Voltage-dependent anion channel 1 (VDAC1) overexpression alleviates cardiac fibroblast activation in cardiac fibrosis via regulating fatty acid metabolism
Cardiac fibrosis is characterized by the excessive deposition of extracellular matrix in the myocardium with cardiac fibroblast activation, leading to chronic cardiac remodeling and dysfunction. However, little is known about metabolic alterations in fibroblasts during cardiac fibrosis, and there is...
Saved in:
Published in | Redox biology Vol. 67; p. 102907 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cardiac fibrosis is characterized by the excessive deposition of extracellular matrix in the myocardium with cardiac fibroblast activation, leading to chronic cardiac remodeling and dysfunction. However, little is known about metabolic alterations in fibroblasts during cardiac fibrosis, and there is a lack of pharmaceutical treatments that target metabolic dysregulation. Here, we provided evidence that fatty acid β-oxidation (FAO) dysregulation contributes to fibroblast activation and cardiac fibrosis. With transcriptome, metabolome, and functional assays, we demonstrated that FAO was downregulated during fibroblast activation and cardiac fibrosis, and that perturbation of FAO reversely affected the fibroblast-to-myofibroblast transition. The decrease in FAO may be attributed to reduced long-chain fatty acid (LCFA) uptake. Voltage-dependent anion channel 1 (VDAC1), the main gatekeeper of the outer mitochondrial membrane (OMM), serves as the transporter of LCFA into the mitochondria for further utilization and has been shown to be decreased in myofibroblasts. In vitro, the addition of exogenous VDAC1 was shown to ameliorate cardiac fibroblast activation initiated by transforming growth factor beta 1 (TGF-β1) stimuli, and silencing of VDAC1 displayed the opposite effect. A mechanistic study revealed that VDAC1 exerts a protective effect by regulating LCFA uptake into the mitochondria, which is impaired by an inhibitor of carnitine palmitoyltransferase 1A. In vivo, AAV9-mediated overexpression of VDAC1 in myofibroblasts significantly alleviated transverse aortic constriction (TAC)-induced cardiac fibrosis and rescued cardiac function in mice. Finally, we treated mice with the VDAC1-derived R-Tf-D-LP4 peptide, and the results showed that R-Tf-D-LP4 prevented TAC-induced cardiac fibrosis and dysfunction in mice. In conclusion, this study provides evidence that VDAC1 maintains FAO metabolism in cardiac fibroblasts to repress fibroblast activation and cardiac fibrosis and suggests that the VDAC1 peptide is a promising drug for rescuing fibroblast metabolism and repressing cardiac fibrosis. |
---|---|
AbstractList | Cardiac fibrosis is characterized by the excessive deposition of extracellular matrix in the myocardium with cardiac fibroblast activation, leading to chronic cardiac remodeling and dysfunction. However, little is known about metabolic alterations in fibroblasts during cardiac fibrosis, and there is a lack of pharmaceutical treatments that target metabolic dysregulation. Here, we provided evidence that fatty acid β-oxidation (FAO) dysregulation contributes to fibroblast activation and cardiac fibrosis. With transcriptome, metabolome, and functional assays, we demonstrated that FAO was downregulated during fibroblast activation and cardiac fibrosis, and that perturbation of FAO reversely affected the fibroblast-to-myofibroblast transition. The decrease in FAO may be attributed to reduced long-chain fatty acid (LCFA) uptake. Voltage-dependent anion channel 1 (VDAC1), the main gatekeeper of the outer mitochondrial membrane (OMM), serves as the transporter of LCFA into the mitochondria for further utilization and has been shown to be decreased in myofibroblasts.
In vitro
, the addition of exogenous VDAC1 was shown to ameliorate cardiac fibroblast activation initiated by transforming growth factor beta 1 (TGF-β1) stimuli, and silencing of VDAC1 displayed the opposite effect. A mechanistic study revealed that VDAC1 exerts a protective effect by regulating LCFA uptake into the mitochondria, which is impaired by an inhibitor of carnitine palmitoyltransferase 1A.
In vivo
, AAV9-mediated overexpression of VDAC1 in myofibroblasts significantly alleviated transverse aortic constriction (TAC)-induced cardiac fibrosis and rescued cardiac function in mice. Finally, we treated mice with the VDAC1-derived R-Tf-D-LP4 peptide, and the results showed that R-Tf-D-LP4 prevented TAC-induced cardiac fibrosis and dysfunction in mice. In conclusion, this study provides evidence that VDAC1 maintains FAO metabolism in cardiac fibroblasts to repress fibroblast activation and cardiac fibrosis and suggests that the VDAC1 peptide is a promising drug for rescuing fibroblast metabolism and repressing cardiac fibrosis. Cardiac fibrosis is characterized by the excessive deposition of extracellular matrix in the myocardium with cardiac fibroblast activation, leading to chronic cardiac remodeling and dysfunction. However, little is known about metabolic alterations in fibroblasts during cardiac fibrosis, and there is a lack of pharmaceutical treatments that target metabolic dysregulation. Here, we provided evidence that fatty acid β-oxidation (FAO) dysregulation contributes to fibroblast activation and cardiac fibrosis. With transcriptome, metabolome, and functional assays, we demonstrated that FAO was downregulated during fibroblast activation and cardiac fibrosis, and that perturbation of FAO reversely affected the fibroblast-to-myofibroblast transition. The decrease in FAO may be attributed to reduced long-chain fatty acid (LCFA) uptake. Voltage-dependent anion channel 1 (VDAC1), the main gatekeeper of the outer mitochondrial membrane (OMM), serves as the transporter of LCFA into the mitochondria for further utilization and has been shown to be decreased in myofibroblasts. In vitro, the addition of exogenous VDAC1 was shown to ameliorate cardiac fibroblast activation initiated by transforming growth factor beta 1 (TGF-β1) stimuli, and silencing of VDAC1 displayed the opposite effect. A mechanistic study revealed that VDAC1 exerts a protective effect by regulating LCFA uptake into the mitochondria, which is impaired by an inhibitor of carnitine palmitoyltransferase 1A. In vivo, AAV9-mediated overexpression of VDAC1 in myofibroblasts significantly alleviated transverse aortic constriction (TAC)-induced cardiac fibrosis and rescued cardiac function in mice. Finally, we treated mice with the VDAC1-derived R-Tf-D-LP4 peptide, and the results showed that R-Tf-D-LP4 prevented TAC-induced cardiac fibrosis and dysfunction in mice. In conclusion, this study provides evidence that VDAC1 maintains FAO metabolism in cardiac fibroblasts to repress fibroblast activation and cardiac fibrosis and suggests that the VDAC1 peptide is a promising drug for rescuing fibroblast metabolism and repressing cardiac fibrosis. Cardiac fibrosis is characterized by the excessive deposition of extracellular matrix in the myocardium with cardiac fibroblast activation, leading to chronic cardiac remodeling and dysfunction. However, little is known about metabolic alterations in fibroblasts during cardiac fibrosis, and there is a lack of pharmaceutical treatments that target metabolic dysregulation. Here, we provided evidence that fatty acid β-oxidation (FAO) dysregulation contributes to fibroblast activation and cardiac fibrosis. With transcriptome, metabolome, and functional assays, we demonstrated that FAO was downregulated during fibroblast activation and cardiac fibrosis, and that perturbation of FAO reversely affected the fibroblast-to-myofibroblast transition. The decrease in FAO may be attributed to reduced long-chain fatty acid (LCFA) uptake. Voltage-dependent anion channel 1 (VDAC1), the main gatekeeper of the outer mitochondrial membrane (OMM), serves as the transporter of LCFA into the mitochondria for further utilization and has been shown to be decreased in myofibroblasts. In vitro, the addition of exogenous VDAC1 was shown to ameliorate cardiac fibroblast activation initiated by transforming growth factor beta 1 (TGF-β1) stimuli, and silencing of VDAC1 displayed the opposite effect. A mechanistic study revealed that VDAC1 exerts a protective effect by regulating LCFA uptake into the mitochondria, which is impaired by an inhibitor of carnitine palmitoyltransferase 1A. In vivo, AAV9-mediated overexpression of VDAC1 in myofibroblasts significantly alleviated transverse aortic constriction (TAC)-induced cardiac fibrosis and rescued cardiac function in mice. Finally, we treated mice with the VDAC1-derived R-Tf-D-LP4 peptide, and the results showed that R-Tf-D-LP4 prevented TAC-induced cardiac fibrosis and dysfunction in mice. In conclusion, this study provides evidence that VDAC1 maintains FAO metabolism in cardiac fibroblasts to repress fibroblast activation and cardiac fibrosis and suggests that the VDAC1 peptide is a promising drug for rescuing fibroblast metabolism and repressing cardiac fibrosis.Cardiac fibrosis is characterized by the excessive deposition of extracellular matrix in the myocardium with cardiac fibroblast activation, leading to chronic cardiac remodeling and dysfunction. However, little is known about metabolic alterations in fibroblasts during cardiac fibrosis, and there is a lack of pharmaceutical treatments that target metabolic dysregulation. Here, we provided evidence that fatty acid β-oxidation (FAO) dysregulation contributes to fibroblast activation and cardiac fibrosis. With transcriptome, metabolome, and functional assays, we demonstrated that FAO was downregulated during fibroblast activation and cardiac fibrosis, and that perturbation of FAO reversely affected the fibroblast-to-myofibroblast transition. The decrease in FAO may be attributed to reduced long-chain fatty acid (LCFA) uptake. Voltage-dependent anion channel 1 (VDAC1), the main gatekeeper of the outer mitochondrial membrane (OMM), serves as the transporter of LCFA into the mitochondria for further utilization and has been shown to be decreased in myofibroblasts. In vitro, the addition of exogenous VDAC1 was shown to ameliorate cardiac fibroblast activation initiated by transforming growth factor beta 1 (TGF-β1) stimuli, and silencing of VDAC1 displayed the opposite effect. A mechanistic study revealed that VDAC1 exerts a protective effect by regulating LCFA uptake into the mitochondria, which is impaired by an inhibitor of carnitine palmitoyltransferase 1A. In vivo, AAV9-mediated overexpression of VDAC1 in myofibroblasts significantly alleviated transverse aortic constriction (TAC)-induced cardiac fibrosis and rescued cardiac function in mice. Finally, we treated mice with the VDAC1-derived R-Tf-D-LP4 peptide, and the results showed that R-Tf-D-LP4 prevented TAC-induced cardiac fibrosis and dysfunction in mice. In conclusion, this study provides evidence that VDAC1 maintains FAO metabolism in cardiac fibroblasts to repress fibroblast activation and cardiac fibrosis and suggests that the VDAC1 peptide is a promising drug for rescuing fibroblast metabolism and repressing cardiac fibrosis. |
ArticleNumber | 102907 |
Author | Zhou, Junteng Kong, Qihang Tian, Geer Xin, Yanguo Tang, Xiaoqiang Wu, Wenchao Quan, Yue Li, Junli Liu, Xiaojing |
Author_xml | – sequence: 1 givenname: Geer surname: Tian fullname: Tian, Geer organization: Department of Cardiology and Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China – sequence: 2 givenname: Junteng surname: Zhou fullname: Zhou, Junteng organization: Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, 610041, China – sequence: 3 givenname: Yue surname: Quan fullname: Quan, Yue organization: Department of Cardiology and Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China – sequence: 4 givenname: Qihang surname: Kong fullname: Kong, Qihang organization: Department of Cardiology and Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China – sequence: 5 givenname: Junli surname: Li fullname: Li, Junli organization: Department of Cardiology and Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China – sequence: 6 givenname: Yanguo surname: Xin fullname: Xin, Yanguo organization: Department of Cardiology and Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China – sequence: 7 givenname: Wenchao surname: Wu fullname: Wu, Wenchao organization: Department of Cardiology and Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China – sequence: 8 givenname: Xiaoqiang surname: Tang fullname: Tang, Xiaoqiang email: tangxiaoqiang@scu.edu.cn organization: Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan, 610041, China – sequence: 9 givenname: Xiaojing surname: Liu fullname: Liu, Xiaojing email: liuxq@scu.edu.cn organization: Department of Cardiology and Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China |
BookMark | eNp9ks1uWyEQha-qVE2a5gm6YZku7PJzbbiLqorcv0iRummzRQPMdbAwuICt5FX6tMV2KjVdhA1oOOdjNJzX3UlMEbvuLaNTRtn8_Wqa0aX7KadctAofqHzRnXHOxIQLJk_-OZ92F6WsaFtK9ZzRV92pkHKQQvKz7vdtChWWOHG4wegwVgLRp0jsHcSIgTByefvpasHekbTDjPebjKXsBRAC7jxULMRCdh4sGb3JyQQoDWKr30HdC318Kii-kGYkGZfb0CRxSUao9aF5vCNrrGBS8GX9pns5Qih48bifdz-_fP6x-Da5-f71enF1M7EzKupEzAyyYRwkjg6U4s46a3tqYTS94UIZ3gPr0bLeUSpBoaTIDOOtrIYZ7cV5d33kugQrvcl-DflBJ_D6UEh5qSFXbwNqrqA900ySs54OvZnzmeIopUOpRjNvrI9H1mZr1uhsm2eG8AT69Cb6O71MO83onPP2P41w-UjI6dcWS9VrXyyGABHTtrQWZM_nTImhSYej1Lahloyjtr4eZt7QPjSm3mdFr_QhK3qfFX3MSvOK_7x_e3ze9eHowvYfO49ZF-sxWnQ-o61tYP5Z_x_Kit1K |
CitedBy_id | crossref_primary_10_1038_s41598_025_87194_2 crossref_primary_10_1016_j_arr_2024_102542 crossref_primary_10_1038_s42003_025_07961_9 crossref_primary_10_1016_j_bbadis_2024_167317 crossref_primary_10_3390_molecules29235656 |
Cites_doi | 10.1016/j.phrs.2023.106677 10.1007/s12012-021-09653-2 10.3389/fphys.2017.00460 10.1186/s13059-014-0550-8 10.1039/C9CC09993J 10.1161/CIRCULATIONAHA.122.059631 10.1016/j.yjmcc.2020.01.004 10.1016/j.ijcard.2022.12.003 10.1161/CIRCULATIONAHA.119.039610 10.1172/jci.insight.160745 10.1126/science.aav4011 10.1016/j.redox.2021.102082 10.1016/j.ymthe.2019.06.017 10.1073/pnas.1909814117 10.3945/jn.108.103754 10.1016/j.celrep.2021.109767 10.1172/JCI140695 10.1016/j.metabol.2022.155383 10.1042/CS20160685 10.1161/CIRCULATIONAHA.121.053575 10.3390/metabo12030210 10.1016/j.yjmcc.2007.11.006 10.1038/s12276-022-00923-9 10.1016/j.redox.2022.102544 10.1038/s41392-022-00886-3 10.1007/s12272-021-01352-4 10.3390/cells9020481 10.1074/jbc.M112.448290 10.1038/s41569-022-00799-2 10.1038/s41569-021-00569-6 10.1155/2020/7956274 10.1210/endocr/bqz046 10.1016/j.yjmcc.2021.05.004 10.1161/CIRCRESAHA.119.315483 10.15698/cst2017.10.104 10.1016/j.jacc.2016.06.044 10.1161/CIRCULATIONAHA.114.011687 10.1161/CIRCRESAHA.118.314438 10.1074/jbc.M111.228692 10.1161/CIRCRESAHA.117.311002 10.3389/fonc.2017.00004 10.1161/CIRCULATIONAHA.111.075978 10.1161/CIRCULATIONAHA.117.028728 10.1016/j.mam.2018.07.001 10.1016/j.jacbts.2022.03.007 10.1016/j.plipres.2015.04.001 10.1161/CIRCRESAHA.114.301863 10.1016/j.tem.2023.08.012 10.1093/cvr/cvaa319 10.1093/eurheartj/ehad381 10.1093/cvr/cvaa324 10.1016/j.cmet.2018.06.001 |
ContentType | Journal Article |
Copyright | 2023 The Authors Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved. 2023 The Authors 2023 |
Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved. – notice: 2023 The Authors 2023 |
DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.redox.2023.102907 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2213-2317 |
ExternalDocumentID | oai_doaj_org_article_28a7ef5047214094b62582e77de78fb6 PMC10622884 10_1016_j_redox_2023_102907 S2213231723003087 |
GroupedDBID | 0R~ 0SF 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABGSF ABMAC ABMYL ACGFS ADBBV ADEZE ADRAZ ADUVX AENEX AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB M48 MO0 M~E NCXOZ O-L O9- OK1 RIG ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKYEP APXCP CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c503t-35be19f97efda882dcdcc40cafb4b238b24a14ec14d007a8e70e1b1224a895043 |
IEDL.DBID | M48 |
ISSN | 2213-2317 |
IngestDate | Wed Aug 27 01:29:15 EDT 2025 Thu Aug 21 18:36:23 EDT 2025 Thu Jul 10 22:32:07 EDT 2025 Thu Apr 24 22:54:24 EDT 2025 Tue Jul 01 00:47:11 EDT 2025 Sat Mar 23 16:29:46 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cardiac fibrosis Cardiac fibroblasts Voltage-dependent anion channel 1 (VDAC1) Fatty acid metabolism |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c503t-35be19f97efda882dcdcc40cafb4b238b24a14ec14d007a8e70e1b1224a895043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Drs. Tian and Zhou contributed equally to this work. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.redox.2023.102907 |
PMID | 37797372 |
PQID | 2874261839 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_28a7ef5047214094b62582e77de78fb6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10622884 proquest_miscellaneous_2874261839 crossref_citationtrail_10_1016_j_redox_2023_102907 crossref_primary_10_1016_j_redox_2023_102907 elsevier_sciencedirect_doi_10_1016_j_redox_2023_102907 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Redox biology |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Lee, Kerner, Hoppel (bib29) 2011; 286 Pittala, Levy, De, Kumar Pandey, Melnikov, Hyman, Shoshan-Barmatz (bib55) 2020; 9 Divakaruni, Hsieh, Minarrieta, Duong, Kim, Desousa, Andreyev, Bowman, Caradonna, Dranka, Ferrick, Liesa, Stiles, Rogers, Braas, Ciaraldi, Wolfgang, Sparwasser, Berod, Bensinger, Murphy (bib48) 2018; 28 Ritterhoff, McMillen, Villet, Young, Kolwicz, Senn, Caudal, Tian (bib36) 2021; 158 Gong, Chen, Xiao, Huang, Han, Zhang, Yang, Li, Zhao, Tai, Xu, Zhang, Gong, Yang, Tang, Xiao (bib27) 2022; 7 Miguel, Tituana, Herrero, Herrero, Serra, Cuevas, Barbas, Puyol, Marquez-Exposito, Ruiz-Ortega, Castillo, Sheng, Susztak, Ruiz-Canela, Salas-Salvado, Gonzalez, Ortega, Ramos, Lamas (bib46) 2021; 131 Lahey, Wang, Carley, Lewandowski (bib44) 2014; 130 Tang, Chen, Wang, Wang, Liang, Zheng, Lu, Zhao, Hao, Zhang, Zou, Liu, Chen (bib28) 2017; 136 Zhang, Wang, Li, Lv, Wang, Liu, Zhou, Gong, Chen, Ren, Zhang, Dai, Cai, Yan, Chen, Tang (bib30) 2023; 44 Camara, Zhou, Wen, Tajkhorshid, Kwok (bib50) 2017; 8 O'Donnell, Fields, Sorokina, Lewandowski (bib45) 2008; 44 Goldenberg, Carley, Ji, Zhang, Fasano, Schulze, Lewandowski (bib39) 2019; 139 Wu, Wang, Wang, Xu, Lopaschuk, Zhang, Ren (bib14) 2023; 55 Carley, Taegtmeyer, Lewandowski (bib43) 2014; 114 Zhou, Tian, Quan, Li, Wang, Wu, Li, Liu (bib19) 2020; 2020 Moriyama, Endo, Ikura, Kitakata, Momoi, Shinya, Ko, Ichihara, Hiraide, Shirakawa, Anzai, Katsumata, Sano (bib40) 2022; 12 Tang, Chen, Chen, Liu (bib8) 2017; 131 Adams, Hoppel, Lok, Zhao, Wong, Minkler, Hwang, Newman, Garvey (bib42) 2009; 139 Kim, Gupta, Blanco, Yang, Shteinfer-Kuzmine, Wang, Zhu, Yoon, Wang, Kerkhofs, Kang, Brown, Park, Xu, Zandee van Rilland, Kim, Cohen, Kaplan, Shoshan-Barmatz, Chung (bib53) 2019; 366 Frangogiannis (bib1) 2019; 65 Montaigne, Butruille, Staels (bib10) 2021; 18 Wu, Bi, Ajoolabady, You, Sowers, Wang, Ceylan, Zhang, Ren (bib13) 2022; 7 Sun, Zhang, Chen, Tang (bib7) 2023; 67 Zhou, Dai, Li, Wang, Zhu, Chang, Wang (bib15) 2023; 140 Shoshan-Barmatz, Maldonado, Krelin (bib12) 2017; 1 Shu, Peng, Hang, Nie, Zhou, Wang (bib24) 2022; 118 Schlaepfer, Joshi (bib41) 2020; 161 Russo, Cavalera, Huang, Su, Hanna, Chen, Shinde, Conway, Graff, Frangogiannis (bib6) 2019; 124 Wang, Chen, Huang, Luo, Wang, Jiang, Zheng, Yang, Chen, Zhang, Long, Wang, Li, Liao, Gan, Luo, Liu, Wang, XuTan, Zhou, Zhang, Shi (bib47) 2021; 46 Ranjbarvaziri, Kooiker, Ellenberger, Fajardo, Zhao, Vander Roest, Woldeyes, Koyano, Fong, Ma, Tian, Traber, Chan, Perrino, Reddy, Chiu, Wu, Woo, Ruppel, Spudich, Snyder, Contrepois, Bernstein (bib32) 2021; 144 Angelini, Saha, Jain, Jung, Mynatt, Pi, Xie (bib17) 2021; 37 Ham, Lee, Yoo, Jun, Shin, Chung (bib51) 2020; 117 Chen, Zhou, Wei, Cheng, Tian, Quan, Kong, Wu, Liu (bib3) 2022; 13 He, Kim, Long, Liu, Wang, Zhou, Ding, Prasain, Wood, Yang (bib11) 2012; 126 Uchinomiya, Matsunaga, Kamoda, Kawagoe, Tsuruta, Ohdo, Ojida (bib23) 2020; 56 Gajjala, Kasam, Soundararajan, Sinner, Huang, Jegga, Madala (bib22) 2021 Ritterhoff, Young, Villet, Shao, Neto, Bettcher, Hsu, Kolwicz, Raftery, Tian (bib35) 2020; 126 Zhou, Tian, Quan, Kong, Huang, Li, Wu, Tang, Zhou, Liu (bib4) 2023; 8 Banerjee, Datta Chaudhuri, Niyogi, Roy Chowdhuri, Poddar Sarkar, Chatterjee, Chakrabarti, Sarkar (bib37) 2020; 139 Salin Raj, Nair, Preetha Rani, Rajankutty, Ranjith, Raghu (bib16) 2023; 372 Tian, Lu, Lin, Chen, Qiu, Zhu, Sun, Huang, Yang, Deng (bib26) 2022; 58 McGarrah, Crown, Zhang, Shah, Newgard (bib34) 2018; 122 Maldonado (bib31) 2017; 7 Huang, Hu, Eno, Zhao, Li, White (bib52) 2013; 288 Love, Huber, Anders (bib20) 2014; 15 Kong, Zhou, Ma, Wei, Chen, Cheng, Wu, Zhou, Tang, Liu (bib5) 2023; 188 Neess, Bek, Engelsby, Gallego, Færgeman (bib49) 2015; 59 Jin, Geng, Ying, Shu, Ye, Yang, Liu, Wang, Cai, Jiang, Wang, Yan, Liao, Liu, Duan, Sweeney, Woo, Wang, Xia, Lian, Xu (bib25) 2022; 146 Pesce, Duda, Forte, Girao, Raya, Roca-Cusachs, Sluijter, Tschope, Van Linthout (bib9) 2023; 20 Fan, Li, Chen, Zhao, Liu, Li, Wang, Alolga, Yin, Wang, Zhao, Shen, Meng, Zhou, Xu, He, Lai, Li, Zhu, Qi (bib33) 2016; 68 Gao, Li, Shao, Wei, Huang, Qi, Jiao, Li, Zhang, Du (bib38) 2021; 21 Hwang, Chung (bib21) 2021; 44 Frangogiannis (bib2) 2021; 117 Pittala, Krelin, Kuperman, Shoshan-Barmatz (bib18) 2019; 27 Ding, Tang (bib54) 2023; 34 Zhou (10.1016/j.redox.2023.102907_bib4) 2023; 8 Camara (10.1016/j.redox.2023.102907_bib50) 2017; 8 Uchinomiya (10.1016/j.redox.2023.102907_bib23) 2020; 56 Pesce (10.1016/j.redox.2023.102907_bib9) 2023; 20 Lee (10.1016/j.redox.2023.102907_bib29) 2011; 286 Russo (10.1016/j.redox.2023.102907_bib6) 2019; 124 Love (10.1016/j.redox.2023.102907_bib20) 2014; 15 Tian (10.1016/j.redox.2023.102907_bib26) 2022; 58 Lahey (10.1016/j.redox.2023.102907_bib44) 2014; 130 Pittala (10.1016/j.redox.2023.102907_bib18) 2019; 27 Schlaepfer (10.1016/j.redox.2023.102907_bib41) 2020; 161 Wu (10.1016/j.redox.2023.102907_bib13) 2022; 7 Chen (10.1016/j.redox.2023.102907_bib3) 2022; 13 O'Donnell (10.1016/j.redox.2023.102907_bib45) 2008; 44 Tang (10.1016/j.redox.2023.102907_bib28) 2017; 136 Ding (10.1016/j.redox.2023.102907_bib54) 2023; 34 Neess (10.1016/j.redox.2023.102907_bib49) 2015; 59 Divakaruni (10.1016/j.redox.2023.102907_bib48) 2018; 28 Huang (10.1016/j.redox.2023.102907_bib52) 2013; 288 McGarrah (10.1016/j.redox.2023.102907_bib34) 2018; 122 Zhou (10.1016/j.redox.2023.102907_bib19) 2020; 2020 Angelini (10.1016/j.redox.2023.102907_bib17) 2021; 37 Gao (10.1016/j.redox.2023.102907_bib38) 2021; 21 Hwang (10.1016/j.redox.2023.102907_bib21) 2021; 44 Gong (10.1016/j.redox.2023.102907_bib27) 2022; 7 Banerjee (10.1016/j.redox.2023.102907_bib37) 2020; 139 Pittala (10.1016/j.redox.2023.102907_bib55) 2020; 9 Zhang (10.1016/j.redox.2023.102907_bib30) 2023; 44 Goldenberg (10.1016/j.redox.2023.102907_bib39) 2019; 139 Tang (10.1016/j.redox.2023.102907_bib8) 2017; 131 Miguel (10.1016/j.redox.2023.102907_bib46) 2021; 131 Sun (10.1016/j.redox.2023.102907_bib7) 2023; 67 Shu (10.1016/j.redox.2023.102907_bib24) 2022; 118 Maldonado (10.1016/j.redox.2023.102907_bib31) 2017; 7 Shoshan-Barmatz (10.1016/j.redox.2023.102907_bib12) 2017; 1 Montaigne (10.1016/j.redox.2023.102907_bib10) 2021; 18 He (10.1016/j.redox.2023.102907_bib11) 2012; 126 Ranjbarvaziri (10.1016/j.redox.2023.102907_bib32) 2021; 144 Ritterhoff (10.1016/j.redox.2023.102907_bib35) 2020; 126 Frangogiannis (10.1016/j.redox.2023.102907_bib1) 2019; 65 Fan (10.1016/j.redox.2023.102907_bib33) 2016; 68 Jin (10.1016/j.redox.2023.102907_bib25) 2022; 146 Wu (10.1016/j.redox.2023.102907_bib14) 2023; 55 Frangogiannis (10.1016/j.redox.2023.102907_bib2) 2021; 117 Ritterhoff (10.1016/j.redox.2023.102907_bib36) 2021; 158 Salin Raj (10.1016/j.redox.2023.102907_bib16) 2023; 372 Gajjala (10.1016/j.redox.2023.102907_bib22) 2021 Carley (10.1016/j.redox.2023.102907_bib43) 2014; 114 Kong (10.1016/j.redox.2023.102907_bib5) 2023; 188 Moriyama (10.1016/j.redox.2023.102907_bib40) 2022; 12 Wang (10.1016/j.redox.2023.102907_bib47) 2021; 46 Adams (10.1016/j.redox.2023.102907_bib42) 2009; 139 Kim (10.1016/j.redox.2023.102907_bib53) 2019; 366 Zhou (10.1016/j.redox.2023.102907_bib15) 2023; 140 Ham (10.1016/j.redox.2023.102907_bib51) 2020; 117 |
References_xml | – volume: 2020 year: 2020 ident: bib19 article-title: Inhibition of P2X7 purinergic receptor ameliorates cardiac fibrosis by suppressing NLRP3/IL-1beta pathway publication-title: Oxid. Med. Cell. Longev. – volume: 9 start-page: 481 year: 2020 ident: bib55 article-title: The VDAC1-based R-Tf-D-LP4 peptide as a potential treatment for diabetes mellitus publication-title: Cells – volume: 372 start-page: 101 year: 2023 end-page: 109 ident: bib16 article-title: Ferulic acid attenuates high glucose-induced MAM alterations via PACS2/IP3R2/FUNDC1/VDAC1 pathway activating proapoptotic proteins and ameliorates cardiomyopathy in diabetic rats publication-title: Int. J. Cardiol. – volume: 139 start-page: 1073 year: 2009 end-page: 1081 ident: bib42 article-title: Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women publication-title: J. Nutr. – volume: 68 start-page: 1281 year: 2016 end-page: 1293 ident: bib33 article-title: Comprehensive metabolomic characterization of coronary artery diseases publication-title: J. Am. Coll. Cardiol. – volume: 124 start-page: 1214 year: 2019 end-page: 1227 ident: bib6 article-title: Protective effects of activated myofibroblasts in the pressure-overloaded myocardium are mediated through smad-dependent activation of a matrix-preserving program publication-title: Circ. Res. – volume: 15 start-page: 550 year: 2014 ident: bib20 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. – volume: 144 start-page: 1714 year: 2021 end-page: 1731 ident: bib32 article-title: Altered cardiac energetics and mitochondrial dysfunction in hypertrophic cardiomyopathy publication-title: Circulation – volume: 118 start-page: 115 year: 2022 end-page: 129 ident: bib24 article-title: The role of CD36 in cardiovascular disease publication-title: Cardiovasc. Res. – volume: 8 start-page: 460 year: 2017 ident: bib50 article-title: Mitochondrial VDAC1: a key gatekeeper as potential therapeutic target publication-title: Front. Physiol. – volume: 139 start-page: 2765 year: 2019 end-page: 2777 ident: bib39 article-title: Preservation of acyl coenzyme A attenuates pathological and metabolic cardiac remodeling through selective lipid trafficking publication-title: Circulation – volume: 13 year: 2022 ident: bib3 article-title: Identification of circular RNAs in cardiac hypertrophy and cardiac fibrosis publication-title: Front. Pharmacol. – volume: 1 start-page: 11 year: 2017 end-page: 36 ident: bib12 article-title: VDAC1 at the crossroads of cell metabolism, apoptosis and cell stress publication-title: Cell Stress – volume: 188 year: 2023 ident: bib5 article-title: Inhibition of long noncoding RNA Gm41724 alleviates pressure overload-induced cardiac fibrosis by regulating lamina-associated polypeptide 2α publication-title: Pharmacol. Res. – volume: 117 start-page: 1450 year: 2021 end-page: 1488 ident: bib2 article-title: Cardiac fibrosis publication-title: Cardiovasc. Res. – volume: 131 start-page: 2063 year: 2017 end-page: 2078 ident: bib8 article-title: Mitochondrial Sirtuins in cardiometabolic diseases publication-title: Clin. Sci. – volume: 114 start-page: 717 year: 2014 end-page: 729 ident: bib43 article-title: Matrix revisited: mechanisms linking energy substrate metabolism to the function of the heart publication-title: Circ. Res. – volume: 34 start-page: 1 year: 2023 end-page: 3 ident: bib54 article-title: Sensing mitochondrial DNA stress in cardiotoxicity publication-title: Trends Endocrinol. Metabol. – volume: 55 start-page: 269 year: 2023 end-page: 280 ident: bib14 article-title: Site-specific ubiquitination of VDAC1 restricts its oligomerization and mitochondrial DNA release in liver fibrosis publication-title: Exp. Mol. Med. – volume: 44 start-page: 2746 year: 2023 end-page: 2759 ident: bib30 article-title: Sirtuin 2 deficiency aggravates ageing-induced vascular remodelling in humans and mice publication-title: Eur. Heart J. – volume: 130 start-page: 1790 year: 2014 end-page: 1799 ident: bib44 article-title: Dietary fat supply to failing hearts determines dynamic lipid signaling for nuclear receptor activation and oxidation of stored triglyceride publication-title: Circulation – volume: 37 year: 2021 ident: bib17 article-title: PHDs/CPT1B/VDAC1 axis regulates long-chain fatty acid oxidation in cardiomyocytes publication-title: Cell Rep. – volume: 65 start-page: 70 year: 2019 end-page: 99 ident: bib1 article-title: Cardiac fibrosis: cell biological mechanisms, molecular pathways and therapeutic opportunities publication-title: Mol. Aspect. Med. – volume: 58 year: 2022 ident: bib26 article-title: CPT1A promotes anoikis resistance in esophageal squamous cell carcinoma via redox homeostasis publication-title: Redox Biol. – volume: 122 start-page: 1238 year: 2018 end-page: 1258 ident: bib34 article-title: Cardiovascular metabolomics publication-title: Circ. Res. – volume: 8 year: 2023 ident: bib4 article-title: The long noncoding RNA THBS1-AS1 promotes cardiac fibroblast activation in cardiac fibrosis by regulating TGFBR1 publication-title: JCI Insight – volume: 126 start-page: 182 year: 2020 end-page: 196 ident: bib35 article-title: Metabolic remodeling promotes cardiac hypertrophy by directing glucose to aspartate biosynthesis publication-title: Circ. Res. – volume: 366 start-page: 1531 year: 2019 end-page: 1536 ident: bib53 article-title: VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease publication-title: Science – volume: 136 start-page: 2051 year: 2017 end-page: 2067 ident: bib28 article-title: SIRT2 acts as a cardioprotective deacetylase in pathological cardiac hypertrophy publication-title: Circulation – volume: 21 start-page: 619 year: 2021 end-page: 629 ident: bib38 article-title: FABP5 deficiency impairs mitochondrial function and aggravates pathological cardiac remodeling and dysfunction publication-title: Cardiovasc. Toxicol. – volume: 18 start-page: 809 year: 2021 end-page: 823 ident: bib10 article-title: PPAR control of metabolism and cardiovascular functions publication-title: Nat. Rev. Cardiol. – volume: 126 start-page: 1705 year: 2012 end-page: 1716 ident: bib11 article-title: Carnitine palmitoyltransferase-1b deficiency aggravates pressure overload-induced cardiac hypertrophy caused by lipotoxicity publication-title: Circulation – volume: 161 start-page: bqz046 year: 2020 ident: bib41 article-title: CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential publication-title: Endocrinology – volume: 44 start-page: 839 year: 2021 end-page: 856 ident: bib21 article-title: Targeting fatty acid metabolism for fibrotic disorders publication-title: Arch Pharm. Res. (Seoul) – volume: 59 start-page: 1 year: 2015 end-page: 25 ident: bib49 article-title: Long-chain acyl-CoA esters in metabolism and signaling: role of acyl-CoA binding proteins publication-title: Prog. Lipid Res. – volume: 67 year: 2023 ident: bib7 article-title: Acylations in cardiovascular biology and diseases, what's beyond acetylation publication-title: EBioMedicine – volume: 7 start-page: 66 year: 2022 ident: bib27 article-title: miR-146a impedes the anti-aging effect of AMPK via NAMPT suppression and NAD publication-title: Signal Transduct. Targeted Ther. – volume: 46 year: 2021 ident: bib47 article-title: Pharmaceutical targeting of succinate dehydrogenase in fibroblasts controls bleomycin-induced lung fibrosis publication-title: Redox Biol. – volume: 7 start-page: 779 year: 2022 end-page: 796 ident: bib13 article-title: Parkin insufficiency accentuates high-fat diet-induced cardiac remodeling and contractile dysfunction through VDAC1-mediated mitochondrial Ca(2+) overload publication-title: JACC Basic Transl. Sci. – volume: 146 start-page: 1537 year: 2022 end-page: 1557 ident: bib25 article-title: FGF21-Sirtuin 3 Axis confers the protective effects of exercise against diabetic cardiomyopathy by governing mitochondrial integrity publication-title: Circulation – volume: 28 start-page: 490 year: 2018 end-page: 503.e497 ident: bib48 article-title: Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis publication-title: Cell Metabol. – volume: 56 start-page: 3023 year: 2020 end-page: 3026 ident: bib23 article-title: Fluorescence detection of metabolic activity of the fatty acid beta oxidation pathway in living cells publication-title: Chem. Commun. (Camb.) – volume: 20 start-page: 309 year: 2023 end-page: 324 ident: bib9 article-title: Cardiac fibroblasts and mechanosensation in heart development, health and disease publication-title: Nat. Rev. Cardiol. – volume: 288 start-page: 19870 year: 2013 end-page: 19881 ident: bib52 article-title: An interaction between Bcl-xL and the voltage-dependent anion channel (VDAC) promotes mitochondrial Ca2+ uptake publication-title: J. Biol. Chem. – volume: 286 start-page: 25655 year: 2011 end-page: 25662 ident: bib29 article-title: Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex publication-title: J. Biol. Chem. – volume: 7 start-page: 4 year: 2017 ident: bib31 article-title: VDAC-tubulin, an anti-warburg pro-oxidant switch publication-title: Front. Oncol. – volume: 44 start-page: 315 year: 2008 end-page: 322 ident: bib45 article-title: The absence of endogenous lipid oxidation in early stage heart failure exposes limits in lipid storage and turnover publication-title: J. Mol. Cell. Cardiol. – volume: 27 start-page: 1848 year: 2019 end-page: 1862 ident: bib18 article-title: A mitochondrial VDAC1-based peptide greatly suppresses steatosis and NASH-associated pathologies in a mouse model publication-title: Mol. Ther. – start-page: 6 year: 2021 ident: bib22 article-title: Dysregulated overexpression of Sox9 induces fibroblast activation in pulmonary fibrosis publication-title: JCI Insight – volume: 12 start-page: 210 year: 2022 ident: bib40 article-title: Qualitative and quantitative effects of fatty acids involved in heart diseases publication-title: Metabolites – volume: 131 year: 2021 ident: bib46 article-title: Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis publication-title: J. Clin. Invest. – volume: 140 year: 2023 ident: bib15 article-title: TMBIM6 prevents VDAC1 multimerization and improves mitochondrial quality control to reduce sepsis-related myocardial injury publication-title: Metabolism – volume: 139 start-page: 148 year: 2020 end-page: 163 ident: bib37 article-title: Metabolic impairment in response to early induction of C/EBPβ leads to compromised cardiac function during pathological hypertrophy publication-title: J. Mol. Cell. Cardiol. – volume: 117 start-page: 4281 year: 2020 end-page: 4291 ident: bib51 article-title: Decision between mitophagy and apoptosis by Parkin via VDAC1 ubiquitination publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 158 start-page: 1 year: 2021 end-page: 10 ident: bib36 article-title: Increasing fatty acid oxidation elicits a sex-dependent response in failing mouse hearts publication-title: J. Mol. Cell. Cardiol. – volume: 188 year: 2023 ident: 10.1016/j.redox.2023.102907_bib5 article-title: Inhibition of long noncoding RNA Gm41724 alleviates pressure overload-induced cardiac fibrosis by regulating lamina-associated polypeptide 2α publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2023.106677 – volume: 21 start-page: 619 year: 2021 ident: 10.1016/j.redox.2023.102907_bib38 article-title: FABP5 deficiency impairs mitochondrial function and aggravates pathological cardiac remodeling and dysfunction publication-title: Cardiovasc. Toxicol. doi: 10.1007/s12012-021-09653-2 – volume: 8 start-page: 460 year: 2017 ident: 10.1016/j.redox.2023.102907_bib50 article-title: Mitochondrial VDAC1: a key gatekeeper as potential therapeutic target publication-title: Front. Physiol. doi: 10.3389/fphys.2017.00460 – volume: 15 start-page: 550 year: 2014 ident: 10.1016/j.redox.2023.102907_bib20 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 56 start-page: 3023 year: 2020 ident: 10.1016/j.redox.2023.102907_bib23 article-title: Fluorescence detection of metabolic activity of the fatty acid beta oxidation pathway in living cells publication-title: Chem. Commun. (Camb.) doi: 10.1039/C9CC09993J – volume: 146 start-page: 1537 year: 2022 ident: 10.1016/j.redox.2023.102907_bib25 article-title: FGF21-Sirtuin 3 Axis confers the protective effects of exercise against diabetic cardiomyopathy by governing mitochondrial integrity publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.122.059631 – volume: 139 start-page: 148 year: 2020 ident: 10.1016/j.redox.2023.102907_bib37 article-title: Metabolic impairment in response to early induction of C/EBPβ leads to compromised cardiac function during pathological hypertrophy publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2020.01.004 – volume: 372 start-page: 101 year: 2023 ident: 10.1016/j.redox.2023.102907_bib16 article-title: Ferulic acid attenuates high glucose-induced MAM alterations via PACS2/IP3R2/FUNDC1/VDAC1 pathway activating proapoptotic proteins and ameliorates cardiomyopathy in diabetic rats publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2022.12.003 – volume: 139 start-page: 2765 year: 2019 ident: 10.1016/j.redox.2023.102907_bib39 article-title: Preservation of acyl coenzyme A attenuates pathological and metabolic cardiac remodeling through selective lipid trafficking publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.119.039610 – volume: 8 year: 2023 ident: 10.1016/j.redox.2023.102907_bib4 article-title: The long noncoding RNA THBS1-AS1 promotes cardiac fibroblast activation in cardiac fibrosis by regulating TGFBR1 publication-title: JCI Insight doi: 10.1172/jci.insight.160745 – volume: 366 start-page: 1531 year: 2019 ident: 10.1016/j.redox.2023.102907_bib53 article-title: VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease publication-title: Science doi: 10.1126/science.aav4011 – volume: 46 year: 2021 ident: 10.1016/j.redox.2023.102907_bib47 article-title: Pharmaceutical targeting of succinate dehydrogenase in fibroblasts controls bleomycin-induced lung fibrosis publication-title: Redox Biol. doi: 10.1016/j.redox.2021.102082 – volume: 27 start-page: 1848 year: 2019 ident: 10.1016/j.redox.2023.102907_bib18 article-title: A mitochondrial VDAC1-based peptide greatly suppresses steatosis and NASH-associated pathologies in a mouse model publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2019.06.017 – volume: 117 start-page: 4281 year: 2020 ident: 10.1016/j.redox.2023.102907_bib51 article-title: Decision between mitophagy and apoptosis by Parkin via VDAC1 ubiquitination publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1909814117 – volume: 139 start-page: 1073 year: 2009 ident: 10.1016/j.redox.2023.102907_bib42 article-title: Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women publication-title: J. Nutr. doi: 10.3945/jn.108.103754 – volume: 37 year: 2021 ident: 10.1016/j.redox.2023.102907_bib17 article-title: PHDs/CPT1B/VDAC1 axis regulates long-chain fatty acid oxidation in cardiomyocytes publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109767 – volume: 131 year: 2021 ident: 10.1016/j.redox.2023.102907_bib46 article-title: Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis publication-title: J. Clin. Invest. doi: 10.1172/JCI140695 – volume: 67 year: 2023 ident: 10.1016/j.redox.2023.102907_bib7 article-title: Acylations in cardiovascular biology and diseases, what's beyond acetylation publication-title: EBioMedicine – volume: 140 year: 2023 ident: 10.1016/j.redox.2023.102907_bib15 article-title: TMBIM6 prevents VDAC1 multimerization and improves mitochondrial quality control to reduce sepsis-related myocardial injury publication-title: Metabolism doi: 10.1016/j.metabol.2022.155383 – volume: 131 start-page: 2063 year: 2017 ident: 10.1016/j.redox.2023.102907_bib8 article-title: Mitochondrial Sirtuins in cardiometabolic diseases publication-title: Clin. Sci. doi: 10.1042/CS20160685 – volume: 144 start-page: 1714 year: 2021 ident: 10.1016/j.redox.2023.102907_bib32 article-title: Altered cardiac energetics and mitochondrial dysfunction in hypertrophic cardiomyopathy publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.121.053575 – volume: 12 start-page: 210 year: 2022 ident: 10.1016/j.redox.2023.102907_bib40 article-title: Qualitative and quantitative effects of fatty acids involved in heart diseases publication-title: Metabolites doi: 10.3390/metabo12030210 – volume: 44 start-page: 315 year: 2008 ident: 10.1016/j.redox.2023.102907_bib45 article-title: The absence of endogenous lipid oxidation in early stage heart failure exposes limits in lipid storage and turnover publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2007.11.006 – volume: 55 start-page: 269 year: 2023 ident: 10.1016/j.redox.2023.102907_bib14 article-title: Site-specific ubiquitination of VDAC1 restricts its oligomerization and mitochondrial DNA release in liver fibrosis publication-title: Exp. Mol. Med. doi: 10.1038/s12276-022-00923-9 – volume: 58 year: 2022 ident: 10.1016/j.redox.2023.102907_bib26 article-title: CPT1A promotes anoikis resistance in esophageal squamous cell carcinoma via redox homeostasis publication-title: Redox Biol. doi: 10.1016/j.redox.2022.102544 – volume: 7 start-page: 66 year: 2022 ident: 10.1016/j.redox.2023.102907_bib27 article-title: miR-146a impedes the anti-aging effect of AMPK via NAMPT suppression and NAD+/SIRT inactivation publication-title: Signal Transduct. Targeted Ther. doi: 10.1038/s41392-022-00886-3 – volume: 44 start-page: 839 year: 2021 ident: 10.1016/j.redox.2023.102907_bib21 article-title: Targeting fatty acid metabolism for fibrotic disorders publication-title: Arch Pharm. Res. (Seoul) doi: 10.1007/s12272-021-01352-4 – volume: 9 start-page: 481 year: 2020 ident: 10.1016/j.redox.2023.102907_bib55 article-title: The VDAC1-based R-Tf-D-LP4 peptide as a potential treatment for diabetes mellitus publication-title: Cells doi: 10.3390/cells9020481 – start-page: 6 year: 2021 ident: 10.1016/j.redox.2023.102907_bib22 article-title: Dysregulated overexpression of Sox9 induces fibroblast activation in pulmonary fibrosis publication-title: JCI Insight – volume: 288 start-page: 19870 year: 2013 ident: 10.1016/j.redox.2023.102907_bib52 article-title: An interaction between Bcl-xL and the voltage-dependent anion channel (VDAC) promotes mitochondrial Ca2+ uptake publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.448290 – volume: 13 year: 2022 ident: 10.1016/j.redox.2023.102907_bib3 article-title: Identification of circular RNAs in cardiac hypertrophy and cardiac fibrosis publication-title: Front. Pharmacol. – volume: 20 start-page: 309 year: 2023 ident: 10.1016/j.redox.2023.102907_bib9 article-title: Cardiac fibroblasts and mechanosensation in heart development, health and disease publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-022-00799-2 – volume: 18 start-page: 809 year: 2021 ident: 10.1016/j.redox.2023.102907_bib10 article-title: PPAR control of metabolism and cardiovascular functions publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-021-00569-6 – volume: 2020 year: 2020 ident: 10.1016/j.redox.2023.102907_bib19 article-title: Inhibition of P2X7 purinergic receptor ameliorates cardiac fibrosis by suppressing NLRP3/IL-1beta pathway publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2020/7956274 – volume: 161 start-page: bqz046 year: 2020 ident: 10.1016/j.redox.2023.102907_bib41 article-title: CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential publication-title: Endocrinology doi: 10.1210/endocr/bqz046 – volume: 158 start-page: 1 year: 2021 ident: 10.1016/j.redox.2023.102907_bib36 article-title: Increasing fatty acid oxidation elicits a sex-dependent response in failing mouse hearts publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2021.05.004 – volume: 126 start-page: 182 year: 2020 ident: 10.1016/j.redox.2023.102907_bib35 article-title: Metabolic remodeling promotes cardiac hypertrophy by directing glucose to aspartate biosynthesis publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.119.315483 – volume: 1 start-page: 11 year: 2017 ident: 10.1016/j.redox.2023.102907_bib12 article-title: VDAC1 at the crossroads of cell metabolism, apoptosis and cell stress publication-title: Cell Stress doi: 10.15698/cst2017.10.104 – volume: 68 start-page: 1281 year: 2016 ident: 10.1016/j.redox.2023.102907_bib33 article-title: Comprehensive metabolomic characterization of coronary artery diseases publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2016.06.044 – volume: 130 start-page: 1790 year: 2014 ident: 10.1016/j.redox.2023.102907_bib44 article-title: Dietary fat supply to failing hearts determines dynamic lipid signaling for nuclear receptor activation and oxidation of stored triglyceride publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.114.011687 – volume: 124 start-page: 1214 year: 2019 ident: 10.1016/j.redox.2023.102907_bib6 article-title: Protective effects of activated myofibroblasts in the pressure-overloaded myocardium are mediated through smad-dependent activation of a matrix-preserving program publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.118.314438 – volume: 286 start-page: 25655 year: 2011 ident: 10.1016/j.redox.2023.102907_bib29 article-title: Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.228692 – volume: 122 start-page: 1238 year: 2018 ident: 10.1016/j.redox.2023.102907_bib34 article-title: Cardiovascular metabolomics publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.117.311002 – volume: 7 start-page: 4 year: 2017 ident: 10.1016/j.redox.2023.102907_bib31 article-title: VDAC-tubulin, an anti-warburg pro-oxidant switch publication-title: Front. Oncol. doi: 10.3389/fonc.2017.00004 – volume: 126 start-page: 1705 year: 2012 ident: 10.1016/j.redox.2023.102907_bib11 article-title: Carnitine palmitoyltransferase-1b deficiency aggravates pressure overload-induced cardiac hypertrophy caused by lipotoxicity publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.111.075978 – volume: 136 start-page: 2051 year: 2017 ident: 10.1016/j.redox.2023.102907_bib28 article-title: SIRT2 acts as a cardioprotective deacetylase in pathological cardiac hypertrophy publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.117.028728 – volume: 65 start-page: 70 year: 2019 ident: 10.1016/j.redox.2023.102907_bib1 article-title: Cardiac fibrosis: cell biological mechanisms, molecular pathways and therapeutic opportunities publication-title: Mol. Aspect. Med. doi: 10.1016/j.mam.2018.07.001 – volume: 7 start-page: 779 year: 2022 ident: 10.1016/j.redox.2023.102907_bib13 article-title: Parkin insufficiency accentuates high-fat diet-induced cardiac remodeling and contractile dysfunction through VDAC1-mediated mitochondrial Ca(2+) overload publication-title: JACC Basic Transl. Sci. doi: 10.1016/j.jacbts.2022.03.007 – volume: 59 start-page: 1 year: 2015 ident: 10.1016/j.redox.2023.102907_bib49 article-title: Long-chain acyl-CoA esters in metabolism and signaling: role of acyl-CoA binding proteins publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2015.04.001 – volume: 114 start-page: 717 year: 2014 ident: 10.1016/j.redox.2023.102907_bib43 article-title: Matrix revisited: mechanisms linking energy substrate metabolism to the function of the heart publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.114.301863 – volume: 34 start-page: 1 year: 2023 ident: 10.1016/j.redox.2023.102907_bib54 article-title: Sensing mitochondrial DNA stress in cardiotoxicity publication-title: Trends Endocrinol. Metabol. doi: 10.1016/j.tem.2023.08.012 – volume: 118 start-page: 115 year: 2022 ident: 10.1016/j.redox.2023.102907_bib24 article-title: The role of CD36 in cardiovascular disease publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvaa319 – volume: 44 start-page: 2746 year: 2023 ident: 10.1016/j.redox.2023.102907_bib30 article-title: Sirtuin 2 deficiency aggravates ageing-induced vascular remodelling in humans and mice publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehad381 – volume: 117 start-page: 1450 year: 2021 ident: 10.1016/j.redox.2023.102907_bib2 article-title: Cardiac fibrosis publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvaa324 – volume: 28 start-page: 490 year: 2018 ident: 10.1016/j.redox.2023.102907_bib48 article-title: Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis publication-title: Cell Metabol. doi: 10.1016/j.cmet.2018.06.001 |
SSID | ssj0000884210 |
Score | 2.3880937 |
Snippet | Cardiac fibrosis is characterized by the excessive deposition of extracellular matrix in the myocardium with cardiac fibroblast activation, leading to chronic... |
SourceID | doaj pubmedcentral proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102907 |
SubjectTerms | Cardiac fibroblasts Cardiac fibrosis Fatty acid metabolism Research Paper Voltage-dependent anion channel 1 (VDAC1) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuCCiI5UtG6gEkAnHWm9jHflBVHDjRqjfLH2MRtPVW3RS1f4Vfy4yTVMmlXLju2lmv58XzRpm8x9jeMuKhF0AWgCEopJaQjdwLV9fahtIpHXKX7_f65FR-O1-dT6y-qCeslwfuN-5LpWwDcUWihqTNJB0SdlVB0wRoVHRZbBtz3qSYymewUhKLmVFmKDd0kQDnzWeyCye9Ak0GspNUlBX7Zxlpwjjn_ZKTBHT8hD0emCPf71f8lD2A9Iw97L0kb3fZn7PNusPDoRhtbTtuE246p1d7E6y54B_OjvYPxUdOXZtwM3TAJk5uKr9b4pzcZ7x4HrGI3jgk1ngRPxqg8TbNB2zbLceJ_Kr3s8ckyKPtuluc0wZ-AR0CbN1uL56z0-OvPw5PisF4ofCrctkVy5UDoaPGjQ8WKXjwwXtZehuddJjjXSWtkOCFDEgxrIKmBOHoGZ1VmiTRXrCdtEnwknEnyoBxj8JiHpROO2e9gFjVjQtCa79g1RgD4wdVcjLHWJux_eyXyYEzFDjTB27BPt1NuuxFOe4ffkDBvRtKitr5A8SZGXBm_oWzBatHaJiBnPSkAy_V3v_r70cgGbx16XmMTbC53hqyGsACFinqgqkZwmZLnX-T2p9ZBBxL-apClL_6H3_uNXtEK-7fsXzDdrqra3iLZKtz7_J99RfdEStK priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b9swECWCAAW6FP1E3TYBC3RogaoWaVoSx8RtEGTI0ibwRvCzZeFIga0UyV_Jr80dJRnWkqGjZVKmfce7d9bxPUI-zQIEPedF5sEEmZDCJyH3zBSF1C43lXSpy_e8OL0QZ8v5co8shrMw2FbZx_4upqdo3V-Z9r_m9DrG6U_OoZKC9AcgOvHaQRyeiSod4lseb_9ngV0keCIlwPEZThjIh1KbF9Jy3n5DEXFkMZAoK7uToBKP_yhP7eDQcRflTlo6eU6e9XiSHnVLfkH2fP2SPOkUJu9ekfvLZtVCyMgGsduW6hpMQfHAb-1XlNHPl9-PFuwLxV5Of9v3xdYUNVb-RUSi1CYvsjRAad0YgNtwEzvIotFYjwds4obCRLruVO4hNdKg2_YO5kRHr3wLbreKm6vX5OLkx6_FadbLMWR2ns_abDY3nskgSx-cBmDurLNW5FYHIwxkfsOFZsJbJhwAD135MvfM4JM7XUkkSntD9uum9m8JNSx34A2BaciOwkhjtGU-8KI0jklpJ4QPNlC25ypHyYyVGprS_qpkOIWGU53hJuTrdtJ1R9Xx-PBjNO52KPJspwvN-rfqHU3xSsPXnSOlJjKDCQPlYsV9WTpfVsEUE1IMrqFGbgu3io9_-sfBkRRsaHxKo2vf3GwUChBAWQvAdUKqkYeNljp-p45_EjU4FPicg8e_-991vSdP8VV32vID2W_XN_4AYFdrDtO-egApfS6p priority: 102 providerName: Elsevier |
Title | Voltage-dependent anion channel 1 (VDAC1) overexpression alleviates cardiac fibroblast activation in cardiac fibrosis via regulating fatty acid metabolism |
URI | https://dx.doi.org/10.1016/j.redox.2023.102907 https://www.proquest.com/docview/2874261839 https://pubmed.ncbi.nlm.nih.gov/PMC10622884 https://doaj.org/article/28a7ef5047214094b62582e77de78fb6 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5VrZC4IJ4iPKJF4gASrrybje09IJQWqkIFB0RKbqt9GYxcG2IXJX-FX8vM2i61VFXiEinJ7ibxzOx8E89-HyHPZzlses6LyIMJIiGFD0LukUkSqV1sMulCl--n5HgpPqzmqx0yqKL2F7C5srRDPanlutzf_Nq-gYB__a9XC7k1N_uoBI5UBBJPl-9BakoxUj_2eD9szVkmeGAo4JzNIsA26cBEdPU6o2wVSP1HSesSKB23VF7KUUe3ya0eXNJF5w13yI6v7pIbndzk9h75c1qXLewf0aB821JdgV0onv6tfEkZfXH6dnHIXlJs7PSbvkm2oii48rtAWEptcClLc6izawPYGxaxg0YaLarxgKZoKEyk607yHvIkzXXbbmFO4eiZb8EHy6I5u0-WR---HB5HvTZDZOfxrI1mc-OZzGXqc6cBpTvrrBWx1bkRBmCA4UIz4S0TDlCIznwae2bwNp7OJLKmPSC7VV35h4QaFjtwjZxpSJXCSGO0ZT7nSWock9JOCB9soGxPXI76GaUaOtR-qGA4hYZTneEm5NXFpJ8db8f1ww_QuBdDkXQ7vFCvv6k-hhXPNPzcOfJrIk2YMFA7ZtynqfNplptkQpLBNVSPXzpcAksV13_6s8GRFEQ33rLRla_PG4VqBFDjAoqdkGzkYaOvOn6nKr4HnnCo9jkHj3_0f9fiMbmJz7oDl0_Ibrs-908BebVmSvYWJ5-_nkzDPxfw-H51MA0R9hexHzKT |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VIgQXxFOE5yJxAAkT72Zje49toEqh9EJb5bbaJxildpW4qP0r_Fpm1nYUX3rgau84m8zszjfx7PcR8m4SYNNzXiQeXJAIKXwUck9MlkntUlNIF7t8j7P5qfi6mC52yKw_C4Ntld3e3-7pcbfuroy7X3N8UZbjH5xDJQXpD0B05LW7RW4DGshRv-Fwsb_5owWWkeCRlQANErTo2Ydinxfycl59QhVxpDGQqCu7laEikf8gUW0B0WEb5VZeOnhA7neAku61c35Idnz1iNxpJSavH5O_Z_WygT0j6dVuG6or8AXFE7-VX1JG35993puxDxSbOf1V1xhbURRZ-VMiFKU2hpGlAWrr2gDehofYXheNltVwwLpcUzCkq1bmHnIjDbpprsGmdPTcNxB3y3J9_oScHnw5mc2TTo8hsdN00iSTqfFMBpn74DQgc2edtSK1OhhhIPUbLjQT3jLhAHnowuepZwZf3elCIlPaU7Jb1ZV_RqhhqYNwCExDehRGGqMt84FnuXFMSjsivPeBsh1ZOWpmLFXflfZbRccpdJxqHTciHzdGFy1Xx83D99G5m6FItB0v1Kufqos0xQsNX3eKnJpIDSYM1IsF93nufF4Ek41I1oeGGsQtPKq8-dPf9oGkYEXjaxpd-fpyrVCBAOpaQK4jUgwibDDV4Z2q_BW5waHC5xwi_vn_zusNuTs_-X6kjg6Pv70g9_BOe_TyJdltVpf-FWCwxryOa-wfUy0xyA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Voltage-dependent+anion+channel+1+%28VDAC1%29+overexpression+alleviates+cardiac+fibroblast+activation+in+cardiac+fibrosis+via+regulating+fatty+acid+metabolism&rft.jtitle=Redox+biology&rft.au=Tian%2C+Geer&rft.au=Zhou%2C+Junteng&rft.au=Quan%2C+Yue&rft.au=Kong%2C+Qihang&rft.date=2023-11-01&rft.issn=2213-2317&rft.eissn=2213-2317&rft.volume=67&rft.spage=102907&rft_id=info:doi/10.1016%2Fj.redox.2023.102907&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_redox_2023_102907 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-2317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-2317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-2317&client=summon |