An environmentally friendly method for efficient atmospheric oxidation of pyrrhotite in arsenopyrite/pyrite calcine
•The atmospheric oxidation of an iron sulfide calcine was studied for the first time.•The sulfide oxidation rate was determined by the iron sulfide thermal phase transition.•More than 95% of the calcine can be oxidized at optimal conditions without ultrafine grinding.•Elemental sulfur was the major...
Saved in:
Published in | Chemical engineering journal advances Vol. 7; p. 100122 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.08.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The atmospheric oxidation of an iron sulfide calcine was studied for the first time.•The sulfide oxidation rate was determined by the iron sulfide thermal phase transition.•More than 95% of the calcine can be oxidized at optimal conditions without ultrafine grinding.•Elemental sulfur was the major oxidation product.•This study indicates an efficient and green process to deal with gold-bearing concentrates.
Pyrite and arsenopyrite are the most common hosts for invisible gold, but pyrite and arsenic are refractory during conventional sulfide oxidation, which significantly challenges subsequent gold extraction. One option is high-temperature pretreatment of arsenical materials to sequester > 90% of the arsenic as a gas, then convert it to a stable form. This process produces a calcine similar in composition to pyrrhotite (Fe1-xS) but with higher porosity. In this study, the calcine product is oxidized with an efficient, cost-effective atmospheric process using acidic and near-neutral solutions. A sulfur mass balance analysis method based on iron sulfide thermal transformation in nitrogen atmosphere was developed to quantify the oxidation efficiency of pyrrhotite leaching. The optimization confirmed that > 90% of the calcine was oxidized by Fe3+ (5 and 10 g/L) and O2 (0.5 L/min) at pH 1 after 48 h and at 95 °C even without ultrafine grinding. Elemental sulfur was the main oxidation product when the oxidation pH was 1,2. This study provides the foundation for the development of a low-cost and environmentally friendly process option for pretreatment of arsenical sulfide refractory gold materials.
[Display omitted] |
---|---|
AbstractList | Pyrite and arsenopyrite are the most common hosts for invisible gold, but pyrite and arsenic are refractory during conventional sulfide oxidation, which significantly challenges subsequent gold extraction. One option is high-temperature pretreatment of arsenical materials to sequester > 90% of the arsenic as a gas, then convert it to a stable form. This process produces a calcine similar in composition to pyrrhotite (Fe1-xS) but with higher porosity. In this study, the calcine product is oxidized with an efficient, cost-effective atmospheric process using acidic and near-neutral solutions. A sulfur mass balance analysis method based on iron sulfide thermal transformation in nitrogen atmosphere was developed to quantify the oxidation efficiency of pyrrhotite leaching. The optimization confirmed that > 90% of the calcine was oxidized by Fe3+ (5 and 10 g/L) and O2 (0.5 L/min) at pH 1 after 48 h and at 95 °C even without ultrafine grinding. Elemental sulfur was the main oxidation product when the oxidation pH was 1,2. This study provides the foundation for the development of a low-cost and environmentally friendly process option for pretreatment of arsenical sulfide refractory gold materials. NRC publication: Yes •The atmospheric oxidation of an iron sulfide calcine was studied for the first time.•The sulfide oxidation rate was determined by the iron sulfide thermal phase transition.•More than 95% of the calcine can be oxidized at optimal conditions without ultrafine grinding.•Elemental sulfur was the major oxidation product.•This study indicates an efficient and green process to deal with gold-bearing concentrates. Pyrite and arsenopyrite are the most common hosts for invisible gold, but pyrite and arsenic are refractory during conventional sulfide oxidation, which significantly challenges subsequent gold extraction. One option is high-temperature pretreatment of arsenical materials to sequester > 90% of the arsenic as a gas, then convert it to a stable form. This process produces a calcine similar in composition to pyrrhotite (Fe1-xS) but with higher porosity. In this study, the calcine product is oxidized with an efficient, cost-effective atmospheric process using acidic and near-neutral solutions. A sulfur mass balance analysis method based on iron sulfide thermal transformation in nitrogen atmosphere was developed to quantify the oxidation efficiency of pyrrhotite leaching. The optimization confirmed that > 90% of the calcine was oxidized by Fe3+ (5 and 10 g/L) and O2 (0.5 L/min) at pH 1 after 48 h and at 95 °C even without ultrafine grinding. Elemental sulfur was the main oxidation product when the oxidation pH was 1,2. This study provides the foundation for the development of a low-cost and environmentally friendly process option for pretreatment of arsenical sulfide refractory gold materials. [Display omitted] |
ArticleNumber | 100122 |
Author | Li, Lin Wang, Jingxiu Wu, Chengqian Ghahreman, Ahmad |
Author_xml | – sequence: 1 givenname: Lin orcidid: 0000-0002-9109-6233 surname: Li fullname: Li, Lin organization: Hydrometallurgy and Environment Laboratory, The Robert M. Buchan Department of Mining, Queen's University, 25 Union St., Kingston, ON K7L 3N6, Canada – sequence: 2 givenname: Jingxiu surname: Wang fullname: Wang, Jingxiu organization: Hydrometallurgy and Environment Laboratory, The Robert M. Buchan Department of Mining, Queen's University, 25 Union St., Kingston, ON K7L 3N6, Canada – sequence: 3 givenname: Chengqian surname: Wu fullname: Wu, Chengqian organization: Hydrometallurgy and Environment Laboratory, The Robert M. Buchan Department of Mining, Queen's University, 25 Union St., Kingston, ON K7L 3N6, Canada – sequence: 4 givenname: Ahmad surname: Ghahreman fullname: Ghahreman, Ahmad email: ahmad.g@queensu.ca organization: Hydrometallurgy and Environment Laboratory, The Robert M. Buchan Department of Mining, Queen's University, 25 Union St., Kingston, ON K7L 3N6, Canada |
BookMark | eNp9UU1vGyEQXVWp1DTNH-iJP2CHgfWaSL1EUT8iReolOaPZYaix1mABiup_X9ZbVW0PufCYB-8NzHvfXcQUues-glyDhOFmvybe41pJBY2QoNSb7lINw7AyCuDir_277rqUvZRSGQDdw2VX7qLg-BJyigeOFafpJHwOHF3bHLjukhM-ZcHeB2p0FVgPqRx3nAOJ9DM4rCFFkbw4nnLepRoqixAF5sIxNa7VNwsIwolC5A_dW49T4evfeNU9f_n8dP9t9fj968P93eOKNlLXldFklEcg1gx-IHY9qH7j1OD5lrWSOLByoDbOeMOGgIz2BhpK0861vuoeFl-XcG-PORwwn2zCYM9Eyj8s5hpoYmuUYgO9G0ct-2YzgpZmlFsk0Gjk2LzU4kU5lZLZ__EDaecU7N7OKdg5Bbuk0ETmPxGFep5XzRim16VukcZMhBEd_vMBCqUGG2aw7Yal84ILH4_YKnk7asZtb_XG9LZ3SlvUW7bKGK9GGHy_hdbm09KGWw4vgbMtc8pt1iEz1Tao8NorfwGbGcph |
CitedBy_id | crossref_primary_10_1016_j_jes_2024_06_015 crossref_primary_10_52846_AUCCHEM_2023_1_05 crossref_primary_10_1155_2023_9567708 crossref_primary_10_21285_1814_3520_2024_2_386_396 |
Cites_doi | 10.1016/j.hydromet.2018.11.014 10.2113/gscanmin.38.5.1265 10.1016/j.hydromet.2015.09.028 10.1016/0016-2361(96)00141-X 10.1016/S0304-386X(97)00034-0 10.1179/cmq.1972.11.3.535 10.1016/j.jhazmat.2012.12.027 10.1016/j.hydromet.2017.10.012 10.1016/S0892-6875(98)00068-5 10.1080/10643389509388477 10.1016/j.apgeochem.2004.07.007 10.1016/S0892-6875(97)00074-5 10.1016/0304-386X(95)00034-E 10.2138/am-1998-11-1212 10.1016/j.hydromet.2015.09.001 10.1016/0016-2361(81)90187-3 10.1016/0304-386X(94)90074-4 10.1007/BF03220544 10.1016/S0016-7037(99)00421-4 10.1149/1.3421714 10.1016/j.hydromet.2009.06.002 10.1080/00084433.2017.1361162 10.1016/j.jhazmat.2018.08.019 10.1021/bk-1994-0550.ch002 10.1016/0016-7037(94)00352-M 10.1016/j.hydromet.2016.10.011 10.1016/0892-6875(95)00010-N 10.1016/j.hydromet.2016.11.001 10.1016/S0016-7037(02)00989-4 10.1016/S0016-2361(00)00015-6 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/) Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International (CC BY-NC-ND 4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr) |
Copyright_xml | – notice: 2021 The Author(s) – notice: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/) Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International (CC BY-NC-ND 4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr) |
DBID | 6I. AAFTH -LJ GXV AAYXX CITATION DOA |
DOI | 10.1016/j.ceja.2021.100122 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access National Research Council Canada Archive CISTI Source CrossRef DOAJ Open Access Full Text |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences |
EISSN | 2666-8211 |
ExternalDocumentID | oai_doaj_org_article_822e814dbb30483fb1308b07ac13a80b 10_1016_j_ceja_2021_100122 oai_cisti_icist_nrc_cnrc_ca_cistinparc_09b3ea74_3584_4d23_a37e_288f2b16f471 S2666821121000387 |
GroupedDBID | 6I. AAEDW AAFTH AAXUO AEXQZ ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M~E OK1 -LJ 0R~ AALRI AAYWO ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AITUG AKBMS AKYEP APXCP GXV AAYXX CITATION |
ID | FETCH-LOGICAL-c503t-83c82fa1ce3e1f6ced41245d26fe9e320a6e2d125d8f8e8c1c83f81c1c089e333 |
IEDL.DBID | DOA |
ISSN | 2666-8211 |
IngestDate | Wed Aug 27 01:29:23 EDT 2025 Tue Jul 01 03:11:34 EDT 2025 Thu Apr 24 23:01:10 EDT 2025 Thu Jul 24 23:51:40 EDT 2025 Fri Feb 23 02:43:57 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pyrolysis Oxidation Thermal phase transformation Calcine Pyrrhotite Sulfur balance |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c503t-83c82fa1ce3e1f6ced41245d26fe9e320a6e2d125d8f8e8c1c83f81c1c089e333 |
ORCID | 0000-0002-9109-6233 |
OpenAccessLink | https://doaj.org/article/822e814dbb30483fb1308b07ac13a80b |
ParticipantIDs | doaj_primary_oai_doaj_org_article_822e814dbb30483fb1308b07ac13a80b crossref_primary_10_1016_j_ceja_2021_100122 crossref_citationtrail_10_1016_j_ceja_2021_100122 nrccanada_primary_oai_cisti_icist_nrc_cnrc_ca_cistinparc_09b3ea74_3584_4d23_a37e_288f2b16f471 elsevier_sciencedirect_doi_10_1016_j_ceja_2021_100122 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-15 |
PublicationDateYYYYMMDD | 2021-08-15 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal advances |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Basu, Schreiber (bib0002) 2013; 262 Garg, Judd, Mahadevan, Edwards, Papangelakis (bib0015) 2017; 56 Liu, Dang, Xu, Xu (bib0026) 2013 Browner, Lee (bib0003) 1998; 11 Tu, Guo, Zhang, Lu, Wan, Liao, Dang (bib0033) 2017; 167 Droppert, Shang (bib0010) 1995; 39 Jahromi, Cowan, Ghahreman (bib0020) 2017; 174 Cyprès, Ghodsi, Stocq (bib0009) 1981; 60 Mycroft, Nesbitt, Pratt (bib0029) 1995; 59 Dunn, Ibrado, Graham (bib0012) 1995; 8 Cowan, Jahromi, Ghahreman (bib0007) 2019; 183 Dunn, Chamberlain (bib0011) 1997; 10 Mikhlin, Kuklinskiy, Pavlenko, Varnek, Asanov, Okotrub, Selyutin, Solovyev (bib0028) 2002; 66 Petersen (bib0032) 2016; 165 Chen, Chen, Hsu, Chang, Sheu, Lee, Lin (bib0006) 2019; 9 Cruz, González, Monroy (bib0008) 2005; 20 Nazari, Radzinski, Ghahreman (bib0030) 2017; 174 Yuniati, Kitagawa, Hirajima, Miki, Okibe, Sasaki (bib0035) 2015; 158 Aylmore (bib0001) 1995 Filippou, Konduru, Demopoulos (bib0014) 1997; 47 Cabri, Newville, Gordon, Crozier, Sutton, McMahon, Jiang (bib0004) 2000; 38 Maddox, Bancroft, Scaini, Lorimer (bib0027) 1998; 83 Janzen, Nicholson, Scharer (bib0022) 2000; 64 Ghahremaninezhad, Asselin, Dixon (bib0016) 2010; 157 Chen, Li, Zhang (bib0005) 2000; 79 Iglesias, Carranza (bib0019) 1994; 34 Watkinson, Germain (bib0034) 1972; 11 Evangelou, Zhang (bib0013) 1995; 25 Gryglewicz, Wilk, Yperman, Franco, Maes, Mullens, Van Poucke (bib0017) 1996; 75 Hausen (bib0018) 1991; 43 Jahromi, Ghahreman (bib0021) 2018; 360 R.V. Nicholson, J.M. Scharer, 1993. Laboratory studies of pyrrhotite oxidation kinetics 14–30. https://doi.org/ 10.1021/bk-1994-0550.ch002. Li, Bergeron, Ghahreman (bib0025) 2017 Zhao, Zhang, Chen, Chen, Huo (bib0036) 2009; 99 Garg (10.1016/j.ceja.2021.100122_bib0015) 2017; 56 Aylmore (10.1016/j.ceja.2021.100122_bib0001) 1995 Browner (10.1016/j.ceja.2021.100122_bib0003) 1998; 11 Mikhlin (10.1016/j.ceja.2021.100122_bib0028) 2002; 66 Iglesias (10.1016/j.ceja.2021.100122_bib0019) 1994; 34 Maddox (10.1016/j.ceja.2021.100122_bib0027) 1998; 83 Yuniati (10.1016/j.ceja.2021.100122_bib0035) 2015; 158 Evangelou (10.1016/j.ceja.2021.100122_bib0013) 1995; 25 Watkinson (10.1016/j.ceja.2021.100122_bib0034) 1972; 11 Dunn (10.1016/j.ceja.2021.100122_bib0012) 1995; 8 Cruz (10.1016/j.ceja.2021.100122_bib0008) 2005; 20 Droppert (10.1016/j.ceja.2021.100122_bib0010) 1995; 39 Chen (10.1016/j.ceja.2021.100122_bib0006) 2019; 9 Gryglewicz (10.1016/j.ceja.2021.100122_bib0017) 1996; 75 Ghahremaninezhad (10.1016/j.ceja.2021.100122_bib0016) 2010; 157 Liu (10.1016/j.ceja.2021.100122_bib0026) 2013 10.1016/j.ceja.2021.100122_bib0031 Petersen (10.1016/j.ceja.2021.100122_bib0032) 2016; 165 Hausen (10.1016/j.ceja.2021.100122_bib0018) 1991; 43 Mycroft (10.1016/j.ceja.2021.100122_bib0029) 1995; 59 Basu (10.1016/j.ceja.2021.100122_bib0002) 2013; 262 Cyprès (10.1016/j.ceja.2021.100122_bib0009) 1981; 60 Janzen (10.1016/j.ceja.2021.100122_bib0022) 2000; 64 Li (10.1016/j.ceja.2021.100122_bib0025) 2017 Filippou (10.1016/j.ceja.2021.100122_bib0014) 1997; 47 Cowan (10.1016/j.ceja.2021.100122_bib0007) 2019; 183 Jahromi (10.1016/j.ceja.2021.100122_bib0021) 2018; 360 Cabri (10.1016/j.ceja.2021.100122_bib0004) 2000; 38 Jahromi (10.1016/j.ceja.2021.100122_bib0020) 2017; 174 Tu (10.1016/j.ceja.2021.100122_bib0033) 2017; 167 Zhao (10.1016/j.ceja.2021.100122_bib0036) 2009; 99 Chen (10.1016/j.ceja.2021.100122_bib0005) 2000; 79 Nazari (10.1016/j.ceja.2021.100122_bib0030) 2017; 174 Dunn (10.1016/j.ceja.2021.100122_bib0011) 1997; 10 |
References_xml | – volume: 60 start-page: 247 year: 1981 end-page: 250 ident: bib0009 article-title: Behaviour of pyrite during hydrogenation of graphite at atmospheric pressure publication-title: Fuel – volume: 75 start-page: 1499 year: 1996 end-page: 1504 ident: bib0017 article-title: Interaction of the organic matrix with pyrite during pyrolysis of a high-sulfur bituminous coal publication-title: Fuel – volume: 56 start-page: 372 year: 2017 end-page: 381 ident: bib0015 article-title: Leaching characteristics of nickeliferous pyrrhotite tailings from the Sudbury, Ontario area publication-title: Can. Metall. Q. – volume: 20 start-page: 109 year: 2005 end-page: 121 ident: bib0008 article-title: Electrochemical characterization of pyrrhotite reactivity under simulated weathering conditions publication-title: Appl. Geochem. – volume: 174 start-page: 184 year: 2017 end-page: 194 ident: bib0020 article-title: Lanxess Lewatit® AF 5 and activated carbon catalysis of enargite leaching in chloride media; a parameters study publication-title: Hydrometallurgy – volume: 64 start-page: 1511 year: 2000 end-page: 1522 ident: bib0022 article-title: Pyrrhotite reaction kinetics: Reaction rates for oxidation by oxygen, ferric iron, and for nonoxidative dissolution publication-title: Geochim. Cosmochim. Acta – volume: 39 start-page: 169 year: 1995 end-page: 182 ident: bib0010 article-title: The leaching behaviour of nickeliferous pyrrhotite concentrate in hot nitric acid publication-title: Hydrometallurgy – volume: 11 start-page: 813 year: 1998 end-page: 820 ident: bib0003 article-title: Effect of pyrrhotite reactivity on cyanidation of pyrrhotite produced by pyrolysis of a sulphide ore publication-title: Miner. Eng. – volume: 183 start-page: 87 year: 2019 end-page: 97 ident: bib0007 article-title: A parameters study of the novel atmospheric pyrite oxidation process with Lewatit® AF 5 catalyst publication-title: Hydrometallurgy – reference: R.V. Nicholson, J.M. Scharer, 1993. Laboratory studies of pyrrhotite oxidation kinetics 14–30. https://doi.org/ 10.1021/bk-1994-0550.ch002. – volume: 34 start-page: 383 year: 1994 end-page: 395 ident: bib0019 article-title: Refractory gold-bearing ores: a review of treatment methods and recent advances in biotechnological techniques publication-title: Hydrometallurgy – volume: 83 start-page: 1240 year: 1998 end-page: 1245 ident: bib0027 article-title: Invisible gold: comparison of Au deposition on pyrite and arsenopyrite publication-title: Am. Mineral. – volume: 8 start-page: 459 year: 1995 end-page: 471 ident: bib0012 article-title: Pyrolysis of arsenopyrite for gold recovery by cyanidation publication-title: Miner. Eng. – volume: 360 start-page: 631 year: 2018 end-page: 638 ident: bib0021 article-title: oxidative arsenic precipitation as scorodite during carbon catalyzed enargite leaching process publication-title: J. Hazard. Mater. – volume: 174 start-page: 258 year: 2017 end-page: 281 ident: bib0030 article-title: Review of arsenic metallurgy: treatment of arsenical minerals and the immobilization of arsenic publication-title: Hydrometallurgy – volume: 11 start-page: 535 year: 1972 end-page: 547 ident: bib0034 article-title: Thermal decomposition of pyrite in fluidized beds publication-title: Can. Metall. Q. – volume: 59 start-page: 721 year: 1995 end-page: 733 ident: bib0029 article-title: X-ray photoelectron and Auger electron spectroscopy of air-oxidized pyrrhotite: distribution of oxidized species with depth publication-title: Geochim. Cosmochim. Acta – volume: 165 start-page: 206 year: 2016 end-page: 212 ident: bib0032 article-title: Heap leaching as a key technology for recovery of values from low-grade ores-a brief overview publication-title: Hydrometallurgy – year: 2017 ident: bib0025 article-title: The effect of temperature on the kinetics of the ferric-ferrous redox couple on pyrite publication-title: Electrochim. Acta – volume: 262 start-page: 896 year: 2013 end-page: 904 ident: bib0002 article-title: Arsenic release from arsenopyrite weathering: Insights from sequential extraction and microscopic studies publication-title: J. Hazard. Mater. – volume: 43 start-page: 31 year: 1991 end-page: 34 ident: bib0018 article-title: Reversible reactions between pyrite and pyrrhotite in SO publication-title: JOM – volume: 158 start-page: 83 year: 2015 end-page: 93 ident: bib0035 article-title: Suppression of pyrite oxidation in acid mine drainage by carrier microencapsulation using liquid product of hydrothermal treatment of low-rank coal, and electrochemical behavior of resultant encapsulating coatings publication-title: Hydrometallurgy – volume: 47 start-page: 1 year: 1997 end-page: 18 ident: bib0014 article-title: A kinetic study on the acid pressure leaching of pyrrhotite publication-title: Hydrometallurgy – volume: 157 start-page: C248 year: 2010 ident: bib0016 article-title: In situ electrochemical analysis of surface layers on a pyrrhotite electrode in hydrochloric acid solution publication-title: J. Electrochem. Soc. – volume: 25 start-page: 141 year: 1995 end-page: 199 ident: bib0013 article-title: A review: pyrite oxidation mechanisms and acid mine drainage prevention publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 9 start-page: 1 year: 2019 end-page: 6 ident: bib0006 article-title: Using the high-temperature phase transition of iron sulfide minerals as an indicator of fault slip temperature publication-title: Sci. Rep. – start-page: 2013 year: 2013 ident: bib0026 article-title: Pyrite passivation by triethylenetetramine: an electrochemical study publication-title: J. Anal. Methods Chem. – volume: 167 start-page: 58 year: 2017 end-page: 65 ident: bib0033 article-title: Investigation of intermediate sulfur species during pyrite oxidation in the presence and absence of acidithiobacillus ferrooxidans publication-title: Hydrometallurgy – volume: 66 start-page: 4057 year: 2002 end-page: 4067 ident: bib0028 article-title: Spectroscopic and XRD studies of the air degradation of acid-reacted pyrrhotites publication-title: Geochim. Cosmochim. Acta – volume: 38 start-page: 1265 year: 2000 end-page: 1281 ident: bib0004 article-title: Chemical speciation of gold in arsenopyrite publication-title: Can. Mineral. – volume: 79 start-page: 1627 year: 2000 end-page: 1631 ident: bib0005 article-title: Decomposition of pyrite and the interaction of pyrite with coal organic matrix in pyrolysis and hydropyrolysis publication-title: Fuel – volume: 99 start-page: 105 year: 2009 end-page: 108 ident: bib0036 article-title: Effect of mechanical activation on the leaching kinetics of pyrrhotite publication-title: Hydrometallurgy – year: 1995 ident: bib0001 article-title: Distribution and Agglomeration of Gold in Arsenopyrite and Pyrite. (Doctoral Dissertation – volume: 10 start-page: 919 year: 1997 end-page: 928 ident: bib0011 article-title: The recovery of gold from refractory arsenopyrite concentrates by pyrolysis-oxidation publication-title: Miner. Eng. – volume: 183 start-page: 87 year: 2019 ident: 10.1016/j.ceja.2021.100122_bib0007 article-title: A parameters study of the novel atmospheric pyrite oxidation process with Lewatit® AF 5 catalyst publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2018.11.014 – volume: 38 start-page: 1265 year: 2000 ident: 10.1016/j.ceja.2021.100122_bib0004 article-title: Chemical speciation of gold in arsenopyrite publication-title: Can. Mineral. doi: 10.2113/gscanmin.38.5.1265 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.ceja.2021.100122_bib0006 article-title: Using the high-temperature phase transition of iron sulfide minerals as an indicator of fault slip temperature publication-title: Sci. Rep. – volume: 158 start-page: 83 year: 2015 ident: 10.1016/j.ceja.2021.100122_bib0035 article-title: Suppression of pyrite oxidation in acid mine drainage by carrier microencapsulation using liquid product of hydrothermal treatment of low-rank coal, and electrochemical behavior of resultant encapsulating coatings publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2015.09.028 – volume: 75 start-page: 1499 year: 1996 ident: 10.1016/j.ceja.2021.100122_bib0017 article-title: Interaction of the organic matrix with pyrite during pyrolysis of a high-sulfur bituminous coal publication-title: Fuel doi: 10.1016/0016-2361(96)00141-X – volume: 47 start-page: 1 year: 1997 ident: 10.1016/j.ceja.2021.100122_bib0014 article-title: A kinetic study on the acid pressure leaching of pyrrhotite publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(97)00034-0 – year: 2017 ident: 10.1016/j.ceja.2021.100122_bib0025 article-title: The effect of temperature on the kinetics of the ferric-ferrous redox couple on pyrite publication-title: Electrochim. Acta – volume: 11 start-page: 535 year: 1972 ident: 10.1016/j.ceja.2021.100122_bib0034 article-title: Thermal decomposition of pyrite in fluidized beds publication-title: Can. Metall. Q. doi: 10.1179/cmq.1972.11.3.535 – volume: 262 start-page: 896 year: 2013 ident: 10.1016/j.ceja.2021.100122_bib0002 article-title: Arsenic release from arsenopyrite weathering: Insights from sequential extraction and microscopic studies publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.12.027 – volume: 174 start-page: 184 year: 2017 ident: 10.1016/j.ceja.2021.100122_bib0020 article-title: Lanxess Lewatit® AF 5 and activated carbon catalysis of enargite leaching in chloride media; a parameters study publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2017.10.012 – volume: 11 start-page: 813 year: 1998 ident: 10.1016/j.ceja.2021.100122_bib0003 article-title: Effect of pyrrhotite reactivity on cyanidation of pyrrhotite produced by pyrolysis of a sulphide ore publication-title: Miner. Eng. doi: 10.1016/S0892-6875(98)00068-5 – volume: 25 start-page: 141 year: 1995 ident: 10.1016/j.ceja.2021.100122_bib0013 article-title: A review: pyrite oxidation mechanisms and acid mine drainage prevention publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389509388477 – volume: 20 start-page: 109 year: 2005 ident: 10.1016/j.ceja.2021.100122_bib0008 article-title: Electrochemical characterization of pyrrhotite reactivity under simulated weathering conditions publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2004.07.007 – volume: 10 start-page: 919 year: 1997 ident: 10.1016/j.ceja.2021.100122_bib0011 article-title: The recovery of gold from refractory arsenopyrite concentrates by pyrolysis-oxidation publication-title: Miner. Eng. doi: 10.1016/S0892-6875(97)00074-5 – volume: 39 start-page: 169 year: 1995 ident: 10.1016/j.ceja.2021.100122_bib0010 article-title: The leaching behaviour of nickeliferous pyrrhotite concentrate in hot nitric acid publication-title: Hydrometallurgy doi: 10.1016/0304-386X(95)00034-E – volume: 83 start-page: 1240 year: 1998 ident: 10.1016/j.ceja.2021.100122_bib0027 article-title: Invisible gold: comparison of Au deposition on pyrite and arsenopyrite publication-title: Am. Mineral. doi: 10.2138/am-1998-11-1212 – volume: 165 start-page: 206 year: 2016 ident: 10.1016/j.ceja.2021.100122_bib0032 article-title: Heap leaching as a key technology for recovery of values from low-grade ores-a brief overview publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2015.09.001 – volume: 60 start-page: 247 year: 1981 ident: 10.1016/j.ceja.2021.100122_bib0009 article-title: Behaviour of pyrite during hydrogenation of graphite at atmospheric pressure publication-title: Fuel doi: 10.1016/0016-2361(81)90187-3 – volume: 34 start-page: 383 year: 1994 ident: 10.1016/j.ceja.2021.100122_bib0019 article-title: Refractory gold-bearing ores: a review of treatment methods and recent advances in biotechnological techniques publication-title: Hydrometallurgy doi: 10.1016/0304-386X(94)90074-4 – year: 1995 ident: 10.1016/j.ceja.2021.100122_bib0001 – volume: 43 start-page: 31 year: 1991 ident: 10.1016/j.ceja.2021.100122_bib0018 article-title: Reversible reactions between pyrite and pyrrhotite in SO2 publication-title: JOM doi: 10.1007/BF03220544 – volume: 64 start-page: 1511 year: 2000 ident: 10.1016/j.ceja.2021.100122_bib0022 article-title: Pyrrhotite reaction kinetics: Reaction rates for oxidation by oxygen, ferric iron, and for nonoxidative dissolution publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(99)00421-4 – volume: 157 start-page: C248 year: 2010 ident: 10.1016/j.ceja.2021.100122_bib0016 article-title: In situ electrochemical analysis of surface layers on a pyrrhotite electrode in hydrochloric acid solution publication-title: J. Electrochem. Soc. doi: 10.1149/1.3421714 – volume: 99 start-page: 105 year: 2009 ident: 10.1016/j.ceja.2021.100122_bib0036 article-title: Effect of mechanical activation on the leaching kinetics of pyrrhotite publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2009.06.002 – volume: 56 start-page: 372 year: 2017 ident: 10.1016/j.ceja.2021.100122_bib0015 article-title: Leaching characteristics of nickeliferous pyrrhotite tailings from the Sudbury, Ontario area publication-title: Can. Metall. Q. doi: 10.1080/00084433.2017.1361162 – volume: 360 start-page: 631 year: 2018 ident: 10.1016/j.ceja.2021.100122_bib0021 article-title: In-situ oxidative arsenic precipitation as scorodite during carbon catalyzed enargite leaching process publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.08.019 – ident: 10.1016/j.ceja.2021.100122_bib0031 doi: 10.1021/bk-1994-0550.ch002 – start-page: 2013 year: 2013 ident: 10.1016/j.ceja.2021.100122_bib0026 article-title: Pyrite passivation by triethylenetetramine: an electrochemical study publication-title: J. Anal. Methods Chem. – volume: 59 start-page: 721 year: 1995 ident: 10.1016/j.ceja.2021.100122_bib0029 article-title: X-ray photoelectron and Auger electron spectroscopy of air-oxidized pyrrhotite: distribution of oxidized species with depth publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(94)00352-M – volume: 174 start-page: 258 year: 2017 ident: 10.1016/j.ceja.2021.100122_bib0030 article-title: Review of arsenic metallurgy: treatment of arsenical minerals and the immobilization of arsenic publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2016.10.011 – volume: 8 start-page: 459 year: 1995 ident: 10.1016/j.ceja.2021.100122_bib0012 article-title: Pyrolysis of arsenopyrite for gold recovery by cyanidation publication-title: Miner. Eng. doi: 10.1016/0892-6875(95)00010-N – volume: 167 start-page: 58 year: 2017 ident: 10.1016/j.ceja.2021.100122_bib0033 article-title: Investigation of intermediate sulfur species during pyrite oxidation in the presence and absence of acidithiobacillus ferrooxidans publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2016.11.001 – volume: 66 start-page: 4057 year: 2002 ident: 10.1016/j.ceja.2021.100122_bib0028 article-title: Spectroscopic and XRD studies of the air degradation of acid-reacted pyrrhotites publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(02)00989-4 – volume: 79 start-page: 1627 year: 2000 ident: 10.1016/j.ceja.2021.100122_bib0005 article-title: Decomposition of pyrite and the interaction of pyrite with coal organic matrix in pyrolysis and hydropyrolysis publication-title: Fuel doi: 10.1016/S0016-2361(00)00015-6 |
SSID | ssj0002811341 |
Score | 2.1698527 |
Snippet | •The atmospheric oxidation of an iron sulfide calcine was studied for the first time.•The sulfide oxidation rate was determined by the iron sulfide thermal... NRC publication: Yes Pyrite and arsenopyrite are the most common hosts for invisible gold, but pyrite and arsenic are refractory during conventional sulfide oxidation, which... |
SourceID | doaj crossref nrccanada elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100122 |
SubjectTerms | Calcine Oxidation Pyrolysis Pyrrhotite Sulfur balance Thermal phase transformation |
Title | An environmentally friendly method for efficient atmospheric oxidation of pyrrhotite in arsenopyrite/pyrite calcine |
URI | https://dx.doi.org/10.1016/j.ceja.2021.100122 https://doaj.org/article/822e814dbb30483fb1308b07ac13a80b |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL4UDanmIpYB84Iai-pXEeyyoVYVUTlTqBVl-iqyWZLXdSvTS394ZO7vKXsqFS5w4juN4HM83yfgbQj47kRxnSVbScjRQkq0cD7ZSac6C80GlvLbq6kdzea2-39Q3k1Bf6BNW6IFLx52CAouaq-CcRPZzqFky7VhrPZdWM4ezL-i8iTG1yJ-MODKVYWQ5wOeVBjNnXDFTnLt8XCDpkOCZg0iIPa2Uyfv3lNNhv_bZCctOlM_FEXk5okZ6Vlp7TJ7F_hV5MeESfE1uz3o6WbVml8t7mpDEOMBOiRNNAaDSmDkjoAS1mz_DLbIKdJ4Of7sSXIkOia7u1-vf6KMXaddTsHxjP0AeHJ-WhIJg8Yf8G3J9cf7z22U1RlSofM3kptLSa5Es91FGnhofAwafroNoUpxHKZhtogiAeYJOOmrPPfS45pAyDeelfEsO-qGP7wjldQLbsG2cdUp5rWDSlKl1gddONaFhM8K3PWr8SDeOUS-WZutXtjAoBYNSMEUKM_Jld82qkG08WforCmpXEomycwYMHzMOH_Ov4TMj9VbMZsQcBUtAVd2TN_-1GxN7LfA4NZsOEwMljM8bW_L7Fcxehs2djLZVRgL6MyoIaaxsoxFaJ-F4kwAwvP8fD3dCnmOT8RM4rz-Qg836Ln4EDLVxn_LrAturh_NHlEEbhQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+environmentally+friendly+method+for+efficient+atmospheric+oxidation+of+pyrrhotite+in+arsenopyrite%2Fpyrite+calcine&rft.jtitle=Chemical+engineering+journal+advances&rft.au=Lin+Li&rft.au=Jingxiu+Wang&rft.au=Chengqian+Wu&rft.au=Ahmad+Ghahreman&rft.date=2021-08-15&rft.pub=Elsevier&rft.issn=2666-8211&rft.eissn=2666-8211&rft.volume=7&rft.spage=100122&rft_id=info:doi/10.1016%2Fj.ceja.2021.100122&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_822e814dbb30483fb1308b07ac13a80b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-8211&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-8211&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-8211&client=summon |