Patterns and Mechanisms of Nutrient Resorption in Plants

Nutrient resorption (NR) plays a key role in the nutrient conservation of plants. However, a fundamental understanding of the mechanisms that control NR remains limited. In this review, we examine how intrinsic controls (e.g., genetic variability and plant development) and extrinsic environmental co...

Full description

Saved in:
Bibliographic Details
Published inCritical reviews in plant sciences Vol. 34; no. 5; pp. 471 - 486
Main Authors Brant, Amber N., Chen, Han Y.H.
Format Journal Article
LanguageEnglish
Published Boca Raton Taylor & Francis 03.09.2015
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nutrient resorption (NR) plays a key role in the nutrient conservation of plants. However, a fundamental understanding of the mechanisms that control NR remains limited. In this review, we examine how intrinsic controls (e.g., genetic variability and plant development) and extrinsic environmental controls (e.g., climate and soil fertility) influence NR. We also examined conceptual NR advances, mass loss correction, measurement in non-leaf plant tissues for whole-plant nutrient budget accounting, and the use of stoichiometric ratios in place of individual elements. Nutrient resorption from senescing leaves is greater than that from stems/culms or roots. Nutrients resorbed from stems and roots in woody plants are lower than in non-woody plants. Deciduous plants are more efficient in resorbing leaf nutrients prior to senescence than are evergreen plants. Furthermore, reproductive efforts tend to increase NR. Along a latitudinal gradient of terrestrial biomes, nitrogen resorption efficiency decreases and phosphorus resorption efficiency increases with increasing temperature and precipitation; however, latitudinal patterns reflect the influences of several coupling factors such as genetic variation, climate, soil, and disturbance history. Nutrient fertilization experiments have demonstrated that increased soil fertility reduces NR. The inquiries into the impacts of ongoing climate change on NR are still at a nascent stage. Future NR studies are needed to better understand the independent effects of a wide range of genetic variation, plant development, and environment, and possibly the different responses of plants to environmental change; particularly elevated atmospheric CO 2 concentrations and global warming.
AbstractList Nutrient resorption (NR) plays a key role in the nutrient conservation of plants. However, a fundamental understanding of the mechanisms that control NR remains limited. In this review, we examine how intrinsic controls (e.g., genetic variability and plant development) and extrinsic environmental controls (e.g., climate and soil fertility) influence NR. We also examined conceptual NR advances, mass loss correction, measurement in non-leaf plant tissues for whole-plant nutrient budget accounting, and the use of stoichiometric ratios in place of individual elements. Nutrient resorption from senescing leaves is greater than that from stems/culms or roots. Nutrients resorbed from stems and roots in woody plants are lower than in non-woody plants. Deciduous plants are more efficient in resorbing leaf nutrients prior to senescence than are evergreen plants. Furthermore, reproductive efforts tend to increase NR. Along a latitudinal gradient of terrestrial biomes, nitrogen resorption efficiency decreases and phosphorus resorption efficiency increases with increasing temperature and precipitation; however, latitudinal patterns reflect the influences of several coupling factors such as genetic variation, climate, soil, and disturbance history. Nutrient fertilization experiments have demonstrated that increased soil fertility reduces NR. The inquiries into the impacts of ongoing climate change on NR are still at a nascent stage. Future NR studies are needed to better understand the independent effects of a wide range of genetic variation, plant development, and environment, and possibly the different responses of plants to environmental change; particularly elevated atmospheric CO sub(2) concentrations and global warming.
Nutrient resorption (NR) plays a key role in the nutrient conservation of plants. However, a fundamental understanding of the mechanisms that control NR remains limited. In this review, we examine how intrinsic controls (e.g., genetic variability and plant development) and extrinsic environmental controls (e.g., climate and soil fertility) influence NR. We also examined conceptual NR advances, mass loss correction, measurement in non-leaf plant tissues for whole-plant nutrient budget accounting, and the use of stoichiometric ratios in place of individual elements. Nutrient resorption from senescing leaves is greater than that from stems/culms or roots. Nutrients resorbed from stems and roots in woody plants are lower than in non-woody plants. Deciduous plants are more efficient in resorbing leaf nutrients prior to senescence than are evergreen plants. Furthermore, reproductive efforts tend to increase NR. Along a latitudinal gradient of terrestrial biomes, nitrogen resorption efficiency decreases and phosphorus resorption efficiency increases with increasing temperature and precipitation; however, latitudinal patterns reflect the influences of several coupling factors such as genetic variation, climate, soil, and disturbance history. Nutrient fertilization experiments have demonstrated that increased soil fertility reduces NR. The inquiries into the impacts of ongoing climate change on NR are still at a nascent stage. Future NR studies are needed to better understand the independent effects of a wide range of genetic variation, plant development, and environment, and possibly the different responses of plants to environmental change; particularly elevated atmospheric CO... concentrations and global warming. (ProQuest: ... denotes formulae/symbols omitted.)
Nutrient resorption (NR) plays a key role in the nutrient conservation of plants. However, a fundamental understanding of the mechanisms that control NR remains limited. In this review, we examine how intrinsic controls (e.g., genetic variability and plant development) and extrinsic environmental controls (e.g., climate and soil fertility) influence NR. We also examined conceptual NR advances, mass loss correction, measurement in non-leaf plant tissues for whole-plant nutrient budget accounting, and the use of stoichiometric ratios in place of individual elements. Nutrient resorption from senescing leaves is greater than that from stems/culms or roots. Nutrients resorbed from stems and roots in woody plants are lower than in non-woody plants. Deciduous plants are more efficient in resorbing leaf nutrients prior to senescence than are evergreen plants. Furthermore, reproductive efforts tend to increase NR. Along a latitudinal gradient of terrestrial biomes, nitrogen resorption efficiency decreases and phosphorus resorption efficiency increases with increasing temperature and precipitation; however, latitudinal patterns reflect the influences of several coupling factors such as genetic variation, climate, soil, and disturbance history. Nutrient fertilization experiments have demonstrated that increased soil fertility reduces NR. The inquiries into the impacts of ongoing climate change on NR are still at a nascent stage. Future NR studies are needed to better understand the independent effects of a wide range of genetic variation, plant development, and environment, and possibly the different responses of plants to environmental change; particularly elevated atmospheric CO ₂ concentrations and global warming.
Nutrient resorption (NR) plays a key role in the nutrient conservation of plants. However, a fundamental understanding of the mechanisms that control NR remains limited. In this review, we examine how intrinsic controls (e.g., genetic variability and plant development) and extrinsic environmental controls (e.g., climate and soil fertility) influence NR. We also examined conceptual NR advances, mass loss correction, measurement in non-leaf plant tissues for whole-plant nutrient budget accounting, and the use of stoichiometric ratios in place of individual elements. Nutrient resorption from senescing leaves is greater than that from stems/culms or roots. Nutrients resorbed from stems and roots in woody plants are lower than in non-woody plants. Deciduous plants are more efficient in resorbing leaf nutrients prior to senescence than are evergreen plants. Furthermore, reproductive efforts tend to increase NR. Along a latitudinal gradient of terrestrial biomes, nitrogen resorption efficiency decreases and phosphorus resorption efficiency increases with increasing temperature and precipitation; however, latitudinal patterns reflect the influences of several coupling factors such as genetic variation, climate, soil, and disturbance history. Nutrient fertilization experiments have demonstrated that increased soil fertility reduces NR. The inquiries into the impacts of ongoing climate change on NR are still at a nascent stage. Future NR studies are needed to better understand the independent effects of a wide range of genetic variation, plant development, and environment, and possibly the different responses of plants to environmental change; particularly elevated atmospheric CO 2 concentrations and global warming.
Author Brant, Amber N.
Chen, Han Y.H.
Author_xml – sequence: 1
  givenname: Amber N.
  surname: Brant
  fullname: Brant, Amber N.
  organization: Faculty of Natural Resources Management, Lakehead University
– sequence: 2
  givenname: Han Y.H.
  surname: Chen
  fullname: Chen, Han Y.H.
  email: hchen1@lakeheadu.ca
  organization: Faculty of Natural Resources Management, Lakehead University
BookMark eNqNkU1LAzEURYMoWKs_QRhw42bqy2QySXCjiF_gRxFdhzSTYGSa1CRF-u-doXXThboKPM65vLx7gHZ98AahYwwTDBzOgBFaNVxMKsC0HzHeYLyDRpjWomScNLtoNDDlAO2jg5Q-AKBpKj5CfKpyNtGnQvm2eDT6XXmX5qkItnha5uiMz8WLSSEusgu-cL6YdsrndIj2rOqSOdq8Y_R2c_16dVc-PN_eX10-lJoCySVlFDNTa0uJwtjULZ5xYJSrFixTUGNmZy0nxnILmmtrWCWAKyFUJYxtKRmj03XuIobPpUlZzl3SpuuXMGGZJGaCVHUtxH9QRnglBBH_QCmpcY2bpkdPttCPsIy-_3NPVX0YBuA9db6mdAwpRWOldlkNJ8tRuU5ikENX8qcrOXQlN131Nt2yF9HNVVz96V2sPedtiHP1FWLXyqxWXYg2Kq9dkuT3iG8XdKqJ
CODEN CRPSD3
CitedBy_id crossref_primary_10_1038_s41598_017_11163_7
crossref_primary_10_1007_s13157_019_01256_6
crossref_primary_10_1038_s41598_018_30324_w
crossref_primary_10_1186_s12870_024_05484_9
crossref_primary_10_1016_j_foreco_2020_118232
crossref_primary_10_1016_j_still_2024_106123
crossref_primary_10_3390_d15020187
crossref_primary_10_3390_w13223288
crossref_primary_10_1007_s10021_020_00537_0
crossref_primary_10_1016_j_agrformet_2024_110249
crossref_primary_10_3390_su15010631
crossref_primary_10_1111_nph_17572
crossref_primary_10_1007_s11104_018_3775_6
crossref_primary_10_1016_j_foreco_2021_119053
crossref_primary_10_1002_ldr_4254
crossref_primary_10_1002_ece3_4407
crossref_primary_10_5194_bg_21_4169_2024
crossref_primary_10_1002_ecm_1300
crossref_primary_10_1038_s41598_024_53574_3
crossref_primary_10_3389_fpls_2023_1174697
crossref_primary_10_1093_jpe_rty023
crossref_primary_10_3390_f11040363
crossref_primary_10_1088_1748_9326_ac6a6b
crossref_primary_10_1111_plb_70005
crossref_primary_10_1002_ece3_6038
crossref_primary_10_1016_j_ecolind_2021_107488
crossref_primary_10_1016_j_fecs_2023_100154
crossref_primary_10_1021_acs_est_4c01662
crossref_primary_10_3832_ifor3912_014
crossref_primary_10_1007_s11104_024_06843_z
crossref_primary_10_1007_s13595_018_0727_5
crossref_primary_10_1016_j_foreco_2024_122284
crossref_primary_10_1002_saj2_20059
crossref_primary_10_1016_j_agee_2024_109160
crossref_primary_10_3390_f11090994
crossref_primary_10_1002_ajb2_1246
crossref_primary_10_1016_j_scitotenv_2022_157176
crossref_primary_10_3390_f10030201
crossref_primary_10_1007_s42965_024_00352_x
crossref_primary_10_1002_saj2_20172
crossref_primary_10_1016_j_ufug_2023_128113
crossref_primary_10_1111_ppl_13980
crossref_primary_10_1016_j_fecs_2024_100173
crossref_primary_10_1093_jpe_rtac017
crossref_primary_10_1007_s11104_017_3551_z
crossref_primary_10_1111_plb_13153
crossref_primary_10_3390_agronomy11112280
crossref_primary_10_3389_fevo_2022_1046444
crossref_primary_10_1093_treephys_tpad044
crossref_primary_10_3389_ffgc_2021_666116
crossref_primary_10_1007_s11104_024_07130_7
crossref_primary_10_1016_j_foreco_2021_119876
crossref_primary_10_3389_fpls_2021_692683
crossref_primary_10_1016_j_heliyon_2024_e32627
crossref_primary_10_1007_s00468_018_1725_9
crossref_primary_10_1007_s42965_020_00063_z
crossref_primary_10_1093_jpe_rty056
crossref_primary_10_1016_j_ecolind_2020_107250
crossref_primary_10_1111_1365_2435_14137
crossref_primary_10_1002_jpln_202100144
crossref_primary_10_1007_s11676_017_0519_z
crossref_primary_10_3389_fpls_2018_01292
crossref_primary_10_1002_ecy_4509
crossref_primary_10_1080_01904167_2019_1567776
crossref_primary_10_1002_ecs2_4143
crossref_primary_10_1007_s10533_021_00848_x
crossref_primary_10_1016_j_ecolind_2019_04_017
crossref_primary_10_1007_s40333_021_0080_7
crossref_primary_10_1002_wcc_428
crossref_primary_10_1007_s11104_022_05408_2
crossref_primary_10_3389_fpls_2019_00744
crossref_primary_10_1007_s11368_016_1352_2
crossref_primary_10_1016_j_scitotenv_2022_157916
crossref_primary_10_1126_sciadv_add4468
crossref_primary_10_17129_botsci_2732
crossref_primary_10_1002_ecs2_4802
crossref_primary_10_3389_fpls_2023_1140080
crossref_primary_10_3390_agronomy14071543
crossref_primary_10_1111_1365_2745_13168
crossref_primary_10_3390_f9090563
crossref_primary_10_1016_j_gecco_2022_e02158
crossref_primary_10_1111_1365_2435_14152
crossref_primary_10_2139_ssrn_3958871
crossref_primary_10_3390_d14080661
crossref_primary_10_3390_f13060905
crossref_primary_10_1111_1365_2435_14603
crossref_primary_10_1016_j_envpol_2018_08_010
crossref_primary_10_1016_j_agrformet_2023_109724
crossref_primary_10_1016_j_foreco_2020_117984
crossref_primary_10_1002_ece3_7734
crossref_primary_10_1007_s11104_023_06214_0
crossref_primary_10_1111_1365_2745_13952
crossref_primary_10_1016_j_tfp_2024_100549
crossref_primary_10_1016_j_scitotenv_2022_158101
crossref_primary_10_5194_bg_16_1265_2019
crossref_primary_10_1093_jpe_rtaa076
crossref_primary_10_1093_jpe_rtaa077
crossref_primary_10_1111_gcb_14802
crossref_primary_10_1007_s11104_016_3093_9
crossref_primary_10_1007_s11104_018_3598_5
crossref_primary_10_1016_j_still_2021_104978
crossref_primary_10_1007_s00442_023_05415_9
crossref_primary_10_1093_nsr_nwae371
crossref_primary_10_1111_1365_2435_13809
crossref_primary_10_3390_biology7040051
crossref_primary_10_1007_s11104_017_3473_9
crossref_primary_10_3390_plants13121659
crossref_primary_10_1186_s12870_024_05794_y
crossref_primary_10_1111_1365_2435_14330
crossref_primary_10_1111_1365_2745_13180
crossref_primary_10_3389_fpls_2021_667964
crossref_primary_10_1016_j_scitotenv_2020_138106
crossref_primary_10_1007_s10021_021_00728_3
crossref_primary_10_3390_agronomy10020310
crossref_primary_10_1007_s11104_023_06259_1
crossref_primary_10_1016_j_gecco_2020_e01138
crossref_primary_10_1007_s42729_024_02063_7
crossref_primary_10_1016_j_foreco_2021_119573
crossref_primary_10_1111_gcb_14914
crossref_primary_10_1093_treephys_tpad010
crossref_primary_10_1111_geb_12738
crossref_primary_10_1007_s11258_024_01475_w
crossref_primary_10_1111_1365_2745_13971
crossref_primary_10_1093_treephys_tpab073
crossref_primary_10_1111_1365_2745_14388
crossref_primary_10_1007_s11104_022_05676_y
crossref_primary_10_1007_s11270_016_2881_4
crossref_primary_10_1007_s11104_024_07125_4
crossref_primary_10_7717_peerj_15738
crossref_primary_10_1002_ece3_3283
crossref_primary_10_1007_s11056_023_09982_w
crossref_primary_10_3390_f14040675
crossref_primary_10_3389_fpls_2023_1201759
crossref_primary_10_1016_j_scitotenv_2020_143153
crossref_primary_10_1155_2022_9202493
crossref_primary_10_1111_oik_09751
crossref_primary_10_1016_j_xplc_2022_100503
crossref_primary_10_1093_pcp_pcx106
crossref_primary_10_3389_fpls_2021_830119
crossref_primary_10_1007_s11258_018_0841_3
crossref_primary_10_1007_s11258_020_01103_3
crossref_primary_10_1007_s11104_020_04733_8
crossref_primary_10_1007_s11104_022_05533_y
crossref_primary_10_1007_s11258_017_0752_8
crossref_primary_10_1016_j_fecs_2024_100289
crossref_primary_10_3389_fpls_2018_01431
crossref_primary_10_17129_botsci_3074
crossref_primary_10_3390_land13081169
crossref_primary_10_1016_j_agee_2020_106840
crossref_primary_10_3390_f14010005
crossref_primary_10_1007_s11258_021_01218_1
crossref_primary_10_1007_s42729_022_01059_5
crossref_primary_10_1186_s13717_022_00413_w
crossref_primary_10_5194_bg_14_2003_2017
crossref_primary_10_1007_s11356_021_18247_y
crossref_primary_10_7235_HORT_20250016
crossref_primary_10_1007_s00442_023_05353_6
crossref_primary_10_1111_1440_1703_12111
crossref_primary_10_3389_fpls_2020_00086
crossref_primary_10_1007_s11104_023_06080_w
crossref_primary_10_1016_j_ecoleng_2021_106497
crossref_primary_10_1186_s40663_021_00350_8
crossref_primary_10_1111_1365_2435_13327
crossref_primary_10_1016_j_soilbio_2022_108609
crossref_primary_10_1016_j_scitotenv_2017_11_030
crossref_primary_10_1111_plb_12594
crossref_primary_10_5194_bg_21_3165_2024
crossref_primary_10_1016_j_scitotenv_2021_144951
crossref_primary_10_1016_j_rhisph_2022_100594
crossref_primary_10_1007_s11104_017_3237_6
crossref_primary_10_1016_j_fecs_2024_100221
crossref_primary_10_1111_oik_10867
crossref_primary_10_1093_aobpla_ply028
crossref_primary_10_1007_s11676_024_01775_x
crossref_primary_10_1016_j_foreco_2022_120696
crossref_primary_10_1029_2019JG005080
crossref_primary_10_1111_1365_2435_14318
crossref_primary_10_1093_femsec_fiz144
crossref_primary_10_1093_jpe_rtad049
crossref_primary_10_1111_geb_12885
crossref_primary_10_1007_s11676_023_01667_6
crossref_primary_10_3389_fpls_2018_01483
crossref_primary_10_1007_s11104_016_3037_4
crossref_primary_10_1007_s10021_016_0098_4
crossref_primary_10_1016_j_soilbio_2021_108198
crossref_primary_10_1111_ppl_14626
crossref_primary_10_18182_tjf_1334107
crossref_primary_10_3389_fpls_2021_665168
crossref_primary_10_3389_fpls_2022_905358
crossref_primary_10_1007_s12155_017_9819_6
crossref_primary_10_1016_j_jplph_2018_11_007
crossref_primary_10_1016_j_envexpbot_2019_103825
crossref_primary_10_35193_bseufbd_641833
crossref_primary_10_1093_jpe_rtac083
crossref_primary_10_1007_s11056_022_09910_4
crossref_primary_10_1007_s10457_024_01044_0
crossref_primary_10_1016_j_foreco_2020_117905
crossref_primary_10_1111_gcb_13923
crossref_primary_10_1016_j_fecs_2025_100304
crossref_primary_10_1093_treephys_tpac028
crossref_primary_10_3389_fpls_2023_1139945
crossref_primary_10_3389_fpls_2020_01260
crossref_primary_10_1007_s11104_024_07035_5
crossref_primary_10_1016_j_foreco_2020_118683
crossref_primary_10_3390_plants9030292
crossref_primary_10_5194_bg_14_131_2017
crossref_primary_10_1016_j_scitotenv_2023_164482
crossref_primary_10_3390_agriculture12122154
crossref_primary_10_1016_j_foreco_2023_121141
crossref_primary_10_1186_s13717_024_00507_7
Cites_doi 10.1007/BF00379357
10.1016/j.jaridenv.2005.01.023
10.1007/s00442-012-2396-7
10.1016/j.soilbio.2012.03.014
10.1007/s00442-013-2784-7
10.1016/j.ppees.2011.08.002
10.1371/journal.pone.0083366
10.1080/07352689.2010.483579
10.1111/j.1469-8137.2010.03228.x
10.1086/324181
10.1111/j.1469-8137.1993.tb03847.x
10.1098/rspb.2012.0955
10.1890/09-1509.1
10.1139/b72-289
10.1111/j.1469-8137.2012.04114.x
10.1111/1365-2745.12217
10.1073/pnas.94.25.13730
10.1146/annurev.es.20.110189.000245
10.1007/BF00378600
10.1093/treephys/24.4.387
10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2
10.2307/2260754
10.1051/forest:2004043
10.1146/annurev.pp.06.060155.000325
10.1111/j.1469-8137.1994.tb04243.x
10.1111/j.1469-8137.2012.04256.x
10.1046/j.1469-8137.2000.00682.x
10.1890/12-0781.1
10.1016/j.jaridenv.2010.05.030
10.1111/j.1461-0248.2007.01113.x
10.1038/nature12914
10.2307/2401336
10.1007/s11104-013-1747-4
10.1007/BF00379710
10.1046/j.1469-8137.2000.00681.x
10.1111/j.1466-8238.2009.00474.x
10.1126/science.1066360
10.2307/2261481
10.1007/s10342-013-0748-4
10.1007/s00442-003-1265-9
10.1111/j.1466-8238.2010.00602.x
10.1016/0169-5347(96)10042-2
10.1007/s00442-012-2266-3
10.1093/treephys/tpp004
10.1111/plb.12147
10.1073/pnas.0701728104
10.1146/annurev.ecolsys.37.091305.110246
10.1007/s00606-008-0103-2
10.1086/334303
10.1007/s11104-010-0475-2
10.2307/1937083
10.1007/s11104-004-7941-7
10.1046/j.1365-2435.2003.00694.x
10.2307/3565477
10.1111/j.1469-8137.2011.03952.x
10.2307/1939507
10.1086/283931
10.1111/j.1654-1103.2003.tb02128.x
10.1016/j.ecoleng.2010.12.013
10.1126/science.123.3206.1039-a
10.1086/285676
10.1016/B978-0-12-734850-6.50046-0
10.1007/s11284-011-0836-1
10.1016/S0065-2504(08)60122-1
10.1007/s11120-004-9366-9
10.1104/pp.43.7.1031
10.1016/j.jaridenv.2011.08.018
10.1126/science.1091390
10.1029/2011GB004252
10.1111/j.1469-8137.2004.01192.x
10.2307/1934963
10.1146/annurev.es.11.110180.001313
10.1111/j.0269-8463.2005.00967.x
10.1007/BF00317812
10.1007/s00344-013-9397-6
10.1007/BF00002772
10.1111/j.1469-8137.2012.04376.x
10.1111/j.1466-8238.2008.00425.x
10.1371/journal.pone.0042045
10.1016/j.jhydrol.2009.07.029
10.1146/annurev.es.21.110190.002231
10.2307/2937209
10.5194/bg-10-4833-2013
10.1007/s10533-011-9694-8
10.1111/j.1469-8137.2009.02893.x
10.1016/S0065-2504(08)60009-4
10.1093/treephys/tps050
10.1093/aob/mci050
10.2980/18-4-3432
10.1007/BF02860066
10.1093/treephys/28.2.187
10.1890/06-2057.1
10.2307/2258529
10.1093/treephys/25.8.1001
10.1890/11-0416.1
10.1007/BF01343507
10.1890/0012-9658(2000)081[0275:NCIFR]2.0.CO;2
10.2307/2996743
10.1016/j.foreco.2013.06.029
10.2307/2405065
10.1007/s00442-006-0575-0
10.1007/s11104-009-0078-y
10.1038/ncomms3934
10.1016/j.ecoleng.2012.12.061
10.1002/ece3.520
10.1093/treephys/9.1-2.185
10.1111/1365-2745.12196
10.1111/j.1469-8137.2012.04349.x
10.1007/s11104-012-1370-9
10.1086/528749
10.1111/j.1469-8137.2012.04234.x
10.1111/j.1365-2486.2011.02451.x
10.1038/nature02403
10.1111/j.1469-8137.2005.01477.x
10.1016/S0378-1127(00)00345-5
10.1104/pp.112.208785
10.1890/12-2119.1
10.1111/j.1654-1103.2007.tb02591.x
10.1093/jpe/rtt013
10.2307/2259251
10.1046/j.1469-8137.1999.00429.x
10.2307/1939481
10.1080/01904168009362788
10.2307/2265777
10.1007/s00425-003-1041-4
10.1371/journal.pone.0083735
10.1111/j.1365-2435.2012.02007.x
10.1046/j.1365-2745.2003.00818.x
10.1073/pnas.1006463107
10.1051/forest:2002014
10.1007/s11104-013-2009-1
10.1038/ncomms1346
10.1051/forest:2002059
10.1016/j.foreco.2006.02.021
10.1111/j.1600-0706.2008.16793.x
10.1111/jse.12055
10.1146/annurev.pp.21.060170.001513
10.1038/nature04486
10.2307/2937116
10.1111/j.1744-7429.2010.00740.x
10.1007/BF00377192
10.2307/1297148
10.1046/j.1461-0248.2003.00518.x
10.1111/1365-2745.12213
10.1111/gcb.12235
10.1080/07352689.2012.734742
10.1111/ele.12095
10.1016/j.jaridenv.2011.11.007
10.1016/j.ufug.2006.01.007
10.2307/3565292
10.2307/3672144
10.1071/BT07139
10.1007/s10342-013-0754-6
10.2307/3545208
10.2307/3566095
10.1007/s12080-010-0110-0
10.1111/geb.12015
10.1890/1051-0761(2001)011[1395:NPPACA]2.0.CO;2
10.1111/1365-2745.12190
10.1023/A:1004629231766
10.1093/treephys/20.16.1105
10.1034/j.1600-0706.2003.12351.x
10.1007/BF00002935
10.1656/1092-6194(2002)009[0213:DLSIRO]2.0.CO;2
10.1007/BF02371146
10.1046/j.1365-2435.1997.00137.x
10.1007/s40333-013-0222-7
10.2307/3545630
10.1890/0012-9658(1997)078[0335:NMAPIH]2.0.CO;2
10.1890/04-0524
10.1890/04-1830
10.1093/treephys/10.1.45
10.2307/2446064
10.1073/pnas.0403588101
10.1007/BF02371212
10.1111/j.1461-0248.2011.01651.x
10.1016/S0169-5347(00)89156-9
10.1046/j.1469-8137.2003.00695.x
10.1097/00010694-194111000-00009
10.1111/j.1365-2745.2011.01881.x
10.2307/1313296
10.2307/1941251
10.2307/2404783
10.1007/s11104-009-0036-8
10.1111/j.1466-8238.2008.00441.x
10.1890/14-0140.1
10.1038/nature12670
10.1007/s00442-006-0409-0
10.1126/science.1113977
10.1038/nclimate2549
10.1890/03-0351
10.1093/treephys/16.3.333
10.1093/oxfordjournals.aob.a087575
10.2307/2259377
10.1007/s11258-009-9681-5
10.1093/aob/mcg093
10.1002/ece3.1079
10.1016/S0065-2504(08)60016-1
10.1007/s10021-012-9623-2
10.1007/s00442-013-2672-1
10.1093/aob/mcs299
10.2307/1940038
ContentType Journal Article
Copyright Copyright © Taylor & Francis Group, LLC 2015
Copyright Taylor & Francis Ltd. 2015
Copyright_xml – notice: Copyright © Taylor & Francis Group, LLC 2015
– notice: Copyright Taylor & Francis Ltd. 2015
DBID AAYXX
CITATION
7QO
7QR
7ST
7T7
7TM
8FD
C1K
FR3
P64
RC3
SOI
7S9
L.6
7U6
KR7
DOI 10.1080/07352689.2015.1078611
DatabaseName CrossRef
Biotechnology Research Abstracts
Chemoreception Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Sustainability Science Abstracts
Civil Engineering Abstracts
DatabaseTitle CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
Sustainability Science Abstracts
Civil Engineering Abstracts
DatabaseTitleList Environment Abstracts
Technology Research Database
Genetics Abstracts
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1549-7836
EndPage 486
ExternalDocumentID 3856126961
10_1080_07352689_2015_1078611
1078611
Genre Article
Feature
GroupedDBID .7F
.QJ
0BK
0R~
29F
2DF
30N
4.4
53G
5GY
5VS
6J9
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRAH
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
ECGQY
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
JEPSP
KYCEM
M4Z
NA5
NX0
O9-
P2P
RIG
RNANH
ROSJB
RRB
RTWRZ
RWL
S-T
SNACF
TAE
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TQWBC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~KM
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7QO
7QR
7ST
7T7
7TM
8FD
C1K
FR3
P64
RC3
SOI
TASJS
7S9
L.6
7U6
KR7
ID FETCH-LOGICAL-c503t-57517e4cf53a11e4d1b80758ad0f7a0417fbd83ef8f0c8cfe72908a99a29efd53
ISSN 0735-2689
1549-7836
IngestDate Fri Jul 11 08:00:02 EDT 2025
Fri Jul 11 10:50:05 EDT 2025
Wed Jul 02 04:33:08 EDT 2025
Wed Aug 13 09:45:23 EDT 2025
Tue Jul 01 03:46:51 EDT 2025
Thu Apr 24 23:08:06 EDT 2025
Wed Dec 25 09:05:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c503t-57517e4cf53a11e4d1b80758ad0f7a0417fbd83ef8f0c8cfe72908a99a29efd53
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1729391008
PQPubID 33284
PageCount 16
ParticipantIDs informaworld_taylorfrancis_310_1080_07352689_2015_1078611
proquest_miscellaneous_1753414166
crossref_citationtrail_10_1080_07352689_2015_1078611
crossref_primary_10_1080_07352689_2015_1078611
proquest_miscellaneous_1793244995
proquest_miscellaneous_1773829939
proquest_journals_1729391008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-03
PublicationDateYYYYMMDD 2015-09-03
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-03
  day: 03
PublicationDecade 2010
PublicationPlace Boca Raton
PublicationPlace_xml – name: Boca Raton
PublicationTitle Critical reviews in plant sciences
PublicationYear 2015
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References cit0077
cit0198
cit0078
cit0199
cit0075
cit0196
cit0076
cit0197
cit0073
cit0194
cit0074
cit0195
cit0071
cit0192
cit0072
cit0193
cit0070
cit0191
Lang S. I. (cit0103) 2014; 4
Redfield A. C. (cit0140) 1934
cit0079
cit0066
cit0187
cit0067
cit0188
cit0064
cit0185
cit0065
cit0186
cit0062
cit0183
cit0063
cit0060
cit0181
cit0061
cit0182
cit0180
cit0068
cit0189
cit0069
cit0099
cit0097
cit0098
cit0095
Jenny H. (cit0085) 1941
cit0096
cit0094
cit0091
cit0092
cit0090
cit0088
cit0089
cit0086
cit0087
cit0084
cit0082
cit0083
cit0080
cit0081
cit0033
cit0154
cit0034
cit0155
cit0031
cit0152
cit0032
cit0153
cit0150
cit0151
cit0039
cit0037
cit0158
cit0038
cit0159
cit0035
cit0156
cit0036
cit0157
cit0022
cit0143
cit0023
cit0144
cit0020
cit0141
cit0021
cit0142
Lal C. B. (cit0102) 2001; 79
cit0028
cit0149
cit0029
cit0026
cit0147
cit0027
cit0148
cit0024
cit0145
cit0025
cit0146
cit0055
cit0176
cit0056
cit0177
cit0053
cit0174
cit0054
cit0175
cit0051
cit0172
cit0052
cit0173
cit0170
cit0050
cit0171
cit0059
cit0057
cit0178
cit0058
cit0179
cit0044
cit0165
cit0045
cit0166
cit0042
cit0163
cit0043
cit0164
cit0040
Penuelas J. (cit0135) 2013; 4
cit0161
cit0041
cit0162
cit0160
Ye G. F. (cit0190) 2012; 24
Combes R. (cit0030) 1926; 38
cit0048
cit0169
cit0049
cit0046
cit0167
cit0047
cit0168
cit0110
cit0111
cit0118
cit0119
cit0116
cit0117
cit0114
cit0115
cit0112
cit0113
cit0100
cit0109
cit0107
cit0108
cit0105
cit0106
cit0104
cit0101
cit0011
cit0132
cit0012
cit0133
cit0130
cit0010
cit0131
Killingbeck K. T. (cit0093) 1993; 66
cit0019
cit0017
cit0138
cit0018
cit0139
cit0015
cit0136
cit0016
cit0137
cit0013
cit0134
cit0014
cit0121
cit0001
cit0122
cit0120
cit0008
cit0129
cit0009
cit0006
cit0127
cit0007
cit0128
cit0004
cit0125
cit0005
cit0126
cit0002
cit0123
cit0003
cit0124
Wilson J. B. (cit0184) 1988; 61
cit0206
cit0207
cit0204
cit0205
cit0202
cit0203
cit0200
cit0201
References_xml – volume: 66
  start-page: 345
  year: 1993
  ident: cit0093
  publication-title: Rev. Chil. Hist. Nat.
– ident: cit0018
  doi: 10.1007/BF00379357
– ident: cit0204
  doi: 10.1016/j.jaridenv.2005.01.023
– ident: cit0044
  doi: 10.1007/s00442-012-2396-7
– ident: cit0029
  doi: 10.1016/j.soilbio.2012.03.014
– ident: cit0182
  doi: 10.1007/s00442-013-2784-7
– ident: cit0151
  doi: 10.1016/j.ppees.2011.08.002
– ident: cit0068
  doi: 10.1371/journal.pone.0083366
– ident: cit0194
  doi: 10.1080/07352689.2010.483579
– ident: cit0056
  doi: 10.1111/j.1469-8137.2010.03228.x
– ident: cit0095
  doi: 10.1086/324181
– ident: cit0015
  doi: 10.1111/j.1469-8137.1993.tb03847.x
– ident: cit0196
  doi: 10.1098/rspb.2012.0955
– ident: cit0133
  doi: 10.1890/09-1509.1
– ident: cit0157
  doi: 10.1139/b72-289
– ident: cit0011
  doi: 10.1111/j.1469-8137.2012.04114.x
– ident: cit0031
  doi: 10.1111/1365-2745.12217
– ident: cit0145
  doi: 10.1073/pnas.94.25.13730
– ident: cit0020
  doi: 10.1146/annurev.es.20.110189.000245
– ident: cit0091
  doi: 10.1007/BF00378600
– ident: cit0170
  doi: 10.1093/treephys/24.4.387
– ident: cit0114
  doi: 10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2
– ident: cit0005
  doi: 10.2307/2260754
– ident: cit0066
  doi: 10.1051/forest:2004043
– ident: cit0183
  doi: 10.1146/annurev.pp.06.060155.000325
– ident: cit0158
  doi: 10.1111/j.1469-8137.1994.tb04243.x
– ident: cit0009
  doi: 10.1111/j.1469-8137.2012.04256.x
– ident: cit0017
  doi: 10.1046/j.1469-8137.2000.00682.x
– volume: 38
  start-page: 430
  year: 1926
  ident: cit0030
  publication-title: Rev. Gen. Bot.
– ident: cit0168
  doi: 10.1890/12-0781.1
– ident: cit0043
  doi: 10.1016/j.jaridenv.2010.05.030
– ident: cit0047
  doi: 10.1111/j.1461-0248.2007.01113.x
– ident: cit0161
  doi: 10.1038/nature12914
– ident: cit0069
  doi: 10.2307/2401336
– ident: cit0089
  doi: 10.1007/s11104-013-1747-4
– ident: cit0052
  doi: 10.1007/BF00379710
– ident: cit0059
  doi: 10.1046/j.1469-8137.2000.00681.x
– ident: cit0192
  doi: 10.1111/j.1466-8238.2009.00474.x
– ident: cit0048
  doi: 10.1126/science.1066360
– ident: cit0003
  doi: 10.2307/2261481
– ident: cit0022
  doi: 10.1007/s10342-013-0748-4
– ident: cit0132
  doi: 10.1007/s00442-003-1265-9
– ident: cit0189
  doi: 10.1111/j.1466-8238.2010.00602.x
– ident: cit0063
  doi: 10.1016/0169-5347(96)10042-2
– ident: cit0078
  doi: 10.1007/s00442-012-2266-3
– ident: cit0100
  doi: 10.1093/treephys/tpp004
– ident: cit0207
  doi: 10.1111/plb.12147
– ident: cit0166
  doi: 10.1073/pnas.0701728104
– ident: cit0074
  doi: 10.1146/annurev.ecolsys.37.091305.110246
– ident: cit0107
  doi: 10.1007/s00606-008-0103-2
– ident: cit0120
  doi: 10.1086/334303
– ident: cit0153
  doi: 10.1007/s11104-010-0475-2
– ident: cit0026
  doi: 10.2307/1937083
– ident: cit0203
  doi: 10.1007/s11104-004-7941-7
– ident: cit0188
  doi: 10.1046/j.1365-2435.2003.00694.x
– ident: cit0090
  doi: 10.2307/3565477
– ident: cit0138
  doi: 10.1111/j.1469-8137.2011.03952.x
– ident: cit0139
  doi: 10.2307/1939507
– ident: cit0177
  doi: 10.1086/283931
– ident: cit0039
  doi: 10.1111/j.1654-1103.2003.tb02128.x
– ident: cit0110
  doi: 10.1016/j.ecoleng.2010.12.013
– ident: cit0109
  doi: 10.1126/science.123.3206.1039-a
– ident: cit0014
  doi: 10.1086/285676
– ident: cit0108
  doi: 10.1016/B978-0-12-734850-6.50046-0
– ident: cit0084
  doi: 10.1007/s11284-011-0836-1
– start-page: 176
  volume-title: James Johnson Memorial Volume
  year: 1934
  ident: cit0140
– ident: cit0181
  doi: 10.1016/S0065-2504(08)60122-1
– ident: cit0023
  doi: 10.1007/s11120-004-9366-9
– ident: cit0037
  doi: 10.1104/pp.43.7.1031
– ident: cit0081
  doi: 10.1016/j.jaridenv.2011.08.018
– ident: cit0083
  doi: 10.1126/science.1091390
– ident: cit0054
  doi: 10.1029/2011GB004252
– ident: cit0064
  doi: 10.1111/j.1469-8137.2004.01192.x
– ident: cit0186
  doi: 10.2307/1934963
– ident: cit0024
  doi: 10.1146/annurev.es.11.110180.001313
– ident: cit0065
  doi: 10.1111/j.0269-8463.2005.00967.x
– ident: cit0049
  doi: 10.1007/BF00317812
– ident: cit0082
  doi: 10.1007/s00344-013-9397-6
– ident: cit0179
  doi: 10.1007/BF00002772
– ident: cit0016
  doi: 10.1111/j.1469-8137.2012.04376.x
– ident: cit0191
  doi: 10.1111/j.1466-8238.2008.00425.x
– ident: cit0123
  doi: 10.1371/journal.pone.0042045
– ident: cit0165
  doi: 10.1016/j.jhydrol.2009.07.029
– ident: cit0027
  doi: 10.1146/annurev.es.21.110190.002231
– ident: cit0036
  doi: 10.2307/2937209
– ident: cit0159
  doi: 10.5194/bg-10-4833-2013
– ident: cit0040
  doi: 10.1007/s10533-011-9694-8
– ident: cit0116
  doi: 10.1111/j.1469-8137.2009.02893.x
– ident: cit0147
  doi: 10.1016/S0065-2504(08)60009-4
– ident: cit0169
  doi: 10.1093/treephys/tps050
– ident: cit0076
  doi: 10.1093/aob/mci050
– ident: cit0073
  doi: 10.2980/18-4-3432
– ident: cit0172
  doi: 10.1007/BF02860066
– ident: cit0053
  doi: 10.1093/treephys/28.2.187
– ident: cit0104
  doi: 10.1890/06-2057.1
– ident: cit0070
  doi: 10.2307/2258529
– ident: cit0128
  doi: 10.1093/treephys/25.8.1001
– ident: cit0176
  doi: 10.1890/11-0416.1
– ident: cit0057
  doi: 10.1007/BF01343507
– ident: cit0061
  doi: 10.1890/0012-9658(2000)081[0275:NCIFR]2.0.CO;2
– ident: cit0126
  doi: 10.2307/2996743
– volume: 24
  start-page: 546
  year: 2012
  ident: cit0190
  publication-title: J. Trop. For. Sci.
– ident: cit0124
  doi: 10.1016/j.foreco.2013.06.029
– ident: cit0019
  doi: 10.2307/2405065
– ident: cit0007
  doi: 10.1007/s00442-006-0575-0
– ident: cit0112
  doi: 10.1007/s11104-009-0078-y
– volume: 4
  start-page: 2934
  year: 2013
  ident: cit0135
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3934
– ident: cit0105
  doi: 10.1016/j.ecoleng.2012.12.061
– ident: cit0055
  doi: 10.1002/ece3.520
– ident: cit0127
  doi: 10.1093/treephys/9.1-2.185
– ident: cit0072
  doi: 10.1111/1365-2745.12196
– ident: cit0041
  doi: 10.1111/j.1469-8137.2012.04349.x
– ident: cit0115
  doi: 10.1007/s11104-012-1370-9
– ident: cit0162
  doi: 10.1086/528749
– ident: cit0156
  doi: 10.1111/j.1469-8137.2012.04234.x
– ident: cit0088
  doi: 10.1111/j.1365-2486.2011.02451.x
– ident: cit0187
  doi: 10.1038/nature02403
– ident: cit0125
  doi: 10.1111/j.1469-8137.2005.01477.x
– ident: cit0137
  doi: 10.1016/S0378-1127(00)00345-5
– ident: cit0149
  doi: 10.1104/pp.112.208785
– ident: cit0155
  doi: 10.1890/12-2119.1
– ident: cit0160
  doi: 10.1111/j.1654-1103.2007.tb02591.x
– ident: cit0163
  doi: 10.1093/jpe/rtt013
– ident: cit0025
  doi: 10.2307/2259251
– ident: cit0045
  doi: 10.1046/j.1469-8137.1999.00429.x
– ident: cit0178
  doi: 10.2307/1939481
– ident: cit0077
  doi: 10.1080/01904168009362788
– ident: cit0094
  doi: 10.2307/2265777
– ident: cit0154
  doi: 10.1007/s00425-003-1041-4
– ident: cit0058
  doi: 10.1371/journal.pone.0083735
– ident: cit0195
  doi: 10.1111/j.1365-2435.2012.02007.x
– ident: cit0050
  doi: 10.1046/j.1365-2745.2003.00818.x
– ident: cit0130
  doi: 10.1073/pnas.1006463107
– ident: cit0021
  doi: 10.1051/forest:2002014
– ident: cit0032
  doi: 10.1007/s11104-013-2009-1
– ident: cit0201
  doi: 10.1038/ncomms1346
– ident: cit0121
  doi: 10.1051/forest:2002059
– ident: cit0067
  doi: 10.1016/j.foreco.2006.02.021
– volume: 79
  start-page: 1066
  year: 2001
  ident: cit0102
  publication-title: Can. J. Bot.
– ident: cit0033
  doi: 10.1111/j.1600-0706.2008.16793.x
– ident: cit0205
  doi: 10.1111/jse.12055
– ident: cit0167
  doi: 10.1146/annurev.pp.21.060170.001513
– ident: cit0143
  doi: 10.1038/nature04486
– ident: cit0141
  doi: 10.2307/2937116
– ident: cit0185
  doi: 10.1111/j.1744-7429.2010.00740.x
– ident: cit0051
  doi: 10.1007/BF00377192
– ident: cit0180
  doi: 10.2307/1297148
– ident: cit0046
  doi: 10.1046/j.1461-0248.2003.00518.x
– ident: cit0042
  doi: 10.1111/1365-2745.12213
– ident: cit0113
  doi: 10.1111/gcb.12235
– ident: cit0028
  doi: 10.1080/07352689.2012.734742
– ident: cit0164
  doi: 10.1111/ele.12095
– ident: cit0080
  doi: 10.1016/j.jaridenv.2011.11.007
– ident: cit0131
  doi: 10.1016/j.ufug.2006.01.007
– ident: cit0008
  doi: 10.2307/3565292
– ident: cit0092
  doi: 10.2307/3672144
– ident: cit0200
  doi: 10.1071/BT07139
– ident: cit0060
  doi: 10.1007/s10342-013-0754-6
– ident: cit0010
  doi: 10.2307/3545208
– ident: cit0086
  doi: 10.2307/3566095
– ident: cit0122
  doi: 10.1007/s12080-010-0110-0
– ident: cit0150
  doi: 10.1111/geb.12015
– ident: cit0062
  doi: 10.1890/1051-0761(2001)011[1395:NPPACA]2.0.CO;2
– ident: cit0118
  doi: 10.1111/1365-2745.12190
– ident: cit0129
  doi: 10.1023/A:1004629231766
– ident: cit0152
  doi: 10.1093/treephys/20.16.1105
– ident: cit0173
  doi: 10.1034/j.1600-0706.2003.12351.x
– ident: cit0004
  doi: 10.1007/BF00002935
– ident: cit0096
  doi: 10.1656/1092-6194(2002)009[0213:DLSIRO]2.0.CO;2
– ident: cit0174
  doi: 10.1007/BF02371146
– ident: cit0035
  doi: 10.1046/j.1365-2435.1997.00137.x
– ident: cit0106
  doi: 10.1007/s40333-013-0222-7
– ident: cit0087
  doi: 10.2307/3545630
– ident: cit0142
  doi: 10.1890/0012-9658(1997)078[0335:NMAPIH]2.0.CO;2
– ident: cit0146
  doi: 10.1890/04-0524
– ident: cit0097
  doi: 10.1890/04-1830
– ident: cit0075
  doi: 10.1093/treephys/10.1.45
– ident: cit0136
  doi: 10.2307/2446064
– ident: cit0144
  doi: 10.1073/pnas.0403588101
– ident: cit0013
  doi: 10.1007/BF02371212
– ident: cit0071
  doi: 10.1111/j.1461-0248.2011.01651.x
– ident: cit0002
  doi: 10.1016/S0169-5347(00)89156-9
– ident: cit0175
  doi: 10.1046/j.1469-8137.2003.00695.x
– volume-title: Factors of Soil Formation: A System of Quantitative Pedology
  year: 1941
  ident: cit0085
  doi: 10.1097/00010694-194111000-00009
– ident: cit0111
  doi: 10.1111/j.1365-2745.2011.01881.x
– ident: cit0001
  doi: 10.2307/1313296
– ident: cit0012
  doi: 10.2307/1941251
– ident: cit0098
  doi: 10.2307/2404783
– ident: cit0193
  doi: 10.1007/s11104-009-0036-8
– ident: cit0134
  doi: 10.1111/j.1466-8238.2008.00441.x
– ident: cit0199
  doi: 10.1890/14-0140.1
– ident: cit0038
  doi: 10.1038/nature12670
– ident: cit0202
  doi: 10.1007/s00442-006-0409-0
– ident: cit0099
  doi: 10.1126/science.1113977
– ident: cit0198
  doi: 10.1038/nclimate2549
– ident: cit0119
  doi: 10.1890/03-0351
– ident: cit0148
  doi: 10.1093/treephys/16.3.333
– volume: 61
  start-page: 433
  year: 1988
  ident: cit0184
  publication-title: Ann. Bot.
  doi: 10.1093/oxfordjournals.aob.a087575
– ident: cit0171
  doi: 10.2307/2259377
– ident: cit0079
  doi: 10.1007/s11258-009-9681-5
– ident: cit0101
  doi: 10.1093/aob/mcg093
– volume: 4
  start-page: 2217
  year: 2014
  ident: cit0103
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.1079
– ident: cit0006
  doi: 10.1016/S0065-2504(08)60016-1
– ident: cit0197
  doi: 10.1007/s10021-012-9623-2
– ident: cit0206
  doi: 10.1007/s00442-013-2672-1
– ident: cit0034
  doi: 10.1093/aob/mcs299
– ident: cit0117
  doi: 10.2307/1940038
SSID ssj0006628
Score 2.5720036
Snippet Nutrient resorption (NR) plays a key role in the nutrient conservation of plants. However, a fundamental understanding of the mechanisms that control NR...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 471
SubjectTerms Botany
carbon dioxide
climate
Climate change
culms
ecosystems
elevated atmospheric gases
Environmental changes
Fertility
Genetic diversity
genetic variation
Genetics
Global warming
leaf chemistry
leaf habit
Leaves
meta-analysis
nitrogen
nutrient conservation
Nutrient loss
nutrient resorption
nutrient resorption (physiology)
Nutrients
phosphorus
plant development
plant life-forms
plant nutrition
Plant tissues
Plants
Plants (organisms)
Precipitation
resorption
Roots
soil
Soil (material)
Soil fertility
Stems
stoichiometry
temperature
Woody plants
Title Patterns and Mechanisms of Nutrient Resorption in Plants
URI https://www.tandfonline.com/doi/abs/10.1080/07352689.2015.1078611
https://www.proquest.com/docview/1729391008
https://www.proquest.com/docview/1753414166
https://www.proquest.com/docview/1773829939
https://www.proquest.com/docview/1793244995
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQy4EL4ikWCgoSN5RVsrYT-7i0VOHRqhJbUbhYdmJLK0G26qYH-PXMxM5jtdUWuESRY6-yM5PxeOz5PkLeMFHm3Goem0SYmIkK7pxm8aykiMBnK1NivuPkNCvO2ccLfjFwtrbVJY2Zlr9vrCv5H61CG-gVq2T_QbP9j0ID3IN-4Qoahutf6fisBcesPczyicUi3uX659pnAZApq27a_PzVZXekETmKPHZTD0_QcR0EXNL2WDn2ehsmxyGPDtOaBylAEpFhD-cwFHgU4Cq-FeM0Qsrbc1K0V_xii9FjdKwInVFO8TScp_uZ2uAsmYyxCmTsTUNqcjner25dI_NUK1suO5xxzBGoX2DpUMqhMRdZcMIbENnF_Is6OzpWnz-cftp86qdkgWSfmcT18P4MFg7g-fbnxdH3r_3snGUt327_f7qqLsRbv-kdNuKVDTTbrdm7DUkWD8j9sJaI5t4wHpI7tn5E7r5bQbz_6zERnXVEYB3RYB3RykWddUSDdUTLOvLW8YScH79fHBZx4MmIS57QJsats9yy0nGq09SyKjUIMS10lbhcJyzNnakEtU64pBSls7CgSoSWUs-kdRWnT8levartMxJlqam4MMYKCEztTAsrUseFoFWCgb6eENZJQ5UBRB65TH6otMOaDUJUKEQVhDgh037YpUdRuW2AHItaNa15Om-Zit4y9qDTiwof61pBnC6pRCSrCXndPwZXivtjurara-zDIaaDFUq2q09OBYRwVO7qA7JiTEr-fPervCD3hk_xgOw1V9f2JcS4jXkVzPYPy_6emw
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6igl58i-szgteu7SZpp0cVZX3s4kHBW0jSBETtiu0e9Neb6WPxgXrwVppM2kxeX5KZbwg54GASYZUIdAg64JD5J6d40DMMGfhspg2edwyGcf-WX9yJuw--MGhWiXtoVxNFVHM1Dm48jG5N4g59t0SWEvQziYR_lUCM7r0zIo0T7OssHE5m4ziu4quiSIAyrRfPT8V8Wp8-sZd-m62rJehskZj252vLk4fuuNRd8_aF1_F_tVsiCw1CpUd1l1omUzZfIbPHI1_i6yqB64qQMy-o_wAdWHQcvi-eCjpydIjM_n4Ro3gn8FLNRfQ-pxgXqSzWyO3Z6c1JP2iiLwRGhKwM8EImsdw4wVQUWZ5FGomLQWWhS1TIo8TpDJh14EIDxlkP00NQaap6qXWZYOtkOh_ldoPQONKZAK0teLhjewosRE4AsCxE-Kg6hLc6l6ahJscIGY8yahlMG51I1IlsdNIh3YnYc83N8ZdA-rFBZVkdirg6golkf8hut60vm2FeSI_-UpYiP1KH7E-S_QDFWxeV29EY8wiPFDzujX_LkzDwwIClv-XxuuJ-gyo2_1GNPTLXvxlcyavz4eUWmcekymKObZPp8mVsdzzEKvVuNYbeAWpcFeE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqqBCXQnmoC7Q1EtcsydpOJkegrGjLrjiwEjfLTwnRZhHJHuivryePFQsCDnuLEo8Vjz32Z3vmG0KOOJhMOCUiHYOOONjw5BWPBoYhA5-z2uB5x2icXkz4rxvReROWrVsl7qF9QxRRz9Vo3PfWdx5xx2FUIkkJhpkkIrzKIMXo3tUUAy0xiiMezyfjNK3Tq6JIhDJdEM9r1SwsTwvkpS8m63oFGm4Q3f1743hy159Vum_-PaN1XKpxm-RTi0_pSTOgPpMPrtgiH0-nocLHbQJXNR1nUdJQPx05DBu-Lf-WdOrpGHn9wxJG8UbgoZ6J6G1BMStSVe6QyfD8-uwianMvREbErIrwOiZz3HjBVJI4bhONtMWgbOwzFfMk89oCcx58bMB4F0B6DCrP1SB33gq2S1aKaeG-EJom2grQ2kEAO26gwEHiBQCzMYJH1SO8U7k0LTE55sf4I5OOv7TViUSdyFYnPdKfi903zBzvCeRP-1NW9ZGIb_KXSPaO7EHX-bI18lIG7JezHNmReuRw_jmYJ965qMJNZ1hGBJwQUG_6VpmMQYAFLH-rTNAVD9tTsbdEM76TtasfQ3n5c_x7n6zjl9pdjh2Qleph5r4GfFXpb7UF_QfbhxSF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterns+and+Mechanisms+of+Nutrient+Resorption+in+Plants&rft.jtitle=Critical+reviews+in+plant+sciences&rft.au=Brant%2C+Amber+N&rft.au=Chen%2C+Han+YH&rft.date=2015-09-03&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0735-2689&rft.eissn=1549-7836&rft.volume=34&rft.issue=5&rft.spage=471&rft_id=info:doi/10.1080%2F07352689.2015.1078611&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3856126961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-2689&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-2689&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-2689&client=summon