHXi9uk0sy3GYtLTVgmHI5yU3U8pNMLEJlIk9gnna4n41IrK4DRnyxgG9RhUrAC4Zvn6nPDttSofTItLQPAfe9_RzNfT_TnRn80RfwR3ixOTb4fjoOdwNmKibdJ9dGMwvF_YFGW3z7GXHHQJ-3TRD_gWstFak |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+disease+occurrence+with+high+accuracy+based+on+soil+macroecological+patterns+of+Fusarium+wilt&rft.jtitle=The+ISME+Journal&rft.au=Yuan%2C+Jun&rft.au=Wen%2C+Tao&rft.au=Zhang%2C+He&rft.au=Zhao%2C+Mengli&rft.date=2020-12-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1751-7362&rft.eissn=1751-7370&rft.volume=14&rft.issue=12&rft.spage=2936&rft.epage=2950&rft_id=info:doi/10.1038%2Fs41396-020-0720-5&rft.externalDocID=10_1038_s41396_020_0720_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-7362&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-7362&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-7362&client=summon |