iOmicsPASS: network-based integration of multiomics data for predictive subnetwork discovery
Computational tools for multiomics data integration have usually been designed for unsupervised detection of multiomics features explaining large phenotypic variations. To achieve this, some approaches extract latent signals in heterogeneous data sets from a joint statistical error model, while othe...
Saved in:
Published in | NPJ systems biology and applications Vol. 5; no. 1; pp. 22 - 10 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
09.07.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Computational tools for multiomics data integration have usually been designed for unsupervised detection of multiomics features explaining large phenotypic variations. To achieve this, some approaches extract latent signals in heterogeneous data sets from a joint statistical error model, while others use biological networks to propagate differential expression signals and find consensus signatures. However, few approaches directly consider molecular interaction as a data feature, the essential linker between different omics data sets. The increasing availability of genome-scale interactome data connecting different molecular levels motivates a new class of methods to extract interactive signals from multiomics data. Here we developed iOmicsPASS, a tool to search for predictive subnetworks consisting of molecular interactions within and between related omics data types in a supervised analysis setting. Based on user-provided network data and relevant omics data sets, iOmicsPASS computes a score for each molecular interaction, and applies a modified nearest shrunken centroid algorithm to the scores to select densely connected subnetworks that can accurately predict each phenotypic group. iOmicsPASS detects a sparse set of predictive molecular interactions without loss of prediction accuracy compared to alternative methods, and the selected network signature immediately provides mechanistic interpretation of the multiomics profile representing each sample group. Extensive simulation studies demonstrate clear benefit of interaction-level modeling. iOmicsPASS analysis of TCGA/CPTAC breast cancer data also highlights new transcriptional regulatory network underlying the basal-like subtype as positive protein markers, a result not seen through analysis of individual omics data. |
---|---|
AbstractList | Computational tools for multiomics data integration have usually been designed for unsupervised detection of multiomics features explaining large phenotypic variations. To achieve this, some approaches extract latent signals in heterogeneous data sets from a joint statistical error model, while others use biological networks to propagate differential expression signals and find consensus signatures. However, few approaches directly consider molecular interaction as a data feature, the essential linker between different omics data sets. The increasing availability of genome-scale interactome data connecting different molecular levels motivates a new class of methods to extract interactive signals from multiomics data. Here we developed iOmicsPASS, a tool to search for predictive subnetworks consisting of molecular interactions within and between related omics data types in a supervised analysis setting. Based on user-provided network data and relevant omics data sets, iOmicsPASS computes a score for each molecular interaction, and applies a modified nearest shrunken centroid algorithm to the scores to select densely connected subnetworks that can accurately predict each phenotypic group. iOmicsPASS detects a sparse set of predictive molecular interactions without loss of prediction accuracy compared to alternative methods, and the selected network signature immediately provides mechanistic interpretation of the multiomics profile representing each sample group. Extensive simulation studies demonstrate clear benefit of interaction-level modeling. iOmicsPASS analysis of TCGA/CPTAC breast cancer data also highlights new transcriptional regulatory network underlying the basal-like subtype as positive protein markers, a result not seen through analysis of individual omics data. Computational tools for multiomics data integration have usually been designed for unsupervised detection of multiomics features explaining large phenotypic variations. To achieve this, some approaches extract latent signals in heterogeneous data sets from a joint statistical error model, while others use biological networks to propagate differential expression signals and find consensus signatures. However, few approaches directly consider molecular interaction as a data feature, the essential linker between different omics data sets. The increasing availability of genome-scale interactome data connecting different molecular levels motivates a new class of methods to extract interactive signals from multiomics data. Here we developed iOmicsPASS, a tool to search for predictive subnetworks consisting of molecular interactions within and between related omics data types in a supervised analysis setting. Based on user-provided network data and relevant omics data sets, iOmicsPASS computes a score for each molecular interaction, and applies a modified nearest shrunken centroid algorithm to the scores to select densely connected subnetworks that can accurately predict each phenotypic group. iOmicsPASS detects a sparse set of predictive molecular interactions without loss of prediction accuracy compared to alternative methods, and the selected network signature immediately provides mechanistic interpretation of the multiomics profile representing each sample group. Extensive simulation studies demonstrate clear benefit of interaction-level modeling. iOmicsPASS analysis of TCGA/CPTAC breast cancer data also highlights new transcriptional regulatory network underlying the basal-like subtype as positive protein markers, a result not seen through analysis of individual omics data.Computational tools for multiomics data integration have usually been designed for unsupervised detection of multiomics features explaining large phenotypic variations. To achieve this, some approaches extract latent signals in heterogeneous data sets from a joint statistical error model, while others use biological networks to propagate differential expression signals and find consensus signatures. However, few approaches directly consider molecular interaction as a data feature, the essential linker between different omics data sets. The increasing availability of genome-scale interactome data connecting different molecular levels motivates a new class of methods to extract interactive signals from multiomics data. Here we developed iOmicsPASS, a tool to search for predictive subnetworks consisting of molecular interactions within and between related omics data types in a supervised analysis setting. Based on user-provided network data and relevant omics data sets, iOmicsPASS computes a score for each molecular interaction, and applies a modified nearest shrunken centroid algorithm to the scores to select densely connected subnetworks that can accurately predict each phenotypic group. iOmicsPASS detects a sparse set of predictive molecular interactions without loss of prediction accuracy compared to alternative methods, and the selected network signature immediately provides mechanistic interpretation of the multiomics profile representing each sample group. Extensive simulation studies demonstrate clear benefit of interaction-level modeling. iOmicsPASS analysis of TCGA/CPTAC breast cancer data also highlights new transcriptional regulatory network underlying the basal-like subtype as positive protein markers, a result not seen through analysis of individual omics data. |
ArticleNumber | 22 |
Author | Choi, Hyungwon Fermin, Damian Ewing, Rob M. Vogel, Christine Choi, Kwok Pui Koh, Hiromi W. L. |
Author_xml | – sequence: 1 givenname: Hiromi W. L. orcidid: 0000-0002-6894-5129 surname: Koh fullname: Koh, Hiromi W. L. organization: Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Saw Swee Hock School of Public Health, National University of Singapore – sequence: 2 givenname: Damian surname: Fermin fullname: Fermin, Damian organization: University of Michigan Medical School – sequence: 3 givenname: Christine surname: Vogel fullname: Vogel, Christine organization: Center for Genomics and Systems Biology, Department of Biology, New York University – sequence: 4 givenname: Kwok Pui surname: Choi fullname: Choi, Kwok Pui organization: Department of Statistics and Applied Probability, National University of Singapore – sequence: 5 givenname: Rob M. surname: Ewing fullname: Ewing, Rob M. organization: School of Biological Sciences, University of Southampton – sequence: 6 givenname: Hyungwon orcidid: 0000-0002-6687-3088 surname: Choi fullname: Choi, Hyungwon email: hwchoi@nus.edu.sg organization: Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Saw Swee Hock School of Public Health, National University of Singapore, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31312515$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl1rFDEUhoNU7If9Ad7IgDfejJ58zsQLoRSrhUIL1TshZDPJmjqTrMnMyv57M-621kL1KgfyvC_n4z1EeyEGi9ALDG8w0PZtZpgzqAHLGkDKevMEHRDgom5wK_fu1fvoOOcbAMCCMoLhGdqnmGLCMT9AX_3l4E2-Orm-flcFO_6M6Xu90Nl2lQ-jXSY9-hiq6Kph6ks5w1WnR125mKpVsp03o1_bKk-LnbzqfDZxbdPmOXrqdJ_t8e49Ql_OPnw-_VRfXH48Pz25qA0HOtbYyI52roHGEixIy61sBZGCARjinMZNwyRz0nAHxIHk2tDGSHBGMM2Fo0fo_dZ3NS0G2xkbxqR7tUp-0Gmjovbq75_gv6llXCshsGCCFIPXO4MUf0w2j2ooM9i-18HGKStS9sa45EL-HyVc0mLK24K-eoDexCmFsomZYqwhgs7Uy_vN33V9e6MCNFvApJhzsk4ZP_4-S5nF9wqDmgOhtoFQJRBqDoTaFCV-oLw1_5eGbDW5sGFp05-mHxf9AsQDyJM |
CitedBy_id | crossref_primary_10_3389_fphys_2020_00081 crossref_primary_10_1016_j_inffus_2023_102077 crossref_primary_10_1016_j_molmed_2021_01_007 crossref_primary_10_3390_metabo11030184 crossref_primary_10_1038_s41416_024_02706_7 crossref_primary_10_3389_fcvm_2023_1123682 crossref_primary_10_3389_fnmol_2021_695873 crossref_primary_10_1093_bfgp_elae013 crossref_primary_10_14348_molcells_2021_0042 crossref_primary_10_1007_s12038_022_00253_y crossref_primary_10_1016_j_physrep_2021_01_003 crossref_primary_10_3389_fonc_2022_946022 crossref_primary_10_1038_s41684_023_01286_y crossref_primary_10_1038_s41467_021_22650_x crossref_primary_10_1093_bioinformatics_btab608 crossref_primary_10_3390_metabo11040228 crossref_primary_10_3389_fmolb_2022_967205 crossref_primary_10_1016_j_pbi_2021_102057 crossref_primary_10_1161_ATVBAHA_122_318333 crossref_primary_10_1016_j_ajcnut_2022_12_021 crossref_primary_10_1093_gigascience_giaa064 crossref_primary_10_1016_j_pnpbp_2022_110520 crossref_primary_10_1016_j_ymeth_2024_04_017 crossref_primary_10_1016_j_mcpro_2024_100780 crossref_primary_10_1016_j_imu_2024_101507 crossref_primary_10_1186_s13073_024_01415_3 crossref_primary_10_3389_fmicb_2023_1170391 crossref_primary_10_1289_EHP9098 crossref_primary_10_1007_s11831_021_09547_0 crossref_primary_10_1038_s41540_022_00231_y crossref_primary_10_3390_jcm11082103 crossref_primary_10_3389_fgene_2024_1425456 crossref_primary_10_15252_embr_202255747 crossref_primary_10_1136_gutjnl_2023_330155 crossref_primary_10_1080_14789450_2022_2070476 crossref_primary_10_1038_s41598_023_46392_6 crossref_primary_10_1002_pmic_201900312 crossref_primary_10_1016_j_csbj_2021_01_009 crossref_primary_10_1039_D1MO00158B crossref_primary_10_3389_fmolb_2021_666705 crossref_primary_10_1016_j_isci_2021_103415 crossref_primary_10_1093_bioinformatics_btac477 crossref_primary_10_1016_j_biotechadv_2021_107695 crossref_primary_10_1093_bioinformatics_btac080 crossref_primary_10_3389_fonc_2020_01030 crossref_primary_10_1007_s11306_020_01657_3 crossref_primary_10_1002_med_21847 crossref_primary_10_3389_fmolb_2020_590842 crossref_primary_10_1016_j_expneurol_2022_113988 crossref_primary_10_1007_s10753_023_01961_9 crossref_primary_10_1016_j_drup_2022_100811 crossref_primary_10_3389_fmed_2022_1070385 crossref_primary_10_1093_nar_gkab405 crossref_primary_10_3390_ijms22062822 crossref_primary_10_1021_acs_analchem_0c04850 crossref_primary_10_1016_j_compbiomed_2024_108058 crossref_primary_10_1093_bib_bbab343 crossref_primary_10_37503_jbb_2020_8_38 crossref_primary_10_3389_fgene_2020_589231 crossref_primary_10_1053_j_gastro_2020_04_073 crossref_primary_10_1016_j_bbamcr_2022_119210 crossref_primary_10_1016_j_compbiomed_2022_105997 crossref_primary_10_1093_bib_bbac229 crossref_primary_10_3389_fonc_2020_01065 crossref_primary_10_1089_nsm_2020_0004 crossref_primary_10_3389_frai_2023_1098308 crossref_primary_10_3389_fgene_2020_578345 crossref_primary_10_3389_fgene_2021_617512 |
Cites_doi | 10.1101/gr.1239303 10.1038/nature11412 10.1016/j.febslet.2009.10.036 10.15252/msb.20178124 10.1038/srep11432 10.1093/bioinformatics/btp543 10.1109/TKDE.2008.239 10.1093/bioinformatics/btq182 10.1038/nmeth.2651 10.1371/journal.pcbi.1002227 10.1073/pnas.082099299 10.1073/pnas.1208949110 10.1371/journal.pcbi.1003983 10.1038/75556 10.1186/1471-2105-11-523 10.1021/pr501254j 10.1038/nrg3185 10.1038/nature18003 10.1093/nar/gkq1156 10.3389/fgene.2017.00084 10.1038/nrg3868 10.1371/journal.pcbi.1004595 10.1186/1471-2105-9-405 10.1093/bioinformatics/btn439 10.1093/nar/gki004 10.1200/JCO.2008.18.1370 10.1038/nature22366 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1038/s41540-019-0099-y |
DatabaseName | Springer Nature OA/Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA/Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2056-7189 |
EndPage | 10 |
ExternalDocumentID | PMC6616462 31312515 10_1038_s41540_019_0099_y |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM127089 |
GroupedDBID | 0R~ 5VS 7X7 8FE 8FH 8FI AAJSJ AASML ABUWG ACGFS ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C EBLON EBS EJD FYUFA GROUPED_DOAJ HCIFZ HYE KQ8 LK8 M7P M~E NAO NO~ OK1 PGMZT PIMPY PQQKQ PROAC PUEGO RNT RPM SNYQT UKHRP 8FJ AAYXX CCPQU CITATION HMCUK PHGZM PHGZT AJTQC CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c503t-1c9d3df707e216285e986296400c2ffa177494f9c5f02f095ac37c90fc64a56f3 |
IEDL.DBID | C6C |
ISSN | 2056-7189 |
IngestDate | Thu Aug 21 13:47:59 EDT 2025 Fri Jul 11 10:33:54 EDT 2025 Fri Jul 11 08:47:42 EDT 2025 Wed Aug 13 05:28:54 EDT 2025 Thu Apr 03 06:52:24 EDT 2025 Tue Jul 01 01:18:35 EDT 2025 Thu Apr 24 23:44:05 EDT 2025 Sun Aug 31 08:58:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Systems biology Computational biology and bioinformatics |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c503t-1c9d3df707e216285e986296400c2ffa177494f9c5f02f095ac37c90fc64a56f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6687-3088 0000-0002-6894-5129 |
OpenAccessLink | https://www.nature.com/articles/s41540-019-0099-y |
PMID | 31312515 |
PQID | 2254472638 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6616462 proquest_miscellaneous_2421459569 proquest_miscellaneous_2259364658 proquest_journals_2254472638 pubmed_primary_31312515 crossref_citationtrail_10_1038_s41540_019_0099_y crossref_primary_10_1038_s41540_019_0099_y springer_journals_10_1038_s41540_019_0099_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-09 |
PublicationDateYYYYMMDD | 2019-07-09 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | NPJ systems biology and applications |
PublicationTitleAbbrev | npj Syst Biol Appl |
PublicationTitleAlternate | NPJ Syst Biol Appl |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Parker (CR15) 2009; 27 Blagus, Lusa (CR19) 2010; 11 Vogel, Marcotte (CR11) 2012; 13 Ritchie, Holzinger, Li, Pendergrass, Kim (CR12) 2015; 16 Edwards (CR20) 2015; 14 Ashburner (CR27) 2000; 25 Razick, Magklaras, Donaldson (CR21) 2008; 9 (CR16) 2012; 490 He, Garcia (CR18) 2009; 21 Hofree, Shen, Carter, Gross, Ideker (CR9) 2013; 10 Han (CR25) 2015; 5 Kamburov (CR26) 2011; 39 Shen, Olshen, Ladanyi (CR2) 2009; 25 Huttlin (CR22) 2017; 545 Argelaguet (CR5) 2018; 14 Vaske (CR6) 2010; 26 Shannon (CR14) 2003; 13 Zheng (CR24) 2008; 24 Huang, Chaudhary, Garmire (CR1) 2017; 8 Bonnet, Calzone, Michoel (CR7) 2015; 11 Mertins (CR17) 2016; 534 Tibshirani, Hastie, Narasimhan, Chu (CR13) 2002; 99 Yuan, Savage, Markowetz (CR4) 2011; 7 Maier, Guell, Serrano (CR10) 2009; 583 Ruffalo, Koyuturk, Sharan (CR8) 2015; 11 Zhao, Xuan, Liu, Zhang (CR23) 2005; 33 Mo (CR3) 2013; 110 C Vogel (99_CR11) 2012; 13 JS Parker (99_CR15) 2009; 27 R Tibshirani (99_CR13) 2002; 99 A Kamburov (99_CR26) 2011; 39 Q Mo (99_CR3) 2013; 110 NJ Edwards (99_CR20) 2015; 14 M Ashburner (99_CR27) 2000; 25 P Mertins (99_CR17) 2016; 534 G Zheng (99_CR24) 2008; 24 MD Ritchie (99_CR12) 2015; 16 F Zhao (99_CR23) 2005; 33 EL Huttlin (99_CR22) 2017; 545 H He (99_CR18) 2009; 21 P Shannon (99_CR14) 2003; 13 E Bonnet (99_CR7) 2015; 11 M Ruffalo (99_CR8) 2015; 11 M Hofree (99_CR9) 2013; 10 R Argelaguet (99_CR5) 2018; 14 S Huang (99_CR1) 2017; 8 CJ Vaske (99_CR6) 2010; 26 Cancer Genome Atlas, N. (99_CR16) 2012; 490 R Blagus (99_CR19) 2010; 11 H Han (99_CR25) 2015; 5 Y Yuan (99_CR4) 2011; 7 R Shen (99_CR2) 2009; 25 S Razick (99_CR21) 2008; 9 T Maier (99_CR10) 2009; 583 |
References_xml | – volume: 13 start-page: 2498 year: 2003 end-page: 2504 ident: CR14 article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks publication-title: Genome Res. doi: 10.1101/gr.1239303 – volume: 490 start-page: 61 year: 2012 end-page: 70 ident: CR16 article-title: Comprehensive molecular portraits of human breast tumours publication-title: Nature doi: 10.1038/nature11412 – volume: 583 start-page: 3966 year: 2009 end-page: 3973 ident: CR10 article-title: Correlation of mRNA and protein in complex biological samples publication-title: FEBS Lett. doi: 10.1016/j.febslet.2009.10.036 – volume: 14 year: 2018 ident: CR5 article-title: Multi-omics factor analysis—a framework for unsupervised integration of multi-omics data sets publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20178124 – volume: 5 year: 2015 ident: CR25 article-title: TRRUST: a reference database of human transcriptional regulatory interactions publication-title: Sci. Rep. doi: 10.1038/srep11432 – volume: 25 start-page: 2906 year: 2009 end-page: 2912 ident: CR2 article-title: Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp543 – volume: 21 start-page: 1263 year: 2009 end-page: 1284 ident: CR18 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.239 – volume: 26 start-page: i237 year: 2010 end-page: 245 ident: CR6 article-title: Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq182 – volume: 10 start-page: 1108 year: 2013 end-page: 1115 ident: CR9 article-title: Network-based stratification of tumor mutations publication-title: Nat. Methods doi: 10.1038/nmeth.2651 – volume: 7 year: 2011 ident: CR4 article-title: Patient-specific data fusion defines prognostic cancer subtypes publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002227 – volume: 99 start-page: 6567 year: 2002 end-page: 6572 ident: CR13 article-title: Diagnosis of multiple cancer types by shrunken centroids of gene expression publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.082099299 – volume: 110 start-page: 4245 year: 2013 end-page: 4250 ident: CR3 article-title: Pattern discovery and cancer gene identification in integrated cancer genomic data publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1208949110 – volume: 11 year: 2015 ident: CR7 article-title: Integrative multi-omics module network inference with Lemon-Tree publication-title: PLoS Comput Biol. doi: 10.1371/journal.pcbi.1003983 – volume: 25 start-page: 25 year: 2000 end-page: 29 ident: CR27 article-title: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium publication-title: Nat. Genet. doi: 10.1038/75556 – volume: 11 year: 2010 ident: CR19 article-title: Class prediction for high-dimensional class-imbalanced data publication-title: BMC Bioinform. doi: 10.1186/1471-2105-11-523 – volume: 14 start-page: 2707 year: 2015 end-page: 2713 ident: CR20 article-title: The CPTAC data portal: a resource for cancer proteomics research publication-title: J. Proteome Res. doi: 10.1021/pr501254j – volume: 13 start-page: 227 year: 2012 end-page: 232 ident: CR11 article-title: Insights into the regulation of protein abundance from proteomic and transcriptomic analyses publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3185 – volume: 534 start-page: 55 year: 2016 end-page: 62 ident: CR17 article-title: Proteogenomics connects somatic mutations to signalling in breast cancer publication-title: Nature doi: 10.1038/nature18003 – volume: 39 start-page: D712 year: 2011 end-page: 717 ident: CR26 article-title: ConsensusPathDB: toward a more complete picture of cell biology publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1156 – volume: 8 start-page: 84 year: 2017 ident: CR1 article-title: More is better: recent progress in multi-omics data integration methods publication-title: Front. Genet. doi: 10.3389/fgene.2017.00084 – volume: 16 start-page: 85 year: 2015 end-page: 97 ident: CR12 article-title: Methods of integrating data to uncover genotype-phenotype interactions publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3868 – volume: 11 year: 2015 ident: CR8 article-title: Network-based integration of disparate omic data to identify "silent players" in cancer publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004595 – volume: 9 year: 2008 ident: CR21 article-title: iRefIndex: a consolidated protein interaction database with provenance publication-title: BMC Bioinform. doi: 10.1186/1471-2105-9-405 – volume: 24 start-page: 2416 year: 2008 end-page: 2417 ident: CR24 article-title: ITFP: an integrated platform of mammalian transcription factors publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn439 – volume: 33 start-page: D103 year: 2005 end-page: 107 ident: CR23 article-title: TRED: a transcriptional regulatory element database and a platform for in silico gene regulation studies publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki004 – volume: 27 start-page: 1160 year: 2009 end-page: 1167 ident: CR15 article-title: Supervised risk predictor of breast cancer based on intrinsic subtypes publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2008.18.1370 – volume: 545 start-page: 505 year: 2017 end-page: 509 ident: CR22 article-title: Architecture of the human interactome defines protein communities and disease networks publication-title: Nature doi: 10.1038/nature22366 – volume: 110 start-page: 4245 year: 2013 ident: 99_CR3 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1208949110 – volume: 26 start-page: i237 year: 2010 ident: 99_CR6 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq182 – volume: 13 start-page: 227 year: 2012 ident: 99_CR11 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3185 – volume: 25 start-page: 25 year: 2000 ident: 99_CR27 publication-title: Nat. Genet. doi: 10.1038/75556 – volume: 11 year: 2015 ident: 99_CR7 publication-title: PLoS Comput Biol. doi: 10.1371/journal.pcbi.1003983 – volume: 11 year: 2015 ident: 99_CR8 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004595 – volume: 39 start-page: D712 year: 2011 ident: 99_CR26 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1156 – volume: 27 start-page: 1160 year: 2009 ident: 99_CR15 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2008.18.1370 – volume: 490 start-page: 61 year: 2012 ident: 99_CR16 publication-title: Nature doi: 10.1038/nature11412 – volume: 99 start-page: 6567 year: 2002 ident: 99_CR13 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.082099299 – volume: 14 year: 2018 ident: 99_CR5 publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20178124 – volume: 5 year: 2015 ident: 99_CR25 publication-title: Sci. Rep. doi: 10.1038/srep11432 – volume: 7 year: 2011 ident: 99_CR4 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002227 – volume: 24 start-page: 2416 year: 2008 ident: 99_CR24 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn439 – volume: 10 start-page: 1108 year: 2013 ident: 99_CR9 publication-title: Nat. Methods doi: 10.1038/nmeth.2651 – volume: 16 start-page: 85 year: 2015 ident: 99_CR12 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3868 – volume: 14 start-page: 2707 year: 2015 ident: 99_CR20 publication-title: J. Proteome Res. doi: 10.1021/pr501254j – volume: 21 start-page: 1263 year: 2009 ident: 99_CR18 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.239 – volume: 13 start-page: 2498 year: 2003 ident: 99_CR14 publication-title: Genome Res. doi: 10.1101/gr.1239303 – volume: 8 start-page: 84 year: 2017 ident: 99_CR1 publication-title: Front. Genet. doi: 10.3389/fgene.2017.00084 – volume: 534 start-page: 55 year: 2016 ident: 99_CR17 publication-title: Nature doi: 10.1038/nature18003 – volume: 25 start-page: 2906 year: 2009 ident: 99_CR2 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp543 – volume: 545 start-page: 505 year: 2017 ident: 99_CR22 publication-title: Nature doi: 10.1038/nature22366 – volume: 583 start-page: 3966 year: 2009 ident: 99_CR10 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2009.10.036 – volume: 11 year: 2010 ident: 99_CR19 publication-title: BMC Bioinform. doi: 10.1186/1471-2105-11-523 – volume: 9 year: 2008 ident: 99_CR21 publication-title: BMC Bioinform. doi: 10.1186/1471-2105-9-405 – volume: 33 start-page: D103 year: 2005 ident: 99_CR23 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki004 |
SSID | ssj0001634210 |
Score | 2.4032474 |
Snippet | Computational tools for multiomics data integration have usually been designed for unsupervised detection of multiomics features explaining large phenotypic... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 22 |
SubjectTerms | 631/114 631/553 Algorithms Bioinformatics Biomedical and Life Sciences Breast cancer Breast Neoplasms - genetics Computational Biology - methods Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer applications Datasets Gene Expression Profiling - methods Gene Expression Regulation - genetics Gene Regulatory Networks - genetics Genomes Genomics - methods Humans Integration Life Sciences Mathematical models Models, Statistical Models, Theoretical Phenotypic variations Protein Interaction Mapping - methods Proteomics - methods Software Systems Biology Technology Feature Transcription |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_0RPBFPL-uekoEn5RwzUebjS9yyB2H4AecB_sglDRNcMHrrtfdh_3vnUnbXdbDfSskocnMJPklM_kNwFvhC1cbH3hZh8C1bhS3ztPXBLVvlW1S9oYvX8uLK_15WkyHC7duCKsc18S0UDdzT3fkJ5K4tIxEc_m4-MMpaxR5V4cUGnfhHlGXUUiXmZrtHUupNB5pRmemmpx0uF9RPCO93CFuyvXudnQLY94OlfzHX5q2ofNH8HDAj-y0V_gh3AntY7jfZ5RcP4Gfs2_XM999P728_MDaPsSb007VsJEYAhXB5pGlSEJ6ktwxihJlCF7Z4obcNrQAsm5VD80ZPdylQM_1U7g6P_vx6YIPCRS4L3K15MLbRjXR5CZIQW8lg8UDjC1x3noZoxOI_ayO1hcxlxHBlvPKeJtHX2pXlFE9g4N23oYjYLV0IThRB-GFjo2srWzqiXAiyHQKyyAf5Vj5gV2cklz8rpKXW02qXvQVir4i0VfrDN5tmix6ao19lY9H5VTDLOuqrU1k8GZTjPODnB6uDfNVqmNVqRFo7amjia8dT4o2g-e9vjc9UkIRBiwyMDuWsKlA_Ny7Je3sV-LpRuiDP5YZvB9tZtv1_w70xf6BvoQHMlmv4bk9hoPlzSq8Qli0rF8n2_8LlTkM4g priority: 102 providerName: ProQuest |
Title | iOmicsPASS: network-based integration of multiomics data for predictive subnetwork discovery |
URI | https://link.springer.com/article/10.1038/s41540-019-0099-y https://www.ncbi.nlm.nih.gov/pubmed/31312515 https://www.proquest.com/docview/2254472638 https://www.proquest.com/docview/2259364658 https://www.proquest.com/docview/2421459569 https://pubmed.ncbi.nlm.nih.gov/PMC6616462 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_6wWAvY-2-vHVBgz1tmFkftqK9ZaGlBNaVZYU8DIwtSzSwOaVOHvLf7062U7LQQp9s0AnLp6_f6e5-AvjIbVqU2ro4K52LlapkbApLb0PsfSNNFW5v-H6RnV-pySyd7QHvc2FC0H6gtAzLdB8d9qXBjYYCESnlhkgl1_twSMztNKjH2fjuWCWTCq2Y3n8ph7s1t3egHVi5Gx35n4s07Dxnz-FZBxnZqG3kEey5-hietJdIrl_A7_mPv3PbXI6m06-sbqO6Y9qcKtZzQaDu2cKzEDxIWcgNo8BQhniV3dySp4bWPNasyq46o1xdiu1cv4Srs9Nf4_O4uzMhtmkilzG3ppKV14l2glN6pDNos5gMp6oV3hcc4Z5R3tjUJ8Ijviqs1NYk3maqSDMvX8FBvajdG2ClKJwreOm45cpXojSiKoe84E4EwyuCpNdjbjtCcbrX4k8eHNtymLeqz1H1Oak-X0fwaVPlpmXTeEj4pO-cvJtYTS6IUk0LXDUi-LApxilBfo6idotVkDEyU4itHpBRRNGOxqGJ4HXb35sWSS4J9qUR6K2RsBEgSu7tknp-Hai5Ee3gh0UEn_sxc9f0e3_07aOk38FTEQazjhNzAgfL25V7j8BoWQ5gX8_0AA5Ho8l0gs9vpxeXPwdhggzCYcM_r90Pxg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NToi9IL4XGGAkeAFFiz-S1EgIDdjUsa1MbJP2MCkkji0qQVqWVij_FH8jd_loVSb6trdItpP47mz_zvcF8JKbMM1iY_0os9ZXKpe-Tg099ZH7Wuq8rt5wNIwGZ-rzeXi-Bn-6WBhyq-z2xHqjzseG7si3BeXSigWKy_vJL5-qRpF1tSuh0YjFga1-o8pWvtv_hPx9JcTe7unHgd9WFfBNGMipz43OZe7iILaCUwCh1YjqdYTCbIRzKUdApJXTJnSBcIhAUiNjowNnIpWGkZP43huwriSqMj1Y_7A7PP66uNWJpEIlqjOfyv52iSckeVBSrBBlw6yWD8ArqPaqc-Y_Ftr64Nu7A7dbxMp2GhG7C2u2uAc3mxqW1X24GH35OTLl8c7JyVtWNE7lPp2NOetSUSDr2dix2neRgqBLRn6pDOEym1ySoYi2XFbOsnY4o1Bhci2tHsDZtRD3IfSKcWE3gWUitTblmeWGK5eLTIs86_OUW1HrfR4EHR0T0-Yzp7IaP5Lari77SUP6BEmfEOmTyoPX8yGTJpnHqs5bHXOSdl2XyUIKPXgxb8YVSWaWtLDjWd1Hy0ghtFvRR1GGeNRNtQePGn7P_0hySagz9CBekoR5B8oIvtxSjL7XmcERbOGHhQdvOplZ_Pp_J_p49USfw63B6dFhcrg_PHgCG6KW5NgP9Bb0ppcz-xRB2TR71q4EBt-ue_H9BduhSfE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQyBeEHcCA4wEL6BosZ3ENRJCE6PaGIxJY1IfJoXEsbVKIy1LK5S_xq_jHCdpVSb6trdIcRLn-Dv2Z58bwCtukrxQxoZpYW0Yx6UMdW7oaoCjr6UuffWGr4fp3kn8eZSMNuBPHwtDbpX9nOgn6nJi6Ix8W1AuLSUQLtuuc4s42h1-mP4KqYIUWVr7chotRA5s8xu3b_X7_V0c69dCDD99_7gXdhUGQpNEchZyo0tZOhUpKzgFE1qNDF-nCGwjnMs5kiMdO20SFwmHbCQ3UhkdOZPGeZI6ie-9BteVTDjpmBqp5flOKmPcTvWGVOx2jWsl-VJS1BDlxWxWl8JL_Paym-Y_tlq_BA7vwO2Ou7KdFmx3YcNW9-BGW82yuQ-n428_x6Y-2jk-fseq1r08pFWyZH1SCgQBmzjmvRgpHLpm5KHKkDiz6QWZjGjyZfW86B5nFDRMTqbNAzi5EtE-hM1qUtnHwAqRW5vzwnLDY1eKQouyGPCcW-F3gAFEvRwz02U2pwIb55m3sMtB1oo-Q9FnJPqsCeDN4pFpm9ZjXeOtfnCyTsPrbInHAF4ubqNuksElr-xk7ttomcZI8ta0iSlXPO5SdQCP2vFe9EhySfwzCUCtIGHRgHKDr96pxmc-RzjSLvywCOBtj5ll1__7o0_W_-gLuIkql33ZPzx4CreEB7IKI70Fm7OLuX2G7GxWPPdqwODHVevdX4-eTME |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=iOmicsPASS%3A+network-based+integration+of+multiomics+data+for+predictive+subnetwork+discovery&rft.jtitle=NPJ+systems+biology+and+applications&rft.au=Koh%2C+Hiromi+W+L&rft.au=Fermin%2C+Damian&rft.au=Vogel%2C+Christine&rft.au=Choi%2C+Kwok+Pui&rft.date=2019-07-09&rft.eissn=2056-7189&rft.volume=5&rft.issue=1&rft.spage=22&rft.epage=22&rft_id=info:doi/10.1038%2Fs41540-019-0099-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-7189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-7189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-7189&client=summon |