An environmentally friendly method for efficient atmospheric oxidation of pyrrhotite in arsenopyrite/pyrite calcine

•The atmospheric oxidation of an iron sulfide calcine was studied for the first time.•The sulfide oxidation rate was determined by the iron sulfide thermal phase transition.•More than 95% of the calcine can be oxidized at optimal conditions without ultrafine grinding.•Elemental sulfur was the major...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal advances Vol. 7; p. 100122
Main Authors Li, Lin, Wang, Jingxiu, Wu, Chengqian, Ghahreman, Ahmad
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.08.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The atmospheric oxidation of an iron sulfide calcine was studied for the first time.•The sulfide oxidation rate was determined by the iron sulfide thermal phase transition.•More than 95% of the calcine can be oxidized at optimal conditions without ultrafine grinding.•Elemental sulfur was the major oxidation product.•This study indicates an efficient and green process to deal with gold-bearing concentrates. Pyrite and arsenopyrite are the most common hosts for invisible gold, but pyrite and arsenic are refractory during conventional sulfide oxidation, which significantly challenges subsequent gold extraction. One option is high-temperature pretreatment of arsenical materials to sequester > 90% of the arsenic as a gas, then convert it to a stable form. This process produces a calcine similar in composition to pyrrhotite (Fe1-xS) but with higher porosity. In this study, the calcine product is oxidized with an efficient, cost-effective atmospheric process using acidic and near-neutral solutions. A sulfur mass balance analysis method based on iron sulfide thermal transformation in nitrogen atmosphere was developed to quantify the oxidation efficiency of pyrrhotite leaching. The optimization confirmed that > 90% of the calcine was oxidized by Fe3+ (5 and 10 g/L) and O2 (0.5 L/min) at pH 1 after 48 h and at 95 °C even without ultrafine grinding. Elemental sulfur was the main oxidation product when the oxidation pH was 1,2. This study provides the foundation for the development of a low-cost and environmentally friendly process option for pretreatment of arsenical sulfide refractory gold materials. [Display omitted]
AbstractList Pyrite and arsenopyrite are the most common hosts for invisible gold, but pyrite and arsenic are refractory during conventional sulfide oxidation, which significantly challenges subsequent gold extraction. One option is high-temperature pretreatment of arsenical materials to sequester > 90% of the arsenic as a gas, then convert it to a stable form. This process produces a calcine similar in composition to pyrrhotite (Fe1-xS) but with higher porosity. In this study, the calcine product is oxidized with an efficient, cost-effective atmospheric process using acidic and near-neutral solutions. A sulfur mass balance analysis method based on iron sulfide thermal transformation in nitrogen atmosphere was developed to quantify the oxidation efficiency of pyrrhotite leaching. The optimization confirmed that > 90% of the calcine was oxidized by Fe3+ (5 and 10 g/L) and O2 (0.5 L/min) at pH 1 after 48 h and at 95 °C even without ultrafine grinding. Elemental sulfur was the main oxidation product when the oxidation pH was 1,2. This study provides the foundation for the development of a low-cost and environmentally friendly process option for pretreatment of arsenical sulfide refractory gold materials.
NRC publication: Yes
•The atmospheric oxidation of an iron sulfide calcine was studied for the first time.•The sulfide oxidation rate was determined by the iron sulfide thermal phase transition.•More than 95% of the calcine can be oxidized at optimal conditions without ultrafine grinding.•Elemental sulfur was the major oxidation product.•This study indicates an efficient and green process to deal with gold-bearing concentrates. Pyrite and arsenopyrite are the most common hosts for invisible gold, but pyrite and arsenic are refractory during conventional sulfide oxidation, which significantly challenges subsequent gold extraction. One option is high-temperature pretreatment of arsenical materials to sequester > 90% of the arsenic as a gas, then convert it to a stable form. This process produces a calcine similar in composition to pyrrhotite (Fe1-xS) but with higher porosity. In this study, the calcine product is oxidized with an efficient, cost-effective atmospheric process using acidic and near-neutral solutions. A sulfur mass balance analysis method based on iron sulfide thermal transformation in nitrogen atmosphere was developed to quantify the oxidation efficiency of pyrrhotite leaching. The optimization confirmed that > 90% of the calcine was oxidized by Fe3+ (5 and 10 g/L) and O2 (0.5 L/min) at pH 1 after 48 h and at 95 °C even without ultrafine grinding. Elemental sulfur was the main oxidation product when the oxidation pH was 1,2. This study provides the foundation for the development of a low-cost and environmentally friendly process option for pretreatment of arsenical sulfide refractory gold materials. [Display omitted]
ArticleNumber 100122
Author Li, Lin
Wang, Jingxiu
Wu, Chengqian
Ghahreman, Ahmad
Author_xml – sequence: 1
  givenname: Lin
  orcidid: 0000-0002-9109-6233
  surname: Li
  fullname: Li, Lin
  organization: Hydrometallurgy and Environment Laboratory, The Robert M. Buchan Department of Mining, Queen's University, 25 Union St., Kingston, ON K7L 3N6, Canada
– sequence: 2
  givenname: Jingxiu
  surname: Wang
  fullname: Wang, Jingxiu
  organization: Hydrometallurgy and Environment Laboratory, The Robert M. Buchan Department of Mining, Queen's University, 25 Union St., Kingston, ON K7L 3N6, Canada
– sequence: 3
  givenname: Chengqian
  surname: Wu
  fullname: Wu, Chengqian
  organization: Hydrometallurgy and Environment Laboratory, The Robert M. Buchan Department of Mining, Queen's University, 25 Union St., Kingston, ON K7L 3N6, Canada
– sequence: 4
  givenname: Ahmad
  surname: Ghahreman
  fullname: Ghahreman, Ahmad
  email: ahmad.g@queensu.ca
  organization: Hydrometallurgy and Environment Laboratory, The Robert M. Buchan Department of Mining, Queen's University, 25 Union St., Kingston, ON K7L 3N6, Canada
BookMark eNp9UU1vGyEQXVWp1DTNH-iJP2CHgfWaSL1EUT8iReolOaPZYaix1mABiup_X9ZbVW0PufCYB-8NzHvfXcQUues-glyDhOFmvybe41pJBY2QoNSb7lINw7AyCuDir_277rqUvZRSGQDdw2VX7qLg-BJyigeOFafpJHwOHF3bHLjukhM-ZcHeB2p0FVgPqRx3nAOJ9DM4rCFFkbw4nnLepRoqixAF5sIxNa7VNwsIwolC5A_dW49T4evfeNU9f_n8dP9t9fj968P93eOKNlLXldFklEcg1gx-IHY9qH7j1OD5lrWSOLByoDbOeMOGgIz2BhpK0861vuoeFl-XcG-PORwwn2zCYM9Eyj8s5hpoYmuUYgO9G0ct-2YzgpZmlFsk0Gjk2LzU4kU5lZLZ__EDaecU7N7OKdg5Bbuk0ETmPxGFep5XzRim16VukcZMhBEd_vMBCqUGG2aw7Yal84ILH4_YKnk7asZtb_XG9LZ3SlvUW7bKGK9GGHy_hdbm09KGWw4vgbMtc8pt1iEz1Tao8NorfwGbGcph
CitedBy_id crossref_primary_10_1016_j_jes_2024_06_015
crossref_primary_10_52846_AUCCHEM_2023_1_05
crossref_primary_10_1155_2023_9567708
crossref_primary_10_21285_1814_3520_2024_2_386_396
Cites_doi 10.1016/j.hydromet.2018.11.014
10.2113/gscanmin.38.5.1265
10.1016/j.hydromet.2015.09.028
10.1016/0016-2361(96)00141-X
10.1016/S0304-386X(97)00034-0
10.1179/cmq.1972.11.3.535
10.1016/j.jhazmat.2012.12.027
10.1016/j.hydromet.2017.10.012
10.1016/S0892-6875(98)00068-5
10.1080/10643389509388477
10.1016/j.apgeochem.2004.07.007
10.1016/S0892-6875(97)00074-5
10.1016/0304-386X(95)00034-E
10.2138/am-1998-11-1212
10.1016/j.hydromet.2015.09.001
10.1016/0016-2361(81)90187-3
10.1016/0304-386X(94)90074-4
10.1007/BF03220544
10.1016/S0016-7037(99)00421-4
10.1149/1.3421714
10.1016/j.hydromet.2009.06.002
10.1080/00084433.2017.1361162
10.1016/j.jhazmat.2018.08.019
10.1021/bk-1994-0550.ch002
10.1016/0016-7037(94)00352-M
10.1016/j.hydromet.2016.10.011
10.1016/0892-6875(95)00010-N
10.1016/j.hydromet.2016.11.001
10.1016/S0016-7037(02)00989-4
10.1016/S0016-2361(00)00015-6
ContentType Journal Article
Copyright 2021 The Author(s)
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/) Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International (CC BY-NC-ND 4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr)
Copyright_xml – notice: 2021 The Author(s)
– notice: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/) Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International (CC BY-NC-ND 4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr)
DBID 6I.
AAFTH
-LJ
GXV
AAYXX
CITATION
DOA
DOI 10.1016/j.ceja.2021.100122
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
National Research Council Canada Archive
CISTI Source
CrossRef
DOAJ Open Access Full Text
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences
EISSN 2666-8211
ExternalDocumentID oai_doaj_org_article_822e814dbb30483fb1308b07ac13a80b
10_1016_j_ceja_2021_100122
oai_cisti_icist_nrc_cnrc_ca_cistinparc_09b3ea74_3584_4d23_a37e_288f2b16f471
S2666821121000387
GroupedDBID 6I.
AAEDW
AAFTH
AAXUO
AEXQZ
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M~E
OK1
-LJ
0R~
AALRI
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKYEP
APXCP
GXV
AAYXX
CITATION
ID FETCH-LOGICAL-c503t-83c82fa1ce3e1f6ced41245d26fe9e320a6e2d125d8f8e8c1c83f81c1c089e333
IEDL.DBID DOA
ISSN 2666-8211
IngestDate Wed Aug 27 01:29:23 EDT 2025
Tue Jul 01 03:11:34 EDT 2025
Thu Apr 24 23:01:10 EDT 2025
Thu Jul 24 23:51:40 EDT 2025
Fri Feb 23 02:43:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Pyrolysis
Oxidation
Thermal phase transformation
Calcine
Pyrrhotite
Sulfur balance
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-83c82fa1ce3e1f6ced41245d26fe9e320a6e2d125d8f8e8c1c83f81c1c089e333
ORCID 0000-0002-9109-6233
OpenAccessLink https://doaj.org/article/822e814dbb30483fb1308b07ac13a80b
ParticipantIDs doaj_primary_oai_doaj_org_article_822e814dbb30483fb1308b07ac13a80b
crossref_primary_10_1016_j_ceja_2021_100122
crossref_citationtrail_10_1016_j_ceja_2021_100122
nrccanada_primary_oai_cisti_icist_nrc_cnrc_ca_cistinparc_09b3ea74_3584_4d23_a37e_288f2b16f471
elsevier_sciencedirect_doi_10_1016_j_ceja_2021_100122
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-15
PublicationDateYYYYMMDD 2021-08-15
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemical engineering journal advances
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Basu, Schreiber (bib0002) 2013; 262
Garg, Judd, Mahadevan, Edwards, Papangelakis (bib0015) 2017; 56
Liu, Dang, Xu, Xu (bib0026) 2013
Browner, Lee (bib0003) 1998; 11
Tu, Guo, Zhang, Lu, Wan, Liao, Dang (bib0033) 2017; 167
Droppert, Shang (bib0010) 1995; 39
Jahromi, Cowan, Ghahreman (bib0020) 2017; 174
Cyprès, Ghodsi, Stocq (bib0009) 1981; 60
Mycroft, Nesbitt, Pratt (bib0029) 1995; 59
Dunn, Ibrado, Graham (bib0012) 1995; 8
Cowan, Jahromi, Ghahreman (bib0007) 2019; 183
Dunn, Chamberlain (bib0011) 1997; 10
Mikhlin, Kuklinskiy, Pavlenko, Varnek, Asanov, Okotrub, Selyutin, Solovyev (bib0028) 2002; 66
Petersen (bib0032) 2016; 165
Chen, Chen, Hsu, Chang, Sheu, Lee, Lin (bib0006) 2019; 9
Cruz, González, Monroy (bib0008) 2005; 20
Nazari, Radzinski, Ghahreman (bib0030) 2017; 174
Yuniati, Kitagawa, Hirajima, Miki, Okibe, Sasaki (bib0035) 2015; 158
Aylmore (bib0001) 1995
Filippou, Konduru, Demopoulos (bib0014) 1997; 47
Cabri, Newville, Gordon, Crozier, Sutton, McMahon, Jiang (bib0004) 2000; 38
Maddox, Bancroft, Scaini, Lorimer (bib0027) 1998; 83
Janzen, Nicholson, Scharer (bib0022) 2000; 64
Ghahremaninezhad, Asselin, Dixon (bib0016) 2010; 157
Chen, Li, Zhang (bib0005) 2000; 79
Iglesias, Carranza (bib0019) 1994; 34
Watkinson, Germain (bib0034) 1972; 11
Evangelou, Zhang (bib0013) 1995; 25
Gryglewicz, Wilk, Yperman, Franco, Maes, Mullens, Van Poucke (bib0017) 1996; 75
Hausen (bib0018) 1991; 43
Jahromi, Ghahreman (bib0021) 2018; 360
R.V. Nicholson, J.M. Scharer, 1993. Laboratory studies of pyrrhotite oxidation kinetics 14–30. https://doi.org/ 10.1021/bk-1994-0550.ch002.
Li, Bergeron, Ghahreman (bib0025) 2017
Zhao, Zhang, Chen, Chen, Huo (bib0036) 2009; 99
Garg (10.1016/j.ceja.2021.100122_bib0015) 2017; 56
Aylmore (10.1016/j.ceja.2021.100122_bib0001) 1995
Browner (10.1016/j.ceja.2021.100122_bib0003) 1998; 11
Mikhlin (10.1016/j.ceja.2021.100122_bib0028) 2002; 66
Iglesias (10.1016/j.ceja.2021.100122_bib0019) 1994; 34
Maddox (10.1016/j.ceja.2021.100122_bib0027) 1998; 83
Yuniati (10.1016/j.ceja.2021.100122_bib0035) 2015; 158
Evangelou (10.1016/j.ceja.2021.100122_bib0013) 1995; 25
Watkinson (10.1016/j.ceja.2021.100122_bib0034) 1972; 11
Dunn (10.1016/j.ceja.2021.100122_bib0012) 1995; 8
Cruz (10.1016/j.ceja.2021.100122_bib0008) 2005; 20
Droppert (10.1016/j.ceja.2021.100122_bib0010) 1995; 39
Chen (10.1016/j.ceja.2021.100122_bib0006) 2019; 9
Gryglewicz (10.1016/j.ceja.2021.100122_bib0017) 1996; 75
Ghahremaninezhad (10.1016/j.ceja.2021.100122_bib0016) 2010; 157
Liu (10.1016/j.ceja.2021.100122_bib0026) 2013
10.1016/j.ceja.2021.100122_bib0031
Petersen (10.1016/j.ceja.2021.100122_bib0032) 2016; 165
Hausen (10.1016/j.ceja.2021.100122_bib0018) 1991; 43
Mycroft (10.1016/j.ceja.2021.100122_bib0029) 1995; 59
Basu (10.1016/j.ceja.2021.100122_bib0002) 2013; 262
Cyprès (10.1016/j.ceja.2021.100122_bib0009) 1981; 60
Janzen (10.1016/j.ceja.2021.100122_bib0022) 2000; 64
Li (10.1016/j.ceja.2021.100122_bib0025) 2017
Filippou (10.1016/j.ceja.2021.100122_bib0014) 1997; 47
Cowan (10.1016/j.ceja.2021.100122_bib0007) 2019; 183
Jahromi (10.1016/j.ceja.2021.100122_bib0021) 2018; 360
Cabri (10.1016/j.ceja.2021.100122_bib0004) 2000; 38
Jahromi (10.1016/j.ceja.2021.100122_bib0020) 2017; 174
Tu (10.1016/j.ceja.2021.100122_bib0033) 2017; 167
Zhao (10.1016/j.ceja.2021.100122_bib0036) 2009; 99
Chen (10.1016/j.ceja.2021.100122_bib0005) 2000; 79
Nazari (10.1016/j.ceja.2021.100122_bib0030) 2017; 174
Dunn (10.1016/j.ceja.2021.100122_bib0011) 1997; 10
References_xml – volume: 60
  start-page: 247
  year: 1981
  end-page: 250
  ident: bib0009
  article-title: Behaviour of pyrite during hydrogenation of graphite at atmospheric pressure
  publication-title: Fuel
– volume: 75
  start-page: 1499
  year: 1996
  end-page: 1504
  ident: bib0017
  article-title: Interaction of the organic matrix with pyrite during pyrolysis of a high-sulfur bituminous coal
  publication-title: Fuel
– volume: 56
  start-page: 372
  year: 2017
  end-page: 381
  ident: bib0015
  article-title: Leaching characteristics of nickeliferous pyrrhotite tailings from the Sudbury, Ontario area
  publication-title: Can. Metall. Q.
– volume: 20
  start-page: 109
  year: 2005
  end-page: 121
  ident: bib0008
  article-title: Electrochemical characterization of pyrrhotite reactivity under simulated weathering conditions
  publication-title: Appl. Geochem.
– volume: 174
  start-page: 184
  year: 2017
  end-page: 194
  ident: bib0020
  article-title: Lanxess Lewatit® AF 5 and activated carbon catalysis of enargite leaching in chloride media; a parameters study
  publication-title: Hydrometallurgy
– volume: 64
  start-page: 1511
  year: 2000
  end-page: 1522
  ident: bib0022
  article-title: Pyrrhotite reaction kinetics: Reaction rates for oxidation by oxygen, ferric iron, and for nonoxidative dissolution
  publication-title: Geochim. Cosmochim. Acta
– volume: 39
  start-page: 169
  year: 1995
  end-page: 182
  ident: bib0010
  article-title: The leaching behaviour of nickeliferous pyrrhotite concentrate in hot nitric acid
  publication-title: Hydrometallurgy
– volume: 11
  start-page: 813
  year: 1998
  end-page: 820
  ident: bib0003
  article-title: Effect of pyrrhotite reactivity on cyanidation of pyrrhotite produced by pyrolysis of a sulphide ore
  publication-title: Miner. Eng.
– volume: 183
  start-page: 87
  year: 2019
  end-page: 97
  ident: bib0007
  article-title: A parameters study of the novel atmospheric pyrite oxidation process with Lewatit® AF 5 catalyst
  publication-title: Hydrometallurgy
– reference: R.V. Nicholson, J.M. Scharer, 1993. Laboratory studies of pyrrhotite oxidation kinetics 14–30. https://doi.org/ 10.1021/bk-1994-0550.ch002.
– volume: 34
  start-page: 383
  year: 1994
  end-page: 395
  ident: bib0019
  article-title: Refractory gold-bearing ores: a review of treatment methods and recent advances in biotechnological techniques
  publication-title: Hydrometallurgy
– volume: 83
  start-page: 1240
  year: 1998
  end-page: 1245
  ident: bib0027
  article-title: Invisible gold: comparison of Au deposition on pyrite and arsenopyrite
  publication-title: Am. Mineral.
– volume: 8
  start-page: 459
  year: 1995
  end-page: 471
  ident: bib0012
  article-title: Pyrolysis of arsenopyrite for gold recovery by cyanidation
  publication-title: Miner. Eng.
– volume: 360
  start-page: 631
  year: 2018
  end-page: 638
  ident: bib0021
  article-title: oxidative arsenic precipitation as scorodite during carbon catalyzed enargite leaching process
  publication-title: J. Hazard. Mater.
– volume: 174
  start-page: 258
  year: 2017
  end-page: 281
  ident: bib0030
  article-title: Review of arsenic metallurgy: treatment of arsenical minerals and the immobilization of arsenic
  publication-title: Hydrometallurgy
– volume: 11
  start-page: 535
  year: 1972
  end-page: 547
  ident: bib0034
  article-title: Thermal decomposition of pyrite in fluidized beds
  publication-title: Can. Metall. Q.
– volume: 59
  start-page: 721
  year: 1995
  end-page: 733
  ident: bib0029
  article-title: X-ray photoelectron and Auger electron spectroscopy of air-oxidized pyrrhotite: distribution of oxidized species with depth
  publication-title: Geochim. Cosmochim. Acta
– volume: 165
  start-page: 206
  year: 2016
  end-page: 212
  ident: bib0032
  article-title: Heap leaching as a key technology for recovery of values from low-grade ores-a brief overview
  publication-title: Hydrometallurgy
– year: 2017
  ident: bib0025
  article-title: The effect of temperature on the kinetics of the ferric-ferrous redox couple on pyrite
  publication-title: Electrochim. Acta
– volume: 262
  start-page: 896
  year: 2013
  end-page: 904
  ident: bib0002
  article-title: Arsenic release from arsenopyrite weathering: Insights from sequential extraction and microscopic studies
  publication-title: J. Hazard. Mater.
– volume: 43
  start-page: 31
  year: 1991
  end-page: 34
  ident: bib0018
  article-title: Reversible reactions between pyrite and pyrrhotite in SO
  publication-title: JOM
– volume: 158
  start-page: 83
  year: 2015
  end-page: 93
  ident: bib0035
  article-title: Suppression of pyrite oxidation in acid mine drainage by carrier microencapsulation using liquid product of hydrothermal treatment of low-rank coal, and electrochemical behavior of resultant encapsulating coatings
  publication-title: Hydrometallurgy
– volume: 47
  start-page: 1
  year: 1997
  end-page: 18
  ident: bib0014
  article-title: A kinetic study on the acid pressure leaching of pyrrhotite
  publication-title: Hydrometallurgy
– volume: 157
  start-page: C248
  year: 2010
  ident: bib0016
  article-title: In situ electrochemical analysis of surface layers on a pyrrhotite electrode in hydrochloric acid solution
  publication-title: J. Electrochem. Soc.
– volume: 25
  start-page: 141
  year: 1995
  end-page: 199
  ident: bib0013
  article-title: A review: pyrite oxidation mechanisms and acid mine drainage prevention
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 6
  ident: bib0006
  article-title: Using the high-temperature phase transition of iron sulfide minerals as an indicator of fault slip temperature
  publication-title: Sci. Rep.
– start-page: 2013
  year: 2013
  ident: bib0026
  article-title: Pyrite passivation by triethylenetetramine: an electrochemical study
  publication-title: J. Anal. Methods Chem.
– volume: 167
  start-page: 58
  year: 2017
  end-page: 65
  ident: bib0033
  article-title: Investigation of intermediate sulfur species during pyrite oxidation in the presence and absence of acidithiobacillus ferrooxidans
  publication-title: Hydrometallurgy
– volume: 66
  start-page: 4057
  year: 2002
  end-page: 4067
  ident: bib0028
  article-title: Spectroscopic and XRD studies of the air degradation of acid-reacted pyrrhotites
  publication-title: Geochim. Cosmochim. Acta
– volume: 38
  start-page: 1265
  year: 2000
  end-page: 1281
  ident: bib0004
  article-title: Chemical speciation of gold in arsenopyrite
  publication-title: Can. Mineral.
– volume: 79
  start-page: 1627
  year: 2000
  end-page: 1631
  ident: bib0005
  article-title: Decomposition of pyrite and the interaction of pyrite with coal organic matrix in pyrolysis and hydropyrolysis
  publication-title: Fuel
– volume: 99
  start-page: 105
  year: 2009
  end-page: 108
  ident: bib0036
  article-title: Effect of mechanical activation on the leaching kinetics of pyrrhotite
  publication-title: Hydrometallurgy
– year: 1995
  ident: bib0001
  article-title: Distribution and Agglomeration of Gold in Arsenopyrite and Pyrite. (Doctoral Dissertation
– volume: 10
  start-page: 919
  year: 1997
  end-page: 928
  ident: bib0011
  article-title: The recovery of gold from refractory arsenopyrite concentrates by pyrolysis-oxidation
  publication-title: Miner. Eng.
– volume: 183
  start-page: 87
  year: 2019
  ident: 10.1016/j.ceja.2021.100122_bib0007
  article-title: A parameters study of the novel atmospheric pyrite oxidation process with Lewatit® AF 5 catalyst
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2018.11.014
– volume: 38
  start-page: 1265
  year: 2000
  ident: 10.1016/j.ceja.2021.100122_bib0004
  article-title: Chemical speciation of gold in arsenopyrite
  publication-title: Can. Mineral.
  doi: 10.2113/gscanmin.38.5.1265
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.ceja.2021.100122_bib0006
  article-title: Using the high-temperature phase transition of iron sulfide minerals as an indicator of fault slip temperature
  publication-title: Sci. Rep.
– volume: 158
  start-page: 83
  year: 2015
  ident: 10.1016/j.ceja.2021.100122_bib0035
  article-title: Suppression of pyrite oxidation in acid mine drainage by carrier microencapsulation using liquid product of hydrothermal treatment of low-rank coal, and electrochemical behavior of resultant encapsulating coatings
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2015.09.028
– volume: 75
  start-page: 1499
  year: 1996
  ident: 10.1016/j.ceja.2021.100122_bib0017
  article-title: Interaction of the organic matrix with pyrite during pyrolysis of a high-sulfur bituminous coal
  publication-title: Fuel
  doi: 10.1016/0016-2361(96)00141-X
– volume: 47
  start-page: 1
  year: 1997
  ident: 10.1016/j.ceja.2021.100122_bib0014
  article-title: A kinetic study on the acid pressure leaching of pyrrhotite
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(97)00034-0
– year: 2017
  ident: 10.1016/j.ceja.2021.100122_bib0025
  article-title: The effect of temperature on the kinetics of the ferric-ferrous redox couple on pyrite
  publication-title: Electrochim. Acta
– volume: 11
  start-page: 535
  year: 1972
  ident: 10.1016/j.ceja.2021.100122_bib0034
  article-title: Thermal decomposition of pyrite in fluidized beds
  publication-title: Can. Metall. Q.
  doi: 10.1179/cmq.1972.11.3.535
– volume: 262
  start-page: 896
  year: 2013
  ident: 10.1016/j.ceja.2021.100122_bib0002
  article-title: Arsenic release from arsenopyrite weathering: Insights from sequential extraction and microscopic studies
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.12.027
– volume: 174
  start-page: 184
  year: 2017
  ident: 10.1016/j.ceja.2021.100122_bib0020
  article-title: Lanxess Lewatit® AF 5 and activated carbon catalysis of enargite leaching in chloride media; a parameters study
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2017.10.012
– volume: 11
  start-page: 813
  year: 1998
  ident: 10.1016/j.ceja.2021.100122_bib0003
  article-title: Effect of pyrrhotite reactivity on cyanidation of pyrrhotite produced by pyrolysis of a sulphide ore
  publication-title: Miner. Eng.
  doi: 10.1016/S0892-6875(98)00068-5
– volume: 25
  start-page: 141
  year: 1995
  ident: 10.1016/j.ceja.2021.100122_bib0013
  article-title: A review: pyrite oxidation mechanisms and acid mine drainage prevention
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389509388477
– volume: 20
  start-page: 109
  year: 2005
  ident: 10.1016/j.ceja.2021.100122_bib0008
  article-title: Electrochemical characterization of pyrrhotite reactivity under simulated weathering conditions
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2004.07.007
– volume: 10
  start-page: 919
  year: 1997
  ident: 10.1016/j.ceja.2021.100122_bib0011
  article-title: The recovery of gold from refractory arsenopyrite concentrates by pyrolysis-oxidation
  publication-title: Miner. Eng.
  doi: 10.1016/S0892-6875(97)00074-5
– volume: 39
  start-page: 169
  year: 1995
  ident: 10.1016/j.ceja.2021.100122_bib0010
  article-title: The leaching behaviour of nickeliferous pyrrhotite concentrate in hot nitric acid
  publication-title: Hydrometallurgy
  doi: 10.1016/0304-386X(95)00034-E
– volume: 83
  start-page: 1240
  year: 1998
  ident: 10.1016/j.ceja.2021.100122_bib0027
  article-title: Invisible gold: comparison of Au deposition on pyrite and arsenopyrite
  publication-title: Am. Mineral.
  doi: 10.2138/am-1998-11-1212
– volume: 165
  start-page: 206
  year: 2016
  ident: 10.1016/j.ceja.2021.100122_bib0032
  article-title: Heap leaching as a key technology for recovery of values from low-grade ores-a brief overview
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2015.09.001
– volume: 60
  start-page: 247
  year: 1981
  ident: 10.1016/j.ceja.2021.100122_bib0009
  article-title: Behaviour of pyrite during hydrogenation of graphite at atmospheric pressure
  publication-title: Fuel
  doi: 10.1016/0016-2361(81)90187-3
– volume: 34
  start-page: 383
  year: 1994
  ident: 10.1016/j.ceja.2021.100122_bib0019
  article-title: Refractory gold-bearing ores: a review of treatment methods and recent advances in biotechnological techniques
  publication-title: Hydrometallurgy
  doi: 10.1016/0304-386X(94)90074-4
– year: 1995
  ident: 10.1016/j.ceja.2021.100122_bib0001
– volume: 43
  start-page: 31
  year: 1991
  ident: 10.1016/j.ceja.2021.100122_bib0018
  article-title: Reversible reactions between pyrite and pyrrhotite in SO2
  publication-title: JOM
  doi: 10.1007/BF03220544
– volume: 64
  start-page: 1511
  year: 2000
  ident: 10.1016/j.ceja.2021.100122_bib0022
  article-title: Pyrrhotite reaction kinetics: Reaction rates for oxidation by oxygen, ferric iron, and for nonoxidative dissolution
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(99)00421-4
– volume: 157
  start-page: C248
  year: 2010
  ident: 10.1016/j.ceja.2021.100122_bib0016
  article-title: In situ electrochemical analysis of surface layers on a pyrrhotite electrode in hydrochloric acid solution
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3421714
– volume: 99
  start-page: 105
  year: 2009
  ident: 10.1016/j.ceja.2021.100122_bib0036
  article-title: Effect of mechanical activation on the leaching kinetics of pyrrhotite
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2009.06.002
– volume: 56
  start-page: 372
  year: 2017
  ident: 10.1016/j.ceja.2021.100122_bib0015
  article-title: Leaching characteristics of nickeliferous pyrrhotite tailings from the Sudbury, Ontario area
  publication-title: Can. Metall. Q.
  doi: 10.1080/00084433.2017.1361162
– volume: 360
  start-page: 631
  year: 2018
  ident: 10.1016/j.ceja.2021.100122_bib0021
  article-title: In-situ oxidative arsenic precipitation as scorodite during carbon catalyzed enargite leaching process
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.08.019
– ident: 10.1016/j.ceja.2021.100122_bib0031
  doi: 10.1021/bk-1994-0550.ch002
– start-page: 2013
  year: 2013
  ident: 10.1016/j.ceja.2021.100122_bib0026
  article-title: Pyrite passivation by triethylenetetramine: an electrochemical study
  publication-title: J. Anal. Methods Chem.
– volume: 59
  start-page: 721
  year: 1995
  ident: 10.1016/j.ceja.2021.100122_bib0029
  article-title: X-ray photoelectron and Auger electron spectroscopy of air-oxidized pyrrhotite: distribution of oxidized species with depth
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(94)00352-M
– volume: 174
  start-page: 258
  year: 2017
  ident: 10.1016/j.ceja.2021.100122_bib0030
  article-title: Review of arsenic metallurgy: treatment of arsenical minerals and the immobilization of arsenic
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2016.10.011
– volume: 8
  start-page: 459
  year: 1995
  ident: 10.1016/j.ceja.2021.100122_bib0012
  article-title: Pyrolysis of arsenopyrite for gold recovery by cyanidation
  publication-title: Miner. Eng.
  doi: 10.1016/0892-6875(95)00010-N
– volume: 167
  start-page: 58
  year: 2017
  ident: 10.1016/j.ceja.2021.100122_bib0033
  article-title: Investigation of intermediate sulfur species during pyrite oxidation in the presence and absence of acidithiobacillus ferrooxidans
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2016.11.001
– volume: 66
  start-page: 4057
  year: 2002
  ident: 10.1016/j.ceja.2021.100122_bib0028
  article-title: Spectroscopic and XRD studies of the air degradation of acid-reacted pyrrhotites
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(02)00989-4
– volume: 79
  start-page: 1627
  year: 2000
  ident: 10.1016/j.ceja.2021.100122_bib0005
  article-title: Decomposition of pyrite and the interaction of pyrite with coal organic matrix in pyrolysis and hydropyrolysis
  publication-title: Fuel
  doi: 10.1016/S0016-2361(00)00015-6
SSID ssj0002811341
Score 2.1698527
Snippet •The atmospheric oxidation of an iron sulfide calcine was studied for the first time.•The sulfide oxidation rate was determined by the iron sulfide thermal...
NRC publication: Yes
Pyrite and arsenopyrite are the most common hosts for invisible gold, but pyrite and arsenic are refractory during conventional sulfide oxidation, which...
SourceID doaj
crossref
nrccanada
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100122
SubjectTerms Calcine
Oxidation
Pyrolysis
Pyrrhotite
Sulfur balance
Thermal phase transformation
Title An environmentally friendly method for efficient atmospheric oxidation of pyrrhotite in arsenopyrite/pyrite calcine
URI https://dx.doi.org/10.1016/j.ceja.2021.100122
https://doaj.org/article/822e814dbb30483fb1308b07ac13a80b
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL4UDanmIpYB84Iai-pXEeyyoVYVUTlTqBVl-iqyWZLXdSvTS394ZO7vKXsqFS5w4juN4HM83yfgbQj47kRxnSVbScjRQkq0cD7ZSac6C80GlvLbq6kdzea2-39Q3k1Bf6BNW6IFLx52CAouaq-CcRPZzqFky7VhrPZdWM4ezL-i8iTG1yJ-MODKVYWQ5wOeVBjNnXDFTnLt8XCDpkOCZg0iIPa2Uyfv3lNNhv_bZCctOlM_FEXk5okZ6Vlp7TJ7F_hV5MeESfE1uz3o6WbVml8t7mpDEOMBOiRNNAaDSmDkjoAS1mz_DLbIKdJ4Of7sSXIkOia7u1-vf6KMXaddTsHxjP0AeHJ-WhIJg8Yf8G3J9cf7z22U1RlSofM3kptLSa5Es91FGnhofAwafroNoUpxHKZhtogiAeYJOOmrPPfS45pAyDeelfEsO-qGP7wjldQLbsG2cdUp5rWDSlKl1gddONaFhM8K3PWr8SDeOUS-WZutXtjAoBYNSMEUKM_Jld82qkG08WforCmpXEomycwYMHzMOH_Ov4TMj9VbMZsQcBUtAVd2TN_-1GxN7LfA4NZsOEwMljM8bW_L7Fcxehs2djLZVRgL6MyoIaaxsoxFaJ-F4kwAwvP8fD3dCnmOT8RM4rz-Qg836Ln4EDLVxn_LrAturh_NHlEEbhQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+environmentally+friendly+method+for+efficient+atmospheric+oxidation+of+pyrrhotite+in+arsenopyrite%2Fpyrite+calcine&rft.jtitle=Chemical+engineering+journal+advances&rft.au=Lin+Li&rft.au=Jingxiu+Wang&rft.au=Chengqian+Wu&rft.au=Ahmad+Ghahreman&rft.date=2021-08-15&rft.pub=Elsevier&rft.issn=2666-8211&rft.eissn=2666-8211&rft.volume=7&rft.spage=100122&rft_id=info:doi/10.1016%2Fj.ceja.2021.100122&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_822e814dbb30483fb1308b07ac13a80b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-8211&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-8211&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-8211&client=summon