Computational Screening of Phase-separating Proteins

Phase separation is an important mechanism that mediates the compartmentalization of proteins in cells. Proteins that can undergo phase separation in cells share certain typical sequence features, like intrinsically disordered regions (IDRs) and multiple modular domains. Sequence-based analysis tool...

Full description

Saved in:
Bibliographic Details
Published inGenomics, proteomics & bioinformatics Vol. 19; no. 1; pp. 13 - 24
Main Authors Shen, Boyan, Chen, Zhaoming, Yu, Chunyu, Chen, Taoyu, Shi, Minglei, Li, Tingting
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2021
Department of Biomedical Informatics,School of Basic Medical Sciences,Peking University Health Science Center,Beijing 100191,China%Department of Biomedical Informatics,School of Basic Medical Sciences,Peking University Health Science Center,Beijing 100191,China
Institute of Systems Biomedicine,School of Basic Medical Sciences,Peking University Health Science Center,Beijing 100191,China%MOE Key Laboratory of Bioinformatics,Bioinformatics Division and Center for Synthetic&Systems Biology,BNRist,School of Medicine,Tsinghua University,Beijing 100084,China
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phase separation is an important mechanism that mediates the compartmentalization of proteins in cells. Proteins that can undergo phase separation in cells share certain typical sequence features, like intrinsically disordered regions (IDRs) and multiple modular domains. Sequence-based analysis tools are commonly used in the screening of these proteins. However, current phase separation predictors are mostly designed for IDR-containing proteins, thus inevitably overlook the phase-separating proteins with relatively low IDR content. Features other than amino acid sequence could provide crucial information for identifying possible phase-separating proteins: protein–protein interaction (PPI) networks show multivalent interactions that underlie phase separation process; post-translational modifications (PTMs) are crucial in the regulation of phase separation behavior; spherical structures revealed in immunofluorescence (IF)images indicate condensed droplets formed by phase-separating proteins, distinguishing these proteins from non-phase-separating proteins. Here, we summarize the sequence-based tools for predicting phase-separating proteins and highlight the importance of incorporating PPIs, PTMs, and IF images into phase separation prediction in future studies.
AbstractList Phase separation is an important mechanism that mediates the compartmentalization of proteins in cells. Proteins that can undergo phase separation in cells share certain typical sequence features, like intrinsically disordered regions (IDRs) and multiple modular domains. Sequence-based analysis tools are commonly used in the screening of these proteins. However, current phase separation predictors are mostly designed for IDR-containing proteins, thus inevitably overlook the phase-separating proteins with relatively low IDR content. Features other than amino acid sequence could provide crucial information for identifying possible phase-separating proteins: protein–protein interaction (PPI) networks show multivalent interactions that underlie phase separation process; post-translational modifications (PTMs) are crucial in the regulation of phase separation behavior; spherical structures revealed in immunofluorescence (IF)images indicate condensed droplets formed by phase-separating proteins, distinguishing these proteins from non-phase-separating proteins. Here, we summarize the sequence-based tools for predicting phase-separating proteins and highlight the importance of incorporating PPIs, PTMs, and IF images into phase separation prediction in future studies.
Phase separation is an important mechanism that mediates the compartmentalization of proteins in cells. Proteins that can undergo phase separation in cells share certain typical sequence features, like intrinsically disordered regions (IDRs) and multiple modular domains. Sequence-based analysis tools are commonly used in the screening of these proteins. However, current phase separation predictors are mostly designed for IDR-containing proteins, thus inevitably overlook the phase-separating proteins with relatively low IDR content. Features other than amino acid sequence could provide crucial information for identifying possible phase-separating proteins:pro-tein–protein interaction (PPI) networks show multivalent interactions that underlie phase separation process; post-translational modifications (PTMs) are crucial in the regulation of phase separation behavior;spherical structures revealed in immunofluorescence (IF) images indicate condensed dro-plets formed by phase-separating proteins, distinguishing these proteins from non-phase-separating proteins. Here, we summarize the sequence-based tools for predicting phase-separating proteins and highlight the importance of incorporating PPIs, PTMs, and IF images into phase separation prediction in future studies.
Phase separation is an important mechanism that mediates the compartmentalization of proteins in cells. Proteins that can undergo phase separation in cells share certain typical sequence features, like intrinsically disordered regions (IDRs) and multiple modular domains. Sequence-based analysis tools are commonly used in the screening of these proteins. However, current phase separation predictors are mostly designed for IDR-containing proteins, thus inevitably overlook the phase-separating proteins with relatively low IDR content. Features other than amino acid sequence could provide crucial information for identifying possible phase-separating proteins: protein–protein interaction (PPI) networks show multivalent interactions that underlie phase separation process; post-translational modifications (PTMs) are crucial in the regulation of phase separation behavior; spherical structures revealed in immunofluorescence (IF) images indicate condensed droplets formed by phase-separating proteins, distinguishing these proteins from non-phase-separating proteins. Here, we summarize the sequence-based tools for predicting phase-separating proteins and highlight the importance of incorporating PPIs, PTMs, and IF images into phase separation prediction in future studies.
Author Chen, Taoyu
Li, Tingting
Chen, Zhaoming
Yu, Chunyu
Shen, Boyan
Shi, Minglei
AuthorAffiliation Department of Biomedical Informatics,School of Basic Medical Sciences,Peking University Health Science Center,Beijing 100191,China%Department of Biomedical Informatics,School of Basic Medical Sciences,Peking University Health Science Center,Beijing 100191,China;Institute of Systems Biomedicine,School of Basic Medical Sciences,Peking University Health Science Center,Beijing 100191,China%MOE Key Laboratory of Bioinformatics,Bioinformatics Division and Center for Synthetic&Systems Biology,BNRist,School of Medicine,Tsinghua University,Beijing 100084,China
AuthorAffiliation_xml – name: Department of Biomedical Informatics,School of Basic Medical Sciences,Peking University Health Science Center,Beijing 100191,China%Department of Biomedical Informatics,School of Basic Medical Sciences,Peking University Health Science Center,Beijing 100191,China;Institute of Systems Biomedicine,School of Basic Medical Sciences,Peking University Health Science Center,Beijing 100191,China%MOE Key Laboratory of Bioinformatics,Bioinformatics Division and Center for Synthetic&Systems Biology,BNRist,School of Medicine,Tsinghua University,Beijing 100084,China
Author_xml – sequence: 1
  givenname: Boyan
  orcidid: 0000-0002-1574-1958
  surname: Shen
  fullname: Shen, Boyan
  organization: Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 2
  givenname: Zhaoming
  orcidid: 0000-0002-6810-5445
  surname: Chen
  fullname: Chen, Zhaoming
  organization: Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 3
  givenname: Chunyu
  orcidid: 0000-0002-3519-1332
  surname: Yu
  fullname: Yu, Chunyu
  organization: Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 4
  givenname: Taoyu
  orcidid: 0000-0002-8966-1264
  surname: Chen
  fullname: Chen, Taoyu
  organization: Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 5
  givenname: Minglei
  orcidid: 0000-0002-1108-4233
  surname: Shi
  fullname: Shi, Minglei
  organization: MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist, School of Medicine, Tsinghua University, Beijing 100084, China
– sequence: 6
  givenname: Tingting
  orcidid: 0000-0003-4266-0317
  surname: Li
  fullname: Li, Tingting
  email: litt@hsc.pku.edu.cn
  organization: Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
BookMark eNp9UcuO1DAQtNAidnbhA7jNkUuG9iMvISGhES9pJVYCzi3H6cw6ytjBTnZn5uvxKAuIy5786Krq7qorduG8I8Zec9hw4MXbfrMbm40Akd58AyCfsZUQHDIplLpgK16UIgMh6kt2FWMPoHKl-At2KWXBoazliqmt34_zpCfrnR7W300gctbt1r5b397pSFmkUYdUT3-3wU9kXXzJnnd6iPTq8bxmPz99_LH9kt18-_x1--EmMznIKeO64TInaCsQlcirWunaUF6TBsmpLKQq0k2aVrQdKFWaqsu50LquipxKoeQ1e7_ojnOzp9aQm4IecAx2r8MRvbb4f8XZO9z5e6xUXVVCJgG-CDxo12m3w97PIe0ZsT-e2uZ0OsaHw-HQICUTk6UAInHePDYN_tdMccK9jYaGQTvyc0SR5wksC3WGlgvUBB9joA6NXaxM09gBOeA5J-wx5YTnnJBzTDn9G-wv889ST3HeLRxKlt9bChiNJWeotYHMhK23T7B_A1GTq60
CitedBy_id crossref_primary_10_1038_s41573_022_00505_4
crossref_primary_10_1016_j_steroids_2024_109486
crossref_primary_10_1039_D3SM00604B
crossref_primary_10_1073_pnas_2115369119
crossref_primary_10_1038_s41589_022_01204_2
crossref_primary_10_1038_s41467_024_46445_y
crossref_primary_10_1016_j_jmb_2021_167201
crossref_primary_10_1093_bib_bbad213
crossref_primary_10_1002_pro_4756
crossref_primary_10_1093_bib_bbad299
crossref_primary_10_1103_PhysRevResearch_5_023159
crossref_primary_10_15302_J_QB_021_0264
crossref_primary_10_1093_procel_pwad057
crossref_primary_10_1098_rsob_210334
crossref_primary_10_1186_s13059_021_02456_2
crossref_primary_10_1002_pro_4927
crossref_primary_10_1186_s12964_024_01518_9
crossref_primary_10_1016_j_jmb_2021_167292
crossref_primary_10_1016_j_ijbiomac_2024_135907
crossref_primary_10_3390_ijms23105491
crossref_primary_10_3724_abbs_2023131
crossref_primary_10_1038_s44320_023_00009_2
crossref_primary_10_3390_ijms23094594
crossref_primary_10_3390_ijms232214323
crossref_primary_10_26508_lsa_202201536
crossref_primary_10_1038_s41467_024_52580_3
crossref_primary_10_1186_s13059_023_03128_z
crossref_primary_10_4103_ATN_ATN_D_24_00027
crossref_primary_10_1016_j_jbc_2022_102801
crossref_primary_10_1038_s41467_023_44414_5
crossref_primary_10_1093_bib_bbae528
crossref_primary_10_1186_s12864_023_09600_1
crossref_primary_10_3390_biophysica5010003
Cites_doi 10.1093/bioinformatics/btu310
10.1038/nphys3532
10.15252/embj.201696394
10.1093/nar/gku1267
10.1016/j.cell.2015.12.038
10.1126/science.1172046
10.1146/annurev-genet-112618-043527
10.1042/BCJ20160499
10.1016/j.sbi.2013.02.007
10.1016/j.cell.2015.06.043
10.1146/annurev-cellbio-100913-013325
10.1038/nature22822
10.1016/j.ydbio.2017.03.029
10.1093/bioinformatics/btz274
10.1016/j.celrep.2018.01.031
10.1093/nar/gkz1027
10.1016/j.molcel.2014.05.032
10.1182/blood.V95.9.2748.009k31a_2748_2752
10.1016/j.cell.2015.07.047
10.1016/j.cell.2017.09.010
10.1038/nrm.2017.7
10.1016/j.cell.2017.08.048
10.1038/nature22989
10.7554/eLife.30294
10.1016/j.cell.2018.12.035
10.1146/annurev-biochem-060614-034325
10.1016/j.sbi.2007.01.009
10.1111/dgd.12597
10.1126/science.aaf4382
10.1016/j.str.2013.08.001
10.1016/j.brainres.2012.01.016
10.1093/bioinformatics/bti541
10.1093/nar/gkz778
10.1038/s41587-019-0344-3
10.1093/nar/gks1226
10.1093/bioinformatics/bts327
10.1038/nature10879
10.1016/j.brainres.2016.02.037
10.1126/science.aad9964
10.1016/j.sbi.2015.03.008
10.1074/jbc.M117.800466
10.1016/j.molcel.2015.01.013
10.1093/bioinformatics/bth476
10.1074/jbc.TM118.001189
10.3389/fonc.2013.00125
10.1093/bib/bbaa187
10.1083/jcb.201706103
10.1016/j.sbi.2019.05.016
10.1093/nar/gkx1071
10.1242/jcs.199240
10.1038/s41589-018-0180-7
10.1016/j.celrep.2018.01.036
10.1016/j.cell.2018.06.006
10.1126/science.aal3321
10.1016/j.cell.2016.06.010
10.1038/s41467-017-00480-0
10.1016/j.tcb.2018.02.004
10.1021/ar3001124
10.1093/bioinformatics/btr682
10.1073/pnas.1814385116
10.1371/journal.pbio.2005970
10.7554/eLife.31486
10.1016/j.jmb.2018.06.038
10.1002/pro.3334
10.15252/embj.201798049
10.1074/jbc.TM118.001190
10.1038/nature22366
10.1016/j.cell.2017.05.028
10.1016/j.molcel.2017.09.003
10.1371/journal.pbio.2002183
10.1093/nar/gkz847
10.1016/j.cell.2013.01.033
10.1093/nar/gkx460
10.1126/science.aax4240
10.1016/j.celrep.2016.05.076
10.1083/jcb.201711070
10.1073/pnas.0915166107
10.1126/science.aan6398
ContentType Journal Article
Copyright 2021 The Authors
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
2B.
4A8
92I
93N
PSX
TCJ
5PM
DOI 10.1016/j.gpb.2020.11.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2210-3244
EndPage 24
ExternalDocumentID PMC8498823
jyzdbzzyswxxxb_e202101002
10_1016_j_gpb_2020_11_003
S167202292100022X
GrantInformation_xml – fundername: (This work was supported by the National Key R&D Program of China); (and the National Natural Science Foundation of China)
  funderid: (This work was supported by the National Key R&D Program of China); (and the National Natural Science Foundation of China)
GroupedDBID ---
--K
0R~
0SF
1B1
1~5
2B.
2C.
4.4
457
4G.
53G
5GY
5VR
5VS
6I.
7-5
71M
92E
92I
92Q
93N
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ABXVV
ACGFS
ADBBV
ADEZE
ADMUD
ADRAZ
AEKER
AEXQZ
AFTJW
AFUIB
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
CCEZO
CCVFK
CHBEP
CS3
CW9
DIK
DU5
EBS
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FNPLU
GBLVA
GROUPED_DOAJ
HVGLF
HYE
HZ~
IPNFZ
IXB
J1W
KQ8
M41
M48
MO0
M~E
N9A
NCXOZ
O-L
O9-
OK1
OZT
P2P
RIG
ROL
RPM
SDC
SDF
SDG
SES
SSZ
TCJ
TGP
WFFXF
-SA
-S~
AAHBH
AAYWO
AAYXX
ABEJV
ABGNP
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
AMNDL
CAJEA
CITATION
Q--
TOX
U1G
U5K
7S9
L.6
4A8
ABWVN
ACRPL
ADNMO
EMOBN
PSX
5PM
H13
ID FETCH-LOGICAL-c503t-1ab135e0d802825894a9ce59ea031e76346a033cd2df0447c8f512aa9865e7243
IEDL.DBID IXB
ISSN 1672-0229
IngestDate Thu Aug 21 13:51:08 EDT 2025
Thu May 29 04:10:02 EDT 2025
Thu Jul 10 20:56:00 EDT 2025
Thu Apr 24 23:11:13 EDT 2025
Tue Jul 01 01:56:40 EDT 2025
Fri Feb 23 02:40:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Immunofluorescence image
Protein post-translational modification
Phase separation
Protein–protein interaction
Prediction
Language English
License This is an open access article under the CC BY license.
https://creativecommons.org/licenses/by/4.0
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-1ab135e0d802825894a9ce59ea031e76346a033cd2df0447c8f512aa9865e7243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Equal contribution.
ORCID 0000-0002-8966-1264
0000-0002-1574-1958
0000-0002-6810-5445
0000-0002-1108-4233
0000-0003-4266-0317
0000-0002-3519-1332
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S167202292100022X
PMID 33610793
PQID 2552023642
PQPubID 24069
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8498823
wanfang_journals_jyzdbzzyswxxxb_e202101002
proquest_miscellaneous_2552023642
crossref_citationtrail_10_1016_j_gpb_2020_11_003
crossref_primary_10_1016_j_gpb_2020_11_003
elsevier_sciencedirect_doi_10_1016_j_gpb_2020_11_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Genomics, proteomics & bioinformatics
PublicationTitle_FL Genomics、Proteomics & Bioinformatics
PublicationYear 2021
Publisher Elsevier B.V
Department of Biomedical Informatics,School of Basic Medical Sciences,Peking University Health Science Center,Beijing 100191,China%Department of Biomedical Informatics,School of Basic Medical Sciences,Peking University Health Science Center,Beijing 100191,China
Institute of Systems Biomedicine,School of Basic Medical Sciences,Peking University Health Science Center,Beijing 100191,China%MOE Key Laboratory of Bioinformatics,Bioinformatics Division and Center for Synthetic&Systems Biology,BNRist,School of Medicine,Tsinghua University,Beijing 100084,China
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Institute of Systems Biomedicine,School of Basic Medical Sciences,Peking University Health Science Center,Beijing 100191,China%MOE Key Laboratory of Bioinformatics,Bioinformatics Division and Center for Synthetic&Systems Biology,BNRist,School of Medicine,Tsinghua University,Beijing 100084,China
– name: Department of Biomedical Informatics,School of Basic Medical Sciences,Peking University Health Science Center,Beijing 100191,China%Department of Biomedical Informatics,School of Basic Medical Sciences,Peking University Health Science Center,Beijing 100191,China
– name: Elsevier
References Hatos, Hajdu-Soltesz, Monzon, Palopoli, Alvarez, Aykac-Fas (b0225) 2019; 48
Goldschmidt, Teng, Riek, Eisenberg (b0280) 2010; 107
Kim, Tsang, Vernon, Sonenberg, Kay, Forman-Kay (b0050) 2019; 365
Vernon, Chong, Tsang, Kim, Bah, Farber (b0290) 2018; 7
Zhang, Lin, Eschmann, Zhou, Rauch, Hernandez (b0180) 2017; 15
Vernon, Forman-Kay (b0285) 2019; 58
Shin, Brangwynne (b0025) 2017; 357
Murray, Kato, Lin, Thurber, Hung, McKnight (b0160) 2017; 171
King, Gitler, Shorter (b0315) 2012; 1462
Nisole, Maroui, Mascle, Aubry, Chelbi-Alix (b0110) 2013; 3
Hofweber, Dormann (b0375) 2019; 294
Brangwynne, Eckmann, Courson, Rybarska, Hoege, Jöbin (b0015) 2009; 324
Forman-Kay, Mittag (b0100) 2013; 21
Lancaster, Nutter-Upham, Lindquist, King (b0295) 2014; 30
Yokoshi, Fukaya (b0400) 2019; 61
Jain, Wheeler, Walters, Agrawal, Barsic, Parker (b0035) 2016; 164
Larson, Elnatan, Keenen, Trnka, Johnston, Burlingame (b0065) 2017; 547
Huang, Li, Ems-McClung, Walczak, Prigent, Zhu (b0175) 2018; 217
Boeynaems, Alberti, Fawzi, Mittag, Polymenidou, Rousseau (b0020) 2018; 28
Nott Timothy, Petsalaki, Farber, Jervis, Fussner, Plochowietz (b0195) 2015; 57
Tompa, Davey, Gibson, Babu (b0210) 2014; 55
Brangwynne, Tompa, Pappu Rohit (b0125) 2015; 11
Wang, Choi, Holehouse, Lee, Zhang, Jahnel (b0205) 2018; 174
Meszaros, Erdos, Szabo, Schad, Tantos, Abukhairan (b0335) 2019; 48
Bolognesi, Lorenzo Gotor, Dhar, Cirillo, Baldrighi, Tartaglia (b0305) 2016; 16
Vucetic, Obradovic, Vacic, Radivojac, Peng, Iakoucheva (b0220) 2004; 21
Jensen, Ruigrok, Blackledge (b0140) 2013; 23
Patel, Lee, Jawerth, Maharana, Jahnel, Hein (b0165) 2015; 162
Alberti, Saha, Woodruff, Franzmann, Wang, Hyman (b0090) 2018; 430
Schwartz, Cech, Parker (b0325) 2015; 84
Aguilera-Gomez, Rabouille (b0055) 2017; 428
Shorter (b0270) 2017; 171
Harrison, Shorter (b0320) 2017; 474
Woodruff (b0170) 2018; 217
Strom, Emelyanov, Mir, Fyodorov, Darzacq, Karpen (b0070) 2017; 547
Grover, Leskovec (b0350) 2016; 2016
Oates, Romero, Ishida, Ghalwash, Mizianty, Xue (b0245) 2012; 41
Huttlin, Ting, Bruckner, Gebreab, Gygi, Szpyt (b0355) 2015; 162
Banani, Lee, Hyman, Rosen (b0005) 2017; 18
Di Domenico, Walsh, Martin, Tosatto (b0250) 2012; 28
Orlando, Raimondi, Tabaro, Codicè, Moreau, Vranken (b0300) 2019; 35
Aizer, Kalo, Kafri, Shraga, Ben-Yishay, Jacob (b0060) 2014; 127
Walsh, Martin, Di Domenico, Tosatto (b0230) 2012; 28
Li, Peng, Li, Tang, Zhu, Huang (b0330) 2019; 48
Huttlin, Bruckner, Paulo, Cannon, Ting, Baltier (b0360) 2017; 545
You, Huang, Yu, Shen, Sevilla, Shi (b0340) 2019; 48
Yu, Shen, You, Huang, Shi, Wu (b0405) 2020; 22
Alberti, Gladfelter, Mittag (b0095) 2019; 176
Saito, Hess, Eglinger, Fritsch, Kreysing, Weinert (b0365) 2019; 15
Hughes, Sawaya, Boyer, Goldschmidt, Rodriguez, Cascio (b0275) 2018; 359
Hyman, Weber, Julicher (b0010) 2014; 30
Wippich, Bodenmiller, Trajkovska, Wanka, Aebersold, Pelkmans (b0080) 2013; 152
Dosztanyi, Csizmok, Tompa, Simon (b0235) 2005; 21
Aulas, Fay, Lyons, Achorn, Kedersha, Anderson (b0040) 2017; 130
Harmon, Holehouse, Rosen, Pappu (b0260) 2017; 6
Zhong, Müller, Ronchetti, Freemont, Dejean, Pandolfi pp. (b0120) 2000; 95
Lin, Currie, Rosen (b0150) 2017; 292
March, King, Shorter (b0265) 2016; 1647
Tanikawa, Ueda, Suzuki, Iida, Nakamura, Atsuta (b0380) 2018; 22
Simon Alberti (b0105) 2019; 53
Hubstenberger, Courel, Bénard, Souquere, Ernoult-Lange, Chouaib (b0045) 2017; 68
McQuin, Goodman, Chernyshev, Kamentsky, Cimini, Karhohs (b0410) 2018; 16
Ambadipudi, Biernat, Riedel, Mandelkow, Zweckstetter (b0185) 2017; 8
Ochoa, Jarnuczak, Viéitez, Gehre, Soucheray, Mateus (b0390) 2019; 38
Das, Ruff, Pappu (b0145) 2015; 32
Monahan, Ryan, Janke, Burke, Rhoads, Zerze (b0155) 2017; 36
Sherrill (b0310) 2013; 46
Su, Ditlev, Hui, Xing, Banjade, Okrut (b0075) 2016; 352
Li, Banjade, Cheng, Kim, Chen, Guo (b0085) 2012; 483
Thul, Åkesson, Wiking, Mahdessian, Geladaki, Ait Blal (b0395) 2017; 356
Piovesan, Tabaro, Paladin, Necci, Mičetić, Camilloni (b0255) 2018; 46
Ozdilek, Thompson, Ahmed, White, Batey, Schwartz (b0200) 2017; 45
Franzmann, Alberti (b0215) 2019; 294
Protter, Rao, Van Treeck, Lin, Mizoue, Rosen (b0130) 2018; 22
Mittag, Forman-Kay (b0135) 2007; 17
Wegmann, Eftekharzadeh, Tepper, Zoltowska, Bennett, Dujardin (b0190) 2018; 37
Tsang, Arsenault, Vernon, Lin, Sonenberg, Wang (b0370) 2019; 116
Woodruff, Gomes, Widlund, Mahamid, Honigmann, Hyman (b0030) 2017; 169
Banani, Rice, Peeples, Lin, Jain, Parker (b0115) 2016; 166
Hornbeck, Zhang, Murray, Kornhauser, Latham, Skrzypek (b0385) 2015; 43
Ning, Guo, Lin, Mei, Wu, Jiang (b0345) 2020; 48
Dosztányi (b0240) 2018; 27
Wippich (2024051404092536000_b0080) 2013; 152
Sherrill (2024051404092536000_b0310) 2013; 46
Banani (2024051404092536000_b0115) 2016; 166
Ning (2024051404092536000_b0345) 2020; 48
Huang (2024051404092536000_b0175) 2018; 217
Woodruff (2024051404092536000_b0170) 2018; 217
Dosztányi (2024051404092536000_b0240) 2018; 27
Boeynaems (2024051404092536000_b0020) 2018; 28
Hubstenberger (2024051404092536000_b0045) 2017; 68
Strom (2024051404092536000_b0070) 2017; 547
Hofweber (2024051404092536000_b0375) 2019; 294
Forman-Kay (2024051404092536000_b0100) 2013; 21
Li (2024051404092536000_b0085) 2012; 483
Wegmann (2024051404092536000_b0190) 2018; 37
Ambadipudi (2024051404092536000_b0185) 2017; 8
Li (2024051404092536000_b0330) 2019; 48
Vernon (2024051404092536000_b0290) 2018; 7
Huttlin (2024051404092536000_b0355) 2015; 162
Larson (2024051404092536000_b0065) 2017; 547
Saito (2024051404092536000_b0365) 2019; 15
Oates (2024051404092536000_b0245) 2012; 41
Zhang (2024051404092536000_b0180) 2017; 15
Hughes (2024051404092536000_b0275) 2018; 359
Das (2024051404092536000_b0145) 2015; 32
Goldschmidt (2024051404092536000_b0280) 2010; 107
Ozdilek (2024051404092536000_b0200) 2017; 45
Orlando (2024051404092536000_b0300) 2019; 35
Grover (2024051404092536000_b0350) 2016; 2016
Thul (2024051404092536000_b0395) 2017; 356
Su (2024051404092536000_b0075) 2016; 352
Lin (2024051404092536000_b0150) 2017; 292
Tompa (2024051404092536000_b0210) 2014; 55
Tsang (2024051404092536000_b0370) 2019; 116
Shin (2024051404092536000_b0025) 2017; 357
Aulas (2024051404092536000_b0040) 2017; 130
Dosztanyi (2024051404092536000_b0235) 2005; 21
Jensen (2024051404092536000_b0140) 2013; 23
Murray (2024051404092536000_b0160) 2017; 171
King (2024051404092536000_b0315) 2012; 1462
Alberti (2024051404092536000_b0095) 2019; 176
Nott Timothy (2024051404092536000_b0195) 2015; 57
You (2024051404092536000_b0340) 2019; 48
Vernon (2024051404092536000_b0285) 2019; 58
Brangwynne (2024051404092536000_b0125) 2015; 11
Yu (2024051404092536000_b0405) 2020; 22
Patel (2024051404092536000_b0165) 2015; 162
Vucetic (2024051404092536000_b0220) 2004; 21
Schwartz (2024051404092536000_b0325) 2015; 84
Tanikawa (2024051404092536000_b0380) 2018; 22
Zhong (2024051404092536000_b0120) 2000; 95
Woodruff (2024051404092536000_b0030) 2017; 169
Aguilera-Gomez (2024051404092536000_b0055) 2017; 428
Yokoshi (2024051404092536000_b0400) 2019; 61
Mittag (2024051404092536000_b0135) 2007; 17
Meszaros (2024051404092536000_b0335) 2019; 48
Protter (2024051404092536000_b0130) 2018; 22
Franzmann (2024051404092536000_b0215) 2019; 294
Kim (2024051404092536000_b0050) 2019; 365
Alberti (2024051404092536000_b0090) 2018; 430
Hatos (2024051404092536000_b0225) 2019; 48
Huttlin (2024051404092536000_b0360) 2017; 545
Di Domenico (2024051404092536000_b0250) 2012; 28
Harrison (2024051404092536000_b0320) 2017; 474
Hornbeck (2024051404092536000_b0385) 2015; 43
Nisole (2024051404092536000_b0110) 2013; 3
March (2024051404092536000_b0265) 2016; 1647
Lancaster (2024051404092536000_b0295) 2014; 30
Walsh (2024051404092536000_b0230) 2012; 28
Wang (2024051404092536000_b0205) 2018; 174
Piovesan (2024051404092536000_b0255) 2018; 46
Aizer (2024051404092536000_b0060) 2014; 127
Bolognesi (2024051404092536000_b0305) 2016; 16
McQuin (2024051404092536000_b0410) 2018; 16
Ochoa (2024051404092536000_b0390) 2019; 38
Hyman (2024051404092536000_b0010) 2014; 30
Simon Alberti (2024051404092536000_b0105) 2019; 53
Harmon (2024051404092536000_b0260) 2017; 6
Jain (2024051404092536000_b0035) 2016; 164
Shorter (2024051404092536000_b0270) 2017; 171
Brangwynne (2024051404092536000_b0015) 2009; 324
Banani (2024051404092536000_b0005) 2017; 18
Monahan (2024051404092536000_b0155) 2017; 36
References_xml – volume: 21
  start-page: 3433
  year: 2005
  end-page: 3434
  ident: b0235
  article-title: IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content
  publication-title: Bioinformatics
– volume: 365
  start-page: 825
  year: 2019
  end-page: 829
  ident: b0050
  article-title: Phospho-dependent phase separation of FMRP and CAPRIN1 recapitulates regulation of translation and deadenylation
  publication-title: Science
– volume: 32
  start-page: 102
  year: 2015
  end-page: 112
  ident: b0145
  article-title: Relating sequence encoded information to form and function of intrinsically disordered proteins
  publication-title: Curr Opin Struct Biol
– volume: 15
  start-page: e2002183
  year: 2017
  ident: b0180
  article-title: RNA stores tau reversibly in complex coacervates
  publication-title: PLoS Biol
– volume: 68
  start-page: 144
  year: 2017
  end-page: 157
  ident: b0045
  article-title: P-body purification reveals the condensation of repressed mRNA regulons
  publication-title: Mol Cell
– volume: 359
  start-page: 698
  year: 2018
  end-page: 701
  ident: b0275
  article-title: Atomic structures of low-complexity protein segments reveal kinked β sheets that assemble networks
  publication-title: Science
– volume: 130
  start-page: 927
  year: 2017
  end-page: 937
  ident: b0040
  article-title: Stress-specific differences in assembly and composition of stress granules and related foci
  publication-title: J Cell Sci
– volume: 48
  start-page: D320
  year: 2019
  end-page: D327
  ident: b0330
  article-title: LLPSDB: a database of proteins undergoing liquid–liquid phase separation
  publication-title: Nucleic Acids Res
– volume: 7
  start-page: e31486
  year: 2018
  ident: b0290
  article-title: Pi-pi contacts are an overlooked protein feature relevant to phase separation
  publication-title: Elife
– volume: 15
  start-page: 51
  year: 2019
  end-page: 61
  ident: b0365
  article-title: Acetylation of intrinsically disordered regions regulates phase separation
  publication-title: Nat Chem Biol
– volume: 48
  start-page: D269
  year: 2019
  end-page: D276
  ident: b0225
  article-title: Disprot: intrinsic protein disorder annotation in 2020
  publication-title: Nucleic Acids Res
– volume: 16
  start-page: e2005970
  year: 2018
  ident: b0410
  article-title: CellProfiler 3.0: next-generation image processing for biology
  publication-title: PLoS Biol
– volume: 11
  start-page: 899
  year: 2015
  end-page: 904
  ident: b0125
  article-title: Polymer physics of intracellular phase transitions
  publication-title: Nat Phys
– volume: 23
  start-page: 426
  year: 2013
  end-page: 435
  ident: b0140
  article-title: Describing intrinsically disordered proteins at atomic resolution by NMR
  publication-title: Curr Opin Struct Biol
– volume: 30
  start-page: 39
  year: 2014
  end-page: 58
  ident: b0010
  article-title: Liquid–liquid phase separation in biology
  publication-title: Annu Rev Cell Dev Biol
– volume: 1462
  start-page: 61
  year: 2012
  end-page: 80
  ident: b0315
  article-title: The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease
  publication-title: Brain Res
– volume: 292
  start-page: 19110
  year: 2017
  end-page: 19120
  ident: b0150
  article-title: Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs
  publication-title: J Biol Chem
– volume: 46
  start-page: 1020
  year: 2013
  end-page: 1028
  ident: b0310
  article-title: Energy component analysis of π interactions
  publication-title: Acc Chem Res
– volume: 43
  start-page: D512
  year: 2015
  end-page: D520
  ident: b0385
  article-title: PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations
  publication-title: Nucleic Acids Res
– volume: 28
  start-page: 503
  year: 2012
  end-page: 509
  ident: b0230
  article-title: ESpritz: accurate and fast prediction of protein disorder
  publication-title: Bioinformatics
– volume: 18
  start-page: 285
  year: 2017
  end-page: 298
  ident: b0005
  article-title: Biomolecular condensates: organizers of cellular biochemistry
  publication-title: Nat Rev Mol Cell Biol
– volume: 57
  start-page: 936
  year: 2015
  end-page: 947
  ident: b0195
  article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles
  publication-title: Mol Cell
– volume: 46
  start-page: D471
  year: 2018
  end-page: D476
  ident: b0255
  article-title: MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins
  publication-title: Nucleic Acids Res
– volume: 16
  start-page: 222
  year: 2016
  end-page: 231
  ident: b0305
  article-title: A concentration-dependent liquid phase separation can cause toxicity upon increased protein expression
  publication-title: Cell Rep
– volume: 356
  start-page: eaal3321
  year: 2017
  ident: b0395
  article-title: A subcellular map of the human proteome
  publication-title: Science
– volume: 36
  start-page: 2951
  year: 2017
  end-page: 2967
  ident: b0155
  article-title: Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity
  publication-title: EMBO J
– volume: 116
  start-page: 4218
  year: 2019
  end-page: 4227
  ident: b0370
  article-title: Phosphoregulated FMRP phase separation models activity-dependent translation through bidirectional control of mRNA granule formation
  publication-title: Proc Natl Acad Sci U S A
– volume: 324
  start-page: 1729
  year: 2009
  end-page: 1732
  ident: b0015
  article-title: Germline P granules are liquid droplets that localize by controlled dissolution/condensation
  publication-title: Science
– volume: 169
  start-page: 1066
  year: 2017
  end-page: 1077
  ident: b0030
  article-title: The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin
  publication-title: Cell
– volume: 27
  start-page: 331
  year: 2018
  end-page: 340
  ident: b0240
  article-title: Prediction of protein disorder based on IUPred
  publication-title: Protein Sci
– volume: 17
  start-page: 3
  year: 2007
  end-page: 14
  ident: b0135
  article-title: Atomic-level characterization of disordered protein ensembles
  publication-title: Curr Opin Struct Biol
– volume: 84
  start-page: 355
  year: 2015
  end-page: 379
  ident: b0325
  article-title: Biochemical properties and biological functions of FET proteins
  publication-title: Annu Rev Biochem
– volume: 8
  start-page: 275
  year: 2017
  ident: b0185
  article-title: Liquid–liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau
  publication-title: Nat Commun
– volume: 95
  start-page: 2748
  year: 2000
  end-page: 2753
  ident: b0120
  article-title: Role of SUMO-1–modified PML in nuclear body formation
  publication-title: Blood
– volume: 2016
  start-page: 855
  year: 2016
  end-page: 864
  ident: b0350
  article-title: Node2vec: Scalable feature learning for networks
  publication-title: KDD
– volume: 164
  start-page: 487
  year: 2016
  end-page: 498
  ident: b0035
  article-title: ATPase-modulated stress granules contain a diverse proteome and substructure
  publication-title: Cell
– volume: 41
  start-page: D508
  year: 2012
  end-page: D516
  ident: b0245
  article-title: D2P2: database of disordered protein predictions
  publication-title: Nucleic Acids Res
– volume: 152
  start-page: 791
  year: 2013
  end-page: 805
  ident: b0080
  article-title: Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling
  publication-title: Cell
– volume: 22
  start-page: bbaa187
  year: 2020
  ident: b0405
  article-title: Proteome-scale analysis of phase-separated proteins in immunofluorescence images
  publication-title: Brief Bioinform
– volume: 428
  start-page: 310
  year: 2017
  end-page: 317
  ident: b0055
  article-title: Membrane-bound organelles versus membrane-less compartments and their control of anabolic pathways in drosophila
  publication-title: Dev Biol
– volume: 166
  start-page: 651
  year: 2016
  end-page: 663
  ident: b0115
  article-title: Compositional control of phase-separated cellular bodies
  publication-title: Cell
– volume: 48
  start-page: D288
  year: 2020
  end-page: D295
  ident: b0345
  article-title: DrLLPS: a data resource of liquid–liquid phase separation in eukaryotes
  publication-title: Nucleic Acids Res
– volume: 61
  start-page: 343
  year: 2019
  end-page: 352
  ident: b0400
  article-title: Dynamics of transcriptional enhancers and chromosome topology in gene regulation
  publication-title: Dev Growth Differ
– volume: 38
  start-page: 365
  year: 2019
  end-page: 373
  ident: b0390
  article-title: The functional landscape of the human phosphoproteome
  publication-title: Nat Biotechnol
– volume: 48
  start-page: D360
  year: 2019
  end-page: D367
  ident: b0335
  article-title: PhaSePro: the database of proteins driving liquid–liquid phase separation
  publication-title: Nucleic Acids Res
– volume: 294
  start-page: 7128
  year: 2019
  end-page: 7136
  ident: b0215
  article-title: Prion-like low-complexity sequences: key regulators of protein solubility and phase behavior
  publication-title: J Biol Chem
– volume: 162
  start-page: 425
  year: 2015
  end-page: 440
  ident: b0355
  article-title: The BioPlex network: a systematic exploration of the human interactome
  publication-title: Cell
– volume: 217
  start-page: 9
  year: 2018
  end-page: 10
  ident: b0170
  article-title: Phase separation of BuGZ promotes aurora a activation and spindle assembly
  publication-title: J Cell Biol
– volume: 45
  start-page: 7984
  year: 2017
  end-page: 7996
  ident: b0200
  article-title: Intrinsically disordered RGG/RG domains mediate degenerate specificity in RNA binding
  publication-title: Nucleic Acids Res
– volume: 357
  start-page: eaaf4382
  year: 2017
  ident: b0025
  article-title: Liquid phase condensation in cell physiology and disease
  publication-title: Science
– volume: 162
  start-page: 1066
  year: 2015
  end-page: 1077
  ident: b0165
  article-title: A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation
  publication-title: Cell
– volume: 28
  start-page: 420
  year: 2018
  end-page: 435
  ident: b0020
  article-title: Protein phase separation: a new phase in cell biology
  publication-title: Trends Cell Biol
– volume: 430
  start-page: 4806
  year: 2018
  end-page: 4820
  ident: b0090
  article-title: A user's guide for phase separation assays with purified proteins
  publication-title: J Mol Biol
– volume: 55
  start-page: 161
  year: 2014
  end-page: 169
  ident: b0210
  article-title: A million peptide motifs for the molecular biologist
  publication-title: Mol Cell
– volume: 28
  start-page: 2080
  year: 2012
  end-page: 2081
  ident: b0250
  article-title: MobiDB: a comprehensive database of intrinsic protein disorder annotations
  publication-title: Bioinformatics
– volume: 53
  start-page: 171
  year: 2019
  end-page: 194
  ident: b0105
  article-title: Liquid–liquid phase separation in disease
  publication-title: Annu Rev Genet
– volume: 174
  start-page: 688
  year: 2018
  end-page: 699
  ident: b0205
  article-title: A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins
  publication-title: Cell
– volume: 21
  start-page: 1492
  year: 2013
  end-page: 1499
  ident: b0100
  article-title: From sequence and forces to structure, function, and evolution of intrinsically disordered proteins
  publication-title: Structure
– volume: 22
  start-page: 1401
  year: 2018
  end-page: 1412
  ident: b0130
  article-title: Intrinsically disordered regions can contribute promiscuous interactions to RNP granule assembly
  publication-title: Cell Rep
– volume: 6
  start-page: e30294
  year: 2017
  ident: b0260
  article-title: Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins
  publication-title: Elife
– volume: 547
  start-page: 241
  year: 2017
  end-page: 245
  ident: b0070
  article-title: Phase separation drives heterochromatin domain formation
  publication-title: Nature
– volume: 30
  start-page: 2501
  year: 2014
  end-page: 2502
  ident: b0295
  article-title: PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition
  publication-title: Bioinformatics
– volume: 217
  start-page: 107
  year: 2018
  end-page: 116
  ident: b0175
  article-title: Aurora a activation in mitosis promoted by BuGZ
  publication-title: J Cell Biol
– volume: 127
  start-page: 4443
  year: 2014
  end-page: 4456
  ident: b0060
  article-title: Quantifying mRNA targeting to P-bodies in living human cells reveals their dual role in mRNA decay and storage
  publication-title: J Cell Sci
– volume: 48
  start-page: D354
  year: 2019
  end-page: D359
  ident: b0340
  article-title: PhaSepDB: a database of liquid–liquid phase separation related proteins
  publication-title: Nucleic Acids Res
– volume: 547
  start-page: 236
  year: 2017
  end-page: 240
  ident: b0065
  article-title: Liquid droplet formation by HP1alpha suggests a role for phase separation in heterochromatin
  publication-title: Nature
– volume: 176
  start-page: 419
  year: 2019
  end-page: 434
  ident: b0095
  article-title: Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates
  publication-title: Cell
– volume: 107
  start-page: 3487
  year: 2010
  end-page: 3492
  ident: b0280
  article-title: Identifying the amylome, proteins capable of forming amyloid-like fibrils
  publication-title: Proc Natl Acad Sci U S A
– volume: 352
  start-page: 595
  year: 2016
  end-page: 599
  ident: b0075
  article-title: Phase separation of signaling molecules promotes T cell receptor signal transduction
  publication-title: Science
– volume: 171
  start-page: 615
  year: 2017
  end-page: 627
  ident: b0160
  article-title: Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains
  publication-title: Cell
– volume: 21
  start-page: 137
  year: 2004
  end-page: 140
  ident: b0220
  article-title: Disprot: a database of protein disorder
  publication-title: Bioinformatics
– volume: 3
  start-page: 125
  year: 2013
  ident: b0110
  article-title: Differential roles of PML isoforms
  publication-title: Front Oncol
– volume: 35
  start-page: 4617
  year: 2019
  end-page: 4623
  ident: b0300
  article-title: Computational identification of prion-like RNA-binding proteins that form liquid phase-separated condensates
  publication-title: Bioinformatics
– volume: 1647
  start-page: 9
  year: 2016
  end-page: 18
  ident: b0265
  article-title: Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease
  publication-title: Brain Res
– volume: 22
  start-page: 1473
  year: 2018
  end-page: 1483
  ident: b0380
  article-title: Citrullination of RGG motifs in FET proteins by PAD4 regulates protein aggregation and ALS susceptibility
  publication-title: Cell Rep
– volume: 545
  start-page: 505
  year: 2017
  end-page: 509
  ident: b0360
  article-title: Architecture of the human interactome defines protein communities and disease networks
  publication-title: Nature
– volume: 37
  start-page: e98049
  year: 2018
  ident: b0190
  article-title: Tau protein liquid–liquid phase separation can initiate tau aggregation
  publication-title: EMBO J
– volume: 171
  start-page: 30
  year: 2017
  end-page: 31
  ident: b0270
  article-title: Prion-like domains program Ewing's sarcoma
  publication-title: Cell
– volume: 483
  start-page: 336
  year: 2012
  end-page: 340
  ident: b0085
  article-title: Phase transitions in the assembly of multivalent signalling proteins
  publication-title: Nature
– volume: 58
  start-page: 88
  year: 2019
  end-page: 96
  ident: b0285
  article-title: First-generation predictors of biological protein phase separation
  publication-title: Curr Opin Struct Biol
– volume: 474
  start-page: 1417
  year: 2017
  end-page: 1438
  ident: b0320
  article-title: RNA-binding proteins with prion-like domains in health and disease
  publication-title: Biochem J
– volume: 294
  start-page: 7137
  year: 2019
  end-page: 7150
  ident: b0375
  article-title: Friend or foe—Post-translational modifications as regulators of phase separation and RNP granule dynamics
  publication-title: J Biol Chem
– volume: 30
  start-page: 2501
  year: 2014
  ident: 2024051404092536000_b0295
  article-title: PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu310
– volume: 11
  start-page: 899
  year: 2015
  ident: 2024051404092536000_b0125
  article-title: Polymer physics of intracellular phase transitions
  publication-title: Nat Phys
  doi: 10.1038/nphys3532
– volume: 36
  start-page: 2951
  year: 2017
  ident: 2024051404092536000_b0155
  article-title: Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity
  publication-title: EMBO J
  doi: 10.15252/embj.201696394
– volume: 43
  start-page: D512
  year: 2015
  ident: 2024051404092536000_b0385
  article-title: PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1267
– volume: 164
  start-page: 487
  year: 2016
  ident: 2024051404092536000_b0035
  article-title: ATPase-modulated stress granules contain a diverse proteome and substructure
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.038
– volume: 324
  start-page: 1729
  year: 2009
  ident: 2024051404092536000_b0015
  article-title: Germline P granules are liquid droplets that localize by controlled dissolution/condensation
  publication-title: Science
  doi: 10.1126/science.1172046
– volume: 53
  start-page: 171
  year: 2019
  ident: 2024051404092536000_b0105
  article-title: Liquid–liquid phase separation in disease
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev-genet-112618-043527
– volume: 474
  start-page: 1417
  year: 2017
  ident: 2024051404092536000_b0320
  article-title: RNA-binding proteins with prion-like domains in health and disease
  publication-title: Biochem J
  doi: 10.1042/BCJ20160499
– volume: 23
  start-page: 426
  year: 2013
  ident: 2024051404092536000_b0140
  article-title: Describing intrinsically disordered proteins at atomic resolution by NMR
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2013.02.007
– volume: 127
  start-page: 4443
  year: 2014
  ident: 2024051404092536000_b0060
  article-title: Quantifying mRNA targeting to P-bodies in living human cells reveals their dual role in mRNA decay and storage
  publication-title: J Cell Sci
– volume: 162
  start-page: 425
  year: 2015
  ident: 2024051404092536000_b0355
  article-title: The BioPlex network: a systematic exploration of the human interactome
  publication-title: Cell
  doi: 10.1016/j.cell.2015.06.043
– volume: 30
  start-page: 39
  year: 2014
  ident: 2024051404092536000_b0010
  article-title: Liquid–liquid phase separation in biology
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev-cellbio-100913-013325
– volume: 547
  start-page: 236
  year: 2017
  ident: 2024051404092536000_b0065
  article-title: Liquid droplet formation by HP1alpha suggests a role for phase separation in heterochromatin
  publication-title: Nature
  doi: 10.1038/nature22822
– volume: 428
  start-page: 310
  year: 2017
  ident: 2024051404092536000_b0055
  article-title: Membrane-bound organelles versus membrane-less compartments and their control of anabolic pathways in drosophila
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2017.03.029
– volume: 35
  start-page: 4617
  year: 2019
  ident: 2024051404092536000_b0300
  article-title: Computational identification of prion-like RNA-binding proteins that form liquid phase-separated condensates
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz274
– volume: 22
  start-page: 1473
  year: 2018
  ident: 2024051404092536000_b0380
  article-title: Citrullination of RGG motifs in FET proteins by PAD4 regulates protein aggregation and ALS susceptibility
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.01.031
– volume: 48
  start-page: D288
  year: 2020
  ident: 2024051404092536000_b0345
  article-title: DrLLPS: a data resource of liquid–liquid phase separation in eukaryotes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz1027
– volume: 55
  start-page: 161
  year: 2014
  ident: 2024051404092536000_b0210
  article-title: A million peptide motifs for the molecular biologist
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2014.05.032
– volume: 95
  start-page: 2748
  year: 2000
  ident: 2024051404092536000_b0120
  article-title: Role of SUMO-1–modified PML in nuclear body formation
  publication-title: Blood
  doi: 10.1182/blood.V95.9.2748.009k31a_2748_2752
– volume: 162
  start-page: 1066
  year: 2015
  ident: 2024051404092536000_b0165
  article-title: A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.047
– volume: 171
  start-page: 30
  year: 2017
  ident: 2024051404092536000_b0270
  article-title: Prion-like domains program Ewing’s sarcoma
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.010
– volume: 18
  start-page: 285
  year: 2017
  ident: 2024051404092536000_b0005
  article-title: Biomolecular condensates: organizers of cellular biochemistry
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm.2017.7
– volume: 171
  start-page: 615
  year: 2017
  ident: 2024051404092536000_b0160
  article-title: Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains
  publication-title: Cell
  doi: 10.1016/j.cell.2017.08.048
– volume: 547
  start-page: 241
  year: 2017
  ident: 2024051404092536000_b0070
  article-title: Phase separation drives heterochromatin domain formation
  publication-title: Nature
  doi: 10.1038/nature22989
– volume: 6
  start-page: e30294
  year: 2017
  ident: 2024051404092536000_b0260
  article-title: Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins
  publication-title: Elife
  doi: 10.7554/eLife.30294
– volume: 176
  start-page: 419
  year: 2019
  ident: 2024051404092536000_b0095
  article-title: Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.035
– volume: 84
  start-page: 355
  year: 2015
  ident: 2024051404092536000_b0325
  article-title: Biochemical properties and biological functions of FET proteins
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev-biochem-060614-034325
– volume: 17
  start-page: 3
  year: 2007
  ident: 2024051404092536000_b0135
  article-title: Atomic-level characterization of disordered protein ensembles
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2007.01.009
– volume: 61
  start-page: 343
  year: 2019
  ident: 2024051404092536000_b0400
  article-title: Dynamics of transcriptional enhancers and chromosome topology in gene regulation
  publication-title: Dev Growth Differ
  doi: 10.1111/dgd.12597
– volume: 357
  start-page: eaaf4382
  year: 2017
  ident: 2024051404092536000_b0025
  article-title: Liquid phase condensation in cell physiology and disease
  publication-title: Science
  doi: 10.1126/science.aaf4382
– volume: 21
  start-page: 1492
  year: 2013
  ident: 2024051404092536000_b0100
  article-title: From sequence and forces to structure, function, and evolution of intrinsically disordered proteins
  publication-title: Structure
  doi: 10.1016/j.str.2013.08.001
– volume: 1462
  start-page: 61
  year: 2012
  ident: 2024051404092536000_b0315
  article-title: The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2012.01.016
– volume: 21
  start-page: 3433
  year: 2005
  ident: 2024051404092536000_b0235
  article-title: IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti541
– volume: 48
  start-page: D320
  year: 2019
  ident: 2024051404092536000_b0330
  article-title: LLPSDB: a database of proteins undergoing liquid–liquid phase separation in vitro
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz778
– volume: 38
  start-page: 365
  year: 2019
  ident: 2024051404092536000_b0390
  article-title: The functional landscape of the human phosphoproteome
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0344-3
– volume: 41
  start-page: D508
  year: 2012
  ident: 2024051404092536000_b0245
  article-title: D2P2: database of disordered protein predictions
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1226
– volume: 28
  start-page: 2080
  year: 2012
  ident: 2024051404092536000_b0250
  article-title: MobiDB: a comprehensive database of intrinsic protein disorder annotations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts327
– volume: 483
  start-page: 336
  year: 2012
  ident: 2024051404092536000_b0085
  article-title: Phase transitions in the assembly of multivalent signalling proteins
  publication-title: Nature
  doi: 10.1038/nature10879
– volume: 1647
  start-page: 9
  year: 2016
  ident: 2024051404092536000_b0265
  article-title: Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2016.02.037
– volume: 352
  start-page: 595
  year: 2016
  ident: 2024051404092536000_b0075
  article-title: Phase separation of signaling molecules promotes T cell receptor signal transduction
  publication-title: Science
  doi: 10.1126/science.aad9964
– volume: 32
  start-page: 102
  year: 2015
  ident: 2024051404092536000_b0145
  article-title: Relating sequence encoded information to form and function of intrinsically disordered proteins
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2015.03.008
– volume: 292
  start-page: 19110
  year: 2017
  ident: 2024051404092536000_b0150
  article-title: Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M117.800466
– volume: 57
  start-page: 936
  year: 2015
  ident: 2024051404092536000_b0195
  article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.01.013
– volume: 21
  start-page: 137
  year: 2004
  ident: 2024051404092536000_b0220
  article-title: Disprot: a database of protein disorder
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth476
– volume: 294
  start-page: 7137
  year: 2019
  ident: 2024051404092536000_b0375
  article-title: Friend or foe—Post-translational modifications as regulators of phase separation and RNP granule dynamics
  publication-title: J Biol Chem
  doi: 10.1074/jbc.TM118.001189
– volume: 3
  start-page: 125
  year: 2013
  ident: 2024051404092536000_b0110
  article-title: Differential roles of PML isoforms
  publication-title: Front Oncol
  doi: 10.3389/fonc.2013.00125
– volume: 22
  start-page: bbaa187
  year: 2020
  ident: 2024051404092536000_b0405
  article-title: Proteome-scale analysis of phase-separated proteins in immunofluorescence images
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa187
– volume: 217
  start-page: 107
  year: 2018
  ident: 2024051404092536000_b0175
  article-title: Aurora a activation in mitosis promoted by BuGZ
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201706103
– volume: 48
  start-page: D269
  year: 2019
  ident: 2024051404092536000_b0225
  article-title: Disprot: intrinsic protein disorder annotation in 2020
  publication-title: Nucleic Acids Res
– volume: 58
  start-page: 88
  year: 2019
  ident: 2024051404092536000_b0285
  article-title: First-generation predictors of biological protein phase separation
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2019.05.016
– volume: 46
  start-page: D471
  year: 2018
  ident: 2024051404092536000_b0255
  article-title: MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1071
– volume: 130
  start-page: 927
  year: 2017
  ident: 2024051404092536000_b0040
  article-title: Stress-specific differences in assembly and composition of stress granules and related foci
  publication-title: J Cell Sci
  doi: 10.1242/jcs.199240
– volume: 15
  start-page: 51
  year: 2019
  ident: 2024051404092536000_b0365
  article-title: Acetylation of intrinsically disordered regions regulates phase separation
  publication-title: Nat Chem Biol
  doi: 10.1038/s41589-018-0180-7
– volume: 22
  start-page: 1401
  year: 2018
  ident: 2024051404092536000_b0130
  article-title: Intrinsically disordered regions can contribute promiscuous interactions to RNP granule assembly
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.01.036
– volume: 174
  start-page: 688
  year: 2018
  ident: 2024051404092536000_b0205
  article-title: A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2018.06.006
– volume: 356
  start-page: eaal3321
  year: 2017
  ident: 2024051404092536000_b0395
  article-title: A subcellular map of the human proteome
  publication-title: Science
  doi: 10.1126/science.aal3321
– volume: 166
  start-page: 651
  year: 2016
  ident: 2024051404092536000_b0115
  article-title: Compositional control of phase-separated cellular bodies
  publication-title: Cell
  doi: 10.1016/j.cell.2016.06.010
– volume: 8
  start-page: 275
  year: 2017
  ident: 2024051404092536000_b0185
  article-title: Liquid–liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-00480-0
– volume: 28
  start-page: 420
  year: 2018
  ident: 2024051404092536000_b0020
  article-title: Protein phase separation: a new phase in cell biology
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2018.02.004
– volume: 46
  start-page: 1020
  year: 2013
  ident: 2024051404092536000_b0310
  article-title: Energy component analysis of π interactions
  publication-title: Acc Chem Res
  doi: 10.1021/ar3001124
– volume: 28
  start-page: 503
  year: 2012
  ident: 2024051404092536000_b0230
  article-title: ESpritz: accurate and fast prediction of protein disorder
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr682
– volume: 2016
  start-page: 855
  year: 2016
  ident: 2024051404092536000_b0350
  article-title: Node2vec: Scalable feature learning for networks
  publication-title: KDD
– volume: 116
  start-page: 4218
  year: 2019
  ident: 2024051404092536000_b0370
  article-title: Phosphoregulated FMRP phase separation models activity-dependent translation through bidirectional control of mRNA granule formation
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1814385116
– volume: 16
  start-page: e2005970
  year: 2018
  ident: 2024051404092536000_b0410
  article-title: CellProfiler 3.0: next-generation image processing for biology
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.2005970
– volume: 7
  start-page: e31486
  year: 2018
  ident: 2024051404092536000_b0290
  article-title: Pi-pi contacts are an overlooked protein feature relevant to phase separation
  publication-title: Elife
  doi: 10.7554/eLife.31486
– volume: 430
  start-page: 4806
  year: 2018
  ident: 2024051404092536000_b0090
  article-title: A user’s guide for phase separation assays with purified proteins
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2018.06.038
– volume: 27
  start-page: 331
  year: 2018
  ident: 2024051404092536000_b0240
  article-title: Prediction of protein disorder based on IUPred
  publication-title: Protein Sci
  doi: 10.1002/pro.3334
– volume: 37
  start-page: e98049
  year: 2018
  ident: 2024051404092536000_b0190
  article-title: Tau protein liquid–liquid phase separation can initiate tau aggregation
  publication-title: EMBO J
  doi: 10.15252/embj.201798049
– volume: 294
  start-page: 7128
  year: 2019
  ident: 2024051404092536000_b0215
  article-title: Prion-like low-complexity sequences: key regulators of protein solubility and phase behavior
  publication-title: J Biol Chem
  doi: 10.1074/jbc.TM118.001190
– volume: 545
  start-page: 505
  year: 2017
  ident: 2024051404092536000_b0360
  article-title: Architecture of the human interactome defines protein communities and disease networks
  publication-title: Nature
  doi: 10.1038/nature22366
– volume: 169
  start-page: 1066
  year: 2017
  ident: 2024051404092536000_b0030
  article-title: The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.028
– volume: 68
  start-page: 144
  year: 2017
  ident: 2024051404092536000_b0045
  article-title: P-body purification reveals the condensation of repressed mRNA regulons
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2017.09.003
– volume: 15
  start-page: e2002183
  year: 2017
  ident: 2024051404092536000_b0180
  article-title: RNA stores tau reversibly in complex coacervates
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.2002183
– volume: 48
  start-page: D354
  year: 2019
  ident: 2024051404092536000_b0340
  article-title: PhaSepDB: a database of liquid–liquid phase separation related proteins
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz847
– volume: 152
  start-page: 791
  year: 2013
  ident: 2024051404092536000_b0080
  article-title: Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2013.01.033
– volume: 45
  start-page: 7984
  year: 2017
  ident: 2024051404092536000_b0200
  article-title: Intrinsically disordered RGG/RG domains mediate degenerate specificity in RNA binding
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx460
– volume: 365
  start-page: 825
  year: 2019
  ident: 2024051404092536000_b0050
  article-title: Phospho-dependent phase separation of FMRP and CAPRIN1 recapitulates regulation of translation and deadenylation
  publication-title: Science
  doi: 10.1126/science.aax4240
– volume: 16
  start-page: 222
  year: 2016
  ident: 2024051404092536000_b0305
  article-title: A concentration-dependent liquid phase separation can cause toxicity upon increased protein expression
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.05.076
– volume: 217
  start-page: 9
  year: 2018
  ident: 2024051404092536000_b0170
  article-title: Phase separation of BuGZ promotes aurora a activation and spindle assembly
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201711070
– volume: 107
  start-page: 3487
  year: 2010
  ident: 2024051404092536000_b0280
  article-title: Identifying the amylome, proteins capable of forming amyloid-like fibrils
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0915166107
– volume: 48
  start-page: D360
  year: 2019
  ident: 2024051404092536000_b0335
  article-title: PhaSePro: the database of proteins driving liquid–liquid phase separation
  publication-title: Nucleic Acids Res
– volume: 359
  start-page: 698
  year: 2018
  ident: 2024051404092536000_b0275
  article-title: Atomic structures of low-complexity protein segments reveal kinked β sheets that assemble networks
  publication-title: Science
  doi: 10.1126/science.aan6398
SSID ssj0045441
ssib060475339
Score 2.3913145
SecondaryResourceType review_article
Snippet Phase separation is an important mechanism that mediates the compartmentalization of proteins in cells. Proteins that can undergo phase separation in cells...
Phase separation is an important mechanism that mediates the compartmentalization of proteins in cells. Proteins that can undergo phase separation in cells...
SourceID pubmedcentral
wanfang
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13
SubjectTerms amino acid sequences
bioinformatics
fluorescent antibody technique
genomics
Immunofluorescence image
Phase separation
Prediction
Protein post-translational modification
protein-protein interactions
Protein–protein interaction
proteomics
Review
separation
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jMvBFvOK8UcEnoaNL06V9EBFRRJgMdLC3kLTJLkg31w23_XrP6WU6mXvwtW1Ce06S73zNyXcIuXKp25CO8WwTKCAogOB24EXK9hUPMbw2xsPTyM2XxlObPXe8TokU5a1yAyZrqR3Wk2qP32uzj_ktTPib71yt7kgB1aO4ANRS7c8tACaOBQ2abLmpwLDcFvKvBqc2QFdQbHKu6-IvmPoRhv5Ooqx8ytjIuPsDnx53yU4eWFp32UjYIyUd75NKVmpyfkBYVr4h__VnvYaYbwOwZQ2N1eoBlNmJzmTA4VoLxRv6cXJI2o8Pb_dPdl4xwQ49x53YdanqrqedyE_PpPoBkwGes9IS5q6GpYSBY1w3jGhkHMZ46BsAfCkDv-FpTpl7RMrxMNbHxELlLxZoqriKmGFU1rXPlfakpiF3NK8SpzCQCHM5caxq8S6KvLGBAJsKtCnQDNQgrZLrZZNRpqWx6WFWWF3kwUAG8gJcv6nZZeEhARMFdz9krIfTRAB3oqlcPq0SvuK65cug1PbqnbjfSyW3fRYAFcEvyJ0sipEqBvNFpBaLefI5m82U0BRZNArbnvzvC07JNnaRZYafkfJkPNXnEPhM1EU6nL8AmRUAqA
  priority: 102
  providerName: Scholars Portal
Title Computational Screening of Phase-separating Proteins
URI https://dx.doi.org/10.1016/j.gpb.2020.11.003
https://www.proquest.com/docview/2552023642
https://d.wanfangdata.com.cn/periodical/jyzdbzzyswxxxb-e202101002
https://pubmed.ncbi.nlm.nih.gov/PMC8498823
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8iCL6Inzi_qOCTUNem6ZI-qjhEmAxU2FtI2kQn0g07cdtf712ayqbggy99SJPS3CX3kdz9jpCzhCYdFdk0tJkGBwU0eJilhQ6F5jma19ammI3cu-_cPrG7QTpYIddNLgyGVXrZX8t0J619S9tTsz0eDtsPcYeD504zGjsUlwHI4YQJl8Q3uGqkMcMaW-h0QecQezc3my7G63mswUWkKDguoqZu1m_dtGB7_oycXPtUpVXl84JS6m6SDW9NBpf1D2-RFVNuk7W6vuRsh7C6ZoM_7wsecgyyAV0VjGzQfwH9FVamxv6Gtj4iNgzLapc8dW8er29DXyYhzNMomYSx0nGSmqgQLhFVZExlmFxlFGxYA_KDATeSJC9oYSPGeC4saHmlMtFJDacs2SOr5ag0-yRAuC-WGaq5LphlVMVGcG1SZWjOI8NbJGoIJHOPIY6lLN5kEyz2KoGmEmkKvgUCj7bI-feQcQ2g8Vdn1lBdLq0CCQL-r2GnDYck7A688lClGX1UEhwm6jDyaYvwJdZ9_wziay-_KYcvDmdbsAz8D5yBZ7L0-7uSr7N5oefzWfU5nU61NBRdZ0SzPfjfDA7JOn6iDgc_IquT9w9zDNbORJ-4U4ITt6jh2WPiC2bp_0k
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RKtReUJ_qAi2p1F4qpZs4zjo5cKAtaLc8hARIe3PtxIZFKLsii_bxt_iDzCQOYovEAYlrElv22J6ZL575BuBbxKKOCmzs21QjQEEL7qdxrv1Ei4zca2tjykY-OOx0T_nfftxfgpsmF4bCKp3ur3V6pa3dk7aTZns0GLSPw45A5M5SFlYsLn0XWblnZhPEbeVW7w8u8nfGdndOfnd9V1rAz-IgGvuh0mEUmyBPquTNJOUqpYQko3CTGzxzHGcQRVnOchtwLrLEomVUKk06sRGMR9jvC3iJ3ocgbdDr_2rUP6eiXoTycHQ-Da-5Sq2Cys5GGjEpI031M2gKdT00hvec3f9DNVcmqrCqOLtnBXffwKpzX73tWkJvYckU72ClLmg5ew-8LhLhfjB6xxlF9aBx9IbWOzpHg-mXpiYbx2dHRBExKMoPcPoswvsIy8WwMJ_AI34xnhqmhc655UyFJhHaxMqwTARGtCBoBCQzR1pOtTMuZROddiFRppJkimCGmE5b8OOuyahm7HjsY95IXS5sO4kW5bFmX5sVkngc6Y5FFWZ4XUpEaKwi5WctEAtLdzcYIvRefFMMziti74SnCHhoBm6RpVMopbyYzXM9n8_KyXQ61dIwwupEn7v2tBlswqvuycG-3O8d7q3Da-qujkXfgOXx1bX5jK7WWH-ptrYH_577LN0CQJg47Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+Screening+of+Phase-separating+Proteins&rft.jtitle=Genomics%2C+proteomics+%26+bioinformatics&rft.au=Shen%2C+Boyan&rft.au=Chen%2C+Zhaoming&rft.au=Yu%2C+Chunyu&rft.au=Chen%2C+Taoyu&rft.date=2021-02-01&rft.pub=Elsevier+B.V&rft.issn=1672-0229&rft.volume=19&rft.issue=1&rft.spage=13&rft.epage=24&rft_id=info:doi/10.1016%2Fj.gpb.2020.11.003&rft.externalDocID=S167202292100022X
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjyzdbzzyswxxxb-e%2Fjyzdbzzyswxxxb-e.jpg