A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses

This paper introduces and evaluates the use of Gaussian mixture models (GMMs) for multiple limb motion classification using continuous myoelectric signals. The focus of this work is to optimize the configuration of this classification scheme. To that end, a complete experimental evaluation of this s...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 52; no. 11; pp. 1801 - 1811
Main Authors Yonghong Huang, Englehart, K.B., Hudgins, B., Chan, A.D.C.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2005
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper introduces and evaluates the use of Gaussian mixture models (GMMs) for multiple limb motion classification using continuous myoelectric signals. The focus of this work is to optimize the configuration of this classification scheme. To that end, a complete experimental evaluation of this system is conducted on a 12 subject database. The experiments examine the GMMs algorithmic issues including the model order selection and variance limiting, the segmentation of the data, and various feature sets including time-domain features and autoregressive features. The benefits of postprocessing the results using a majority vote rule are demonstrated. The performance of the GMM is compared to three commonly used classifiers: a linear discriminant analysis, a linear perceptron network, and a multilayer perceptron neural network. The GMM-based limb motion classification system demonstrates exceptional classification accuracy and results in a robust method of motion classification with low computational load.
AbstractList This paper introduces and evaluates the use of Gaussian mixture models (GMMs) for multiple limb motion classification using continuous myoelectric signals. The focus of this work is to optimize the configuration of this classification scheme. To that end, a complete experimental evaluation of this system is conducted on a 12 subject database. The experiments examine the GMMs algorithmic issues including the model order selection and variance limiting, the segmentation of the data, and various feature sets including time-domain features and autoregressive features. The benefits of postprocessing the results using a majority vote rule are demonstrated. The performance of the GMM is compared to three commonly used classifiers: a linear discriminant analysis, a linear perceptron network, and a multilayer perceptron neural network. The GMM-based limb motion classification system demonstrates exceptional classification accuracy and results in a robust method of motion classification with low computational load.
This paper introduces and evaluates the use of Gaussian mixture models (GMMs) for multiple limb motion classification using continuous myoelectric signals. The focus of this work is to optimize the configuration of this classification scheme. To that end, a complete experimental evaluation of this system is conducted on a 12 subject database. The experiments examine the GMMs algorithmic issues including the model order selection and variance limiting, the segmentation of the data, and various feature sets including time-domain features and autoregressive features. The benefits of postprocessing the results using a majority vote rule are demonstrated. The performance of the GMM is compared to three commonly used classifiers: a linear discriminant analysis, a linear perceptron network, and a multilayer perceptron neural network. The GMM-based limb motion classification system demonstrates exceptional classification accuracy and results in a robust method of motion classification with low computational load.This paper introduces and evaluates the use of Gaussian mixture models (GMMs) for multiple limb motion classification using continuous myoelectric signals. The focus of this work is to optimize the configuration of this classification scheme. To that end, a complete experimental evaluation of this system is conducted on a 12 subject database. The experiments examine the GMMs algorithmic issues including the model order selection and variance limiting, the segmentation of the data, and various feature sets including time-domain features and autoregressive features. The benefits of postprocessing the results using a majority vote rule are demonstrated. The performance of the GMM is compared to three commonly used classifiers: a linear discriminant analysis, a linear perceptron network, and a multilayer perceptron neural network. The GMM-based limb motion classification system demonstrates exceptional classification accuracy and results in a robust method of motion classification with low computational load.
Author Chan, A.D.C.
Yonghong Huang
Hudgins, B.
Englehart, K.B.
Author_xml – sequence: 1
  surname: Yonghong Huang
  fullname: Yonghong Huang
  organization: Dept. of Electr., Univ. of New Brunswick, Fredericton, NB, Canada
– sequence: 2
  givenname: K.B.
  surname: Englehart
  fullname: Englehart, K.B.
  email: kengleha@unb.ca
  organization: Dept. of Electr., Univ. of New Brunswick, Fredericton, NB, Canada
– sequence: 3
  givenname: B.
  surname: Hudgins
  fullname: Hudgins, B.
  organization: Dept. of Electr., Univ. of New Brunswick, Fredericton, NB, Canada
– sequence: 4
  givenname: A.D.C.
  surname: Chan
  fullname: Chan, A.D.C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16285383$$D View this record in MEDLINE/PubMed
BookMark eNqFks1r3DAQxUVISTYf90KhiB5681bflo5pSNJCSi_p2WjlEVGQLVeySfPfV5tNCeTQPQ3D_N4MzHsn6HBMIyD0npI1pcR8ufv642rNCJFrLRUz8gCtqJS6YZLTQ7QihOrGMCOO0UkpD7UVWqgjdEwV05JrvkLDBb6xSynBjngIf-YlAx5SDxFvbIEeu2jr0Adn55BGXNw9DIB9ynh4ShDBzTk47NI45xRx8nhKj5CrcJkmyDiGYYOnnMp8DwXKGXrnbSxw_lJP0a_rq7vLb83tz5vvlxe3jZOEzw23Xhig4LwklHJLCVW9Na03Uri2tUJIRihzPdeW9cp564TyQjoljPaO81P0ebe3nv69QJm7IRQHMdoR0lI6pVvTMqH3gkwTJrXav5ERzrXSdC9IjWBtNaKCn96AD2nJY31Lp1UrKRecVOjjC7RsBui7KYfB5qfun4EVIDvA1SeXDP4VId02I902I902I90uI1Wi3khcmJ_tnbMN8X_CDzthAIDXO5IaqTX_CyY_yI0
CODEN IEBEAX
CitedBy_id crossref_primary_10_1142_S0129065717500095
crossref_primary_10_1088_1741_2560_11_5_056008
crossref_primary_10_3390_bioengineering10070866
crossref_primary_10_1016_j_simpat_2009_02_004
crossref_primary_10_1109_TSMC_2017_2764263
crossref_primary_10_1007_s41315_018_0046_x
crossref_primary_10_1109_THMS_2024_3486450
crossref_primary_10_3390_s19204596
crossref_primary_10_3846_mma_2020_10505
crossref_primary_10_1007_s11571_023_09969_5
crossref_primary_10_1186_1743_0003_11_122
crossref_primary_10_1109_TIE_2014_2387337
crossref_primary_10_1109_JSEN_2013_2259051
crossref_primary_10_1016_j_bspc_2024_107421
crossref_primary_10_1088_1742_6596_1994_1_012016
crossref_primary_10_1016_j_eswa_2014_11_044
crossref_primary_10_1186_1743_0003_9_74
crossref_primary_10_1016_j_bspc_2022_103737
crossref_primary_10_1007_s10439_011_0265_x
crossref_primary_10_1109_JSEN_2018_2813434
crossref_primary_10_1109_TNSRE_2011_2163529
crossref_primary_10_1007_s00500_014_1242_8
crossref_primary_10_1109_TBME_2011_2155063
crossref_primary_10_1109_JSEN_2021_3068460
crossref_primary_10_1080_03772063_2020_1725658
crossref_primary_10_1111_aor_13153
crossref_primary_10_3390_s21217404
crossref_primary_10_1016_j_bspc_2015_02_011
crossref_primary_10_1109_ACCESS_2021_3084442
crossref_primary_10_1109_TNSRE_2016_2563222
crossref_primary_10_1088_1741_2552_aa92a8
crossref_primary_10_1155_2008_273130
crossref_primary_10_1016_j_medengphy_2015_03_001
crossref_primary_10_1177_2055668317708731
crossref_primary_10_1016_j_bspc_2019_101774
crossref_primary_10_1587_transcom_2017CQP0007
crossref_primary_10_1109_JTEHM_2017_2776925
crossref_primary_10_1016_j_medengphy_2009_10_016
crossref_primary_10_1142_S0219843612500077
crossref_primary_10_1088_0967_3334_30_9_005
crossref_primary_10_1016_j_neucom_2017_11_072
crossref_primary_10_4015_S1016237209001258
crossref_primary_10_1007_s11431_017_9159_3
crossref_primary_10_1142_S0219843614500133
crossref_primary_10_1109_THMS_2019_2953262
crossref_primary_10_1186_1743_0003_10_44
crossref_primary_10_1097_JPO_0000000000000401
crossref_primary_10_1109_TITB_2012_2226905
crossref_primary_10_1016_j_bspc_2007_07_009
crossref_primary_10_1109_JTEHM_2018_2822681
crossref_primary_10_1016_j_bspc_2013_10_002
crossref_primary_10_3390_diagnostics11050843
crossref_primary_10_1016_j_bspc_2023_104774
crossref_primary_10_1016_j_bspc_2014_03_006
crossref_primary_10_1080_01691864_2014_957723
crossref_primary_10_1186_1475_925X_13_8
crossref_primary_10_1109_TNSRE_2015_2413393
crossref_primary_10_1016_j_bspc_2020_102074
crossref_primary_10_3390_s18082402
crossref_primary_10_1109_JSEN_2022_3165988
crossref_primary_10_1016_j_ifacol_2018_09_200
crossref_primary_10_1631_jzus_C1400154
crossref_primary_10_1016_j_bspc_2015_02_009
crossref_primary_10_1016_j_compag_2018_08_033
crossref_primary_10_1007_s13534_016_0240_4
crossref_primary_10_1017_wtc_2024_24
crossref_primary_10_1088_1741_2560_11_5_051001
crossref_primary_10_1088_1741_2560_12_4_046005
crossref_primary_10_1109_TCSS_2019_2894144
crossref_primary_10_1088_1741_2560_12_6_066030
crossref_primary_10_1016_j_brainresbull_2012_09_012
crossref_primary_10_3390_s24123970
crossref_primary_10_1016_j_bspc_2022_103522
crossref_primary_10_1109_TNSRE_2009_2039619
crossref_primary_10_1007_s13534_023_00281_z
crossref_primary_10_1038_s41528_023_00246_3
crossref_primary_10_1109_TNSRE_2009_2023282
crossref_primary_10_1051_itmconf_20160709017
crossref_primary_10_1051_matecconf_201816401031
crossref_primary_10_1016_j_bspc_2021_102817
crossref_primary_10_1109_MIM_2021_9400951
crossref_primary_10_3390_informatics5020016
crossref_primary_10_1016_j_bbe_2017_03_001
crossref_primary_10_1109_TBME_2012_2190734
crossref_primary_10_1214_22_AOAS1666
crossref_primary_10_1007_s11432_015_5282_1
crossref_primary_10_3389_fbioe_2019_00123
crossref_primary_10_3390_app7111163
crossref_primary_10_1016_j_knosys_2021_107165
crossref_primary_10_1109_ACCESS_2020_3023995
crossref_primary_10_1109_TBME_2013_2250502
crossref_primary_10_1016_j_bspc_2019_101588
crossref_primary_10_1109_TNSRE_2020_2966249
crossref_primary_10_1142_S021951941440017X
crossref_primary_10_3390_machines11040418
crossref_primary_10_1109_TNSRE_2011_2108667
crossref_primary_10_1142_S0219843619410044
crossref_primary_10_1152_jn_00188_2017
crossref_primary_10_5194_wes_8_1613_2023
crossref_primary_10_1080_03093640600994581
crossref_primary_10_1186_s12984_020_00741_y
crossref_primary_10_1109_JSEN_2020_2977768
crossref_primary_10_1109_THMS_2014_2358634
crossref_primary_10_1142_S0129065714500221
crossref_primary_10_1002_sam_10082
crossref_primary_10_1146_annurev_control_061417_041727
crossref_primary_10_1002_aisy_202400505
crossref_primary_10_1016_j_bspc_2019_101572
crossref_primary_10_1016_S1665_6423_13_71516_5
crossref_primary_10_1109_TBME_2017_2750139
crossref_primary_10_1016_j_bspc_2024_106261
crossref_primary_10_1109_TBME_2011_2113182
crossref_primary_10_3390_s101211100
crossref_primary_10_3390_s20143994
crossref_primary_10_1186_s42490_019_0022_z
crossref_primary_10_1142_S0219519424500453
crossref_primary_10_1631_jzus_2006_B0844
crossref_primary_10_1515_bmt_2018_0249
crossref_primary_10_1109_ACCESS_2018_2809611
crossref_primary_10_1109_TNSRE_2007_908376
crossref_primary_10_1109_TMECH_2013_2240312
crossref_primary_10_1109_JBHI_2022_3203084
crossref_primary_10_1139_cgj_2019_0076
crossref_primary_10_1109_TNSRE_2007_897025
crossref_primary_10_1016_S0140_6736_07_60193_7
crossref_primary_10_7763_IJIEE_2014_V4_433
crossref_primary_10_3109_03093641003674296
crossref_primary_10_1175_JAS_D_14_0192_1
crossref_primary_10_3390_rs6065184
crossref_primary_10_1109_TBME_2008_923917
crossref_primary_10_1109_TIM_2022_3141163
crossref_primary_10_1007_s11517_023_02917_9
crossref_primary_10_1088_2516_1091_acc625
crossref_primary_10_1109_TNSRE_2009_2015177
crossref_primary_10_3390_electronics13071322
crossref_primary_10_1109_TIE_2020_3026280
crossref_primary_10_1109_TNSRE_2016_2562180
crossref_primary_10_1016_j_neucom_2021_12_081
crossref_primary_10_1080_15361055_2020_1820805
crossref_primary_10_3389_frobt_2018_00078
crossref_primary_10_1016_j_engappai_2012_03_001
crossref_primary_10_1038_s41598_023_30716_7
crossref_primary_10_1186_s13104_016_2232_y
crossref_primary_10_1109_TBME_2013_2281595
crossref_primary_10_1109_TNSRE_2023_3298797
crossref_primary_10_1109_TNSRE_2019_2961706
crossref_primary_10_1109_JSEN_2024_3475818
crossref_primary_10_1109_TNSRE_2012_2218832
crossref_primary_10_1016_j_aeue_2007_07_006
crossref_primary_10_1177_1550147719846060
crossref_primary_10_1142_S2424922X18400089
crossref_primary_10_1152_jn_00936_2006
crossref_primary_10_1109_JSEN_2024_3419802
crossref_primary_10_1109_JBHI_2014_2326660
crossref_primary_10_1186_1475_925X_11_33
crossref_primary_10_1109_TRO_2007_910708
crossref_primary_10_1109_TNSRE_2023_3314503
crossref_primary_10_1080_10255842_2024_2310726
crossref_primary_10_1109_TNSRE_2014_2302799
crossref_primary_10_1016_j_bspc_2020_101981
crossref_primary_10_1109_TNSRE_2008_2010480
crossref_primary_10_1109_TNSRE_2022_3188275
crossref_primary_10_1109_TBME_2023_3258606
crossref_primary_10_1080_03772063_2017_1381047
crossref_primary_10_1142_S1793545816500255
crossref_primary_10_3233_THC_199035
crossref_primary_10_1109_MIS_2015_40
crossref_primary_10_1109_TBME_2021_3131650
crossref_primary_10_1016_j_bspc_2009_02_004
crossref_primary_10_1016_j_neuroimage_2013_12_024
crossref_primary_10_3233_BMR_160525
crossref_primary_10_3233_XST_17260
crossref_primary_10_1016_j_aej_2022_07_011
crossref_primary_10_1016_j_bspc_2007_10_003
crossref_primary_10_1186_1743_0003_8_25
crossref_primary_10_1109_JBHI_2013_2284476
crossref_primary_10_1109_TNSRE_2015_2420654
crossref_primary_10_1109_TIE_2020_3020037
crossref_primary_10_1152_jn_00178_2007
crossref_primary_10_1016_j_bspc_2022_104546
crossref_primary_10_1109_LSENS_2024_3424949
crossref_primary_10_1109_JBHI_2018_2864335
crossref_primary_10_1109_JSEN_2017_2679806
crossref_primary_10_1016_S0208_5216_13_70054_8
crossref_primary_10_1007_s13246_013_0191_3
crossref_primary_10_1109_JBHI_2016_2642837
crossref_primary_10_3390_s23063331
crossref_primary_10_1109_TCYB_2018_2864784
crossref_primary_10_1109_TNSRE_2009_2039590
crossref_primary_10_1002_tee_21863
crossref_primary_10_1109_TNSRE_2014_2323576
crossref_primary_10_1007_s11042_024_19468_2
crossref_primary_10_9746_sicetr_45_717
crossref_primary_10_1109_TBME_2020_2967154
crossref_primary_10_3390_s150100394
crossref_primary_10_3390_app14135514
crossref_primary_10_1109_JSEN_2021_3051070
crossref_primary_10_1186_1743_0003_7_42
crossref_primary_10_5937_jcfs3_54725
crossref_primary_10_1007_s42979_023_02379_8
crossref_primary_10_1109_TII_2011_2166770
crossref_primary_10_1007_s00521_024_10813_y
crossref_primary_10_1186_s12984_019_0512_1
crossref_primary_10_3390_app10082892
crossref_primary_10_3390_mi14030546
crossref_primary_10_1016_j_bspc_2012_09_001
crossref_primary_10_3390_s23136233
crossref_primary_10_1109_TSMCA_2011_2116004
crossref_primary_10_1186_s12984_018_0417_4
crossref_primary_10_1007_s00521_019_04147_3
crossref_primary_10_1016_j_bspc_2007_09_002
crossref_primary_10_1109_TBME_2023_3239687
crossref_primary_10_1016_j_robot_2016_12_014
crossref_primary_10_3389_fnbot_2016_00015
crossref_primary_10_1186_s12984_015_0102_9
crossref_primary_10_1007_s40997_023_00730_1
crossref_primary_10_1109_JSEN_2020_3023742
crossref_primary_10_1109_TNSRE_2010_2100828
crossref_primary_10_1016_j_eswa_2021_115644
crossref_primary_10_3390_app9204402
crossref_primary_10_1097_00008526_200604000_00002
crossref_primary_10_1016_j_artmed_2020_101877
crossref_primary_10_1007_s00422_006_0124_2
crossref_primary_10_1007_s13246_016_0458_6
crossref_primary_10_1016_j_cag_2017_07_020
crossref_primary_10_1109_TBME_2007_894829
crossref_primary_10_1109_TBME_2007_909536
crossref_primary_10_1109_TBME_2010_2068298
crossref_primary_10_1098_rsif_2017_0734
crossref_primary_10_1080_0951192X_2020_1775302
crossref_primary_10_1016_j_bspc_2014_05_001
crossref_primary_10_3390_electronics8111244
crossref_primary_10_1109_RBME_2012_2183586
crossref_primary_10_1007_s00500_023_08738_0
crossref_primary_10_1109_ACCESS_2018_2851282
crossref_primary_10_3390_s19102370
crossref_primary_10_4028_www_scientific_net_AMM_121_126_2156
crossref_primary_10_3233_JIFS_16070
crossref_primary_10_1109_TNSRE_2022_3173946
crossref_primary_10_1016_j_bspc_2021_102657
crossref_primary_10_1109_TBME_2006_889192
crossref_primary_10_1002_nbm_2888
crossref_primary_10_4015_S1016237216500307
crossref_primary_10_1088_1741_2552_acb7a0
crossref_primary_10_1109_ACCESS_2019_2929857
crossref_primary_10_1016_j_bspc_2012_08_005
crossref_primary_10_1016_j_bspc_2012_08_008
crossref_primary_10_4015_S1016237221500150
crossref_primary_10_1109_TBME_2011_2161671
crossref_primary_10_1016_j_compbiomed_2011_10_004
crossref_primary_10_1109_TBME_2015_2407491
crossref_primary_10_1088_1741_2560_8_3_036028
crossref_primary_10_1007_s00521_024_10001_y
crossref_primary_10_1109_JTEHM_2016_2616123
crossref_primary_10_1109_RBME_2010_2085429
crossref_primary_10_1177_1550147718790751
crossref_primary_10_1109_JSEN_2021_3079428
crossref_primary_10_1186_1475_925X_12_133
crossref_primary_10_3389_frobt_2018_00014
crossref_primary_10_3390_app12073374
crossref_primary_10_1088_1741_2560_11_6_066013
crossref_primary_10_3389_fnbot_2019_00026
crossref_primary_10_5100_jje_46_197
crossref_primary_10_1016_j_inffus_2024_102789
crossref_primary_10_1186_s12984_019_0480_5
crossref_primary_10_1016_j_bspc_2007_11_005
crossref_primary_10_1109_TNSRE_2017_2687761
crossref_primary_10_1016_j_neucom_2014_08_016
crossref_primary_10_1109_TNSRE_2017_2687520
crossref_primary_10_3390_s18041122
crossref_primary_10_9718_JBER_2012_33_2_065
crossref_primary_10_1109_TNSRE_2015_2492619
crossref_primary_10_1016_j_protcy_2016_08_079
crossref_primary_10_1016_j_ultras_2021_106512
crossref_primary_10_1109_TBME_2012_2191551
crossref_primary_10_1186_1743_0003_8_53
crossref_primary_10_20965_jrm_2011_p0302
crossref_primary_10_1109_ACCESS_2019_2891350
crossref_primary_10_3390_machines12060403
crossref_primary_10_1016_j_ultrasmedbio_2010_04_015
crossref_primary_10_1016_j_ijleo_2016_01_007
crossref_primary_10_1007_s40137_013_0044_8
crossref_primary_10_1080_17483100701714733
crossref_primary_10_1007_s11517_018_1807_2
crossref_primary_10_1016_j_bspc_2019_101729
crossref_primary_10_1586_17434440_4_1_43
crossref_primary_10_1002_cpe_6848
crossref_primary_10_1016_j_jelekin_2011_12_012
crossref_primary_10_1142_S0219843611002630
crossref_primary_10_3390_s18051615
crossref_primary_10_1016_j_bspc_2018_04_011
crossref_primary_10_1021_acs_iecr_6b00240
crossref_primary_10_1109_TBME_2019_2913431
crossref_primary_10_1109_TNSRE_2012_2226189
crossref_primary_10_1109_TCSII_2016_2635674
crossref_primary_10_37636_recit_v6n4e318
crossref_primary_10_1007_s10846_014_0037_6
crossref_primary_10_1109_TBME_2008_919734
crossref_primary_10_1109_TBME_2011_2159216
crossref_primary_10_1111_exsy_12381
crossref_primary_10_1088_0967_3334_34_5_541
crossref_primary_10_1088_1741_2560_13_4_046011
crossref_primary_10_1016_j_eswa_2012_02_192
crossref_primary_10_1109_TNSRE_2020_3016909
crossref_primary_10_1109_TBME_2008_2003293
crossref_primary_10_1016_j_medengphy_2014_09_011
crossref_primary_10_1109_ACCESS_2020_3011710
crossref_primary_10_1109_TNSRE_2020_2979743
crossref_primary_10_3390_s20113144
crossref_primary_10_1109_TNSRE_2013_2279737
crossref_primary_10_1016_j_medengphy_2014_04_003
crossref_primary_10_1016_j_sigpro_2020_107863
crossref_primary_10_1115_1_4039145
crossref_primary_10_1109_TNSRE_2021_3106900
crossref_primary_10_1016_j_neunet_2014_03_010
crossref_primary_10_1088_0967_3334_30_5_002
crossref_primary_10_1186_1743_0003_9_42
crossref_primary_10_1109_TBME_2011_2177662
crossref_primary_10_1109_TMRB_2023_3292451
crossref_primary_10_1109_TCSVT_2021_3071461
crossref_primary_10_1016_j_displa_2021_102008
crossref_primary_10_1088_1741_2560_13_4_046002
crossref_primary_10_1109_TBME_2008_2008171
crossref_primary_10_1016_j_engappai_2023_106160
crossref_primary_10_1109_JSEN_2022_3143141
Cites_doi 10.1016/S1350-4533(99)00066-1
10.1109/IEMBS.2003.1279711
10.1109/89.365379
10.1109/10.914793
10.1016/0167-6393(95)00009-D
10.3233/TAD-2003-15205
10.1109/70.538982
10.1109/ICASSP.2002.5745552
10.1109/TBME.2003.813539
10.1109/10.204774
10.1006/dspr.1999.0361
10.1109/iembs.1998.745109
10.1162/089976600300015439
10.1109/iembs.2003.1280510
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2005.856295
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Technology Research Database
Engineering Research Database

MEDLINE
Engineering Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 1811
ExternalDocumentID 2351868341
16285383
10_1109_TBME_2005_856295
1519588
Genre orig-research
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c503t-3af49e1ecf50113a1016da97f954c77a4452012cd38a2d6cfac46f45c6498fc33
IEDL.DBID RIE
ISSN 0018-9294
IngestDate Fri Jul 11 05:45:23 EDT 2025
Fri Jul 11 04:58:03 EDT 2025
Fri Jul 11 02:03:55 EDT 2025
Fri Jul 11 11:17:27 EDT 2025
Mon Jun 30 08:29:20 EDT 2025
Wed Feb 19 01:43:18 EST 2025
Thu Apr 24 22:51:28 EDT 2025
Tue Jul 01 04:59:07 EDT 2025
Wed Aug 27 02:52:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-3af49e1ecf50113a1016da97f954c77a4452012cd38a2d6cfac46f45c6498fc33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-1
ObjectType-Feature-3
PMID 16285383
PQID 867513430
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_68797248
proquest_journals_867513430
crossref_citationtrail_10_1109_TBME_2005_856295
proquest_miscellaneous_20338681
proquest_miscellaneous_19427014
pubmed_primary_16285383
proquest_miscellaneous_28025863
crossref_primary_10_1109_TBME_2005_856295
ieee_primary_1519588
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-11-01
PublicationDateYYYYMMDD 2005-11-01
PublicationDate_xml – month: 11
  year: 2005
  text: 2005-11-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2005
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Lawrence (ref2) 1973
ref15
ref14
ref20
ref11
Englehart (ref9)
ref21
Finley (ref1) 1967; 48
Leowinata (ref10)
ref17
ref16
ref19
ref18
ref8
ref4
Gallant (ref12) 1993
ref6
ref5
Gallant (ref7) 1993
Lyman (ref3) 1976
References_xml – ident: ref6
  doi: 10.1016/S1350-4533(99)00066-1
– volume-title: 16th Annual Congress of the International Society Electrophysiology and Kinesiology
  ident: ref10
  article-title: A multifunction myoelectric control strategy using an array of electrodes
– ident: ref11
  doi: 10.1109/IEMBS.2003.1279711
– ident: ref17
  doi: 10.1109/89.365379
– ident: ref13
  doi: 10.1109/10.914793
– volume-title: An approach to myoelectric control using a self-organizing neural network for feature extraction
  year: 1993
  ident: ref7
– volume-title: Proc. World Congr. Neural Networks
  ident: ref9
  article-title: Classification of transient myoelectric signals using a dynamic feedforward neural network
– ident: ref19
  doi: 10.1016/0167-6393(95)00009-D
– ident: ref21
  doi: 10.3233/TAD-2003-15205
– ident: ref8
  doi: 10.1109/70.538982
– volume: 48
  start-page: 598
  year: 1967
  ident: ref1
  article-title: Myocoder studies of multiple myocoder response
  publication-title: Arch. Phys. Med. Rehabil.
– ident: ref16
  doi: 10.1109/ICASSP.2002.5745552
– ident: ref14
  doi: 10.1109/TBME.2003.813539
– ident: ref4
  doi: 10.1109/10.204774
– start-page: 184
  volume-title: Bull. Prosthetics Res.
  year: 1976
  ident: ref3
  article-title: Fundamental and applied research related to the design and devolopment of upper-limb externally powered prostheses
– volume-title: An approach to myoelectric control using a self-organizing neural network for feature extraction
  year: 1993
  ident: ref12
– ident: ref18
  doi: 10.1006/dspr.1999.0361
– start-page: 47
  volume-title: Advances in External Control of Human Extremities
  year: 1973
  ident: ref2
  article-title: Experiences with a multifunctional hand prosthesis controlled by myoelectric patterns
– ident: ref5
  doi: 10.1109/iembs.1998.745109
– ident: ref20
  doi: 10.1162/089976600300015439
– ident: ref15
  doi: 10.1109/iembs.2003.1280510
SSID ssj0014846
Score 2.388102
Snippet This paper introduces and evaluates the use of Gaussian mixture models (GMMs) for multiple limb motion classification using continuous myoelectric signals. The...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1801
SubjectTerms Algorithms
Artificial Intelligence
Classification
Electromyography - methods
EMG
Gaussian mixture model
Joint Prosthesis
Linear discriminant analysis
Models, Biological
Models, Statistical
Movement - physiology
Multi-layer neural network
Multilayer perceptrons
Muscle Contraction - physiology
myoelectric signals
Neural networks
Normal Distribution
pattern recognition
Pattern Recognition, Automated - methods
Power system modeling
prosthesis
Prosthesis Design - methods
Prosthetics
Robustness
Spatial databases
Therapy, Computer-Assisted - methods
Time domain analysis
Upper Extremity - physiology
Voting
Title A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses
URI https://ieeexplore.ieee.org/document/1519588
https://www.ncbi.nlm.nih.gov/pubmed/16285383
https://www.proquest.com/docview/867513430
https://www.proquest.com/docview/19427014
https://www.proquest.com/docview/20338681
https://www.proquest.com/docview/28025863
https://www.proquest.com/docview/68797248
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA48Gh5LOXhAxcksuvEjmMfC2qpkJZTK_UWOY4tVm02UbORaH89Yzu7BcRW3CJlLNmZmcw3nhfAByOopcwgckNjmPBaq0QLa5LK5jxzOrUqdOCbfxen5_zbRX6xA582tTDW2pB8Zqf-McTy69YM_qpslobWKHIXdtFxi7Vam4gBl7Eoh6aowJni65AkVbOzz_PjeHsi0dqrMKzGVw4yyf6wRmG8ynakGSzOyROYr_caE00up8Oqmprbv9o4_u9hnsLjEXqSoygrz2DHLvfh0W8NCffhwXwMtR9Ac0S-6qH3NZakWfz0gQYSxuYQb_hqYjzs9nlGgbUEnWTbWIIQmDQ3bRyuszBkzIQnrSOdn8eGC4eus9fkatFUpPMlJz9sb_vncH5yfPblNBlnMyQmp2yVMO24sqk1Lsc_BNP-EgAZXTiVc1MUmvMcoUVmaiZ1VgvjtOHC8dwIrqQzjL2AvWW7tK-AIOihtXYI8znnlRbae0kZNxV1WY7yMoHZmkelGRuX-_kZV2VwYKgqPYP9PM28jAyewMfNii427biH9sDz5o4usmUCh2sxKEet7kuJ3lXKOKMTeL95i-roYyx6aduhL1PFswKlcTtFRhmTQqb3UEgEolKw7RRCFgo_F-7yZZTQu-2Pgv3638c6hIex96y_Q3oDe6vrwb5FVLWq3gV1-gXYnh1g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKkXgceLQ8lgL1gQsS2XXiR-xjQS0LND1tpd4ix7HFimYTdTcS8OsZ29ktILbiFiljyc7MZL7xvBB6YwSxhBpAbmAME1ZrlWhhTVJZzjKnU6tCB77iTEzP2ecLfrGD3m1qYay1IfnMjv1jiOXXren9VdkkDa1R5C10G-w-z2K11iZmwGQsyyEpqHCm2DooSdRk9r44jvcnEuy9CuNqfO0glfQPexQGrGzHmsHmnDxExXq3MdXk27hfVWPz869Gjv97nEfowQA-8VGUlsdoxy720P3fWhLuoTvFEGzfR80R_qj7pa-yxM38uw814DA4B3vTV2PjgbfPNArMxeAm28ZiAMG4-dHG8Tpzg4dceNw63PmJbLCw7zp7hS_nTYU7X3Ty1S7t8gk6PzmefZgmw3SGxHBCVwnVjimbWuM4_COo9tcAwOrcKc5MnmvGOICLzNRU6qwWxmnDhGPcCKakM5Q-RbuLdmGfIwywh9TaAdBnjFVaaO8nZcxUxGUcJGaEJmselWZoXe4naFyWwYUhqvQM9hM1eRkZPEJvNyu62LbjBtp9z5trusiWETpYi0E56PWylOBfpZRRMkKHm7egkD7Kohe27ZdlqliWgzRup8gIpVLI9AYKCVBUCrqdQshcweeCXT6LEnq9_UGwX_z7WIfo7nRWnJann86-HKB7sROtv1F6iXZXV719BRhrVb0OqvUL2PYgqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Gaussian+mixture+model+based+classification+scheme+for+myoelectric+control+of+powered+upper+limb+prostheses&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Huang%2C+Y&rft.au=Englehart%2C+K+B&rft.au=Hudgins%2C+B&rft.au=Chan%2C+ADC&rft.date=2005-11-01&rft.issn=0018-9294&rft.volume=52&rft.issue=11&rft.spage=1801&rft.epage=1811&rft_id=info:doi/10.1109%2FTBME.2005.856295&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon