Computational approaches to support comparative analysis of multiparametric tests: Modelling versus Training
Multiparametric assays for risk stratification are widely used in the management of breast cancer, with applications being developed for a number of other cancer settings. Recent data from multiple sources suggests that different tests may provide different risk estimates at the individual patient l...
Saved in:
Published in | PloS one Vol. 15; no. 9; p. e0238593 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
San Francisco
Public Library of Science
03.09.2020
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multiparametric assays for risk stratification are widely used in the management of breast cancer, with applications being developed for a number of other cancer settings. Recent data from multiple sources suggests that different tests may provide different risk estimates at the individual patient level. There is an increasing need for robust methods to support cost effective comparisons of test performance in multiple settings. The derivation of similar risk classifications using genes comprising the following multi-parametric tests Oncotype DX® (Genomic Health.), Prosigna™ (NanoString Technologies, Inc.), MammaPrint® (Agendia Inc.) was performed using different computational approaches. Results were compared to the actual test results. Two widely used approaches were applied, firstly computational “modelling” of test results using published algorithms and secondly a “training” approach which used reference results from the commercially supplied tests. We demonstrate the potential for errors to arise when using a “modelling” approach without reference to real world test results. Simultaneously we show that a “training” approach can provide a highly cost-effective solution to the development of real-world comparisons between different multigene signatures. Comparisons between existing multiparametric tests is challenging, and evidence on discordance between tests in risk stratification presents further dilemmas. We present an approach, modelled in breast cancer, which can provide health care providers and researchers with the potential to perform robust and meaningful comparisons between multigene tests in a cost-effective manner. We demonstrate that whilst viable estimates of gene signatures can be derived from modelling approaches, in our study using a training approach allowed a close approximation to true signature results. |
---|---|
AbstractList | Multiparametric assays for risk stratification are widely used in the management of breast cancer, with applications being developed for a number of other cancer settings. Recent data from multiple sources suggests that different tests may provide different risk estimates at the individual patient level. There is an increasing need for robust methods to support cost effective comparisons of test performance in multiple settings. The derivation of similar risk classifications using genes comprising the following multi-parametric tests Oncotype DX® (Genomic Health.), Prosigna™ (NanoString Technologies, Inc.), MammaPrint® (Agendia Inc.) was performed using different computational approaches. Results were compared to the actual test results. Two widely used approaches were applied, firstly computational “modelling” of test results using published algorithms and secondly a “training” approach which used reference results from the commercially supplied tests. We demonstrate the potential for errors to arise when using a “modelling” approach without reference to real world test results. Simultaneously we show that a “training” approach can provide a highly cost-effective solution to the development of real-world comparisons between different multigene signatures. Comparisons between existing multiparametric tests is challenging, and evidence on discordance between tests in risk stratification presents further dilemmas. We present an approach, modelled in breast cancer, which can provide health care providers and researchers with the potential to perform robust and meaningful comparisons between multigene tests in a cost-effective manner. We demonstrate that whilst viable estimates of gene signatures can be derived from modelling approaches, in our study using a training approach allowed a close approximation to true signature results. Multiparametric assays for risk stratification are widely used in the management of breast cancer, with applications being developed for a number of other cancer settings. Recent data from multiple sources suggests that different tests may provide different risk estimates at the individual patient level. There is an increasing need for robust methods to support cost effective comparisons of test performance in multiple settings. The derivation of similar risk classifications using genes comprising the following multi-parametric tests Oncotype DX ® (Genomic Health.), Prosigna ™ (NanoString Technologies, Inc.), MammaPrint ® (Agendia Inc.) was performed using different computational approaches. Results were compared to the actual test results. Two widely used approaches were applied, firstly computational “modelling” of test results using published algorithms and secondly a “training” approach which used reference results from the commercially supplied tests. We demonstrate the potential for errors to arise when using a “modelling” approach without reference to real world test results. Simultaneously we show that a “training” approach can provide a highly cost-effective solution to the development of real-world comparisons between different multigene signatures. Comparisons between existing multiparametric tests is challenging, and evidence on discordance between tests in risk stratification presents further dilemmas. We present an approach, modelled in breast cancer, which can provide health care providers and researchers with the potential to perform robust and meaningful comparisons between multigene tests in a cost-effective manner. We demonstrate that whilst viable estimates of gene signatures can be derived from modelling approaches, in our study using a training approach allowed a close approximation to true signature results. |
Author | Stein, Robert C. Dunn, Janet A. Yao, Cindy Q. Boutros, Paul C. Piper, Tammy Bayani, Jane Crozier, Cheryl Bartlett, John M. S. Kornaga, Elizabeth N. Danaher, Patrick |
AuthorAffiliation | 8 Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada 1 Diagnostic Development, Ontario Institute for Cancer Research, Toronto, Ontario, Canada 3 Edinburgh Cancer Research Centre, Edinburgh, United Kingdom 5 Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada 9 UCL (University College London) and National Institute for Health Research University College London Hospitals Biomedical Research Centre, London, United Kingdom 4 Tom Baker Cancer Centre, Calgary, Alberta, Canada 6 Warwick Medical School, University of Warwick, Coventry, United Kingdom 7 Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada 2 Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada Gangnam Severance Hospital, Yonsei University College of Medicine, REPUBLIC OF KOREA |
AuthorAffiliation_xml | – name: 2 Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada – name: 9 UCL (University College London) and National Institute for Health Research University College London Hospitals Biomedical Research Centre, London, United Kingdom – name: Gangnam Severance Hospital, Yonsei University College of Medicine, REPUBLIC OF KOREA – name: 3 Edinburgh Cancer Research Centre, Edinburgh, United Kingdom – name: 8 Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada – name: 4 Tom Baker Cancer Centre, Calgary, Alberta, Canada – name: 6 Warwick Medical School, University of Warwick, Coventry, United Kingdom – name: 7 Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada – name: 1 Diagnostic Development, Ontario Institute for Cancer Research, Toronto, Ontario, Canada – name: 5 Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada |
Author_xml | – sequence: 1 givenname: John M. S. orcidid: 0000-0002-0347-3888 surname: Bartlett fullname: Bartlett, John M. S. – sequence: 2 givenname: Jane surname: Bayani fullname: Bayani, Jane – sequence: 3 givenname: Elizabeth N. surname: Kornaga fullname: Kornaga, Elizabeth N. – sequence: 4 givenname: Patrick surname: Danaher fullname: Danaher, Patrick – sequence: 5 givenname: Cheryl surname: Crozier fullname: Crozier, Cheryl – sequence: 6 givenname: Tammy surname: Piper fullname: Piper, Tammy – sequence: 7 givenname: Cindy Q. surname: Yao fullname: Yao, Cindy Q. – sequence: 8 givenname: Janet A. surname: Dunn fullname: Dunn, Janet A. – sequence: 9 givenname: Paul C. orcidid: 0000-0003-0553-7520 surname: Boutros fullname: Boutros, Paul C. – sequence: 10 givenname: Robert C. orcidid: 0000-0003-2969-0415 surname: Stein fullname: Stein, Robert C. |
BookMark | eNptkt-P1CAQgIk54_3Q_8BEEl982ZVCW8AHE7Px9JIzvpzPZEqne2zaUoFucv-99LYaz_gEzHx8DJO5JGejH5GQ1wXbFkIW7w9-DiP02ymHt4wLVWnxjFwUWvBNzZk4-2t_Ti5jPDBWCVXXL8i54EoVWskL0u_8MM0JkvNZRmGaggd7j5EmT-M8TT4kajMDITNHpJCxh-gi9R0d5j65JTNgCs7ShDHFD_Sbb7Hv3binRwxxjvQugBvz-SV53kEf8dW6XpEf15_vdl83t9-_3Ow-3W5sxUTaCNVJXmMDwFRVWt2gLpS2vKuFlohaqRYk4yiwkXXFGDKsAXVdKWDCNqW4Im9O3qn30ayNioaXQmvJdCkycXMiWg8HMwU3QHgwHpx5DPiwNxCSsz2aRlktWmRaCllKtE2T288BclUgpdbZ9XF9bW4GbC2OKUD_RPo0M7p7s_dHk3UsO7Pg3SoI_uece2gGF21uIYzo56XukpWy4HxB3_6D_v935YmywccYsPtTTMHMMjy_b5lleMw6POIXkZK93w |
CitedBy_id | crossref_primary_10_1038_s41523_021_00301_0 crossref_primary_10_1038_s41523_021_00297_7 |
Cites_doi | 10.1038/415530a 10.1038/s41598-019-48570-x 10.1001/jamaoncol.2017.5524 10.1093/jnci/djt244 10.1038/nrclinonc.2011.178 10.1056/NEJMoa052933 10.1186/s12920-015-0129-6 10.1158/1078-0432.CCR-14-2842 10.1007/s10549-012-2143-0 10.1056/NEJMoa1804710 10.1093/jnci/djw050 10.1093/jnci/djr071 10.3310/hta20100 10.1038/s41523-016-0003-5 10.1007/s10549-019-05226-8 10.1016/S1470-2045(10)70008-5 10.1016/S1470-2045(13)70387-5 10.1056/NEJMoa041588 10.1200/JCO.2008.18.1370 10.1158/1078-0432.CCR-12-0286 10.1200/JCO.2012.46.1558 10.1200/JCO.2005.04.7985 10.1158/1078-0432.CCR-10-1282 10.1634/theoncologist.2012-0007 |
ContentType | Journal Article |
Copyright | 2020 Bartlett et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Bartlett et al 2020 Bartlett et al |
Copyright_xml | – notice: 2020 Bartlett et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Bartlett et al 2020 Bartlett et al |
CorporateAuthor | OPTIMA Trial Management Group |
CorporateAuthor_xml | – sequence: 0 name: OPTIMA Trial Management Group |
DBID | AAYXX CITATION 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PIMPY PQEST PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0238593 |
DatabaseName | CrossRef ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Biological Science Collection ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic Technology Collection Technology Research Database Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Multiparametric tests and comparisons of computational approaches |
EISSN | 1932-6203 |
Editor | Jeong, Joon |
Editor_xml | – sequence: 1 givenname: Joon surname: Jeong fullname: Jeong, Joon |
EndPage | e0238593 |
ExternalDocumentID | 2439970943 oai_doaj_org_article_b8c93de0973747ecbb1372aabe9a7799 10_1371_journal_pone_0238593 |
GeographicLocations | Canada California United Kingdom--UK Toronto Ontario Canada |
GeographicLocations_xml | – name: Canada – name: California – name: United Kingdom--UK – name: Toronto Ontario Canada |
GroupedDBID | --- 123 29O 2WC 3V. 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ADBBV AEAQA AENEX AFKRA AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BBORY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 P2P P62 PATMY PDBOC PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PQEST PQUKI PRINS RC3 7X8 5PM AFPKN - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c503t-38f726ebaa0854c9be9189c2f6397ee988da702e3eb76500e0e6ae9658a03cb43 |
IEDL.DBID | RPM |
ISSN | 1932-6203 |
IngestDate | Fri Nov 26 17:12:41 EST 2021 Tue Oct 22 15:15:49 EDT 2024 Tue Sep 17 21:28:37 EDT 2024 Fri Oct 25 00:11:09 EDT 2024 Thu Oct 10 18:07:42 EDT 2024 Fri Dec 06 03:46:03 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c503t-38f726ebaa0854c9be9189c2f6397ee988da702e3eb76500e0e6ae9658a03cb43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Membership of the OPTIMA Trial Management Group is provided in the Acknowledgments. Current address: Department of Human Genetics & Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, United States of America Competing Interests: JMSB reports consultancies from Insight Genetics, BioNTech AG, Biotheranostics, Pfizer, RNA Diagnostics and oncoXchange, honoraria from NanoString Technologies, Oncology Education and Biotheranostics, travel and accommodation expenses from Biotheranostics and NanoString Technologies, research funding from Thermo Fisher Scientific, Genoptix, Agendia, NanoString Technoloiges, Stratifyer GmbH and Biotheranostics, a disclosure “A Molecular Classifier for Personalized Risk Stratification for Patients with Prostate Cancer” (Aug 2019), and applied for patents, including: “Methods and Devices for Predicting Anthracycline Treatment Efficacy”, US utility – 15/325,472; EPO – 15822898.1; Canada – not yet assigned (Jan 2017); “Systems, Devices and Methods for Constructing and Using a Biomarker”, US utility – 15/328,108; EPO –15824751.0; Canada – not yet assigned (Jan 2017); “Histone gene module predicts anthracycline benefit”, PCT/CA2016/000247 (Oct 2016); “Immune Gene Signature Predicts Anthracycline Benefit”, PCT/CA2016/000305 (Dec 2016). JMSB, JB, CQY and PCB are co-inventors on the applied for patent: “95-Gene Signature of Residual Risk Following Endocrine Treatment”, PCT/CA2016/000304 (Dec 2016). PD is an employee and shareholder of NanoString Technologies. This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials. The remaining authors do not declare any other competing interests. |
ORCID | 0000-0003-0553-7520 0000-0003-2969-0415 0000-0002-0347-3888 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7470374/ |
PMID | 32881987 |
PQID | 2439970943 |
PQPubID | 1436336 |
ParticipantIDs | plos_journals_2439970943 doaj_primary_oai_doaj_org_article_b8c93de0973747ecbb1372aabe9a7799 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7470374 proquest_miscellaneous_2440471224 proquest_journals_2439970943 crossref_primary_10_1371_journal_pone_0238593 |
PublicationCentury | 2000 |
PublicationDate | 2020-09-03 |
PublicationDateYYYYMMDD | 2020-09-03 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | San Francisco |
PublicationPlace_xml | – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationYear | 2020 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | SK Chia (pone.0238593.ref019) 2012; 18 JM Bartlett (pone.0238593.ref004) 2016; 108 C Fan (pone.0238593.ref008) 2006; 355 JA Sparano (pone.0238593.ref002) 2018; 379 A Prat (pone.0238593.ref025) 2012; 135 M Dowsett (pone.0238593.ref023) 2015; 21 A Prat (pone.0238593.ref007) 2012; 9 TO Nielsen (pone.0238593.ref020) 2010; 16 AF Vieira (pone.0238593.ref001) 2018; 5 I Sestak (pone.0238593.ref003) 2019; 176 J Bayani (pone.0238593.ref014) 2017; 3 B Wallden (pone.0238593.ref006) 2015; 8 A Mackay (pone.0238593.ref010) 2011; 103 RC Stein (pone.0238593.ref015) 2016; 20 JS Parker (pone.0238593.ref021) 2009; 27 M Dowsett (pone.0238593.ref012) 2013; 31 S Paik (pone.0238593.ref016) 2004; 351 CM Kelly (pone.0238593.ref009) 2012; 17 I Sestak (pone.0238593.ref024) 2018; 4 B Weigelt (pone.0238593.ref011) 2010; 11 J Vallon-Christersson (pone.0238593.ref026) 2019; 9 DC Sgroi (pone.0238593.ref013) 2013; 14 S Paik (pone.0238593.ref017) 2006; 24 LJ van’t Veer (pone.0238593.ref018) 2002; 415 I Sestak (pone.0238593.ref022) 2013; 105 S Alam (pone.0238593.ref005) 2019; 26 |
References_xml | – volume: 415 start-page: 530 issue: 6871 year: 2002 ident: pone.0238593.ref018 article-title: Gene expression profiling predicts clinical outcome of breast cancer publication-title: Nature doi: 10.1038/415530a contributor: fullname: LJ van’t Veer – volume: 9 start-page: 12184 issue: 1 year: 2019 ident: pone.0238593.ref026 article-title: Cross comparison and prognostic assessment of breast cancer multigene signatures in a large population-based contemporary clinical series publication-title: Scientific Reports doi: 10.1038/s41598-019-48570-x contributor: fullname: J Vallon-Christersson – volume: 4 start-page: 545 issue: 4 year: 2018 ident: pone.0238593.ref024 article-title: Comparison of the Performance of 6 Prognostic Signatures for Estrogen Receptor–Positive Breast Cancer: A Secondary Analysis of a Randomized Clinical TrialPrognostic Signatures for Estrogen Receptor–Positive Breast CancerPrognostic Signatures for Estrogen Receptor–Positive Breast Cancer publication-title: JAMA Oncology doi: 10.1001/jamaoncol.2017.5524 contributor: fullname: I Sestak – volume: 5 issue: 248 year: 2018 ident: pone.0238593.ref001 article-title: An Update on Breast Cancer Multigene Prognostic Tests—Emergent Clinical Biomarkers publication-title: Frontiers in Medicine contributor: fullname: AF Vieira – volume: 105 start-page: 1504 issue: 19 year: 2013 ident: pone.0238593.ref022 article-title: Factors predicting late recurrence for estrogen receptor-positive breast cancer publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djt244 contributor: fullname: I Sestak – volume: 9 start-page: 48 issue: 1 year: 2012 ident: pone.0238593.ref007 article-title: Practical implications of gene-expression-based assays for breast oncologists publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2011.178 contributor: fullname: A Prat – volume: 355 start-page: 560 issue: 6 year: 2006 ident: pone.0238593.ref008 article-title: Concordance among gene-expression-based predictors for breast cancer publication-title: N Engl J Med doi: 10.1056/NEJMoa052933 contributor: fullname: C Fan – volume: 8 start-page: 54 year: 2015 ident: pone.0238593.ref006 article-title: Development and verification of the PAM50-based Prosigna breast cancer gene signature assay publication-title: BMC Med Genomics doi: 10.1186/s12920-015-0129-6 contributor: fullname: B Wallden – volume: 21 start-page: 2763 issue: 12 year: 2015 ident: pone.0238593.ref023 article-title: Estrogen Receptor Expression in 21-Gene Recurrence Score Predicts Increased Late Recurrence for Estrogen-Positive/HER2-Negative Breast Cancer publication-title: Clinical Cancer Research doi: 10.1158/1078-0432.CCR-14-2842 contributor: fullname: M Dowsett – volume: 135 start-page: 301 issue: 1 year: 2012 ident: pone.0238593.ref025 article-title: PAM50 assay and the three-gene model for identifying the major and clinically relevant molecular subtypes of breast cancer publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-012-2143-0 contributor: fullname: A Prat – volume: 379 start-page: 111 issue: 2 year: 2018 ident: pone.0238593.ref002 article-title: Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer publication-title: New England Journal of Medicine doi: 10.1056/NEJMoa1804710 contributor: fullname: JA Sparano – volume: 108 issue: 9 year: 2016 ident: pone.0238593.ref004 article-title: Comparing Breast Cancer Multiparameter Tests in the OPTIMA Prelim Trial: No Test Is More Equal Than the Others publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djw050 contributor: fullname: JM Bartlett – volume: 103 start-page: 662 issue: 8 year: 2011 ident: pone.0238593.ref010 article-title: Microarray-based class discovery for molecular classification of breast cancer: analysis of interobserver agreement publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djr071 contributor: fullname: A Mackay – volume: 20 start-page: xxiii issue: 10 year: 2016 ident: pone.0238593.ref015 article-title: OPTIMA prelim: a randomised feasibility study of personalised care in the treatment of women with early breast cancer publication-title: Health Technol Assess doi: 10.3310/hta20100 contributor: fullname: RC Stein – volume: 26 start-page: 9758 issue: 3 year: 2019 ident: pone.0238593.ref005 article-title: Prostate cancer genomics: comparing results from three molecular assays publication-title: Can J Urol contributor: fullname: S Alam – volume: 3 start-page: 3 issue: 1 year: 2017 ident: pone.0238593.ref014 article-title: Molecular stratification of early breast cancer identifies drug targets to drive stratified medicine publication-title: npj Breast Cancer doi: 10.1038/s41523-016-0003-5 contributor: fullname: J Bayani – volume: 176 start-page: 377 issue: 2 year: 2019 ident: pone.0238593.ref003 article-title: Prediction of chemotherapy benefit by EndoPredict in patients with breast cancer who received adjuvant endocrine therapy plus chemotherapy or endocrine therapy alone publication-title: Breast Cancer Research and Treatment doi: 10.1007/s10549-019-05226-8 contributor: fullname: I Sestak – volume: 11 start-page: 339 issue: 4 year: 2010 ident: pone.0238593.ref011 article-title: Breast cancer molecular profiling with single sample predictors: a retrospective analysis publication-title: Lancet Oncol doi: 10.1016/S1470-2045(10)70008-5 contributor: fullname: B Weigelt – volume: 14 start-page: 1067 issue: 11 year: 2013 ident: pone.0238593.ref013 article-title: Prediction of late distant recurrence in patients with oestrogen-receptor-positive breast cancer: a prospective comparison of the breast-cancer index (BCI) assay, 21-gene recurrence score, and IHC4 in the TransATAC study population publication-title: Lancet Oncol doi: 10.1016/S1470-2045(13)70387-5 contributor: fullname: DC Sgroi – volume: 351 start-page: 2817 issue: 27 year: 2004 ident: pone.0238593.ref016 article-title: A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer publication-title: N Engl J Med doi: 10.1056/NEJMoa041588 contributor: fullname: S Paik – volume: 27 start-page: 1160 issue: 8 year: 2009 ident: pone.0238593.ref021 article-title: Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes publication-title: Journal of Clinical Oncology doi: 10.1200/JCO.2008.18.1370 contributor: fullname: JS Parker – volume: 18 start-page: 4465 issue: 16 year: 2012 ident: pone.0238593.ref019 article-title: A 50-Gene Intrinsic Subtype Classifier for Prognosis and Prediction of Benefit from Adjuvant Tamoxifen publication-title: Clinical Cancer Research doi: 10.1158/1078-0432.CCR-12-0286 contributor: fullname: SK Chia – volume: 31 start-page: 2783 issue: 22 year: 2013 ident: pone.0238593.ref012 article-title: Comparison of PAM50 risk of recurrence score with oncotype DXDX and IHC4 for predicting risk of distant recurrence after endocrine therapy publication-title: J Clin Oncol doi: 10.1200/JCO.2012.46.1558 contributor: fullname: M Dowsett – volume: 24 start-page: 3726 issue: 23 year: 2006 ident: pone.0238593.ref017 article-title: Gene Expression and Benefit of Chemotherapy in Women With Node-Negative, Estrogen Receptor-Positive Breast Cancer publication-title: Journal of Clinical Oncology doi: 10.1200/JCO.2005.04.7985 contributor: fullname: S Paik – volume: 16 start-page: 5222 issue: 21 year: 2010 ident: pone.0238593.ref020 article-title: A Comparison of PAM50 Intrinsic Subtyping with Immunohistochemistry and Clinical Prognostic Factors in Tamoxifen-Treated Estrogen Receptor-Positive Breast Cancer publication-title: Clinical Cancer Research doi: 10.1158/1078-0432.CCR-10-1282 contributor: fullname: TO Nielsen – volume: 17 start-page: 492 issue: 4 year: 2012 ident: pone.0238593.ref009 article-title: Agreement in risk prediction between the 21-gene recurrence score assay (Oncotype DXDX(R)) and the PAM50 breast cancer intrinsic Classifier in early-stage estrogen receptor-positive breast cancer publication-title: Oncologist doi: 10.1634/theoncologist.2012-0007 contributor: fullname: CM Kelly |
SSID | ssj0053866 |
Score | 2.396389 |
Snippet | Multiparametric assays for risk stratification are widely used in the management of breast cancer, with applications being developed for a number of other... |
SourceID | plos doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | e0238593 |
SubjectTerms | Algorithms Breast cancer Chemotherapy Comparative analysis Computer and Information Sciences Computer applications Discordance Gene expression Medical research Medicine and Health Sciences Methods Patients Physical Sciences Research and Analysis Methods Risk Robustness Signatures Training |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYv4xPoiggc9VNukbVpvKsoi6EnBW0nSKQrSLrb7_51p0tWC4MVrE2g6j86XzOQbxk6LPJcILCAkopgwUQChQWQf6lgoY0WCLkX3nR-fstlL8vCavv5o9UU1YY4e2Anu0uS2kBUQqwwiX7DGxFIJrQ0UWqnCXd2LxLiZcv9g9OIs8xflpIovvV4u5m0DFxSl0kJOAtHA10_8ph9tN8Ga00rJH6HnfoOte8zIr91aN9kKNFts03tlx888dfT5NvtwTRr8AR8fCcNxUt_ybjEnsM3tN-E3156ThLc1d7WFmqq1iLafIwjtuytO3dIG4m5OFRyLjj_7rhI77OX-7vl2Fvp-CqFNI9mHMq-VyMBojTgrsQWKMM4LK2pK7gGg2iqtIgESjELgFkEEmQZih9GRtCaRu2y1QQnuMR6loLNK2TQzVZJntVa1ritTVLEwdLIasHAUbjl3tBnlkDtTuN1wUitJGaVXRsBuSAPLuUR6PTxAUyi9KZR_mULA9kh_4wu6UtBmS1HtZMAOR53-PnyyHEb3opyJbqBd0JwkwviNQCdgamILk7VOR5r3t4GoG1dJ9D77__FxB2xN0FafclnykK32nws4QjzUm-PB9L8AEkkPng priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9UwDLZgXLggxg-tMFCQOMAhW1_SJg0XBIjHhASnTdqtSlIXkKb2sfb9_9htulEJcW2iJI3j5IvtfAZ47apKE7BAyUQxsrCIMhCyl36jbIiqIJXi987fvpuzi-LrZXmZDG5DCqtc9sRpo276yDbyU8XA2XIc3Pvdb8lZo9i7mlJo3IV71LbhkL5q-2XZiUmXjUnP5bTdnCbpnOz6Dk_4rCqdXh1HE2s_s5xe9cMKca7jJf86gLYP4UFCjuLDLOpDuIPdIzhMujmIN4lA-u1juJpTNSQzn1how6nS2Ithv2PILeIt7bfwiZlE9K2YIww9x2wxeb8gKDoO7wTnTJvouwXHcewHcZ5ySzyBi-3n809nMmVVkLHM9Sh11VplMHhPaKuILqDbVC6qll18iCS8xttcocZAM5rnmKPxyBwxPtcxFPopHHQ0g0cg8hK9aWwsTWiKyrTetr5tgms2KrB9NQO5TG69m8kz6smDZunSMc9azcKokzAy-MgSuKnL1NfTh_76R500qQ5VdLpBphmiqxDGEKg95T39h7fWuQyOWH5LB0N9u3IyOF5k-u_iVzfFpGTsOfEd9nuuU-R0ihPcycCu1sJqrOuS7tfPia6bRskkP8_-3_lzuK_4Ks--Kn0MB-P1Hl8Q3hnDy2lR_wEqYQaZ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwEB2VcuGCaAE1UCojcYBDVlk7iWMkhEpFVSGVU1fqLbKdCSCtku0mK8HfM5M4C5HKjWtsJ_GMR_PsGb8BeGOKQhGwwJiJYuJUI8aOkH1sl1I7L1MyKb7vfP01v1qlX26z2wOYarYGAXb3bu24ntRqu178vPv1kQz-w1C1QS-nQYtN2-CCfVBm1AN4KMk3cpLXdbqPK5B153m4QPevkTMHNfD4M-_puu1mGHSeQfmXS7p8Ao8DlhTno_KP4ACbYzgK1tqJt4FS-t1TWI_FG8LBn5iIxKlT34put-H5C_-HCFzYwFUi2lqMOYeWs7iYzl8QOO2794KrqA2E3oIzO3aduAnVJp7B6vLzzcVVHOosxD5LVB-rotYyR2ct4a_UG4dmWRgvaw76IZI6K6sTiQqdJkCXYIK5RWaNsYnyLlXP4bAhCZ6ASDK0eaV9lrsqLfLa6trWlTPVUjo-cY0gnoRbbkY6jXKIqWnahoxSK1kZZVBGBJ9YA_u-TIY9PGi338pgW6UrvFEVMvEQbY7QO0fvk9bSPKzWxkRwwvqbPtCVkjdhmnMqIziddHp_8-t9M5kdx1Jsg-2O-6QJ-XUCQBHo2VqY_eu8pfnxfSDwpr9k2p8X_2NyL-GR5CMAjnGpUzjstzt8RTipd2fD0v8N2I0ZtQ priority: 102 providerName: Scholars Portal |
Title | Computational approaches to support comparative analysis of multiparametric tests: Modelling versus Training |
URI | https://www.proquest.com/docview/2439970943 https://search.proquest.com/docview/2440471224 https://pubmed.ncbi.nlm.nih.gov/PMC7470374 https://doaj.org/article/b8c93de0973747ecbb1372aabe9a7799 http://dx.doi.org/10.1371/journal.pone.0238593 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb5wwEB0l6aWXqumHQpqsXKmH9sAu2IBNb8kq26jSRlGVSHtDtjFtpA2sAvv_OwMmLVJPvfiADQuemZ039vgNwKdcKYHAwoVEFBMm0rnQILIPdcylsTxBk6Lzzuub7Po--b5JNweQjmdh-qR9ax7m9fZxXj_86nMrd492MeaJLW7XS4TARJuyOIRDdL9jiD78_aIBZ5k_IydkvPAime-a2s3JQaU51c4RXCmKtyfuqGftJ5bTbdNOEOc0X_IvB7R6Da88cmQXwxsew4Gr38Cxt82WffYE0l_ewnYo1eCX-dhIG46Duoa1-x1Bbmb_0H4z7ZlJWFOxIcNQU84WkfczhKJd-5VRzbSevptRHse-ZXe-tsQ7uF9d3S2vQ19VIbRpJLpQqEryzBmtEW0lNjcuj1VueUVbfM6h8EotI-6EMxLhW-Qil2lHHDE6EtYk4j0c1TiZJ8Ci1OmslDbNTJmorNKy0lVp8jLmhtZXAwjHyS12A3lG0e-gSQw6hlkrSC6Fl0sAlySB57FEfd1faJ5-Fl4BCqNsLkpHNEOoB84ag8_jWuN3aCnzPIATkt_4A23BKeSSlEEZwNko0393f3zuRiOjnRNdu2ZPY5IIvTjCnQDkRBcm7zrtQe3t6bq9tp7-950f4CWnKJ-2scQZHHVPe3eOUKgzMzSAjcRWLWNqV99m8OLy6ub2x6xfXMB2nahZbyC_AenWFZM |
link.rule.ids | 230,314,727,780,784,864,885,2102,2221,12056,12223,12765,21388,24318,27924,27925,31719,31720,33266,33267,33373,33374,33744,33745,43310,43579,43600,43805,53791,53793,73745,74014,74035,74302 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3B9gCXquVDTSlgJA5wcJuNkzjpBVHUaoF2hdBW6i2ynQlUqpJtk_3_zCROSyTENbbixOPxPM-M3wC8z7NMEbBAyUQxMtaI0hKyl2YeaeuimFSK7ztfLNPFZfztKrnyDrfWp1WOe2K_UZeNYx_5UcTAWXMe3Kf1reSqURxd9SU0HsMWM6cnM9g6OV3--DnuxaTNaeovzCk9P_LyOVw3NR6ytUpyNTFIPW8_85zeNO0Ec04zJv8yQWc7sO2xo_g8CHsXHmH9DHa9drbig6eQ_vgcboZiDd7RJ0bicOrUNaLdrBl0C_dA_C2M5yYRTSWGHEPDWVtM3y8IjHbtseCqaT2Bt-BMjk0rVr66xAu4PDtdfVlIX1dBuiRUnVRZpaMUrTGEt2KXW8znWe6iioN8iCS-0ugwQoVWE4ALMcTUILPEmFA5G6uXMKtpBvdAhAmatNQuSW0ZZ2lldGWq0ublPLLsYQ1AjpNbrAf6jKKPoWk6dgyzVrAwCi-MAE5YAvd9mfy6f9Dc_Sq8LhU2c7kqkYmG6DCEzlp6X2QM_YfROs8D2GP5jQO0xcPaCeBglOm_m9_dN5OacezE1NhsuE8ckh0nwBOAnqyFybdOW-rr3z1hN30l0_zs_3_wt_Bksbo4L86_Lr-_gqcRH-w5cqUOYNbdbfA1oZ_OvvFL_A__JArq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVkJcUMtDTVvASBzgkG7WTuKEC6Klq_JaVaiVeotsZwKVqmRpsv-fmcRpGwlxja048cx4PnvG3wC8zbNMEbDAkIliwlgjhpaQfWgWUlsnYzIpvu_8Y5WeXsRfL5NLn__U-rTKcU3sF-qycXxGPpcMnDXnwc0rnxZx9nn5cf0n5ApSHGn15TQewhZ5xUjOYOvoZHX2c1yXybLT1F-eU3ox97I6XDc1HrLnSnI1cU49hz9znl437QR_TrMn77mj5TY88ThSfBoEvwMPsH4KO95SW_HO00m_fwbXQ-EGf-gnRhJx6tQ1ot2sGYALd0cCLoznKRFNJYZ8Q8MZXEzlLwiYdu0HwRXUejJvwVkdm1ac-0oTz-FieXJ-fBr6GguhSyLVhSqrtEzRGkPYK3a5xXyR5U5WHPBDJFGWRkcSFVpNYC7CCFODzBhjIuVsrF7ArKYZ3AURJWjSUrsktWWcpZXRlalKm5cLafm0NYBwnNxiPVBpFH08TdMWZJi1goVReGEEcMQSuO3LRNj9g-bmV-HtqrCZy1WJTDpEGyN01tL7pDH0H0brPA9gl-U3DtAWd3oUwMEo0383v7ltJpPjOIqpsdlwnzgin07gJwA90YXJt05b6qvfPXk3fSVT_uz9f_DX8Ii0u_j-ZfVtHx5L3uNzEEsdwKy72eBLAkKdfeU1_C8JEg8X |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+approaches+to+support+comparative+analysis+of+multiparametric+tests%3A+Modelling+versus+Training&rft.jtitle=PloS+one&rft.au=John+M+S+Bartlett&rft.au=Jane+Bayani&rft.au=Elizabeth+N+Kornaga&rft.au=Patrick+Danaher&rft.date=2020-09-03&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=15&rft.issue=9&rft.spage=e0238593&rft_id=info:doi/10.1371%2Fjournal.pone.0238593&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b8c93de0973747ecbb1372aabe9a7799 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |