iOmicsPASS: network-based integration of multiomics data for predictive subnetwork discovery

Computational tools for multiomics data integration have usually been designed for unsupervised detection of multiomics features explaining large phenotypic variations. To achieve this, some approaches extract latent signals in heterogeneous data sets from a joint statistical error model, while othe...

Full description

Saved in:
Bibliographic Details
Published inNPJ systems biology and applications Vol. 5; no. 1; pp. 22 - 10
Main Authors Koh, Hiromi W. L., Fermin, Damian, Vogel, Christine, Choi, Kwok Pui, Ewing, Rob M., Choi, Hyungwon
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.07.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Computational tools for multiomics data integration have usually been designed for unsupervised detection of multiomics features explaining large phenotypic variations. To achieve this, some approaches extract latent signals in heterogeneous data sets from a joint statistical error model, while others use biological networks to propagate differential expression signals and find consensus signatures. However, few approaches directly consider molecular interaction as a data feature, the essential linker between different omics data sets. The increasing availability of genome-scale interactome data connecting different molecular levels motivates a new class of methods to extract interactive signals from multiomics data. Here we developed iOmicsPASS, a tool to search for predictive subnetworks consisting of molecular interactions within and between related omics data types in a supervised analysis setting. Based on user-provided network data and relevant omics data sets, iOmicsPASS computes a score for each molecular interaction, and applies a modified nearest shrunken centroid algorithm to the scores to select densely connected subnetworks that can accurately predict each phenotypic group. iOmicsPASS detects a sparse set of predictive molecular interactions without loss of prediction accuracy compared to alternative methods, and the selected network signature immediately provides mechanistic interpretation of the multiomics profile representing each sample group. Extensive simulation studies demonstrate clear benefit of interaction-level modeling. iOmicsPASS analysis of TCGA/CPTAC breast cancer data also highlights new transcriptional regulatory network underlying the basal-like subtype as positive protein markers, a result not seen through analysis of individual omics data.
AbstractList Computational tools for multiomics data integration have usually been designed for unsupervised detection of multiomics features explaining large phenotypic variations. To achieve this, some approaches extract latent signals in heterogeneous data sets from a joint statistical error model, while others use biological networks to propagate differential expression signals and find consensus signatures. However, few approaches directly consider molecular interaction as a data feature, the essential linker between different omics data sets. The increasing availability of genome-scale interactome data connecting different molecular levels motivates a new class of methods to extract interactive signals from multiomics data. Here we developed iOmicsPASS, a tool to search for predictive subnetworks consisting of molecular interactions within and between related omics data types in a supervised analysis setting. Based on user-provided network data and relevant omics data sets, iOmicsPASS computes a score for each molecular interaction, and applies a modified nearest shrunken centroid algorithm to the scores to select densely connected subnetworks that can accurately predict each phenotypic group. iOmicsPASS detects a sparse set of predictive molecular interactions without loss of prediction accuracy compared to alternative methods, and the selected network signature immediately provides mechanistic interpretation of the multiomics profile representing each sample group. Extensive simulation studies demonstrate clear benefit of interaction-level modeling. iOmicsPASS analysis of TCGA/CPTAC breast cancer data also highlights new transcriptional regulatory network underlying the basal-like subtype as positive protein markers, a result not seen through analysis of individual omics data.
Computational tools for multiomics data integration have usually been designed for unsupervised detection of multiomics features explaining large phenotypic variations. To achieve this, some approaches extract latent signals in heterogeneous data sets from a joint statistical error model, while others use biological networks to propagate differential expression signals and find consensus signatures. However, few approaches directly consider molecular interaction as a data feature, the essential linker between different omics data sets. The increasing availability of genome-scale interactome data connecting different molecular levels motivates a new class of methods to extract interactive signals from multiomics data. Here we developed iOmicsPASS, a tool to search for predictive subnetworks consisting of molecular interactions within and between related omics data types in a supervised analysis setting. Based on user-provided network data and relevant omics data sets, iOmicsPASS computes a score for each molecular interaction, and applies a modified nearest shrunken centroid algorithm to the scores to select densely connected subnetworks that can accurately predict each phenotypic group. iOmicsPASS detects a sparse set of predictive molecular interactions without loss of prediction accuracy compared to alternative methods, and the selected network signature immediately provides mechanistic interpretation of the multiomics profile representing each sample group. Extensive simulation studies demonstrate clear benefit of interaction-level modeling. iOmicsPASS analysis of TCGA/CPTAC breast cancer data also highlights new transcriptional regulatory network underlying the basal-like subtype as positive protein markers, a result not seen through analysis of individual omics data.Computational tools for multiomics data integration have usually been designed for unsupervised detection of multiomics features explaining large phenotypic variations. To achieve this, some approaches extract latent signals in heterogeneous data sets from a joint statistical error model, while others use biological networks to propagate differential expression signals and find consensus signatures. However, few approaches directly consider molecular interaction as a data feature, the essential linker between different omics data sets. The increasing availability of genome-scale interactome data connecting different molecular levels motivates a new class of methods to extract interactive signals from multiomics data. Here we developed iOmicsPASS, a tool to search for predictive subnetworks consisting of molecular interactions within and between related omics data types in a supervised analysis setting. Based on user-provided network data and relevant omics data sets, iOmicsPASS computes a score for each molecular interaction, and applies a modified nearest shrunken centroid algorithm to the scores to select densely connected subnetworks that can accurately predict each phenotypic group. iOmicsPASS detects a sparse set of predictive molecular interactions without loss of prediction accuracy compared to alternative methods, and the selected network signature immediately provides mechanistic interpretation of the multiomics profile representing each sample group. Extensive simulation studies demonstrate clear benefit of interaction-level modeling. iOmicsPASS analysis of TCGA/CPTAC breast cancer data also highlights new transcriptional regulatory network underlying the basal-like subtype as positive protein markers, a result not seen through analysis of individual omics data.
ArticleNumber 22
Author Choi, Hyungwon
Fermin, Damian
Ewing, Rob M.
Vogel, Christine
Choi, Kwok Pui
Koh, Hiromi W. L.
Author_xml – sequence: 1
  givenname: Hiromi W. L.
  orcidid: 0000-0002-6894-5129
  surname: Koh
  fullname: Koh, Hiromi W. L.
  organization: Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Saw Swee Hock School of Public Health, National University of Singapore
– sequence: 2
  givenname: Damian
  surname: Fermin
  fullname: Fermin, Damian
  organization: University of Michigan Medical School
– sequence: 3
  givenname: Christine
  surname: Vogel
  fullname: Vogel, Christine
  organization: Center for Genomics and Systems Biology, Department of Biology, New York University
– sequence: 4
  givenname: Kwok Pui
  surname: Choi
  fullname: Choi, Kwok Pui
  organization: Department of Statistics and Applied Probability, National University of Singapore
– sequence: 5
  givenname: Rob M.
  surname: Ewing
  fullname: Ewing, Rob M.
  organization: School of Biological Sciences, University of Southampton
– sequence: 6
  givenname: Hyungwon
  orcidid: 0000-0002-6687-3088
  surname: Choi
  fullname: Choi, Hyungwon
  email: hwchoi@nus.edu.sg
  organization: Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Saw Swee Hock School of Public Health, National University of Singapore, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31312515$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1rFDEUhoNU7If9Ad7IgDfejJ58zsQLoRSrhUIL1TshZDPJmjqTrMnMyv57M-621kL1KgfyvC_n4z1EeyEGi9ALDG8w0PZtZpgzqAHLGkDKevMEHRDgom5wK_fu1fvoOOcbAMCCMoLhGdqnmGLCMT9AX_3l4E2-Orm-flcFO_6M6Xu90Nl2lQ-jXSY9-hiq6Kph6ks5w1WnR125mKpVsp03o1_bKk-LnbzqfDZxbdPmOXrqdJ_t8e49Ql_OPnw-_VRfXH48Pz25qA0HOtbYyI52roHGEixIy61sBZGCARjinMZNwyRz0nAHxIHk2tDGSHBGMM2Fo0fo_dZ3NS0G2xkbxqR7tUp-0Gmjovbq75_gv6llXCshsGCCFIPXO4MUf0w2j2ooM9i-18HGKStS9sa45EL-HyVc0mLK24K-eoDexCmFsomZYqwhgs7Uy_vN33V9e6MCNFvApJhzsk4ZP_4-S5nF9wqDmgOhtoFQJRBqDoTaFCV-oLw1_5eGbDW5sGFp05-mHxf9AsQDyJM
CitedBy_id crossref_primary_10_3389_fphys_2020_00081
crossref_primary_10_1016_j_inffus_2023_102077
crossref_primary_10_1016_j_molmed_2021_01_007
crossref_primary_10_3390_metabo11030184
crossref_primary_10_1038_s41416_024_02706_7
crossref_primary_10_3389_fcvm_2023_1123682
crossref_primary_10_3389_fnmol_2021_695873
crossref_primary_10_1093_bfgp_elae013
crossref_primary_10_14348_molcells_2021_0042
crossref_primary_10_1007_s12038_022_00253_y
crossref_primary_10_1016_j_physrep_2021_01_003
crossref_primary_10_3389_fonc_2022_946022
crossref_primary_10_1038_s41684_023_01286_y
crossref_primary_10_1038_s41467_021_22650_x
crossref_primary_10_1093_bioinformatics_btab608
crossref_primary_10_3390_metabo11040228
crossref_primary_10_3389_fmolb_2022_967205
crossref_primary_10_1016_j_pbi_2021_102057
crossref_primary_10_1161_ATVBAHA_122_318333
crossref_primary_10_1016_j_ajcnut_2022_12_021
crossref_primary_10_1093_gigascience_giaa064
crossref_primary_10_1016_j_pnpbp_2022_110520
crossref_primary_10_1016_j_ymeth_2024_04_017
crossref_primary_10_1016_j_mcpro_2024_100780
crossref_primary_10_1016_j_imu_2024_101507
crossref_primary_10_1186_s13073_024_01415_3
crossref_primary_10_3389_fmicb_2023_1170391
crossref_primary_10_1289_EHP9098
crossref_primary_10_1007_s11831_021_09547_0
crossref_primary_10_1038_s41540_022_00231_y
crossref_primary_10_3390_jcm11082103
crossref_primary_10_3389_fgene_2024_1425456
crossref_primary_10_15252_embr_202255747
crossref_primary_10_1136_gutjnl_2023_330155
crossref_primary_10_1080_14789450_2022_2070476
crossref_primary_10_1038_s41598_023_46392_6
crossref_primary_10_1002_pmic_201900312
crossref_primary_10_1016_j_csbj_2021_01_009
crossref_primary_10_1039_D1MO00158B
crossref_primary_10_3389_fmolb_2021_666705
crossref_primary_10_1016_j_isci_2021_103415
crossref_primary_10_1093_bioinformatics_btac477
crossref_primary_10_1016_j_biotechadv_2021_107695
crossref_primary_10_1093_bioinformatics_btac080
crossref_primary_10_3389_fonc_2020_01030
crossref_primary_10_1007_s11306_020_01657_3
crossref_primary_10_1002_med_21847
crossref_primary_10_3389_fmolb_2020_590842
crossref_primary_10_1016_j_expneurol_2022_113988
crossref_primary_10_1007_s10753_023_01961_9
crossref_primary_10_1016_j_drup_2022_100811
crossref_primary_10_3389_fmed_2022_1070385
crossref_primary_10_1093_nar_gkab405
crossref_primary_10_3390_ijms22062822
crossref_primary_10_1021_acs_analchem_0c04850
crossref_primary_10_1016_j_compbiomed_2024_108058
crossref_primary_10_1093_bib_bbab343
crossref_primary_10_37503_jbb_2020_8_38
crossref_primary_10_3389_fgene_2020_589231
crossref_primary_10_1053_j_gastro_2020_04_073
crossref_primary_10_1016_j_bbamcr_2022_119210
crossref_primary_10_1016_j_compbiomed_2022_105997
crossref_primary_10_1093_bib_bbac229
crossref_primary_10_3389_fonc_2020_01065
crossref_primary_10_1089_nsm_2020_0004
crossref_primary_10_3389_frai_2023_1098308
crossref_primary_10_3389_fgene_2020_578345
crossref_primary_10_3389_fgene_2021_617512
Cites_doi 10.1101/gr.1239303
10.1038/nature11412
10.1016/j.febslet.2009.10.036
10.15252/msb.20178124
10.1038/srep11432
10.1093/bioinformatics/btp543
10.1109/TKDE.2008.239
10.1093/bioinformatics/btq182
10.1038/nmeth.2651
10.1371/journal.pcbi.1002227
10.1073/pnas.082099299
10.1073/pnas.1208949110
10.1371/journal.pcbi.1003983
10.1038/75556
10.1186/1471-2105-11-523
10.1021/pr501254j
10.1038/nrg3185
10.1038/nature18003
10.1093/nar/gkq1156
10.3389/fgene.2017.00084
10.1038/nrg3868
10.1371/journal.pcbi.1004595
10.1186/1471-2105-9-405
10.1093/bioinformatics/btn439
10.1093/nar/gki004
10.1200/JCO.2008.18.1370
10.1038/nature22366
ContentType Journal Article
Copyright The Author(s) 2019
2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1038/s41540-019-0099-y
DatabaseName Springer Nature OA/Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic


CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA/Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2056-7189
EndPage 10
ExternalDocumentID PMC6616462
31312515
10_1038_s41540_019_0099_y
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM127089
GroupedDBID 0R~
5VS
7X7
8FE
8FH
8FI
AAJSJ
AASML
ABUWG
ACGFS
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HYE
KQ8
LK8
M7P
M~E
NAO
NO~
OK1
PGMZT
PIMPY
PQQKQ
PROAC
PUEGO
RNT
RPM
SNYQT
UKHRP
8FJ
AAYXX
CCPQU
CITATION
HMCUK
PHGZM
PHGZT
AJTQC
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c503t-1c9d3df707e216285e986296400c2ffa177494f9c5f02f095ac37c90fc64a56f3
IEDL.DBID C6C
ISSN 2056-7189
IngestDate Thu Aug 21 13:47:59 EDT 2025
Fri Jul 11 10:33:54 EDT 2025
Fri Jul 11 08:47:42 EDT 2025
Wed Aug 13 05:28:54 EDT 2025
Thu Apr 03 06:52:24 EDT 2025
Tue Jul 01 01:18:35 EDT 2025
Thu Apr 24 23:44:05 EDT 2025
Sun Aug 31 08:58:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Systems biology
Computational biology and bioinformatics
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-1c9d3df707e216285e986296400c2ffa177494f9c5f02f095ac37c90fc64a56f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6687-3088
0000-0002-6894-5129
OpenAccessLink https://www.nature.com/articles/s41540-019-0099-y
PMID 31312515
PQID 2254472638
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6616462
proquest_miscellaneous_2421459569
proquest_miscellaneous_2259364658
proquest_journals_2254472638
pubmed_primary_31312515
crossref_citationtrail_10_1038_s41540_019_0099_y
crossref_primary_10_1038_s41540_019_0099_y
springer_journals_10_1038_s41540_019_0099_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-09
PublicationDateYYYYMMDD 2019-07-09
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-09
  day: 09
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle NPJ systems biology and applications
PublicationTitleAbbrev npj Syst Biol Appl
PublicationTitleAlternate NPJ Syst Biol Appl
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Parker (CR15) 2009; 27
Blagus, Lusa (CR19) 2010; 11
Vogel, Marcotte (CR11) 2012; 13
Ritchie, Holzinger, Li, Pendergrass, Kim (CR12) 2015; 16
Edwards (CR20) 2015; 14
Ashburner (CR27) 2000; 25
Razick, Magklaras, Donaldson (CR21) 2008; 9
(CR16) 2012; 490
He, Garcia (CR18) 2009; 21
Hofree, Shen, Carter, Gross, Ideker (CR9) 2013; 10
Han (CR25) 2015; 5
Kamburov (CR26) 2011; 39
Shen, Olshen, Ladanyi (CR2) 2009; 25
Huttlin (CR22) 2017; 545
Argelaguet (CR5) 2018; 14
Vaske (CR6) 2010; 26
Shannon (CR14) 2003; 13
Zheng (CR24) 2008; 24
Huang, Chaudhary, Garmire (CR1) 2017; 8
Bonnet, Calzone, Michoel (CR7) 2015; 11
Mertins (CR17) 2016; 534
Tibshirani, Hastie, Narasimhan, Chu (CR13) 2002; 99
Yuan, Savage, Markowetz (CR4) 2011; 7
Maier, Guell, Serrano (CR10) 2009; 583
Ruffalo, Koyuturk, Sharan (CR8) 2015; 11
Zhao, Xuan, Liu, Zhang (CR23) 2005; 33
Mo (CR3) 2013; 110
C Vogel (99_CR11) 2012; 13
JS Parker (99_CR15) 2009; 27
R Tibshirani (99_CR13) 2002; 99
A Kamburov (99_CR26) 2011; 39
Q Mo (99_CR3) 2013; 110
NJ Edwards (99_CR20) 2015; 14
M Ashburner (99_CR27) 2000; 25
P Mertins (99_CR17) 2016; 534
G Zheng (99_CR24) 2008; 24
MD Ritchie (99_CR12) 2015; 16
F Zhao (99_CR23) 2005; 33
EL Huttlin (99_CR22) 2017; 545
H He (99_CR18) 2009; 21
P Shannon (99_CR14) 2003; 13
E Bonnet (99_CR7) 2015; 11
M Ruffalo (99_CR8) 2015; 11
M Hofree (99_CR9) 2013; 10
R Argelaguet (99_CR5) 2018; 14
S Huang (99_CR1) 2017; 8
CJ Vaske (99_CR6) 2010; 26
Cancer Genome Atlas, N. (99_CR16) 2012; 490
R Blagus (99_CR19) 2010; 11
H Han (99_CR25) 2015; 5
Y Yuan (99_CR4) 2011; 7
R Shen (99_CR2) 2009; 25
S Razick (99_CR21) 2008; 9
T Maier (99_CR10) 2009; 583
References_xml – volume: 13
  start-page: 2498
  year: 2003
  end-page: 2504
  ident: CR14
  article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks
  publication-title: Genome Res.
  doi: 10.1101/gr.1239303
– volume: 490
  start-page: 61
  year: 2012
  end-page: 70
  ident: CR16
  article-title: Comprehensive molecular portraits of human breast tumours
  publication-title: Nature
  doi: 10.1038/nature11412
– volume: 583
  start-page: 3966
  year: 2009
  end-page: 3973
  ident: CR10
  article-title: Correlation of mRNA and protein in complex biological samples
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2009.10.036
– volume: 14
  year: 2018
  ident: CR5
  article-title: Multi-omics factor analysis—a framework for unsupervised integration of multi-omics data sets
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20178124
– volume: 5
  year: 2015
  ident: CR25
  article-title: TRRUST: a reference database of human transcriptional regulatory interactions
  publication-title: Sci. Rep.
  doi: 10.1038/srep11432
– volume: 25
  start-page: 2906
  year: 2009
  end-page: 2912
  ident: CR2
  article-title: Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp543
– volume: 21
  start-page: 1263
  year: 2009
  end-page: 1284
  ident: CR18
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.239
– volume: 26
  start-page: i237
  year: 2010
  end-page: 245
  ident: CR6
  article-title: Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq182
– volume: 10
  start-page: 1108
  year: 2013
  end-page: 1115
  ident: CR9
  article-title: Network-based stratification of tumor mutations
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2651
– volume: 7
  year: 2011
  ident: CR4
  article-title: Patient-specific data fusion defines prognostic cancer subtypes
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002227
– volume: 99
  start-page: 6567
  year: 2002
  end-page: 6572
  ident: CR13
  article-title: Diagnosis of multiple cancer types by shrunken centroids of gene expression
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.082099299
– volume: 110
  start-page: 4245
  year: 2013
  end-page: 4250
  ident: CR3
  article-title: Pattern discovery and cancer gene identification in integrated cancer genomic data
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1208949110
– volume: 11
  year: 2015
  ident: CR7
  article-title: Integrative multi-omics module network inference with Lemon-Tree
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.1003983
– volume: 25
  start-page: 25
  year: 2000
  end-page: 29
  ident: CR27
  article-title: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium
  publication-title: Nat. Genet.
  doi: 10.1038/75556
– volume: 11
  year: 2010
  ident: CR19
  article-title: Class prediction for high-dimensional class-imbalanced data
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-11-523
– volume: 14
  start-page: 2707
  year: 2015
  end-page: 2713
  ident: CR20
  article-title: The CPTAC data portal: a resource for cancer proteomics research
  publication-title: J. Proteome Res.
  doi: 10.1021/pr501254j
– volume: 13
  start-page: 227
  year: 2012
  end-page: 232
  ident: CR11
  article-title: Insights into the regulation of protein abundance from proteomic and transcriptomic analyses
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3185
– volume: 534
  start-page: 55
  year: 2016
  end-page: 62
  ident: CR17
  article-title: Proteogenomics connects somatic mutations to signalling in breast cancer
  publication-title: Nature
  doi: 10.1038/nature18003
– volume: 39
  start-page: D712
  year: 2011
  end-page: 717
  ident: CR26
  article-title: ConsensusPathDB: toward a more complete picture of cell biology
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1156
– volume: 8
  start-page: 84
  year: 2017
  ident: CR1
  article-title: More is better: recent progress in multi-omics data integration methods
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2017.00084
– volume: 16
  start-page: 85
  year: 2015
  end-page: 97
  ident: CR12
  article-title: Methods of integrating data to uncover genotype-phenotype interactions
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3868
– volume: 11
  year: 2015
  ident: CR8
  article-title: Network-based integration of disparate omic data to identify "silent players" in cancer
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004595
– volume: 9
  year: 2008
  ident: CR21
  article-title: iRefIndex: a consolidated protein interaction database with provenance
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-9-405
– volume: 24
  start-page: 2416
  year: 2008
  end-page: 2417
  ident: CR24
  article-title: ITFP: an integrated platform of mammalian transcription factors
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn439
– volume: 33
  start-page: D103
  year: 2005
  end-page: 107
  ident: CR23
  article-title: TRED: a transcriptional regulatory element database and a platform for in silico gene regulation studies
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki004
– volume: 27
  start-page: 1160
  year: 2009
  end-page: 1167
  ident: CR15
  article-title: Supervised risk predictor of breast cancer based on intrinsic subtypes
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2008.18.1370
– volume: 545
  start-page: 505
  year: 2017
  end-page: 509
  ident: CR22
  article-title: Architecture of the human interactome defines protein communities and disease networks
  publication-title: Nature
  doi: 10.1038/nature22366
– volume: 110
  start-page: 4245
  year: 2013
  ident: 99_CR3
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1208949110
– volume: 26
  start-page: i237
  year: 2010
  ident: 99_CR6
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq182
– volume: 13
  start-page: 227
  year: 2012
  ident: 99_CR11
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3185
– volume: 25
  start-page: 25
  year: 2000
  ident: 99_CR27
  publication-title: Nat. Genet.
  doi: 10.1038/75556
– volume: 11
  year: 2015
  ident: 99_CR7
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.1003983
– volume: 11
  year: 2015
  ident: 99_CR8
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004595
– volume: 39
  start-page: D712
  year: 2011
  ident: 99_CR26
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1156
– volume: 27
  start-page: 1160
  year: 2009
  ident: 99_CR15
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2008.18.1370
– volume: 490
  start-page: 61
  year: 2012
  ident: 99_CR16
  publication-title: Nature
  doi: 10.1038/nature11412
– volume: 99
  start-page: 6567
  year: 2002
  ident: 99_CR13
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.082099299
– volume: 14
  year: 2018
  ident: 99_CR5
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20178124
– volume: 5
  year: 2015
  ident: 99_CR25
  publication-title: Sci. Rep.
  doi: 10.1038/srep11432
– volume: 7
  year: 2011
  ident: 99_CR4
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002227
– volume: 24
  start-page: 2416
  year: 2008
  ident: 99_CR24
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn439
– volume: 10
  start-page: 1108
  year: 2013
  ident: 99_CR9
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2651
– volume: 16
  start-page: 85
  year: 2015
  ident: 99_CR12
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3868
– volume: 14
  start-page: 2707
  year: 2015
  ident: 99_CR20
  publication-title: J. Proteome Res.
  doi: 10.1021/pr501254j
– volume: 21
  start-page: 1263
  year: 2009
  ident: 99_CR18
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.239
– volume: 13
  start-page: 2498
  year: 2003
  ident: 99_CR14
  publication-title: Genome Res.
  doi: 10.1101/gr.1239303
– volume: 8
  start-page: 84
  year: 2017
  ident: 99_CR1
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2017.00084
– volume: 534
  start-page: 55
  year: 2016
  ident: 99_CR17
  publication-title: Nature
  doi: 10.1038/nature18003
– volume: 25
  start-page: 2906
  year: 2009
  ident: 99_CR2
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp543
– volume: 545
  start-page: 505
  year: 2017
  ident: 99_CR22
  publication-title: Nature
  doi: 10.1038/nature22366
– volume: 583
  start-page: 3966
  year: 2009
  ident: 99_CR10
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2009.10.036
– volume: 11
  year: 2010
  ident: 99_CR19
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-11-523
– volume: 9
  year: 2008
  ident: 99_CR21
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-9-405
– volume: 33
  start-page: D103
  year: 2005
  ident: 99_CR23
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki004
SSID ssj0001634210
Score 2.4032474
Snippet Computational tools for multiomics data integration have usually been designed for unsupervised detection of multiomics features explaining large phenotypic...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22
SubjectTerms 631/114
631/553
Algorithms
Bioinformatics
Biomedical and Life Sciences
Breast cancer
Breast Neoplasms - genetics
Computational Biology - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer applications
Datasets
Gene Expression Profiling - methods
Gene Expression Regulation - genetics
Gene Regulatory Networks - genetics
Genomes
Genomics - methods
Humans
Integration
Life Sciences
Mathematical models
Models, Statistical
Models, Theoretical
Phenotypic variations
Protein Interaction Mapping - methods
Proteomics - methods
Software
Systems Biology
Technology Feature
Transcription
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_0RPBFPL-uekoEn5RwzUebjS9yyB2H4AecB_sglDRNcMHrrtfdh_3vnUnbXdbDfSskocnMJPklM_kNwFvhC1cbH3hZh8C1bhS3ztPXBLVvlW1S9oYvX8uLK_15WkyHC7duCKsc18S0UDdzT3fkJ5K4tIxEc_m4-MMpaxR5V4cUGnfhHlGXUUiXmZrtHUupNB5pRmemmpx0uF9RPCO93CFuyvXudnQLY94OlfzHX5q2ofNH8HDAj-y0V_gh3AntY7jfZ5RcP4Gfs2_XM999P728_MDaPsSb007VsJEYAhXB5pGlSEJ6ktwxihJlCF7Z4obcNrQAsm5VD80ZPdylQM_1U7g6P_vx6YIPCRS4L3K15MLbRjXR5CZIQW8lg8UDjC1x3noZoxOI_ayO1hcxlxHBlvPKeJtHX2pXlFE9g4N23oYjYLV0IThRB-GFjo2srWzqiXAiyHQKyyAf5Vj5gV2cklz8rpKXW02qXvQVir4i0VfrDN5tmix6ao19lY9H5VTDLOuqrU1k8GZTjPODnB6uDfNVqmNVqRFo7amjia8dT4o2g-e9vjc9UkIRBiwyMDuWsKlA_Ny7Je3sV-LpRuiDP5YZvB9tZtv1_w70xf6BvoQHMlmv4bk9hoPlzSq8Qli0rF8n2_8LlTkM4g
  priority: 102
  providerName: ProQuest
Title iOmicsPASS: network-based integration of multiomics data for predictive subnetwork discovery
URI https://link.springer.com/article/10.1038/s41540-019-0099-y
https://www.ncbi.nlm.nih.gov/pubmed/31312515
https://www.proquest.com/docview/2254472638
https://www.proquest.com/docview/2259364658
https://www.proquest.com/docview/2421459569
https://pubmed.ncbi.nlm.nih.gov/PMC6616462
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_6wWAvY-2-vHVBgz1tmFkftqK9ZaGlBNaVZYU8DIwtSzSwOaVOHvLf7062U7LQQp9s0AnLp6_f6e5-AvjIbVqU2ro4K52LlapkbApLb0PsfSNNFW5v-H6RnV-pySyd7QHvc2FC0H6gtAzLdB8d9qXBjYYCESnlhkgl1_twSMztNKjH2fjuWCWTCq2Y3n8ph7s1t3egHVi5Gx35n4s07Dxnz-FZBxnZqG3kEey5-hietJdIrl_A7_mPv3PbXI6m06-sbqO6Y9qcKtZzQaDu2cKzEDxIWcgNo8BQhniV3dySp4bWPNasyq46o1xdiu1cv4Srs9Nf4_O4uzMhtmkilzG3ppKV14l2glN6pDNos5gMp6oV3hcc4Z5R3tjUJ8Ijviqs1NYk3maqSDMvX8FBvajdG2ClKJwreOm45cpXojSiKoe84E4EwyuCpNdjbjtCcbrX4k8eHNtymLeqz1H1Oak-X0fwaVPlpmXTeEj4pO-cvJtYTS6IUk0LXDUi-LApxilBfo6idotVkDEyU4itHpBRRNGOxqGJ4HXb35sWSS4J9qUR6K2RsBEgSu7tknp-Hai5Ee3gh0UEn_sxc9f0e3_07aOk38FTEQazjhNzAgfL25V7j8BoWQ5gX8_0AA5Ho8l0gs9vpxeXPwdhggzCYcM_r90Pxg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NToi9IL4XGGAkeAFFiz-S1EgIDdjUsa1MbJP2MCkkji0qQVqWVij_FH8jd_loVSb6trdItpP47mz_zvcF8JKbMM1iY_0os9ZXKpe-Tg099ZH7Wuq8rt5wNIwGZ-rzeXi-Bn-6WBhyq-z2xHqjzseG7si3BeXSigWKy_vJL5-qRpF1tSuh0YjFga1-o8pWvtv_hPx9JcTe7unHgd9WFfBNGMipz43OZe7iILaCUwCh1YjqdYTCbIRzKUdApJXTJnSBcIhAUiNjowNnIpWGkZP43huwriSqMj1Y_7A7PP66uNWJpEIlqjOfyv52iSckeVBSrBBlw6yWD8ArqPaqc-Y_Ftr64Nu7A7dbxMp2GhG7C2u2uAc3mxqW1X24GH35OTLl8c7JyVtWNE7lPp2NOetSUSDr2dix2neRgqBLRn6pDOEym1ySoYi2XFbOsnY4o1Bhci2tHsDZtRD3IfSKcWE3gWUitTblmeWGK5eLTIs86_OUW1HrfR4EHR0T0-Yzp7IaP5Lari77SUP6BEmfEOmTyoPX8yGTJpnHqs5bHXOSdl2XyUIKPXgxb8YVSWaWtLDjWd1Hy0ghtFvRR1GGeNRNtQePGn7P_0hySagz9CBekoR5B8oIvtxSjL7XmcERbOGHhQdvOplZ_Pp_J_p49USfw63B6dFhcrg_PHgCG6KW5NgP9Bb0ppcz-xRB2TR71q4EBt-ue_H9BduhSfE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQyBeEHcCA4wEL6BosZ3ENRJCE6PaGIxJY1IfJoXEsbVKIy1LK5S_xq_jHCdpVSb6trdIcRLn-Dv2Z58bwCtukrxQxoZpYW0Yx6UMdW7oaoCjr6UuffWGr4fp3kn8eZSMNuBPHwtDbpX9nOgn6nJi6Ix8W1AuLSUQLtuuc4s42h1-mP4KqYIUWVr7chotRA5s8xu3b_X7_V0c69dCDD99_7gXdhUGQpNEchZyo0tZOhUpKzgFE1qNDF-nCGwjnMs5kiMdO20SFwmHbCQ3UhkdOZPGeZI6ie-9BteVTDjpmBqp5flOKmPcTvWGVOx2jWsl-VJS1BDlxWxWl8JL_Paym-Y_tlq_BA7vwO2Ou7KdFmx3YcNW9-BGW82yuQ-n428_x6Y-2jk-fseq1r08pFWyZH1SCgQBmzjmvRgpHLpm5KHKkDiz6QWZjGjyZfW86B5nFDRMTqbNAzi5EtE-hM1qUtnHwAqRW5vzwnLDY1eKQouyGPCcW-F3gAFEvRwz02U2pwIb55m3sMtB1oo-Q9FnJPqsCeDN4pFpm9ZjXeOtfnCyTsPrbInHAF4ubqNuksElr-xk7ttomcZI8ta0iSlXPO5SdQCP2vFe9EhySfwzCUCtIGHRgHKDr96pxmc-RzjSLvywCOBtj5ll1__7o0_W_-gLuIkql33ZPzx4CreEB7IKI70Fm7OLuX2G7GxWPPdqwODHVevdX4-eTME
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=iOmicsPASS%3A+network-based+integration+of+multiomics+data+for+predictive+subnetwork+discovery&rft.jtitle=NPJ+systems+biology+and+applications&rft.au=Koh%2C+Hiromi+W+L&rft.au=Fermin%2C+Damian&rft.au=Vogel%2C+Christine&rft.au=Choi%2C+Kwok+Pui&rft.date=2019-07-09&rft.eissn=2056-7189&rft.volume=5&rft.issue=1&rft.spage=22&rft.epage=22&rft_id=info:doi/10.1038%2Fs41540-019-0099-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-7189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-7189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-7189&client=summon