Patterns and Mechanisms of Nutrient Resorption in Plants
Nutrient resorption (NR) plays a key role in the nutrient conservation of plants. However, a fundamental understanding of the mechanisms that control NR remains limited. In this review, we examine how intrinsic controls (e.g., genetic variability and plant development) and extrinsic environmental co...
Saved in:
Published in | Critical reviews in plant sciences Vol. 34; no. 5; pp. 471 - 486 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Boca Raton
Taylor & Francis
03.09.2015
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nutrient resorption (NR) plays a key role in the nutrient conservation of plants. However, a fundamental understanding of the mechanisms that control NR remains limited. In this review, we examine how intrinsic controls (e.g., genetic variability and plant development) and extrinsic environmental controls (e.g., climate and soil fertility) influence NR. We also examined conceptual NR advances, mass loss correction, measurement in non-leaf plant tissues for whole-plant nutrient budget accounting, and the use of stoichiometric ratios in place of individual elements. Nutrient resorption from senescing leaves is greater than that from stems/culms or roots. Nutrients resorbed from stems and roots in woody plants are lower than in non-woody plants. Deciduous plants are more efficient in resorbing leaf nutrients prior to senescence than are evergreen plants. Furthermore, reproductive efforts tend to increase NR. Along a latitudinal gradient of terrestrial biomes, nitrogen resorption efficiency decreases and phosphorus resorption efficiency increases with increasing temperature and precipitation; however, latitudinal patterns reflect the influences of several coupling factors such as genetic variation, climate, soil, and disturbance history. Nutrient fertilization experiments have demonstrated that increased soil fertility reduces NR. The inquiries into the impacts of ongoing climate change on NR are still at a nascent stage. Future NR studies are needed to better understand the independent effects of a wide range of genetic variation, plant development, and environment, and possibly the different responses of plants to environmental change; particularly elevated atmospheric CO
2
concentrations and global warming. |
---|---|
AbstractList | Nutrient resorption (NR) plays a key role in the nutrient conservation of plants. However, a fundamental understanding of the mechanisms that control NR remains limited. In this review, we examine how intrinsic controls (e.g., genetic variability and plant development) and extrinsic environmental controls (e.g., climate and soil fertility) influence NR. We also examined conceptual NR advances, mass loss correction, measurement in non-leaf plant tissues for whole-plant nutrient budget accounting, and the use of stoichiometric ratios in place of individual elements. Nutrient resorption from senescing leaves is greater than that from stems/culms or roots. Nutrients resorbed from stems and roots in woody plants are lower than in non-woody plants. Deciduous plants are more efficient in resorbing leaf nutrients prior to senescence than are evergreen plants. Furthermore, reproductive efforts tend to increase NR. Along a latitudinal gradient of terrestrial biomes, nitrogen resorption efficiency decreases and phosphorus resorption efficiency increases with increasing temperature and precipitation; however, latitudinal patterns reflect the influences of several coupling factors such as genetic variation, climate, soil, and disturbance history. Nutrient fertilization experiments have demonstrated that increased soil fertility reduces NR. The inquiries into the impacts of ongoing climate change on NR are still at a nascent stage. Future NR studies are needed to better understand the independent effects of a wide range of genetic variation, plant development, and environment, and possibly the different responses of plants to environmental change; particularly elevated atmospheric CO sub(2) concentrations and global warming. Nutrient resorption (NR) plays a key role in the nutrient conservation of plants. However, a fundamental understanding of the mechanisms that control NR remains limited. In this review, we examine how intrinsic controls (e.g., genetic variability and plant development) and extrinsic environmental controls (e.g., climate and soil fertility) influence NR. We also examined conceptual NR advances, mass loss correction, measurement in non-leaf plant tissues for whole-plant nutrient budget accounting, and the use of stoichiometric ratios in place of individual elements. Nutrient resorption from senescing leaves is greater than that from stems/culms or roots. Nutrients resorbed from stems and roots in woody plants are lower than in non-woody plants. Deciduous plants are more efficient in resorbing leaf nutrients prior to senescence than are evergreen plants. Furthermore, reproductive efforts tend to increase NR. Along a latitudinal gradient of terrestrial biomes, nitrogen resorption efficiency decreases and phosphorus resorption efficiency increases with increasing temperature and precipitation; however, latitudinal patterns reflect the influences of several coupling factors such as genetic variation, climate, soil, and disturbance history. Nutrient fertilization experiments have demonstrated that increased soil fertility reduces NR. The inquiries into the impacts of ongoing climate change on NR are still at a nascent stage. Future NR studies are needed to better understand the independent effects of a wide range of genetic variation, plant development, and environment, and possibly the different responses of plants to environmental change; particularly elevated atmospheric CO... concentrations and global warming. (ProQuest: ... denotes formulae/symbols omitted.) Nutrient resorption (NR) plays a key role in the nutrient conservation of plants. However, a fundamental understanding of the mechanisms that control NR remains limited. In this review, we examine how intrinsic controls (e.g., genetic variability and plant development) and extrinsic environmental controls (e.g., climate and soil fertility) influence NR. We also examined conceptual NR advances, mass loss correction, measurement in non-leaf plant tissues for whole-plant nutrient budget accounting, and the use of stoichiometric ratios in place of individual elements. Nutrient resorption from senescing leaves is greater than that from stems/culms or roots. Nutrients resorbed from stems and roots in woody plants are lower than in non-woody plants. Deciduous plants are more efficient in resorbing leaf nutrients prior to senescence than are evergreen plants. Furthermore, reproductive efforts tend to increase NR. Along a latitudinal gradient of terrestrial biomes, nitrogen resorption efficiency decreases and phosphorus resorption efficiency increases with increasing temperature and precipitation; however, latitudinal patterns reflect the influences of several coupling factors such as genetic variation, climate, soil, and disturbance history. Nutrient fertilization experiments have demonstrated that increased soil fertility reduces NR. The inquiries into the impacts of ongoing climate change on NR are still at a nascent stage. Future NR studies are needed to better understand the independent effects of a wide range of genetic variation, plant development, and environment, and possibly the different responses of plants to environmental change; particularly elevated atmospheric CO ₂ concentrations and global warming. Nutrient resorption (NR) plays a key role in the nutrient conservation of plants. However, a fundamental understanding of the mechanisms that control NR remains limited. In this review, we examine how intrinsic controls (e.g., genetic variability and plant development) and extrinsic environmental controls (e.g., climate and soil fertility) influence NR. We also examined conceptual NR advances, mass loss correction, measurement in non-leaf plant tissues for whole-plant nutrient budget accounting, and the use of stoichiometric ratios in place of individual elements. Nutrient resorption from senescing leaves is greater than that from stems/culms or roots. Nutrients resorbed from stems and roots in woody plants are lower than in non-woody plants. Deciduous plants are more efficient in resorbing leaf nutrients prior to senescence than are evergreen plants. Furthermore, reproductive efforts tend to increase NR. Along a latitudinal gradient of terrestrial biomes, nitrogen resorption efficiency decreases and phosphorus resorption efficiency increases with increasing temperature and precipitation; however, latitudinal patterns reflect the influences of several coupling factors such as genetic variation, climate, soil, and disturbance history. Nutrient fertilization experiments have demonstrated that increased soil fertility reduces NR. The inquiries into the impacts of ongoing climate change on NR are still at a nascent stage. Future NR studies are needed to better understand the independent effects of a wide range of genetic variation, plant development, and environment, and possibly the different responses of plants to environmental change; particularly elevated atmospheric CO 2 concentrations and global warming. |
Author | Brant, Amber N. Chen, Han Y.H. |
Author_xml | – sequence: 1 givenname: Amber N. surname: Brant fullname: Brant, Amber N. organization: Faculty of Natural Resources Management, Lakehead University – sequence: 2 givenname: Han Y.H. surname: Chen fullname: Chen, Han Y.H. email: hchen1@lakeheadu.ca organization: Faculty of Natural Resources Management, Lakehead University |
BookMark | eNqNkU1LAzEURYMoWKs_QRhw42bqy2QySXCjiF_gRxFdhzSTYGSa1CRF-u-doXXThboKPM65vLx7gHZ98AahYwwTDBzOgBFaNVxMKsC0HzHeYLyDRpjWomScNLtoNDDlAO2jg5Q-AKBpKj5CfKpyNtGnQvm2eDT6XXmX5qkItnha5uiMz8WLSSEusgu-cL6YdsrndIj2rOqSOdq8Y_R2c_16dVc-PN_eX10-lJoCySVlFDNTa0uJwtjULZ5xYJSrFixTUGNmZy0nxnILmmtrWCWAKyFUJYxtKRmj03XuIobPpUlZzl3SpuuXMGGZJGaCVHUtxH9QRnglBBH_QCmpcY2bpkdPttCPsIy-_3NPVX0YBuA9db6mdAwpRWOldlkNJ8tRuU5ikENX8qcrOXQlN131Nt2yF9HNVVz96V2sPedtiHP1FWLXyqxWXYg2Kq9dkuT3iG8XdKqJ |
CODEN | CRPSD3 |
CitedBy_id | crossref_primary_10_1038_s41598_017_11163_7 crossref_primary_10_1007_s13157_019_01256_6 crossref_primary_10_1038_s41598_018_30324_w crossref_primary_10_1186_s12870_024_05484_9 crossref_primary_10_1016_j_foreco_2020_118232 crossref_primary_10_1016_j_still_2024_106123 crossref_primary_10_3390_d15020187 crossref_primary_10_3390_w13223288 crossref_primary_10_1007_s10021_020_00537_0 crossref_primary_10_1016_j_agrformet_2024_110249 crossref_primary_10_3390_su15010631 crossref_primary_10_1111_nph_17572 crossref_primary_10_1007_s11104_018_3775_6 crossref_primary_10_1016_j_foreco_2021_119053 crossref_primary_10_1002_ldr_4254 crossref_primary_10_1002_ece3_4407 crossref_primary_10_5194_bg_21_4169_2024 crossref_primary_10_1002_ecm_1300 crossref_primary_10_1038_s41598_024_53574_3 crossref_primary_10_3389_fpls_2023_1174697 crossref_primary_10_1093_jpe_rty023 crossref_primary_10_3390_f11040363 crossref_primary_10_1088_1748_9326_ac6a6b crossref_primary_10_1111_plb_70005 crossref_primary_10_1002_ece3_6038 crossref_primary_10_1016_j_ecolind_2021_107488 crossref_primary_10_1016_j_fecs_2023_100154 crossref_primary_10_1021_acs_est_4c01662 crossref_primary_10_3832_ifor3912_014 crossref_primary_10_1007_s11104_024_06843_z crossref_primary_10_1007_s13595_018_0727_5 crossref_primary_10_1016_j_foreco_2024_122284 crossref_primary_10_1002_saj2_20059 crossref_primary_10_1016_j_agee_2024_109160 crossref_primary_10_3390_f11090994 crossref_primary_10_1002_ajb2_1246 crossref_primary_10_1016_j_scitotenv_2022_157176 crossref_primary_10_3390_f10030201 crossref_primary_10_1007_s42965_024_00352_x crossref_primary_10_1002_saj2_20172 crossref_primary_10_1016_j_ufug_2023_128113 crossref_primary_10_1111_ppl_13980 crossref_primary_10_1016_j_fecs_2024_100173 crossref_primary_10_1093_jpe_rtac017 crossref_primary_10_1007_s11104_017_3551_z crossref_primary_10_1111_plb_13153 crossref_primary_10_3390_agronomy11112280 crossref_primary_10_3389_fevo_2022_1046444 crossref_primary_10_1093_treephys_tpad044 crossref_primary_10_3389_ffgc_2021_666116 crossref_primary_10_1007_s11104_024_07130_7 crossref_primary_10_1016_j_foreco_2021_119876 crossref_primary_10_3389_fpls_2021_692683 crossref_primary_10_1016_j_heliyon_2024_e32627 crossref_primary_10_1007_s00468_018_1725_9 crossref_primary_10_1007_s42965_020_00063_z crossref_primary_10_1093_jpe_rty056 crossref_primary_10_1016_j_ecolind_2020_107250 crossref_primary_10_1111_1365_2435_14137 crossref_primary_10_1002_jpln_202100144 crossref_primary_10_1007_s11676_017_0519_z crossref_primary_10_3389_fpls_2018_01292 crossref_primary_10_1002_ecy_4509 crossref_primary_10_1080_01904167_2019_1567776 crossref_primary_10_1002_ecs2_4143 crossref_primary_10_1007_s10533_021_00848_x crossref_primary_10_1016_j_ecolind_2019_04_017 crossref_primary_10_1007_s40333_021_0080_7 crossref_primary_10_1002_wcc_428 crossref_primary_10_1007_s11104_022_05408_2 crossref_primary_10_3389_fpls_2019_00744 crossref_primary_10_1007_s11368_016_1352_2 crossref_primary_10_1016_j_scitotenv_2022_157916 crossref_primary_10_1126_sciadv_add4468 crossref_primary_10_17129_botsci_2732 crossref_primary_10_1002_ecs2_4802 crossref_primary_10_3389_fpls_2023_1140080 crossref_primary_10_3390_agronomy14071543 crossref_primary_10_1111_1365_2745_13168 crossref_primary_10_3390_f9090563 crossref_primary_10_1016_j_gecco_2022_e02158 crossref_primary_10_1111_1365_2435_14152 crossref_primary_10_2139_ssrn_3958871 crossref_primary_10_3390_d14080661 crossref_primary_10_3390_f13060905 crossref_primary_10_1111_1365_2435_14603 crossref_primary_10_1016_j_envpol_2018_08_010 crossref_primary_10_1016_j_agrformet_2023_109724 crossref_primary_10_1016_j_foreco_2020_117984 crossref_primary_10_1002_ece3_7734 crossref_primary_10_1007_s11104_023_06214_0 crossref_primary_10_1111_1365_2745_13952 crossref_primary_10_1016_j_tfp_2024_100549 crossref_primary_10_1016_j_scitotenv_2022_158101 crossref_primary_10_5194_bg_16_1265_2019 crossref_primary_10_1093_jpe_rtaa076 crossref_primary_10_1093_jpe_rtaa077 crossref_primary_10_1111_gcb_14802 crossref_primary_10_1007_s11104_016_3093_9 crossref_primary_10_1007_s11104_018_3598_5 crossref_primary_10_1016_j_still_2021_104978 crossref_primary_10_1007_s00442_023_05415_9 crossref_primary_10_1093_nsr_nwae371 crossref_primary_10_1111_1365_2435_13809 crossref_primary_10_3390_biology7040051 crossref_primary_10_1007_s11104_017_3473_9 crossref_primary_10_3390_plants13121659 crossref_primary_10_1186_s12870_024_05794_y crossref_primary_10_1111_1365_2435_14330 crossref_primary_10_1111_1365_2745_13180 crossref_primary_10_3389_fpls_2021_667964 crossref_primary_10_1016_j_scitotenv_2020_138106 crossref_primary_10_1007_s10021_021_00728_3 crossref_primary_10_3390_agronomy10020310 crossref_primary_10_1007_s11104_023_06259_1 crossref_primary_10_1016_j_gecco_2020_e01138 crossref_primary_10_1007_s42729_024_02063_7 crossref_primary_10_1016_j_foreco_2021_119573 crossref_primary_10_1111_gcb_14914 crossref_primary_10_1093_treephys_tpad010 crossref_primary_10_1111_geb_12738 crossref_primary_10_1007_s11258_024_01475_w crossref_primary_10_1111_1365_2745_13971 crossref_primary_10_1093_treephys_tpab073 crossref_primary_10_1111_1365_2745_14388 crossref_primary_10_1007_s11104_022_05676_y crossref_primary_10_1007_s11270_016_2881_4 crossref_primary_10_1007_s11104_024_07125_4 crossref_primary_10_7717_peerj_15738 crossref_primary_10_1002_ece3_3283 crossref_primary_10_1007_s11056_023_09982_w crossref_primary_10_3390_f14040675 crossref_primary_10_3389_fpls_2023_1201759 crossref_primary_10_1016_j_scitotenv_2020_143153 crossref_primary_10_1155_2022_9202493 crossref_primary_10_1111_oik_09751 crossref_primary_10_1016_j_xplc_2022_100503 crossref_primary_10_1093_pcp_pcx106 crossref_primary_10_3389_fpls_2021_830119 crossref_primary_10_1007_s11258_018_0841_3 crossref_primary_10_1007_s11258_020_01103_3 crossref_primary_10_1007_s11104_020_04733_8 crossref_primary_10_1007_s11104_022_05533_y crossref_primary_10_1007_s11258_017_0752_8 crossref_primary_10_1016_j_fecs_2024_100289 crossref_primary_10_3389_fpls_2018_01431 crossref_primary_10_17129_botsci_3074 crossref_primary_10_3390_land13081169 crossref_primary_10_1016_j_agee_2020_106840 crossref_primary_10_3390_f14010005 crossref_primary_10_1007_s11258_021_01218_1 crossref_primary_10_1007_s42729_022_01059_5 crossref_primary_10_1186_s13717_022_00413_w crossref_primary_10_5194_bg_14_2003_2017 crossref_primary_10_1007_s11356_021_18247_y crossref_primary_10_7235_HORT_20250016 crossref_primary_10_1007_s00442_023_05353_6 crossref_primary_10_1111_1440_1703_12111 crossref_primary_10_3389_fpls_2020_00086 crossref_primary_10_1007_s11104_023_06080_w crossref_primary_10_1016_j_ecoleng_2021_106497 crossref_primary_10_1186_s40663_021_00350_8 crossref_primary_10_1111_1365_2435_13327 crossref_primary_10_1016_j_soilbio_2022_108609 crossref_primary_10_1016_j_scitotenv_2017_11_030 crossref_primary_10_1111_plb_12594 crossref_primary_10_5194_bg_21_3165_2024 crossref_primary_10_1016_j_scitotenv_2021_144951 crossref_primary_10_1016_j_rhisph_2022_100594 crossref_primary_10_1007_s11104_017_3237_6 crossref_primary_10_1016_j_fecs_2024_100221 crossref_primary_10_1111_oik_10867 crossref_primary_10_1093_aobpla_ply028 crossref_primary_10_1007_s11676_024_01775_x crossref_primary_10_1016_j_foreco_2022_120696 crossref_primary_10_1029_2019JG005080 crossref_primary_10_1111_1365_2435_14318 crossref_primary_10_1093_femsec_fiz144 crossref_primary_10_1093_jpe_rtad049 crossref_primary_10_1111_geb_12885 crossref_primary_10_1007_s11676_023_01667_6 crossref_primary_10_3389_fpls_2018_01483 crossref_primary_10_1007_s11104_016_3037_4 crossref_primary_10_1007_s10021_016_0098_4 crossref_primary_10_1016_j_soilbio_2021_108198 crossref_primary_10_1111_ppl_14626 crossref_primary_10_18182_tjf_1334107 crossref_primary_10_3389_fpls_2021_665168 crossref_primary_10_3389_fpls_2022_905358 crossref_primary_10_1007_s12155_017_9819_6 crossref_primary_10_1016_j_jplph_2018_11_007 crossref_primary_10_1016_j_envexpbot_2019_103825 crossref_primary_10_35193_bseufbd_641833 crossref_primary_10_1093_jpe_rtac083 crossref_primary_10_1007_s11056_022_09910_4 crossref_primary_10_1007_s10457_024_01044_0 crossref_primary_10_1016_j_foreco_2020_117905 crossref_primary_10_1111_gcb_13923 crossref_primary_10_1016_j_fecs_2025_100304 crossref_primary_10_1093_treephys_tpac028 crossref_primary_10_3389_fpls_2023_1139945 crossref_primary_10_3389_fpls_2020_01260 crossref_primary_10_1007_s11104_024_07035_5 crossref_primary_10_1016_j_foreco_2020_118683 crossref_primary_10_3390_plants9030292 crossref_primary_10_5194_bg_14_131_2017 crossref_primary_10_1016_j_scitotenv_2023_164482 crossref_primary_10_3390_agriculture12122154 crossref_primary_10_1016_j_foreco_2023_121141 crossref_primary_10_1186_s13717_024_00507_7 |
Cites_doi | 10.1007/BF00379357 10.1016/j.jaridenv.2005.01.023 10.1007/s00442-012-2396-7 10.1016/j.soilbio.2012.03.014 10.1007/s00442-013-2784-7 10.1016/j.ppees.2011.08.002 10.1371/journal.pone.0083366 10.1080/07352689.2010.483579 10.1111/j.1469-8137.2010.03228.x 10.1086/324181 10.1111/j.1469-8137.1993.tb03847.x 10.1098/rspb.2012.0955 10.1890/09-1509.1 10.1139/b72-289 10.1111/j.1469-8137.2012.04114.x 10.1111/1365-2745.12217 10.1073/pnas.94.25.13730 10.1146/annurev.es.20.110189.000245 10.1007/BF00378600 10.1093/treephys/24.4.387 10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2 10.2307/2260754 10.1051/forest:2004043 10.1146/annurev.pp.06.060155.000325 10.1111/j.1469-8137.1994.tb04243.x 10.1111/j.1469-8137.2012.04256.x 10.1046/j.1469-8137.2000.00682.x 10.1890/12-0781.1 10.1016/j.jaridenv.2010.05.030 10.1111/j.1461-0248.2007.01113.x 10.1038/nature12914 10.2307/2401336 10.1007/s11104-013-1747-4 10.1007/BF00379710 10.1046/j.1469-8137.2000.00681.x 10.1111/j.1466-8238.2009.00474.x 10.1126/science.1066360 10.2307/2261481 10.1007/s10342-013-0748-4 10.1007/s00442-003-1265-9 10.1111/j.1466-8238.2010.00602.x 10.1016/0169-5347(96)10042-2 10.1007/s00442-012-2266-3 10.1093/treephys/tpp004 10.1111/plb.12147 10.1073/pnas.0701728104 10.1146/annurev.ecolsys.37.091305.110246 10.1007/s00606-008-0103-2 10.1086/334303 10.1007/s11104-010-0475-2 10.2307/1937083 10.1007/s11104-004-7941-7 10.1046/j.1365-2435.2003.00694.x 10.2307/3565477 10.1111/j.1469-8137.2011.03952.x 10.2307/1939507 10.1086/283931 10.1111/j.1654-1103.2003.tb02128.x 10.1016/j.ecoleng.2010.12.013 10.1126/science.123.3206.1039-a 10.1086/285676 10.1016/B978-0-12-734850-6.50046-0 10.1007/s11284-011-0836-1 10.1016/S0065-2504(08)60122-1 10.1007/s11120-004-9366-9 10.1104/pp.43.7.1031 10.1016/j.jaridenv.2011.08.018 10.1126/science.1091390 10.1029/2011GB004252 10.1111/j.1469-8137.2004.01192.x 10.2307/1934963 10.1146/annurev.es.11.110180.001313 10.1111/j.0269-8463.2005.00967.x 10.1007/BF00317812 10.1007/s00344-013-9397-6 10.1007/BF00002772 10.1111/j.1469-8137.2012.04376.x 10.1111/j.1466-8238.2008.00425.x 10.1371/journal.pone.0042045 10.1016/j.jhydrol.2009.07.029 10.1146/annurev.es.21.110190.002231 10.2307/2937209 10.5194/bg-10-4833-2013 10.1007/s10533-011-9694-8 10.1111/j.1469-8137.2009.02893.x 10.1016/S0065-2504(08)60009-4 10.1093/treephys/tps050 10.1093/aob/mci050 10.2980/18-4-3432 10.1007/BF02860066 10.1093/treephys/28.2.187 10.1890/06-2057.1 10.2307/2258529 10.1093/treephys/25.8.1001 10.1890/11-0416.1 10.1007/BF01343507 10.1890/0012-9658(2000)081[0275:NCIFR]2.0.CO;2 10.2307/2996743 10.1016/j.foreco.2013.06.029 10.2307/2405065 10.1007/s00442-006-0575-0 10.1007/s11104-009-0078-y 10.1038/ncomms3934 10.1016/j.ecoleng.2012.12.061 10.1002/ece3.520 10.1093/treephys/9.1-2.185 10.1111/1365-2745.12196 10.1111/j.1469-8137.2012.04349.x 10.1007/s11104-012-1370-9 10.1086/528749 10.1111/j.1469-8137.2012.04234.x 10.1111/j.1365-2486.2011.02451.x 10.1038/nature02403 10.1111/j.1469-8137.2005.01477.x 10.1016/S0378-1127(00)00345-5 10.1104/pp.112.208785 10.1890/12-2119.1 10.1111/j.1654-1103.2007.tb02591.x 10.1093/jpe/rtt013 10.2307/2259251 10.1046/j.1469-8137.1999.00429.x 10.2307/1939481 10.1080/01904168009362788 10.2307/2265777 10.1007/s00425-003-1041-4 10.1371/journal.pone.0083735 10.1111/j.1365-2435.2012.02007.x 10.1046/j.1365-2745.2003.00818.x 10.1073/pnas.1006463107 10.1051/forest:2002014 10.1007/s11104-013-2009-1 10.1038/ncomms1346 10.1051/forest:2002059 10.1016/j.foreco.2006.02.021 10.1111/j.1600-0706.2008.16793.x 10.1111/jse.12055 10.1146/annurev.pp.21.060170.001513 10.1038/nature04486 10.2307/2937116 10.1111/j.1744-7429.2010.00740.x 10.1007/BF00377192 10.2307/1297148 10.1046/j.1461-0248.2003.00518.x 10.1111/1365-2745.12213 10.1111/gcb.12235 10.1080/07352689.2012.734742 10.1111/ele.12095 10.1016/j.jaridenv.2011.11.007 10.1016/j.ufug.2006.01.007 10.2307/3565292 10.2307/3672144 10.1071/BT07139 10.1007/s10342-013-0754-6 10.2307/3545208 10.2307/3566095 10.1007/s12080-010-0110-0 10.1111/geb.12015 10.1890/1051-0761(2001)011[1395:NPPACA]2.0.CO;2 10.1111/1365-2745.12190 10.1023/A:1004629231766 10.1093/treephys/20.16.1105 10.1034/j.1600-0706.2003.12351.x 10.1007/BF00002935 10.1656/1092-6194(2002)009[0213:DLSIRO]2.0.CO;2 10.1007/BF02371146 10.1046/j.1365-2435.1997.00137.x 10.1007/s40333-013-0222-7 10.2307/3545630 10.1890/0012-9658(1997)078[0335:NMAPIH]2.0.CO;2 10.1890/04-0524 10.1890/04-1830 10.1093/treephys/10.1.45 10.2307/2446064 10.1073/pnas.0403588101 10.1007/BF02371212 10.1111/j.1461-0248.2011.01651.x 10.1016/S0169-5347(00)89156-9 10.1046/j.1469-8137.2003.00695.x 10.1097/00010694-194111000-00009 10.1111/j.1365-2745.2011.01881.x 10.2307/1313296 10.2307/1941251 10.2307/2404783 10.1007/s11104-009-0036-8 10.1111/j.1466-8238.2008.00441.x 10.1890/14-0140.1 10.1038/nature12670 10.1007/s00442-006-0409-0 10.1126/science.1113977 10.1038/nclimate2549 10.1890/03-0351 10.1093/treephys/16.3.333 10.1093/oxfordjournals.aob.a087575 10.2307/2259377 10.1007/s11258-009-9681-5 10.1093/aob/mcg093 10.1002/ece3.1079 10.1016/S0065-2504(08)60016-1 10.1007/s10021-012-9623-2 10.1007/s00442-013-2672-1 10.1093/aob/mcs299 10.2307/1940038 |
ContentType | Journal Article |
Copyright | Copyright © Taylor & Francis Group, LLC 2015 Copyright Taylor & Francis Ltd. 2015 |
Copyright_xml | – notice: Copyright © Taylor & Francis Group, LLC 2015 – notice: Copyright Taylor & Francis Ltd. 2015 |
DBID | AAYXX CITATION 7QO 7QR 7ST 7T7 7TM 8FD C1K FR3 P64 RC3 SOI 7S9 L.6 7U6 KR7 |
DOI | 10.1080/07352689.2015.1078611 |
DatabaseName | CrossRef Biotechnology Research Abstracts Chemoreception Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic Sustainability Science Abstracts Civil Engineering Abstracts |
DatabaseTitle | CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic Sustainability Science Abstracts Civil Engineering Abstracts |
DatabaseTitleList | Environment Abstracts Technology Research Database Genetics Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1549-7836 |
EndPage | 486 |
ExternalDocumentID | 3856126961 10_1080_07352689_2015_1078611 1078611 |
Genre | Article Feature |
GroupedDBID | .7F .QJ 0BK 0R~ 29F 2DF 30N 4.4 53G 5GY 5VS 6J9 AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACGOD ACIWK ACPRK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRAH AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS ECGQY EJD E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P JEPSP KYCEM M4Z NA5 NX0 O9- P2P RIG RNANH ROSJB RRB RTWRZ RWL S-T SNACF TAE TBQAZ TDBHL TEI TFL TFT TFW TQWBC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~KM ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7QO 7QR 7ST 7T7 7TM 8FD C1K FR3 P64 RC3 SOI TASJS 7S9 L.6 7U6 KR7 |
ID | FETCH-LOGICAL-c503t-57517e4cf53a11e4d1b80758ad0f7a0417fbd83ef8f0c8cfe72908a99a29efd53 |
ISSN | 0735-2689 1549-7836 |
IngestDate | Fri Jul 11 08:00:02 EDT 2025 Fri Jul 11 10:50:05 EDT 2025 Wed Jul 02 04:33:08 EDT 2025 Wed Aug 13 09:45:23 EDT 2025 Tue Jul 01 03:46:51 EDT 2025 Thu Apr 24 23:08:06 EDT 2025 Wed Dec 25 09:05:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c503t-57517e4cf53a11e4d1b80758ad0f7a0417fbd83ef8f0c8cfe72908a99a29efd53 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1729391008 |
PQPubID | 33284 |
PageCount | 16 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_07352689_2015_1078611 proquest_miscellaneous_1753414166 crossref_citationtrail_10_1080_07352689_2015_1078611 crossref_primary_10_1080_07352689_2015_1078611 proquest_miscellaneous_1793244995 proquest_miscellaneous_1773829939 proquest_journals_1729391008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-03 |
PublicationDateYYYYMMDD | 2015-09-03 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Boca Raton |
PublicationPlace_xml | – name: Boca Raton |
PublicationTitle | Critical reviews in plant sciences |
PublicationYear | 2015 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | cit0077 cit0198 cit0078 cit0199 cit0075 cit0196 cit0076 cit0197 cit0073 cit0194 cit0074 cit0195 cit0071 cit0192 cit0072 cit0193 cit0070 cit0191 Lang S. I. (cit0103) 2014; 4 Redfield A. C. (cit0140) 1934 cit0079 cit0066 cit0187 cit0067 cit0188 cit0064 cit0185 cit0065 cit0186 cit0062 cit0183 cit0063 cit0060 cit0181 cit0061 cit0182 cit0180 cit0068 cit0189 cit0069 cit0099 cit0097 cit0098 cit0095 Jenny H. (cit0085) 1941 cit0096 cit0094 cit0091 cit0092 cit0090 cit0088 cit0089 cit0086 cit0087 cit0084 cit0082 cit0083 cit0080 cit0081 cit0033 cit0154 cit0034 cit0155 cit0031 cit0152 cit0032 cit0153 cit0150 cit0151 cit0039 cit0037 cit0158 cit0038 cit0159 cit0035 cit0156 cit0036 cit0157 cit0022 cit0143 cit0023 cit0144 cit0020 cit0141 cit0021 cit0142 Lal C. B. (cit0102) 2001; 79 cit0028 cit0149 cit0029 cit0026 cit0147 cit0027 cit0148 cit0024 cit0145 cit0025 cit0146 cit0055 cit0176 cit0056 cit0177 cit0053 cit0174 cit0054 cit0175 cit0051 cit0172 cit0052 cit0173 cit0170 cit0050 cit0171 cit0059 cit0057 cit0178 cit0058 cit0179 cit0044 cit0165 cit0045 cit0166 cit0042 cit0163 cit0043 cit0164 cit0040 Penuelas J. (cit0135) 2013; 4 cit0161 cit0041 cit0162 cit0160 Ye G. F. (cit0190) 2012; 24 Combes R. (cit0030) 1926; 38 cit0048 cit0169 cit0049 cit0046 cit0167 cit0047 cit0168 cit0110 cit0111 cit0118 cit0119 cit0116 cit0117 cit0114 cit0115 cit0112 cit0113 cit0100 cit0109 cit0107 cit0108 cit0105 cit0106 cit0104 cit0101 cit0011 cit0132 cit0012 cit0133 cit0130 cit0010 cit0131 Killingbeck K. T. (cit0093) 1993; 66 cit0019 cit0017 cit0138 cit0018 cit0139 cit0015 cit0136 cit0016 cit0137 cit0013 cit0134 cit0014 cit0121 cit0001 cit0122 cit0120 cit0008 cit0129 cit0009 cit0006 cit0127 cit0007 cit0128 cit0004 cit0125 cit0005 cit0126 cit0002 cit0123 cit0003 cit0124 Wilson J. B. (cit0184) 1988; 61 cit0206 cit0207 cit0204 cit0205 cit0202 cit0203 cit0200 cit0201 |
References_xml | – volume: 66 start-page: 345 year: 1993 ident: cit0093 publication-title: Rev. Chil. Hist. Nat. – ident: cit0018 doi: 10.1007/BF00379357 – ident: cit0204 doi: 10.1016/j.jaridenv.2005.01.023 – ident: cit0044 doi: 10.1007/s00442-012-2396-7 – ident: cit0029 doi: 10.1016/j.soilbio.2012.03.014 – ident: cit0182 doi: 10.1007/s00442-013-2784-7 – ident: cit0151 doi: 10.1016/j.ppees.2011.08.002 – ident: cit0068 doi: 10.1371/journal.pone.0083366 – ident: cit0194 doi: 10.1080/07352689.2010.483579 – ident: cit0056 doi: 10.1111/j.1469-8137.2010.03228.x – ident: cit0095 doi: 10.1086/324181 – ident: cit0015 doi: 10.1111/j.1469-8137.1993.tb03847.x – ident: cit0196 doi: 10.1098/rspb.2012.0955 – ident: cit0133 doi: 10.1890/09-1509.1 – ident: cit0157 doi: 10.1139/b72-289 – ident: cit0011 doi: 10.1111/j.1469-8137.2012.04114.x – ident: cit0031 doi: 10.1111/1365-2745.12217 – ident: cit0145 doi: 10.1073/pnas.94.25.13730 – ident: cit0020 doi: 10.1146/annurev.es.20.110189.000245 – ident: cit0091 doi: 10.1007/BF00378600 – ident: cit0170 doi: 10.1093/treephys/24.4.387 – ident: cit0114 doi: 10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2 – ident: cit0005 doi: 10.2307/2260754 – ident: cit0066 doi: 10.1051/forest:2004043 – ident: cit0183 doi: 10.1146/annurev.pp.06.060155.000325 – ident: cit0158 doi: 10.1111/j.1469-8137.1994.tb04243.x – ident: cit0009 doi: 10.1111/j.1469-8137.2012.04256.x – ident: cit0017 doi: 10.1046/j.1469-8137.2000.00682.x – volume: 38 start-page: 430 year: 1926 ident: cit0030 publication-title: Rev. Gen. Bot. – ident: cit0168 doi: 10.1890/12-0781.1 – ident: cit0043 doi: 10.1016/j.jaridenv.2010.05.030 – ident: cit0047 doi: 10.1111/j.1461-0248.2007.01113.x – ident: cit0161 doi: 10.1038/nature12914 – ident: cit0069 doi: 10.2307/2401336 – ident: cit0089 doi: 10.1007/s11104-013-1747-4 – ident: cit0052 doi: 10.1007/BF00379710 – ident: cit0059 doi: 10.1046/j.1469-8137.2000.00681.x – ident: cit0192 doi: 10.1111/j.1466-8238.2009.00474.x – ident: cit0048 doi: 10.1126/science.1066360 – ident: cit0003 doi: 10.2307/2261481 – ident: cit0022 doi: 10.1007/s10342-013-0748-4 – ident: cit0132 doi: 10.1007/s00442-003-1265-9 – ident: cit0189 doi: 10.1111/j.1466-8238.2010.00602.x – ident: cit0063 doi: 10.1016/0169-5347(96)10042-2 – ident: cit0078 doi: 10.1007/s00442-012-2266-3 – ident: cit0100 doi: 10.1093/treephys/tpp004 – ident: cit0207 doi: 10.1111/plb.12147 – ident: cit0166 doi: 10.1073/pnas.0701728104 – ident: cit0074 doi: 10.1146/annurev.ecolsys.37.091305.110246 – ident: cit0107 doi: 10.1007/s00606-008-0103-2 – ident: cit0120 doi: 10.1086/334303 – ident: cit0153 doi: 10.1007/s11104-010-0475-2 – ident: cit0026 doi: 10.2307/1937083 – ident: cit0203 doi: 10.1007/s11104-004-7941-7 – ident: cit0188 doi: 10.1046/j.1365-2435.2003.00694.x – ident: cit0090 doi: 10.2307/3565477 – ident: cit0138 doi: 10.1111/j.1469-8137.2011.03952.x – ident: cit0139 doi: 10.2307/1939507 – ident: cit0177 doi: 10.1086/283931 – ident: cit0039 doi: 10.1111/j.1654-1103.2003.tb02128.x – ident: cit0110 doi: 10.1016/j.ecoleng.2010.12.013 – ident: cit0109 doi: 10.1126/science.123.3206.1039-a – ident: cit0014 doi: 10.1086/285676 – ident: cit0108 doi: 10.1016/B978-0-12-734850-6.50046-0 – ident: cit0084 doi: 10.1007/s11284-011-0836-1 – start-page: 176 volume-title: James Johnson Memorial Volume year: 1934 ident: cit0140 – ident: cit0181 doi: 10.1016/S0065-2504(08)60122-1 – ident: cit0023 doi: 10.1007/s11120-004-9366-9 – ident: cit0037 doi: 10.1104/pp.43.7.1031 – ident: cit0081 doi: 10.1016/j.jaridenv.2011.08.018 – ident: cit0083 doi: 10.1126/science.1091390 – ident: cit0054 doi: 10.1029/2011GB004252 – ident: cit0064 doi: 10.1111/j.1469-8137.2004.01192.x – ident: cit0186 doi: 10.2307/1934963 – ident: cit0024 doi: 10.1146/annurev.es.11.110180.001313 – ident: cit0065 doi: 10.1111/j.0269-8463.2005.00967.x – ident: cit0049 doi: 10.1007/BF00317812 – ident: cit0082 doi: 10.1007/s00344-013-9397-6 – ident: cit0179 doi: 10.1007/BF00002772 – ident: cit0016 doi: 10.1111/j.1469-8137.2012.04376.x – ident: cit0191 doi: 10.1111/j.1466-8238.2008.00425.x – ident: cit0123 doi: 10.1371/journal.pone.0042045 – ident: cit0165 doi: 10.1016/j.jhydrol.2009.07.029 – ident: cit0027 doi: 10.1146/annurev.es.21.110190.002231 – ident: cit0036 doi: 10.2307/2937209 – ident: cit0159 doi: 10.5194/bg-10-4833-2013 – ident: cit0040 doi: 10.1007/s10533-011-9694-8 – ident: cit0116 doi: 10.1111/j.1469-8137.2009.02893.x – ident: cit0147 doi: 10.1016/S0065-2504(08)60009-4 – ident: cit0169 doi: 10.1093/treephys/tps050 – ident: cit0076 doi: 10.1093/aob/mci050 – ident: cit0073 doi: 10.2980/18-4-3432 – ident: cit0172 doi: 10.1007/BF02860066 – ident: cit0053 doi: 10.1093/treephys/28.2.187 – ident: cit0104 doi: 10.1890/06-2057.1 – ident: cit0070 doi: 10.2307/2258529 – ident: cit0128 doi: 10.1093/treephys/25.8.1001 – ident: cit0176 doi: 10.1890/11-0416.1 – ident: cit0057 doi: 10.1007/BF01343507 – ident: cit0061 doi: 10.1890/0012-9658(2000)081[0275:NCIFR]2.0.CO;2 – ident: cit0126 doi: 10.2307/2996743 – volume: 24 start-page: 546 year: 2012 ident: cit0190 publication-title: J. Trop. For. Sci. – ident: cit0124 doi: 10.1016/j.foreco.2013.06.029 – ident: cit0019 doi: 10.2307/2405065 – ident: cit0007 doi: 10.1007/s00442-006-0575-0 – ident: cit0112 doi: 10.1007/s11104-009-0078-y – volume: 4 start-page: 2934 year: 2013 ident: cit0135 publication-title: Nat. Commun. doi: 10.1038/ncomms3934 – ident: cit0105 doi: 10.1016/j.ecoleng.2012.12.061 – ident: cit0055 doi: 10.1002/ece3.520 – ident: cit0127 doi: 10.1093/treephys/9.1-2.185 – ident: cit0072 doi: 10.1111/1365-2745.12196 – ident: cit0041 doi: 10.1111/j.1469-8137.2012.04349.x – ident: cit0115 doi: 10.1007/s11104-012-1370-9 – ident: cit0162 doi: 10.1086/528749 – ident: cit0156 doi: 10.1111/j.1469-8137.2012.04234.x – ident: cit0088 doi: 10.1111/j.1365-2486.2011.02451.x – ident: cit0187 doi: 10.1038/nature02403 – ident: cit0125 doi: 10.1111/j.1469-8137.2005.01477.x – ident: cit0137 doi: 10.1016/S0378-1127(00)00345-5 – ident: cit0149 doi: 10.1104/pp.112.208785 – ident: cit0155 doi: 10.1890/12-2119.1 – ident: cit0160 doi: 10.1111/j.1654-1103.2007.tb02591.x – ident: cit0163 doi: 10.1093/jpe/rtt013 – ident: cit0025 doi: 10.2307/2259251 – ident: cit0045 doi: 10.1046/j.1469-8137.1999.00429.x – ident: cit0178 doi: 10.2307/1939481 – ident: cit0077 doi: 10.1080/01904168009362788 – ident: cit0094 doi: 10.2307/2265777 – ident: cit0154 doi: 10.1007/s00425-003-1041-4 – ident: cit0058 doi: 10.1371/journal.pone.0083735 – ident: cit0195 doi: 10.1111/j.1365-2435.2012.02007.x – ident: cit0050 doi: 10.1046/j.1365-2745.2003.00818.x – ident: cit0130 doi: 10.1073/pnas.1006463107 – ident: cit0021 doi: 10.1051/forest:2002014 – ident: cit0032 doi: 10.1007/s11104-013-2009-1 – ident: cit0201 doi: 10.1038/ncomms1346 – ident: cit0121 doi: 10.1051/forest:2002059 – ident: cit0067 doi: 10.1016/j.foreco.2006.02.021 – volume: 79 start-page: 1066 year: 2001 ident: cit0102 publication-title: Can. J. Bot. – ident: cit0033 doi: 10.1111/j.1600-0706.2008.16793.x – ident: cit0205 doi: 10.1111/jse.12055 – ident: cit0167 doi: 10.1146/annurev.pp.21.060170.001513 – ident: cit0143 doi: 10.1038/nature04486 – ident: cit0141 doi: 10.2307/2937116 – ident: cit0185 doi: 10.1111/j.1744-7429.2010.00740.x – ident: cit0051 doi: 10.1007/BF00377192 – ident: cit0180 doi: 10.2307/1297148 – ident: cit0046 doi: 10.1046/j.1461-0248.2003.00518.x – ident: cit0042 doi: 10.1111/1365-2745.12213 – ident: cit0113 doi: 10.1111/gcb.12235 – ident: cit0028 doi: 10.1080/07352689.2012.734742 – ident: cit0164 doi: 10.1111/ele.12095 – ident: cit0080 doi: 10.1016/j.jaridenv.2011.11.007 – ident: cit0131 doi: 10.1016/j.ufug.2006.01.007 – ident: cit0008 doi: 10.2307/3565292 – ident: cit0092 doi: 10.2307/3672144 – ident: cit0200 doi: 10.1071/BT07139 – ident: cit0060 doi: 10.1007/s10342-013-0754-6 – ident: cit0010 doi: 10.2307/3545208 – ident: cit0086 doi: 10.2307/3566095 – ident: cit0122 doi: 10.1007/s12080-010-0110-0 – ident: cit0150 doi: 10.1111/geb.12015 – ident: cit0062 doi: 10.1890/1051-0761(2001)011[1395:NPPACA]2.0.CO;2 – ident: cit0118 doi: 10.1111/1365-2745.12190 – ident: cit0129 doi: 10.1023/A:1004629231766 – ident: cit0152 doi: 10.1093/treephys/20.16.1105 – ident: cit0173 doi: 10.1034/j.1600-0706.2003.12351.x – ident: cit0004 doi: 10.1007/BF00002935 – ident: cit0096 doi: 10.1656/1092-6194(2002)009[0213:DLSIRO]2.0.CO;2 – ident: cit0174 doi: 10.1007/BF02371146 – ident: cit0035 doi: 10.1046/j.1365-2435.1997.00137.x – ident: cit0106 doi: 10.1007/s40333-013-0222-7 – ident: cit0087 doi: 10.2307/3545630 – ident: cit0142 doi: 10.1890/0012-9658(1997)078[0335:NMAPIH]2.0.CO;2 – ident: cit0146 doi: 10.1890/04-0524 – ident: cit0097 doi: 10.1890/04-1830 – ident: cit0075 doi: 10.1093/treephys/10.1.45 – ident: cit0136 doi: 10.2307/2446064 – ident: cit0144 doi: 10.1073/pnas.0403588101 – ident: cit0013 doi: 10.1007/BF02371212 – ident: cit0071 doi: 10.1111/j.1461-0248.2011.01651.x – ident: cit0002 doi: 10.1016/S0169-5347(00)89156-9 – ident: cit0175 doi: 10.1046/j.1469-8137.2003.00695.x – volume-title: Factors of Soil Formation: A System of Quantitative Pedology year: 1941 ident: cit0085 doi: 10.1097/00010694-194111000-00009 – ident: cit0111 doi: 10.1111/j.1365-2745.2011.01881.x – ident: cit0001 doi: 10.2307/1313296 – ident: cit0012 doi: 10.2307/1941251 – ident: cit0098 doi: 10.2307/2404783 – ident: cit0193 doi: 10.1007/s11104-009-0036-8 – ident: cit0134 doi: 10.1111/j.1466-8238.2008.00441.x – ident: cit0199 doi: 10.1890/14-0140.1 – ident: cit0038 doi: 10.1038/nature12670 – ident: cit0202 doi: 10.1007/s00442-006-0409-0 – ident: cit0099 doi: 10.1126/science.1113977 – ident: cit0198 doi: 10.1038/nclimate2549 – ident: cit0119 doi: 10.1890/03-0351 – ident: cit0148 doi: 10.1093/treephys/16.3.333 – volume: 61 start-page: 433 year: 1988 ident: cit0184 publication-title: Ann. Bot. doi: 10.1093/oxfordjournals.aob.a087575 – ident: cit0171 doi: 10.2307/2259377 – ident: cit0079 doi: 10.1007/s11258-009-9681-5 – ident: cit0101 doi: 10.1093/aob/mcg093 – volume: 4 start-page: 2217 year: 2014 ident: cit0103 publication-title: Ecol. Evol. doi: 10.1002/ece3.1079 – ident: cit0006 doi: 10.1016/S0065-2504(08)60016-1 – ident: cit0197 doi: 10.1007/s10021-012-9623-2 – ident: cit0206 doi: 10.1007/s00442-013-2672-1 – ident: cit0034 doi: 10.1093/aob/mcs299 – ident: cit0117 doi: 10.2307/1940038 |
SSID | ssj0006628 |
Score | 2.5720036 |
Snippet | Nutrient resorption (NR) plays a key role in the nutrient conservation of plants. However, a fundamental understanding of the mechanisms that control NR... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 471 |
SubjectTerms | Botany carbon dioxide climate Climate change culms ecosystems elevated atmospheric gases Environmental changes Fertility Genetic diversity genetic variation Genetics Global warming leaf chemistry leaf habit Leaves meta-analysis nitrogen nutrient conservation Nutrient loss nutrient resorption nutrient resorption (physiology) Nutrients phosphorus plant development plant life-forms plant nutrition Plant tissues Plants Plants (organisms) Precipitation resorption Roots soil Soil (material) Soil fertility Stems stoichiometry temperature Woody plants |
Title | Patterns and Mechanisms of Nutrient Resorption in Plants |
URI | https://www.tandfonline.com/doi/abs/10.1080/07352689.2015.1078611 https://www.proquest.com/docview/1729391008 https://www.proquest.com/docview/1753414166 https://www.proquest.com/docview/1773829939 https://www.proquest.com/docview/1793244995 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQy4EL4ikWCgoSN5RVsrYT-7i0VOHRqhJbUbhYdmJLK0G26qYH-PXMxM5jtdUWuESRY6-yM5PxeOz5PkLeMFHm3Goem0SYmIkK7pxm8aykiMBnK1NivuPkNCvO2ccLfjFwtrbVJY2Zlr9vrCv5H61CG-gVq2T_QbP9j0ID3IN-4Qoahutf6fisBcesPczyicUi3uX659pnAZApq27a_PzVZXekETmKPHZTD0_QcR0EXNL2WDn2ehsmxyGPDtOaBylAEpFhD-cwFHgU4Cq-FeM0Qsrbc1K0V_xii9FjdKwInVFO8TScp_uZ2uAsmYyxCmTsTUNqcjner25dI_NUK1suO5xxzBGoX2DpUMqhMRdZcMIbENnF_Is6OzpWnz-cftp86qdkgWSfmcT18P4MFg7g-fbnxdH3r_3snGUt327_f7qqLsRbv-kdNuKVDTTbrdm7DUkWD8j9sJaI5t4wHpI7tn5E7r5bQbz_6zERnXVEYB3RYB3RykWddUSDdUTLOvLW8YScH79fHBZx4MmIS57QJsats9yy0nGq09SyKjUIMS10lbhcJyzNnakEtU64pBSls7CgSoSWUs-kdRWnT8levartMxJlqam4MMYKCEztTAsrUseFoFWCgb6eENZJQ5UBRB65TH6otMOaDUJUKEQVhDgh037YpUdRuW2AHItaNa15Om-Zit4y9qDTiwof61pBnC6pRCSrCXndPwZXivtjurara-zDIaaDFUq2q09OBYRwVO7qA7JiTEr-fPervCD3hk_xgOw1V9f2JcS4jXkVzPYPy_6emw |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6igl58i-szgteu7SZpp0cVZX3s4kHBW0jSBETtiu0e9Neb6WPxgXrwVppM2kxeX5KZbwg54GASYZUIdAg64JD5J6d40DMMGfhspg2edwyGcf-WX9yJuw--MGhWiXtoVxNFVHM1Dm48jG5N4g59t0SWEvQziYR_lUCM7r0zIo0T7OssHE5m4ziu4quiSIAyrRfPT8V8Wp8-sZd-m62rJehskZj252vLk4fuuNRd8_aF1_F_tVsiCw1CpUd1l1omUzZfIbPHI1_i6yqB64qQMy-o_wAdWHQcvi-eCjpydIjM_n4Ro3gn8FLNRfQ-pxgXqSzWyO3Z6c1JP2iiLwRGhKwM8EImsdw4wVQUWZ5FGomLQWWhS1TIo8TpDJh14EIDxlkP00NQaap6qXWZYOtkOh_ldoPQONKZAK0teLhjewosRE4AsCxE-Kg6hLc6l6ahJscIGY8yahlMG51I1IlsdNIh3YnYc83N8ZdA-rFBZVkdirg6golkf8hut60vm2FeSI_-UpYiP1KH7E-S_QDFWxeV29EY8wiPFDzujX_LkzDwwIClv-XxuuJ-gyo2_1GNPTLXvxlcyavz4eUWmcekymKObZPp8mVsdzzEKvVuNYbeAWpcFeE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqqBCXQnmoC7Q1EtcsydpOJkegrGjLrjiwEjfLTwnRZhHJHuivryePFQsCDnuLEo8Vjz32Z3vmG0KOOJhMOCUiHYOOONjw5BWPBoYhA5-z2uB5x2icXkz4rxvReROWrVsl7qF9QxRRz9Vo3PfWdx5xx2FUIkkJhpkkIrzKIMXo3tUUAy0xiiMezyfjNK3Tq6JIhDJdEM9r1SwsTwvkpS8m63oFGm4Q3f1743hy159Vum_-PaN1XKpxm-RTi0_pSTOgPpMPrtgiH0-nocLHbQJXNR1nUdJQPx05DBu-Lf-WdOrpGHn9wxJG8UbgoZ6J6G1BMStSVe6QyfD8-uwianMvREbErIrwOiZz3HjBVJI4bhONtMWgbOwzFfMk89oCcx58bMB4F0B6DCrP1SB33gq2S1aKaeG-EJom2grQ2kEAO26gwEHiBQCzMYJH1SO8U7k0LTE55sf4I5OOv7TViUSdyFYnPdKfi903zBzvCeRP-1NW9ZGIb_KXSPaO7EHX-bI18lIG7JezHNmReuRw_jmYJ965qMJNZ1hGBJwQUG_6VpmMQYAFLH-rTNAVD9tTsbdEM76TtasfQ3n5c_x7n6zjl9pdjh2Qleph5r4GfFXpb7UF_QfbhxSF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterns+and+Mechanisms+of+Nutrient+Resorption+in+Plants&rft.jtitle=Critical+reviews+in+plant+sciences&rft.au=Brant%2C+Amber+N&rft.au=Chen%2C+Han+YH&rft.date=2015-09-03&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0735-2689&rft.eissn=1549-7836&rft.volume=34&rft.issue=5&rft.spage=471&rft_id=info:doi/10.1080%2F07352689.2015.1078611&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3856126961 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-2689&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-2689&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-2689&client=summon |