A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses
This paper introduces and evaluates the use of Gaussian mixture models (GMMs) for multiple limb motion classification using continuous myoelectric signals. The focus of this work is to optimize the configuration of this classification scheme. To that end, a complete experimental evaluation of this s...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 52; no. 11; pp. 1801 - 1811 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2005
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper introduces and evaluates the use of Gaussian mixture models (GMMs) for multiple limb motion classification using continuous myoelectric signals. The focus of this work is to optimize the configuration of this classification scheme. To that end, a complete experimental evaluation of this system is conducted on a 12 subject database. The experiments examine the GMMs algorithmic issues including the model order selection and variance limiting, the segmentation of the data, and various feature sets including time-domain features and autoregressive features. The benefits of postprocessing the results using a majority vote rule are demonstrated. The performance of the GMM is compared to three commonly used classifiers: a linear discriminant analysis, a linear perceptron network, and a multilayer perceptron neural network. The GMM-based limb motion classification system demonstrates exceptional classification accuracy and results in a robust method of motion classification with low computational load. |
---|---|
AbstractList | This paper introduces and evaluates the use of Gaussian mixture models (GMMs) for multiple limb motion classification using continuous myoelectric signals. The focus of this work is to optimize the configuration of this classification scheme. To that end, a complete experimental evaluation of this system is conducted on a 12 subject database. The experiments examine the GMMs algorithmic issues including the model order selection and variance limiting, the segmentation of the data, and various feature sets including time-domain features and autoregressive features. The benefits of postprocessing the results using a majority vote rule are demonstrated. The performance of the GMM is compared to three commonly used classifiers: a linear discriminant analysis, a linear perceptron network, and a multilayer perceptron neural network. The GMM-based limb motion classification system demonstrates exceptional classification accuracy and results in a robust method of motion classification with low computational load. This paper introduces and evaluates the use of Gaussian mixture models (GMMs) for multiple limb motion classification using continuous myoelectric signals. The focus of this work is to optimize the configuration of this classification scheme. To that end, a complete experimental evaluation of this system is conducted on a 12 subject database. The experiments examine the GMMs algorithmic issues including the model order selection and variance limiting, the segmentation of the data, and various feature sets including time-domain features and autoregressive features. The benefits of postprocessing the results using a majority vote rule are demonstrated. The performance of the GMM is compared to three commonly used classifiers: a linear discriminant analysis, a linear perceptron network, and a multilayer perceptron neural network. The GMM-based limb motion classification system demonstrates exceptional classification accuracy and results in a robust method of motion classification with low computational load.This paper introduces and evaluates the use of Gaussian mixture models (GMMs) for multiple limb motion classification using continuous myoelectric signals. The focus of this work is to optimize the configuration of this classification scheme. To that end, a complete experimental evaluation of this system is conducted on a 12 subject database. The experiments examine the GMMs algorithmic issues including the model order selection and variance limiting, the segmentation of the data, and various feature sets including time-domain features and autoregressive features. The benefits of postprocessing the results using a majority vote rule are demonstrated. The performance of the GMM is compared to three commonly used classifiers: a linear discriminant analysis, a linear perceptron network, and a multilayer perceptron neural network. The GMM-based limb motion classification system demonstrates exceptional classification accuracy and results in a robust method of motion classification with low computational load. |
Author | Chan, A.D.C. Yonghong Huang Hudgins, B. Englehart, K.B. |
Author_xml | – sequence: 1 surname: Yonghong Huang fullname: Yonghong Huang organization: Dept. of Electr., Univ. of New Brunswick, Fredericton, NB, Canada – sequence: 2 givenname: K.B. surname: Englehart fullname: Englehart, K.B. email: kengleha@unb.ca organization: Dept. of Electr., Univ. of New Brunswick, Fredericton, NB, Canada – sequence: 3 givenname: B. surname: Hudgins fullname: Hudgins, B. organization: Dept. of Electr., Univ. of New Brunswick, Fredericton, NB, Canada – sequence: 4 givenname: A.D.C. surname: Chan fullname: Chan, A.D.C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16285383$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1r3DAQxUVISTYf90KhiB5681bflo5pSNJCSi_p2WjlEVGQLVeySfPfV5tNCeTQPQ3D_N4MzHsn6HBMIyD0npI1pcR8ufv642rNCJFrLRUz8gCtqJS6YZLTQ7QihOrGMCOO0UkpD7UVWqgjdEwV05JrvkLDBb6xSynBjngIf-YlAx5SDxFvbIEeu2jr0Adn55BGXNw9DIB9ynh4ShDBzTk47NI45xRx8nhKj5CrcJkmyDiGYYOnnMp8DwXKGXrnbSxw_lJP0a_rq7vLb83tz5vvlxe3jZOEzw23Xhig4LwklHJLCVW9Na03Uri2tUJIRihzPdeW9cp564TyQjoljPaO81P0ebe3nv69QJm7IRQHMdoR0lI6pVvTMqH3gkwTJrXav5ERzrXSdC9IjWBtNaKCn96AD2nJY31Lp1UrKRecVOjjC7RsBui7KYfB5qfun4EVIDvA1SeXDP4VId02I902I902I90uI1Wi3khcmJ_tnbMN8X_CDzthAIDXO5IaqTX_CyY_yI0 |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1142_S0129065717500095 crossref_primary_10_1088_1741_2560_11_5_056008 crossref_primary_10_3390_bioengineering10070866 crossref_primary_10_1016_j_simpat_2009_02_004 crossref_primary_10_1109_TSMC_2017_2764263 crossref_primary_10_1007_s41315_018_0046_x crossref_primary_10_1109_THMS_2024_3486450 crossref_primary_10_3390_s19204596 crossref_primary_10_3846_mma_2020_10505 crossref_primary_10_1007_s11571_023_09969_5 crossref_primary_10_1186_1743_0003_11_122 crossref_primary_10_1109_TIE_2014_2387337 crossref_primary_10_1109_JSEN_2013_2259051 crossref_primary_10_1016_j_bspc_2024_107421 crossref_primary_10_1088_1742_6596_1994_1_012016 crossref_primary_10_1016_j_eswa_2014_11_044 crossref_primary_10_1186_1743_0003_9_74 crossref_primary_10_1016_j_bspc_2022_103737 crossref_primary_10_1007_s10439_011_0265_x crossref_primary_10_1109_JSEN_2018_2813434 crossref_primary_10_1109_TNSRE_2011_2163529 crossref_primary_10_1007_s00500_014_1242_8 crossref_primary_10_1109_TBME_2011_2155063 crossref_primary_10_1109_JSEN_2021_3068460 crossref_primary_10_1080_03772063_2020_1725658 crossref_primary_10_1111_aor_13153 crossref_primary_10_3390_s21217404 crossref_primary_10_1016_j_bspc_2015_02_011 crossref_primary_10_1109_ACCESS_2021_3084442 crossref_primary_10_1109_TNSRE_2016_2563222 crossref_primary_10_1088_1741_2552_aa92a8 crossref_primary_10_1155_2008_273130 crossref_primary_10_1016_j_medengphy_2015_03_001 crossref_primary_10_1177_2055668317708731 crossref_primary_10_1016_j_bspc_2019_101774 crossref_primary_10_1587_transcom_2017CQP0007 crossref_primary_10_1109_JTEHM_2017_2776925 crossref_primary_10_1016_j_medengphy_2009_10_016 crossref_primary_10_1142_S0219843612500077 crossref_primary_10_1088_0967_3334_30_9_005 crossref_primary_10_1016_j_neucom_2017_11_072 crossref_primary_10_4015_S1016237209001258 crossref_primary_10_1007_s11431_017_9159_3 crossref_primary_10_1142_S0219843614500133 crossref_primary_10_1109_THMS_2019_2953262 crossref_primary_10_1186_1743_0003_10_44 crossref_primary_10_1097_JPO_0000000000000401 crossref_primary_10_1109_TITB_2012_2226905 crossref_primary_10_1016_j_bspc_2007_07_009 crossref_primary_10_1109_JTEHM_2018_2822681 crossref_primary_10_1016_j_bspc_2013_10_002 crossref_primary_10_3390_diagnostics11050843 crossref_primary_10_1016_j_bspc_2023_104774 crossref_primary_10_1016_j_bspc_2014_03_006 crossref_primary_10_1080_01691864_2014_957723 crossref_primary_10_1186_1475_925X_13_8 crossref_primary_10_1109_TNSRE_2015_2413393 crossref_primary_10_1016_j_bspc_2020_102074 crossref_primary_10_3390_s18082402 crossref_primary_10_1109_JSEN_2022_3165988 crossref_primary_10_1016_j_ifacol_2018_09_200 crossref_primary_10_1631_jzus_C1400154 crossref_primary_10_1016_j_bspc_2015_02_009 crossref_primary_10_1016_j_compag_2018_08_033 crossref_primary_10_1007_s13534_016_0240_4 crossref_primary_10_1017_wtc_2024_24 crossref_primary_10_1088_1741_2560_11_5_051001 crossref_primary_10_1088_1741_2560_12_4_046005 crossref_primary_10_1109_TCSS_2019_2894144 crossref_primary_10_1088_1741_2560_12_6_066030 crossref_primary_10_1016_j_brainresbull_2012_09_012 crossref_primary_10_3390_s24123970 crossref_primary_10_1016_j_bspc_2022_103522 crossref_primary_10_1109_TNSRE_2009_2039619 crossref_primary_10_1007_s13534_023_00281_z crossref_primary_10_1038_s41528_023_00246_3 crossref_primary_10_1109_TNSRE_2009_2023282 crossref_primary_10_1051_itmconf_20160709017 crossref_primary_10_1051_matecconf_201816401031 crossref_primary_10_1016_j_bspc_2021_102817 crossref_primary_10_1109_MIM_2021_9400951 crossref_primary_10_3390_informatics5020016 crossref_primary_10_1016_j_bbe_2017_03_001 crossref_primary_10_1109_TBME_2012_2190734 crossref_primary_10_1214_22_AOAS1666 crossref_primary_10_1007_s11432_015_5282_1 crossref_primary_10_3389_fbioe_2019_00123 crossref_primary_10_3390_app7111163 crossref_primary_10_1016_j_knosys_2021_107165 crossref_primary_10_1109_ACCESS_2020_3023995 crossref_primary_10_1109_TBME_2013_2250502 crossref_primary_10_1016_j_bspc_2019_101588 crossref_primary_10_1109_TNSRE_2020_2966249 crossref_primary_10_1142_S021951941440017X crossref_primary_10_3390_machines11040418 crossref_primary_10_1109_TNSRE_2011_2108667 crossref_primary_10_1142_S0219843619410044 crossref_primary_10_1152_jn_00188_2017 crossref_primary_10_5194_wes_8_1613_2023 crossref_primary_10_1080_03093640600994581 crossref_primary_10_1186_s12984_020_00741_y crossref_primary_10_1109_JSEN_2020_2977768 crossref_primary_10_1109_THMS_2014_2358634 crossref_primary_10_1142_S0129065714500221 crossref_primary_10_1002_sam_10082 crossref_primary_10_1146_annurev_control_061417_041727 crossref_primary_10_1002_aisy_202400505 crossref_primary_10_1016_j_bspc_2019_101572 crossref_primary_10_1016_S1665_6423_13_71516_5 crossref_primary_10_1109_TBME_2017_2750139 crossref_primary_10_1016_j_bspc_2024_106261 crossref_primary_10_1109_TBME_2011_2113182 crossref_primary_10_3390_s101211100 crossref_primary_10_3390_s20143994 crossref_primary_10_1186_s42490_019_0022_z crossref_primary_10_1142_S0219519424500453 crossref_primary_10_1631_jzus_2006_B0844 crossref_primary_10_1515_bmt_2018_0249 crossref_primary_10_1109_ACCESS_2018_2809611 crossref_primary_10_1109_TNSRE_2007_908376 crossref_primary_10_1109_TMECH_2013_2240312 crossref_primary_10_1109_JBHI_2022_3203084 crossref_primary_10_1139_cgj_2019_0076 crossref_primary_10_1109_TNSRE_2007_897025 crossref_primary_10_1016_S0140_6736_07_60193_7 crossref_primary_10_7763_IJIEE_2014_V4_433 crossref_primary_10_3109_03093641003674296 crossref_primary_10_1175_JAS_D_14_0192_1 crossref_primary_10_3390_rs6065184 crossref_primary_10_1109_TBME_2008_923917 crossref_primary_10_1109_TIM_2022_3141163 crossref_primary_10_1007_s11517_023_02917_9 crossref_primary_10_1088_2516_1091_acc625 crossref_primary_10_1109_TNSRE_2009_2015177 crossref_primary_10_3390_electronics13071322 crossref_primary_10_1109_TIE_2020_3026280 crossref_primary_10_1109_TNSRE_2016_2562180 crossref_primary_10_1016_j_neucom_2021_12_081 crossref_primary_10_1080_15361055_2020_1820805 crossref_primary_10_3389_frobt_2018_00078 crossref_primary_10_1016_j_engappai_2012_03_001 crossref_primary_10_1038_s41598_023_30716_7 crossref_primary_10_1186_s13104_016_2232_y crossref_primary_10_1109_TBME_2013_2281595 crossref_primary_10_1109_TNSRE_2023_3298797 crossref_primary_10_1109_TNSRE_2019_2961706 crossref_primary_10_1109_JSEN_2024_3475818 crossref_primary_10_1109_TNSRE_2012_2218832 crossref_primary_10_1016_j_aeue_2007_07_006 crossref_primary_10_1177_1550147719846060 crossref_primary_10_1142_S2424922X18400089 crossref_primary_10_1152_jn_00936_2006 crossref_primary_10_1109_JSEN_2024_3419802 crossref_primary_10_1109_JBHI_2014_2326660 crossref_primary_10_1186_1475_925X_11_33 crossref_primary_10_1109_TRO_2007_910708 crossref_primary_10_1109_TNSRE_2023_3314503 crossref_primary_10_1080_10255842_2024_2310726 crossref_primary_10_1109_TNSRE_2014_2302799 crossref_primary_10_1016_j_bspc_2020_101981 crossref_primary_10_1109_TNSRE_2008_2010480 crossref_primary_10_1109_TNSRE_2022_3188275 crossref_primary_10_1109_TBME_2023_3258606 crossref_primary_10_1080_03772063_2017_1381047 crossref_primary_10_1142_S1793545816500255 crossref_primary_10_3233_THC_199035 crossref_primary_10_1109_MIS_2015_40 crossref_primary_10_1109_TBME_2021_3131650 crossref_primary_10_1016_j_bspc_2009_02_004 crossref_primary_10_1016_j_neuroimage_2013_12_024 crossref_primary_10_3233_BMR_160525 crossref_primary_10_3233_XST_17260 crossref_primary_10_1016_j_aej_2022_07_011 crossref_primary_10_1016_j_bspc_2007_10_003 crossref_primary_10_1186_1743_0003_8_25 crossref_primary_10_1109_JBHI_2013_2284476 crossref_primary_10_1109_TNSRE_2015_2420654 crossref_primary_10_1109_TIE_2020_3020037 crossref_primary_10_1152_jn_00178_2007 crossref_primary_10_1016_j_bspc_2022_104546 crossref_primary_10_1109_LSENS_2024_3424949 crossref_primary_10_1109_JBHI_2018_2864335 crossref_primary_10_1109_JSEN_2017_2679806 crossref_primary_10_1016_S0208_5216_13_70054_8 crossref_primary_10_1007_s13246_013_0191_3 crossref_primary_10_1109_JBHI_2016_2642837 crossref_primary_10_3390_s23063331 crossref_primary_10_1109_TCYB_2018_2864784 crossref_primary_10_1109_TNSRE_2009_2039590 crossref_primary_10_1002_tee_21863 crossref_primary_10_1109_TNSRE_2014_2323576 crossref_primary_10_1007_s11042_024_19468_2 crossref_primary_10_9746_sicetr_45_717 crossref_primary_10_1109_TBME_2020_2967154 crossref_primary_10_3390_s150100394 crossref_primary_10_3390_app14135514 crossref_primary_10_1109_JSEN_2021_3051070 crossref_primary_10_1186_1743_0003_7_42 crossref_primary_10_5937_jcfs3_54725 crossref_primary_10_1007_s42979_023_02379_8 crossref_primary_10_1109_TII_2011_2166770 crossref_primary_10_1007_s00521_024_10813_y crossref_primary_10_1186_s12984_019_0512_1 crossref_primary_10_3390_app10082892 crossref_primary_10_3390_mi14030546 crossref_primary_10_1016_j_bspc_2012_09_001 crossref_primary_10_3390_s23136233 crossref_primary_10_1109_TSMCA_2011_2116004 crossref_primary_10_1186_s12984_018_0417_4 crossref_primary_10_1007_s00521_019_04147_3 crossref_primary_10_1016_j_bspc_2007_09_002 crossref_primary_10_1109_TBME_2023_3239687 crossref_primary_10_1016_j_robot_2016_12_014 crossref_primary_10_3389_fnbot_2016_00015 crossref_primary_10_1186_s12984_015_0102_9 crossref_primary_10_1007_s40997_023_00730_1 crossref_primary_10_1109_JSEN_2020_3023742 crossref_primary_10_1109_TNSRE_2010_2100828 crossref_primary_10_1016_j_eswa_2021_115644 crossref_primary_10_3390_app9204402 crossref_primary_10_1097_00008526_200604000_00002 crossref_primary_10_1016_j_artmed_2020_101877 crossref_primary_10_1007_s00422_006_0124_2 crossref_primary_10_1007_s13246_016_0458_6 crossref_primary_10_1016_j_cag_2017_07_020 crossref_primary_10_1109_TBME_2007_894829 crossref_primary_10_1109_TBME_2007_909536 crossref_primary_10_1109_TBME_2010_2068298 crossref_primary_10_1098_rsif_2017_0734 crossref_primary_10_1080_0951192X_2020_1775302 crossref_primary_10_1016_j_bspc_2014_05_001 crossref_primary_10_3390_electronics8111244 crossref_primary_10_1109_RBME_2012_2183586 crossref_primary_10_1007_s00500_023_08738_0 crossref_primary_10_1109_ACCESS_2018_2851282 crossref_primary_10_3390_s19102370 crossref_primary_10_4028_www_scientific_net_AMM_121_126_2156 crossref_primary_10_3233_JIFS_16070 crossref_primary_10_1109_TNSRE_2022_3173946 crossref_primary_10_1016_j_bspc_2021_102657 crossref_primary_10_1109_TBME_2006_889192 crossref_primary_10_1002_nbm_2888 crossref_primary_10_4015_S1016237216500307 crossref_primary_10_1088_1741_2552_acb7a0 crossref_primary_10_1109_ACCESS_2019_2929857 crossref_primary_10_1016_j_bspc_2012_08_005 crossref_primary_10_1016_j_bspc_2012_08_008 crossref_primary_10_4015_S1016237221500150 crossref_primary_10_1109_TBME_2011_2161671 crossref_primary_10_1016_j_compbiomed_2011_10_004 crossref_primary_10_1109_TBME_2015_2407491 crossref_primary_10_1088_1741_2560_8_3_036028 crossref_primary_10_1007_s00521_024_10001_y crossref_primary_10_1109_JTEHM_2016_2616123 crossref_primary_10_1109_RBME_2010_2085429 crossref_primary_10_1177_1550147718790751 crossref_primary_10_1109_JSEN_2021_3079428 crossref_primary_10_1186_1475_925X_12_133 crossref_primary_10_3389_frobt_2018_00014 crossref_primary_10_3390_app12073374 crossref_primary_10_1088_1741_2560_11_6_066013 crossref_primary_10_3389_fnbot_2019_00026 crossref_primary_10_5100_jje_46_197 crossref_primary_10_1016_j_inffus_2024_102789 crossref_primary_10_1186_s12984_019_0480_5 crossref_primary_10_1016_j_bspc_2007_11_005 crossref_primary_10_1109_TNSRE_2017_2687761 crossref_primary_10_1016_j_neucom_2014_08_016 crossref_primary_10_1109_TNSRE_2017_2687520 crossref_primary_10_3390_s18041122 crossref_primary_10_9718_JBER_2012_33_2_065 crossref_primary_10_1109_TNSRE_2015_2492619 crossref_primary_10_1016_j_protcy_2016_08_079 crossref_primary_10_1016_j_ultras_2021_106512 crossref_primary_10_1109_TBME_2012_2191551 crossref_primary_10_1186_1743_0003_8_53 crossref_primary_10_20965_jrm_2011_p0302 crossref_primary_10_1109_ACCESS_2019_2891350 crossref_primary_10_3390_machines12060403 crossref_primary_10_1016_j_ultrasmedbio_2010_04_015 crossref_primary_10_1016_j_ijleo_2016_01_007 crossref_primary_10_1007_s40137_013_0044_8 crossref_primary_10_1080_17483100701714733 crossref_primary_10_1007_s11517_018_1807_2 crossref_primary_10_1016_j_bspc_2019_101729 crossref_primary_10_1586_17434440_4_1_43 crossref_primary_10_1002_cpe_6848 crossref_primary_10_1016_j_jelekin_2011_12_012 crossref_primary_10_1142_S0219843611002630 crossref_primary_10_3390_s18051615 crossref_primary_10_1016_j_bspc_2018_04_011 crossref_primary_10_1021_acs_iecr_6b00240 crossref_primary_10_1109_TBME_2019_2913431 crossref_primary_10_1109_TNSRE_2012_2226189 crossref_primary_10_1109_TCSII_2016_2635674 crossref_primary_10_37636_recit_v6n4e318 crossref_primary_10_1007_s10846_014_0037_6 crossref_primary_10_1109_TBME_2008_919734 crossref_primary_10_1109_TBME_2011_2159216 crossref_primary_10_1111_exsy_12381 crossref_primary_10_1088_0967_3334_34_5_541 crossref_primary_10_1088_1741_2560_13_4_046011 crossref_primary_10_1016_j_eswa_2012_02_192 crossref_primary_10_1109_TNSRE_2020_3016909 crossref_primary_10_1109_TBME_2008_2003293 crossref_primary_10_1016_j_medengphy_2014_09_011 crossref_primary_10_1109_ACCESS_2020_3011710 crossref_primary_10_1109_TNSRE_2020_2979743 crossref_primary_10_3390_s20113144 crossref_primary_10_1109_TNSRE_2013_2279737 crossref_primary_10_1016_j_medengphy_2014_04_003 crossref_primary_10_1016_j_sigpro_2020_107863 crossref_primary_10_1115_1_4039145 crossref_primary_10_1109_TNSRE_2021_3106900 crossref_primary_10_1016_j_neunet_2014_03_010 crossref_primary_10_1088_0967_3334_30_5_002 crossref_primary_10_1186_1743_0003_9_42 crossref_primary_10_1109_TBME_2011_2177662 crossref_primary_10_1109_TMRB_2023_3292451 crossref_primary_10_1109_TCSVT_2021_3071461 crossref_primary_10_1016_j_displa_2021_102008 crossref_primary_10_1088_1741_2560_13_4_046002 crossref_primary_10_1109_TBME_2008_2008171 crossref_primary_10_1016_j_engappai_2023_106160 crossref_primary_10_1109_JSEN_2022_3143141 |
Cites_doi | 10.1016/S1350-4533(99)00066-1 10.1109/IEMBS.2003.1279711 10.1109/89.365379 10.1109/10.914793 10.1016/0167-6393(95)00009-D 10.3233/TAD-2003-15205 10.1109/70.538982 10.1109/ICASSP.2002.5745552 10.1109/TBME.2003.813539 10.1109/10.204774 10.1006/dspr.1999.0361 10.1109/iembs.1998.745109 10.1162/089976600300015439 10.1109/iembs.2003.1280510 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2005.856295 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Technology Research Database Engineering Research Database MEDLINE Engineering Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 1811 |
ExternalDocumentID | 2351868341 16285383 10_1109_TBME_2005_856295 1519588 |
Genre | orig-research Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM PKN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c503t-3af49e1ecf50113a1016da97f954c77a4452012cd38a2d6cfac46f45c6498fc33 |
IEDL.DBID | RIE |
ISSN | 0018-9294 |
IngestDate | Fri Jul 11 05:45:23 EDT 2025 Fri Jul 11 04:58:03 EDT 2025 Fri Jul 11 02:03:55 EDT 2025 Fri Jul 11 11:17:27 EDT 2025 Mon Jun 30 08:29:20 EDT 2025 Wed Feb 19 01:43:18 EST 2025 Thu Apr 24 22:51:28 EDT 2025 Tue Jul 01 04:59:07 EDT 2025 Wed Aug 27 02:52:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c503t-3af49e1ecf50113a1016da97f954c77a4452012cd38a2d6cfac46f45c6498fc33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-1 ObjectType-Feature-3 |
PMID | 16285383 |
PQID | 867513430 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_68797248 proquest_journals_867513430 crossref_citationtrail_10_1109_TBME_2005_856295 proquest_miscellaneous_20338681 proquest_miscellaneous_19427014 pubmed_primary_16285383 proquest_miscellaneous_28025863 crossref_primary_10_1109_TBME_2005_856295 ieee_primary_1519588 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-11-01 |
PublicationDateYYYYMMDD | 2005-11-01 |
PublicationDate_xml | – month: 11 year: 2005 text: 2005-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2005 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 Lawrence (ref2) 1973 ref15 ref14 ref20 ref11 Englehart (ref9) ref21 Finley (ref1) 1967; 48 Leowinata (ref10) ref17 ref16 ref19 ref18 ref8 ref4 Gallant (ref12) 1993 ref6 ref5 Gallant (ref7) 1993 Lyman (ref3) 1976 |
References_xml | – ident: ref6 doi: 10.1016/S1350-4533(99)00066-1 – volume-title: 16th Annual Congress of the International Society Electrophysiology and Kinesiology ident: ref10 article-title: A multifunction myoelectric control strategy using an array of electrodes – ident: ref11 doi: 10.1109/IEMBS.2003.1279711 – ident: ref17 doi: 10.1109/89.365379 – ident: ref13 doi: 10.1109/10.914793 – volume-title: An approach to myoelectric control using a self-organizing neural network for feature extraction year: 1993 ident: ref7 – volume-title: Proc. World Congr. Neural Networks ident: ref9 article-title: Classification of transient myoelectric signals using a dynamic feedforward neural network – ident: ref19 doi: 10.1016/0167-6393(95)00009-D – ident: ref21 doi: 10.3233/TAD-2003-15205 – ident: ref8 doi: 10.1109/70.538982 – volume: 48 start-page: 598 year: 1967 ident: ref1 article-title: Myocoder studies of multiple myocoder response publication-title: Arch. Phys. Med. Rehabil. – ident: ref16 doi: 10.1109/ICASSP.2002.5745552 – ident: ref14 doi: 10.1109/TBME.2003.813539 – ident: ref4 doi: 10.1109/10.204774 – start-page: 184 volume-title: Bull. Prosthetics Res. year: 1976 ident: ref3 article-title: Fundamental and applied research related to the design and devolopment of upper-limb externally powered prostheses – volume-title: An approach to myoelectric control using a self-organizing neural network for feature extraction year: 1993 ident: ref12 – ident: ref18 doi: 10.1006/dspr.1999.0361 – start-page: 47 volume-title: Advances in External Control of Human Extremities year: 1973 ident: ref2 article-title: Experiences with a multifunctional hand prosthesis controlled by myoelectric patterns – ident: ref5 doi: 10.1109/iembs.1998.745109 – ident: ref20 doi: 10.1162/089976600300015439 – ident: ref15 doi: 10.1109/iembs.2003.1280510 |
SSID | ssj0014846 |
Score | 2.388102 |
Snippet | This paper introduces and evaluates the use of Gaussian mixture models (GMMs) for multiple limb motion classification using continuous myoelectric signals. The... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1801 |
SubjectTerms | Algorithms Artificial Intelligence Classification Electromyography - methods EMG Gaussian mixture model Joint Prosthesis Linear discriminant analysis Models, Biological Models, Statistical Movement - physiology Multi-layer neural network Multilayer perceptrons Muscle Contraction - physiology myoelectric signals Neural networks Normal Distribution pattern recognition Pattern Recognition, Automated - methods Power system modeling prosthesis Prosthesis Design - methods Prosthetics Robustness Spatial databases Therapy, Computer-Assisted - methods Time domain analysis Upper Extremity - physiology Voting |
Title | A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses |
URI | https://ieeexplore.ieee.org/document/1519588 https://www.ncbi.nlm.nih.gov/pubmed/16285383 https://www.proquest.com/docview/867513430 https://www.proquest.com/docview/19427014 https://www.proquest.com/docview/20338681 https://www.proquest.com/docview/28025863 https://www.proquest.com/docview/68797248 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA48Gh5LOXhAxcksuvEjmMfC2qpkJZTK_UWOY4tVm02UbORaH89Yzu7BcRW3CJlLNmZmcw3nhfAByOopcwgckNjmPBaq0QLa5LK5jxzOrUqdOCbfxen5_zbRX6xA582tTDW2pB8Zqf-McTy69YM_qpslobWKHIXdtFxi7Vam4gBl7Eoh6aowJni65AkVbOzz_PjeHsi0dqrMKzGVw4yyf6wRmG8ynakGSzOyROYr_caE00up8Oqmprbv9o4_u9hnsLjEXqSoygrz2DHLvfh0W8NCffhwXwMtR9Ac0S-6qH3NZakWfz0gQYSxuYQb_hqYjzs9nlGgbUEnWTbWIIQmDQ3bRyuszBkzIQnrSOdn8eGC4eus9fkatFUpPMlJz9sb_vncH5yfPblNBlnMyQmp2yVMO24sqk1Lsc_BNP-EgAZXTiVc1MUmvMcoUVmaiZ1VgvjtOHC8dwIrqQzjL2AvWW7tK-AIOihtXYI8znnlRbae0kZNxV1WY7yMoHZmkelGRuX-_kZV2VwYKgqPYP9PM28jAyewMfNii427biH9sDz5o4usmUCh2sxKEet7kuJ3lXKOKMTeL95i-roYyx6aduhL1PFswKlcTtFRhmTQqb3UEgEolKw7RRCFgo_F-7yZZTQu-2Pgv3638c6hIex96y_Q3oDe6vrwb5FVLWq3gV1-gXYnh1g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKkXgceLQ8lgL1gQsS2XXiR-xjQS0LND1tpd4ix7HFimYTdTcS8OsZ29ktILbiFiljyc7MZL7xvBB6YwSxhBpAbmAME1ZrlWhhTVJZzjKnU6tCB77iTEzP2ecLfrGD3m1qYay1IfnMjv1jiOXXren9VdkkDa1R5C10G-w-z2K11iZmwGQsyyEpqHCm2DooSdRk9r44jvcnEuy9CuNqfO0glfQPexQGrGzHmsHmnDxExXq3MdXk27hfVWPz869Gjv97nEfowQA-8VGUlsdoxy720P3fWhLuoTvFEGzfR80R_qj7pa-yxM38uw814DA4B3vTV2PjgbfPNArMxeAm28ZiAMG4-dHG8Tpzg4dceNw63PmJbLCw7zp7hS_nTYU7X3Ty1S7t8gk6PzmefZgmw3SGxHBCVwnVjimbWuM4_COo9tcAwOrcKc5MnmvGOICLzNRU6qwWxmnDhGPcCKakM5Q-RbuLdmGfIwywh9TaAdBnjFVaaO8nZcxUxGUcJGaEJmselWZoXe4naFyWwYUhqvQM9hM1eRkZPEJvNyu62LbjBtp9z5trusiWETpYi0E56PWylOBfpZRRMkKHm7egkD7Kohe27ZdlqliWgzRup8gIpVLI9AYKCVBUCrqdQshcweeCXT6LEnq9_UGwX_z7WIfo7nRWnJann86-HKB7sROtv1F6iXZXV719BRhrVb0OqvUL2PYgqg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Gaussian+mixture+model+based+classification+scheme+for+myoelectric+control+of+powered+upper+limb+prostheses&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Huang%2C+Y&rft.au=Englehart%2C+K+B&rft.au=Hudgins%2C+B&rft.au=Chan%2C+ADC&rft.date=2005-11-01&rft.issn=0018-9294&rft.volume=52&rft.issue=11&rft.spage=1801&rft.epage=1811&rft_id=info:doi/10.1109%2FTBME.2005.856295&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |