Identifying high-yield low-emission pathways for the cereal production in South Asia

Increasing agricultural production to meet the growing demand for food whilst reducing agricultural greenhouse gas (GHG) emissions is the major challenge under the changing climate. To develop long-term policies that address these challenges, strategies are needed to identify high-yield low-emission...

Full description

Saved in:
Bibliographic Details
Published inMitigation and adaptation strategies for global change Vol. 23; no. 4; pp. 621 - 641
Main Authors Sapkota, Tek B., Aryal, Jeetendra P., Khatri-Chhetri, Arun, Shirsath, Paresh B., Arumugam, Ponraj, Stirling, Clare M.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.04.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1381-2386
1573-1596
1573-1596
DOI10.1007/s11027-017-9752-1

Cover

Loading…
Abstract Increasing agricultural production to meet the growing demand for food whilst reducing agricultural greenhouse gas (GHG) emissions is the major challenge under the changing climate. To develop long-term policies that address these challenges, strategies are needed to identify high-yield low-emission pathways for particular agricultural production systems. In this paper, we used bio-physical and socio-economic models to analyze the impact of different management practices on crop yield and emissions in two contrasting agricultural production systems of the Indo-Gangetic Plain (IGP) of India. The result revealed the importance of considering both management and socio-economic factors in the development of high-yield low-emission pathways for cereal production systems. Nitrogen use rate and frequency of application, tillage and residue management and manure application significantly affected GHG emissions from the cereal systems. In addition, various socio-economic factors such as gender, level of education, training on climate change adaptation and mitigation and access to information significantly influenced the adoption of technologies contributing to high-yield low-emission pathways. We discussed the policy implications of these findings in the context of food security and climate change.
AbstractList Increasing agricultural production to meet the growing demand for food whilst reducing agricultural greenhouse gas (GHG) emissions is the major challenge under the changing climate. To develop long-term policies that address these challenges, strategies are needed to identify high-yield low-emission pathways for particular agricultural production systems. In this paper, we used bio-physical and socio-economic models to analyze the impact of different management practices on crop yield and emissions in two contrasting agricultural production systems of the Indo-Gangetic Plain (IGP) of India. The result revealed the importance of considering both management and socio-economic factors in the development of high-yield low-emission pathways for cereal production systems. Nitrogen use rate and frequency of application, tillage and residue management and manure application significantly affected GHG emissions from the cereal systems. In addition, various socio-economic factors such as gender, level of education, training on climate change adaptation and mitigation and access to information significantly influenced the adoption of technologies contributing to high-yield low-emission pathways. We discussed the policy implications of these findings in the context of food security and climate change.Increasing agricultural production to meet the growing demand for food whilst reducing agricultural greenhouse gas (GHG) emissions is the major challenge under the changing climate. To develop long-term policies that address these challenges, strategies are needed to identify high-yield low-emission pathways for particular agricultural production systems. In this paper, we used bio-physical and socio-economic models to analyze the impact of different management practices on crop yield and emissions in two contrasting agricultural production systems of the Indo-Gangetic Plain (IGP) of India. The result revealed the importance of considering both management and socio-economic factors in the development of high-yield low-emission pathways for cereal production systems. Nitrogen use rate and frequency of application, tillage and residue management and manure application significantly affected GHG emissions from the cereal systems. In addition, various socio-economic factors such as gender, level of education, training on climate change adaptation and mitigation and access to information significantly influenced the adoption of technologies contributing to high-yield low-emission pathways. We discussed the policy implications of these findings in the context of food security and climate change.
Increasing agricultural production to meet the growing demand for food whilst reducing agricultural greenhouse gas (GHG) emissions is the major challenge under the changing climate. To develop long-term policies that address these challenges, strategies are needed to identify high-yield low-emission pathways for particular agricultural production systems. In this paper, we used bio-physical and socio-economic models to analyze the impact of different management practices on crop yield and emissions in two contrasting agricultural production systems of the Indo-Gangetic Plain (IGP) of India. The result revealed the importance of considering both management and socio-economic factors in the development of high-yield low-emission pathways for cereal production systems. Nitrogen use rate and frequency of application, tillage and residue management and manure application significantly affected GHG emissions from the cereal systems. In addition, various socio-economic factors such as gender, level of education, training on climate change adaptation and mitigation and access to information significantly influenced the adoption of technologies contributing to high-yield low-emission pathways. We discussed the policy implications of these findings in the context of food security and climate change.
Author Sapkota, Tek B.
Arumugam, Ponraj
Aryal, Jeetendra P.
Shirsath, Paresh B.
Khatri-Chhetri, Arun
Stirling, Clare M.
Author_xml – sequence: 1
  givenname: Tek B.
  surname: Sapkota
  fullname: Sapkota, Tek B.
  email: t.sapkota@cgiar.org
  organization: International Maize and Wheat Improvement Centre (CIMMYT), NASC complex
– sequence: 2
  givenname: Jeetendra P.
  surname: Aryal
  fullname: Aryal, Jeetendra P.
  organization: International Maize and Wheat Improvement Centre (CIMMYT)
– sequence: 3
  givenname: Arun
  surname: Khatri-Chhetri
  fullname: Khatri-Chhetri, Arun
  organization: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Borlaug Institute for South Asia (BISA)/CIMMYT
– sequence: 4
  givenname: Paresh B.
  surname: Shirsath
  fullname: Shirsath, Paresh B.
  organization: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Borlaug Institute for South Asia (BISA)/CIMMYT
– sequence: 5
  givenname: Ponraj
  surname: Arumugam
  fullname: Arumugam, Ponraj
  organization: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Borlaug Institute for South Asia (BISA)/CIMMYT
– sequence: 6
  givenname: Clare M.
  surname: Stirling
  fullname: Stirling, Clare M.
  organization: International Maize and Wheat Improvement Centre (CIMMYT)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30093835$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtrFTEYhoNU7EV_gBsZcNNNar5cJslGKMVqodCFdR3STOZMypzkmMy0nH9vhtPWWlBcJZDn_S55DtFeTNEj9B7ICRAiPxUAQiUmILGWgmJ4hQ5ASIZB6Hav3pkCTJlq99FhKbeEEAYC3qB9RohmiokDdH3R-TiFfhviqhnCasDb4MeuGdM99utQSkix2dhpuLfb0vQpN9PgG-ezt2Ozyamb3bQgITbf0zwNzWkJ9i163dux-HcP5xH6cf7l-uwbvrz6enF2eomdIGzCYC3pHXVUO6657LhyQvecK61vJOWSgGsp99BysD113mqqwToFleh0y9gR-ryru5lv1r5zdZNsR7PJYW3z1iQbzJ8vMQxmle5MSwQnIGqB44cCOf2cfZlMXdn5cbTRp7kYSpQUSnFg_4EKppQimlT04wv0Ns051p-oVPUDgoul94fnwz9N_eimArADXE6lZN8_IUDM4t_s_Jvq3yz-DdSMfJFxYbKLobp_GP-ZpLtkqV3iyuffQ_899At-gcLu
CitedBy_id crossref_primary_10_1007_s11027_024_10126_4
crossref_primary_10_3390_su12010195
crossref_primary_10_1016_j_eja_2022_126655
crossref_primary_10_1007_s11356_021_13975_7
crossref_primary_10_1080_03650340_2019_1708332
crossref_primary_10_1111_rode_12670
crossref_primary_10_1080_17583004_2019_1650579
crossref_primary_10_1111_1477_8947_12152
crossref_primary_10_2139_ssrn_4173867
crossref_primary_10_3390_su152316303
crossref_primary_10_1080_01904167_2021_1998522
crossref_primary_10_1080_17583004_2020_1752061
crossref_primary_10_1016_j_fcr_2022_108737
crossref_primary_10_56093_ijas_v90i1_98535
crossref_primary_10_3390_su11061520
crossref_primary_10_1016_j_crsust_2022_100169
crossref_primary_10_1088_1748_9326_ab2f57
crossref_primary_10_1002_jpln_202000371
crossref_primary_10_1016_j_agsy_2023_103620
crossref_primary_10_1080_07352689_2020_1782069
crossref_primary_10_1016_j_agsy_2019_03_002
crossref_primary_10_1080_01904167_2021_2014872
crossref_primary_10_1108_IJCCSM_09_2018_0065
crossref_primary_10_3390_atmos11040394
crossref_primary_10_1016_j_fcr_2021_108328
crossref_primary_10_1016_j_landusepol_2024_107208
crossref_primary_10_20961_stjssa_v17i2_42729
crossref_primary_10_1016_j_ecolmodel_2018_04_008
crossref_primary_10_1007_s42729_020_00277_z
Cites_doi 10.1126/science.1185383
10.1016/j.atmosenv.2005.07.052
10.13140/2.1.4143.4245
10.1080/1943815X.2015.1110181
10.1016/j.fcr.2014.04.015
10.1016/j.agee.2014.07.015
10.1016/j.soilbio.2009.01.024
10.1016/j.agee.2016.12.024
10.1016/j.foodpol.2008.11.002
10.1046/j.1365-2486.1997.00055.x
10.1007/978-0-387-98141-3
10.1016/j.fcr.2010.01.003
10.1016/j.agee.2010.09.003
10.1007/s10533-004-0360-2
10.1046/j.1365-3040.1997.d01-142.x
10.3390/agriculture7010007
10.1016/S2095-3119(15)61093-0
10.1038/srep19355
10.1016/j.jrurstud.2016.06.012
10.1016/j.fcr.2013.09.001
10.1525/bio.2013.63.4.6
10.1016/j.gloenvcha.2016.08.005
10.1029/2004GB002401
10.1073/pnas.1322434111
10.1016/j.agrformet.2006.06.011
10.18520/cs/v110/i7/1251-1256
10.1016/j.fcr.2012.10.007
10.1029/2001GB001811
10.1111/j.1365-2486.2010.02374.x
10.1002/2013MS000293
10.1016/j.chemosphere.2004.09.003
10.1016/j.agee.2008.09.003
10.1016/j.agee.2010.07.002
10.1111/j.1365-2486.2011.02502.x
10.1088/1748-9326/9/5/054002
10.1007/s12571-015-0492-3
10.1111/gcb.13340
10.5194/bg-11-2287-2014
10.1016/j.agee.2016.01.005
ContentType Journal Article
Copyright The Author(s) 2017
Mitigation and Adaptation Strategies for Global Change is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2017
– notice: Mitigation and Adaptation Strategies for Global Change is a copyright of Springer, (2017). All Rights Reserved.
DBID C6C
AAYXX
CITATION
NPM
3V.
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
L.-
L.G
M0C
M2P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
SOI
7S9
L.6
7X8
5PM
DOI 10.1007/s11027-017-9752-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ABI/INFORM Global
Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Business Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Business (Alumni)
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

AGRICOLA
ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Environmental Sciences
Economics
Education
EISSN 1573-1596
EndPage 641
ExternalDocumentID PMC6054015
30093835
10_1007_s11027_017_9752_1
Genre Journal Article
GeographicLocations South Asia
Indo-Gangetic Plain
India
GeographicLocations_xml – name: South Asia
– name: Indo-Gangetic Plain
– name: India
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
7WY
7XC
88I
8FE
8FH
8FL
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EIS
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
K60
K6~
KDC
KOV
KOW
L8X
LAK
LLZTM
M0C
M2P
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7V
Z7Y
Z7Z
Z81
Z86
Z8P
Z8S
Z8T
Z8U
ZMTXR
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
7ST
7UA
7XB
8FK
ABRTQ
C1K
F1W
H97
L.-
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c503t-1aa0fc2c29c4947d48c59f44899b724701c624e1641af2cea9291ac81489d9633
IEDL.DBID U2A
ISSN 1381-2386
1573-1596
IngestDate Thu Aug 21 18:37:06 EDT 2025
Tue Aug 05 11:26:33 EDT 2025
Thu Jul 10 22:29:56 EDT 2025
Fri Jul 25 21:35:55 EDT 2025
Wed Feb 19 02:43:01 EST 2025
Thu Apr 24 22:59:26 EDT 2025
Tue Jul 01 04:12:54 EDT 2025
Fri Feb 21 02:33:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Climate change
Cereal systems
High-yield low-emission pathway
Greenhouse gas emissions
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c503t-1aa0fc2c29c4947d48c59f44899b724701c624e1641af2cea9291ac81489d9633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s11027-017-9752-1
PMID 30093835
PQID 2015715455
PQPubID 54623
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6054015
proquest_miscellaneous_2087588413
proquest_miscellaneous_2053888090
proquest_journals_2015715455
pubmed_primary_30093835
crossref_primary_10_1007_s11027_017_9752_1
crossref_citationtrail_10_1007_s11027_017_9752_1
springer_journals_10_1007_s11027_017_9752_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Netherlands
PublicationSubtitle An International Journal Devoted to Scientific, Engineering, Socio-Economic and Policy Responses to Environmental Change
PublicationTitle Mitigation and adaptation strategies for global change
PublicationTitleAbbrev Mitig Adapt Strateg Glob Change
PublicationTitleAlternate Mitig Adapt Strateg Glob Chang
PublicationYear 2018
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References CameronCATrivediPKMicroeconometrics using Stata2009TexasStata Press
KhanSKhanMAHanjraMAMuJPathways to reduce the environmental footprints of water and energy inputs in food productionFood Policy20093414114910.1016/j.foodpol.2008.11.002
Wassmann R, Lantin RS, Neue HU, et al (2000) Characterization of methane emissions from rice fields in Asia. III . Mitigation options and future research needs. 23–36
JatMLSaharawatYSGuptaRKConservation agriculture in cereal systems of south Asia : nutrient management perspectivesKarnataka J Agric Sci201124100105
MaJMaEXuHWheat straw management affects CH 4 and N 2 O emissions from rice fieldsSoil Biol Biochem2009411022102810.1016/j.soilbio.2009.01.024
PathakHJainNBhatiaACarbon footprints of Indian food itemsAgric Ecosyst Environ2010139667310.1016/j.agee.2010.07.002
Khatri-Chhetri A, Aryal JP, Sapkota TB, Khurana R (2016) Economic benefits of climate-smart agricultural practices to smallholder farmers in the indo-Gangetic Plains of India. Curr Sci. doi:10.18520/cs/v110/i7/1251-1256
JuXGuBWuYGallowayJNReducing China’s fertilizer use by increasing farm sizeGlob Environ Chang201641263210.1016/j.gloenvcha.2016.08.005
LinquistBGroenigenKJAdviento-BorbeMAAn agronomic assessment of greenhouse gas emissions from major cereal cropsGlob Chang Biol20121819420910.1111/j.1365-2486.2011.02502.x
BasakRBenefits and costs of nitrogen fertilizer management for climate change mitigation: focus on India and Mexico. CCAFS working paper no. 1612016CopenhagenCGIAR research program on climate change, agriculture and food security (CCAFS)
R Core TeamR: A language and environment for statistical computing2016ViennaR Foundation for Statistical Computingwww.R-project.org
DattaANayakDRRSinhababuDPPAdhyaTKKMethane and nitrous oxide emissions from an integrated rainfed rice-fish farming system of eastern IndiaAgric Ecosyst Environ200912922823710.1016/j.agee.2008.09.003
SapkotaTBMajumdarKJatMLPrecision nutrient management in conservation agriculture based wheat production of Northwest India: profitability, nutrient use efficiency and environmental footprintField Crop Res201415523324410.1016/j.fcr.2013.09.001
MuellerNDWestPCGerberJSA tradeoff frontier for global nitrogen use and cereal productionEnviron Res Lett201495400210.1088/1748-9326/9/5/054002
IPCC (2013) Climate change 2013. The physical science basis. Working group I contribuiton to the fifth assessment report of the intergovernmental panel on climate change. Chapter 8: anthropogenic and natural RAdiative forcing. Intergovernmental panel on climate Chang
SapkotaTBJatMLShankarVTillage, residue and nitrogen management effects on methane and nitrous oxide emission from rice–wheat system of Indian northwest indo-Gangetic PlainsJ Integr Environ Sci20151211610.1080/1943815X.2015.1110181
KeilAD’souzaAMcDonaldAZero-tillage as a pathway for sustainable wheat intensification in the eastern indo-Gangetic Plains: does it work in farmers’ fields?Food Secur20157983100110.1007/s12571-015-0492-3
Ge M, Friedrich J, Damassa T (2014). 6 graphs explains the world’s top 10 emitters. https://wri.org/blog/2014/11/6-graphs-explain-world's-top-10-emitters
Saharawat YS, Singh B, Malik RK, et al (2010) Evaluation of alternative tillage and crop establishment methods in a rice–wheat rotation in North Western IGP. F Crop Res 116:260–267. doi:10.1016/j.fcr.2010.01.003
SmithPPowlsonDGlendiningMSmithJOPotential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experimentsGlob Chang Biol19973677910.1046/j.1365-2486.1997.00055.x
Verge X, de Kimpe C, Desjardins, R (2007) Agricultural production, greenhouse gas emissions and mitigation potential. Agric Forest Meteorol 142:255–269
Ecoinvent CenterEcoinvent data v2.0. Ecoinvent report No. 1–252007DubendorfSwiss Centre of Life Cycle Inventories
DobermannAFairhurstTHRice straw managementBetter Crop Int200216711
PowlsonDSStirlingCMThierfelderCDoes conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems?Agric Ecosyst Environ201622016417410.1016/j.agee.2016.01.005
Godfray H, Muir J, Beddington JR, et al (2010) Food Security: the challenge of feeding 9 billion people
ShangQYangXGaoCNet annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experimentsGlob Chang Biol2011172196221010.1111/j.1365-2486.2010.02374.x
JatRKSapkotaTBSinghRGSeven years of conservation agriculture in a rice–wheat rotation of eastern Gangetic Plains of South Asia: yield trends and economic profitabilityField Crop Res201416419921010.1016/j.fcr.2014.04.015
CCAFSMitigating direct agriculture emissions. CGIAR research program on agriculture2015CopenhagenClimate Change and Food Security
BouwmanAFBoumansLJMBatjesNHEmissions of N2O and NO from fertilized fields: summary of available measurement dataGlob Biogeochem Cycles2002161058
ShcherbakIMillarNRobertsonGPGlobal metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogenProc Natl Acad Sci U S A20141119199920410.1073/pnas.1322434111
TandonHLSFertilizers, organic manures, recyclable wastes and biofertilizers1994New DelhiFertilizer Development and Consultantcy Organization (FDCO)
Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer Science & Business Media
OgleSBreidtFJPaustianKAgricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regionsBiogeochemistry2005728712110.1007/s10533-004-0360-2LA–English
Richards M, Bruun TB, Campbell BM, et al (2016) How countries plan to address agricultural adaptation and mitigation: an analysis of intended nationally determined contributions. CCAFS dataset
SapkotaTBJatMLAryalJPClimate change adaptation, greenhouse gas mitigation and economic profitability of conservation agriculture: some examples from cereal systems of indo-Gangetic PlainsJ Integr Agric2015141524153310.1016/S2095-3119(15)61093-0
Butterbach-bahlKPapenHRennenbergHImpact of gas transport through rice cultivars on methane emission from rice paddy fieldsPlant Cell Environ1997201175118310.1046/j.1365-3040.1997.d01-142.x
ZhangACuiLPanGEffect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from tai Lake plain, ChinaAgric Ecosyst Environ201013946947510.1016/j.agee.2010.09.003
BhatiaAPathakHJainNGlobal warming potential of manure amended soils under rice–wheat system in the indo-Gangetic plainsAtmos Environ2005396976698410.1016/j.atmosenv.2005.07.052
INCCAIndia: greenhouse gas emissions 2007. Indian network for climate change assessment2010Government of IndiaMinistry of Environment and Forests
CuiZLWuLYeYLTrade-offs between high yields and greenhouse gas emissions in irrigation wheat cropland in ChinaBiogeosciences2014112287229410.5194/bg-11-2287-2014
Tubiello FN, Salvatore M, Cóndor Golec RD, et al (2014) Agriculture, Forestry and Other Land Use Emissions by Sources and Removals by Sinks. FAO - e Food Agric Organ United Nations 2:4–89. doi:10.13140/2.1.4143.4245
Aryal JP, Farnworth CR, Khurana R, et al (2014) Gender dimensions of climate change adaptation through cliamte smart agricultural practices in India. In: Innovation in Indian agriculture: ways forward. Institute of Economic Growth (IEG), New Delhi, and international food policy research institute (IFPRI), Washington DC, New Delhi, India
LadhaJKTirol-PadreAReddyCKGlobal nitrogen budgets in cereals: a 50-year assessment for maize, rice, and wheat production systemsSci Rep201661935510.1038/srep19355
BoatengKObengGMensahERice cultivation and greenhouse gas emissions: a review and conceptual framework with reference to GhanaAgriculture20177710.3390/agriculture7010007
ShangguanWDaiYDuanQA global soil data set for earth system modelingJ Adv Model Earth Syst2014624926310.1002/2013MS000293
SmithPBustamanteMAhammadHEdenhoferOPichs-MadrugaRSokonaYAgriculture, forestry and other land use (AFOLU)Climate change 2014: mitigation of climate change, contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change2014CambridgeCambridge University Press
TittonellPGillerKEWhen yield gaps are poverty traps: the paradigm of ecological intensification in African smallholder agricultureField Crop Res2013143769010.1016/j.fcr.2012.10.007
MottalebKAKrupnikTJErensteinOFactors associated with small-scale agricultural machinery adoption in Bangladesh: census findingsJ Rural Stud20164615516810.1016/j.jrurstud.2016.06.012
Feliciano D, Nayak D, Vetter SH, Hillier J (2016) CCAFS Mitigation Options Tool. www.ccafs.cgiar.org
FAO/IFAGlobal estimates of gaseous emissions of NH3, NO and N2O from agricultural land2001RomeFAO and IFA
MallaGBhatiaAPathakHMitigating nitrous oxide and methane emissions from soil in rice–wheat system of the indo-Gangetic plain with nitrification and urease inhibitorsChemosphere20055814114710.1016/j.chemosphere.2004.09.003
CamargoGGTRyanMRRichardTOMLEnergy use and greenhouse gas emissions from crop production using the farm energy analysis toolBioscience20136326327310.1525/bio.2013.63.4.6
ZouJHuangYJiangJA 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: effects of water regime, crop residue, and fertilizer applicationGlob Biogeochem Cycles2005191910.1029/2004GB002401
Wollenberg E, Richards M, Smith P et al (2016) Reducing emissions from agriculture to meet the 2°C target. Glob Chang Biol 1–6. doi:10.1111/gcb.13340
BellarbyJStirlingCVetterSHIdentifying secure and low carbon food production practices: a case study in Kenya and EthiopiaAgric Ecosyst Environ201419713714610.1016/j.agee.2014.07.015
IPCCEgglestonSBuendiaLMiwaKIPCC guidelines for national greenhouse gas inventoriesIPCC guidelines for national greenhouse gas inventories2006KanagawaInstitute for Global Environmental Strategies
VetterSHSapkotaTBHillierJGreenhouse gas emissions from agricultural food productio
AF Bouwman (9752_CR6) 2002; 16
J Bellarby (9752_CR3) 2014; 197
9752_CR21
ZL Cui (9752_CR11) 2014; 11
P Tittonell (9752_CR49) 2013; 143
Q Shang (9752_CR43) 2011; 17
9752_CR27
X Ju (9752_CR24) 2016; 41
R Basak (9752_CR2) 2016
P Smith (9752_CR47) 2014
TB Sapkota (9752_CR40) 2014; 155
GGT Camargo (9752_CR8) 2013; 63
ML Jat (9752_CR22) 2011; 24
9752_CR53
9752_CR54
9752_CR55
A Bhatia (9752_CR4) 2005; 39
9752_CR16
9752_CR17
9752_CR18
INCCA (9752_CR19) 2010
DS Powlson (9752_CR36) 2016; 220
K Butterbach-bahl (9752_CR7) 1997; 20
J Ma (9752_CR30) 2009; 41
CA Cameron (9752_CR9) 2009
9752_CR50
9752_CR51
TB Sapkota (9752_CR41) 2015; 14
A Zhang (9752_CR56) 2010; 139
R Core Team (9752_CR37) 2016
A Keil (9752_CR25) 2015; 7
SH Vetter (9752_CR52) 2017; 237
FAO/IFA (9752_CR15) 2001
A Dobermann (9752_CR13) 2002; 16
H Pathak (9752_CR35) 2010; 139
ND Mueller (9752_CR33) 2014; 9
IPCC (9752_CR20) 2006
K Boateng (9752_CR5) 2017; 7
S Ogle (9752_CR34) 2005; 72
KA Mottaleb (9752_CR32) 2016; 46
JK Ladha (9752_CR28) 2016; 6
TB Sapkota (9752_CR42) 2015; 12
RK Jat (9752_CR23) 2014; 164
CCAFS (9752_CR10) 2015
W Shangguan (9752_CR44) 2014; 6
9752_CR1
G Malla (9752_CR31) 2005; 58
9752_CR38
9752_CR39
S Khan (9752_CR26) 2009; 34
HLS Tandon (9752_CR48) 1994
J Zou (9752_CR57) 2005; 19
Ecoinvent Center (9752_CR14) 2007
I Shcherbak (9752_CR45) 2014; 111
A Datta (9752_CR12) 2009; 129
B Linquist (9752_CR29) 2012; 18
P Smith (9752_CR46) 1997; 3
References_xml – reference: PathakHJainNBhatiaACarbon footprints of Indian food itemsAgric Ecosyst Environ2010139667310.1016/j.agee.2010.07.002
– reference: DobermannAFairhurstTHRice straw managementBetter Crop Int200216711
– reference: KhanSKhanMAHanjraMAMuJPathways to reduce the environmental footprints of water and energy inputs in food productionFood Policy20093414114910.1016/j.foodpol.2008.11.002
– reference: TittonellPGillerKEWhen yield gaps are poverty traps: the paradigm of ecological intensification in African smallholder agricultureField Crop Res2013143769010.1016/j.fcr.2012.10.007
– reference: CCAFSMitigating direct agriculture emissions. CGIAR research program on agriculture2015CopenhagenClimate Change and Food Security
– reference: ShangguanWDaiYDuanQA global soil data set for earth system modelingJ Adv Model Earth Syst2014624926310.1002/2013MS000293
– reference: FAO/IFAGlobal estimates of gaseous emissions of NH3, NO and N2O from agricultural land2001RomeFAO and IFA
– reference: CamargoGGTRyanMRRichardTOMLEnergy use and greenhouse gas emissions from crop production using the farm energy analysis toolBioscience20136326327310.1525/bio.2013.63.4.6
– reference: CuiZLWuLYeYLTrade-offs between high yields and greenhouse gas emissions in irrigation wheat cropland in ChinaBiogeosciences2014112287229410.5194/bg-11-2287-2014
– reference: SmithPPowlsonDGlendiningMSmithJOPotential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experimentsGlob Chang Biol19973677910.1046/j.1365-2486.1997.00055.x
– reference: MottalebKAKrupnikTJErensteinOFactors associated with small-scale agricultural machinery adoption in Bangladesh: census findingsJ Rural Stud20164615516810.1016/j.jrurstud.2016.06.012
– reference: Saharawat YS, Singh B, Malik RK, et al (2010) Evaluation of alternative tillage and crop establishment methods in a rice–wheat rotation in North Western IGP. F Crop Res 116:260–267. doi:10.1016/j.fcr.2010.01.003
– reference: CameronCATrivediPKMicroeconometrics using Stata2009TexasStata Press
– reference: ZouJHuangYJiangJA 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: effects of water regime, crop residue, and fertilizer applicationGlob Biogeochem Cycles2005191910.1029/2004GB002401
– reference: KeilAD’souzaAMcDonaldAZero-tillage as a pathway for sustainable wheat intensification in the eastern indo-Gangetic Plains: does it work in farmers’ fields?Food Secur20157983100110.1007/s12571-015-0492-3
– reference: ShangQYangXGaoCNet annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experimentsGlob Chang Biol2011172196221010.1111/j.1365-2486.2010.02374.x
– reference: BasakRBenefits and costs of nitrogen fertilizer management for climate change mitigation: focus on India and Mexico. CCAFS working paper no. 1612016CopenhagenCGIAR research program on climate change, agriculture and food security (CCAFS)
– reference: Richards M, Bruun TB, Campbell BM, et al (2016) How countries plan to address agricultural adaptation and mitigation: an analysis of intended nationally determined contributions. CCAFS dataset
– reference: LinquistBGroenigenKJAdviento-BorbeMAAn agronomic assessment of greenhouse gas emissions from major cereal cropsGlob Chang Biol20121819420910.1111/j.1365-2486.2011.02502.x
– reference: TandonHLSFertilizers, organic manures, recyclable wastes and biofertilizers1994New DelhiFertilizer Development and Consultantcy Organization (FDCO)
– reference: Ecoinvent CenterEcoinvent data v2.0. Ecoinvent report No. 1–252007DubendorfSwiss Centre of Life Cycle Inventories
– reference: SmithPBustamanteMAhammadHEdenhoferOPichs-MadrugaRSokonaYAgriculture, forestry and other land use (AFOLU)Climate change 2014: mitigation of climate change, contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change2014CambridgeCambridge University Press
– reference: SapkotaTBMajumdarKJatMLPrecision nutrient management in conservation agriculture based wheat production of Northwest India: profitability, nutrient use efficiency and environmental footprintField Crop Res201415523324410.1016/j.fcr.2013.09.001
– reference: Khatri-Chhetri A, Aryal JP, Sapkota TB, Khurana R (2016) Economic benefits of climate-smart agricultural practices to smallholder farmers in the indo-Gangetic Plains of India. Curr Sci. doi:10.18520/cs/v110/i7/1251-1256
– reference: JatRKSapkotaTBSinghRGSeven years of conservation agriculture in a rice–wheat rotation of eastern Gangetic Plains of South Asia: yield trends and economic profitabilityField Crop Res201416419921010.1016/j.fcr.2014.04.015
– reference: Ge M, Friedrich J, Damassa T (2014). 6 graphs explains the world’s top 10 emitters. https://wri.org/blog/2014/11/6-graphs-explain-world's-top-10-emitters
– reference: VetterSHSapkotaTBHillierJGreenhouse gas emissions from agricultural food production to supply Indian diets: implications for climate change mitigationAgric Ecosyst Environ201723723424110.1016/j.agee.2016.12.024
– reference: MallaGBhatiaAPathakHMitigating nitrous oxide and methane emissions from soil in rice–wheat system of the indo-Gangetic plain with nitrification and urease inhibitorsChemosphere20055814114710.1016/j.chemosphere.2004.09.003
– reference: SapkotaTBJatMLShankarVTillage, residue and nitrogen management effects on methane and nitrous oxide emission from rice–wheat system of Indian northwest indo-Gangetic PlainsJ Integr Environ Sci20151211610.1080/1943815X.2015.1110181
– reference: OgleSBreidtFJPaustianKAgricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regionsBiogeochemistry2005728712110.1007/s10533-004-0360-2LA–English
– reference: Tubiello FN, Salvatore M, Cóndor Golec RD, et al (2014) Agriculture, Forestry and Other Land Use Emissions by Sources and Removals by Sinks. FAO - e Food Agric Organ United Nations 2:4–89. doi:10.13140/2.1.4143.4245
– reference: R Core TeamR: A language and environment for statistical computing2016ViennaR Foundation for Statistical Computingwww.R-project.org
– reference: IPCC (2013) Climate change 2013. The physical science basis. Working group I contribuiton to the fifth assessment report of the intergovernmental panel on climate change. Chapter 8: anthropogenic and natural RAdiative forcing. Intergovernmental panel on climate Chang
– reference: MaJMaEXuHWheat straw management affects CH 4 and N 2 O emissions from rice fieldsSoil Biol Biochem2009411022102810.1016/j.soilbio.2009.01.024
– reference: BellarbyJStirlingCVetterSHIdentifying secure and low carbon food production practices: a case study in Kenya and EthiopiaAgric Ecosyst Environ201419713714610.1016/j.agee.2014.07.015
– reference: SapkotaTBJatMLAryalJPClimate change adaptation, greenhouse gas mitigation and economic profitability of conservation agriculture: some examples from cereal systems of indo-Gangetic PlainsJ Integr Agric2015141524153310.1016/S2095-3119(15)61093-0
– reference: BouwmanAFBoumansLJMBatjesNHEmissions of N2O and NO from fertilized fields: summary of available measurement dataGlob Biogeochem Cycles2002161058
– reference: JuXGuBWuYGallowayJNReducing China’s fertilizer use by increasing farm sizeGlob Environ Chang201641263210.1016/j.gloenvcha.2016.08.005
– reference: Butterbach-bahlKPapenHRennenbergHImpact of gas transport through rice cultivars on methane emission from rice paddy fieldsPlant Cell Environ1997201175118310.1046/j.1365-3040.1997.d01-142.x
– reference: PowlsonDSStirlingCMThierfelderCDoes conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems?Agric Ecosyst Environ201622016417410.1016/j.agee.2016.01.005
– reference: BhatiaAPathakHJainNGlobal warming potential of manure amended soils under rice–wheat system in the indo-Gangetic plainsAtmos Environ2005396976698410.1016/j.atmosenv.2005.07.052
– reference: BoatengKObengGMensahERice cultivation and greenhouse gas emissions: a review and conceptual framework with reference to GhanaAgriculture20177710.3390/agriculture7010007
– reference: ShcherbakIMillarNRobertsonGPGlobal metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogenProc Natl Acad Sci U S A20141119199920410.1073/pnas.1322434111
– reference: JatMLSaharawatYSGuptaRKConservation agriculture in cereal systems of south Asia : nutrient management perspectivesKarnataka J Agric Sci201124100105
– reference: INCCAIndia: greenhouse gas emissions 2007. Indian network for climate change assessment2010Government of IndiaMinistry of Environment and Forests
– reference: Wassmann R, Lantin RS, Neue HU, et al (2000) Characterization of methane emissions from rice fields in Asia. III . Mitigation options and future research needs. 23–36
– reference: IPCCEgglestonSBuendiaLMiwaKIPCC guidelines for national greenhouse gas inventoriesIPCC guidelines for national greenhouse gas inventories2006KanagawaInstitute for Global Environmental Strategies
– reference: Verge X, de Kimpe C, Desjardins, R (2007) Agricultural production, greenhouse gas emissions and mitigation potential. Agric Forest Meteorol 142:255–269
– reference: MuellerNDWestPCGerberJSA tradeoff frontier for global nitrogen use and cereal productionEnviron Res Lett201495400210.1088/1748-9326/9/5/054002
– reference: Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer Science & Business Media
– reference: Wollenberg E, Richards M, Smith P et al (2016) Reducing emissions from agriculture to meet the 2°C target. Glob Chang Biol 1–6. doi:10.1111/gcb.13340
– reference: DattaANayakDRRSinhababuDPPAdhyaTKKMethane and nitrous oxide emissions from an integrated rainfed rice-fish farming system of eastern IndiaAgric Ecosyst Environ200912922823710.1016/j.agee.2008.09.003
– reference: Aryal JP, Farnworth CR, Khurana R, et al (2014) Gender dimensions of climate change adaptation through cliamte smart agricultural practices in India. In: Innovation in Indian agriculture: ways forward. Institute of Economic Growth (IEG), New Delhi, and international food policy research institute (IFPRI), Washington DC, New Delhi, India
– reference: Feliciano D, Nayak D, Vetter SH, Hillier J (2016) CCAFS Mitigation Options Tool. www.ccafs.cgiar.org
– reference: Godfray H, Muir J, Beddington JR, et al (2010) Food Security: the challenge of feeding 9 billion people
– reference: ZhangACuiLPanGEffect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from tai Lake plain, ChinaAgric Ecosyst Environ201013946947510.1016/j.agee.2010.09.003
– reference: LadhaJKTirol-PadreAReddyCKGlobal nitrogen budgets in cereals: a 50-year assessment for maize, rice, and wheat production systemsSci Rep201661935510.1038/srep19355
– ident: 9752_CR18
  doi: 10.1126/science.1185383
– volume: 39
  start-page: 6976
  year: 2005
  ident: 9752_CR4
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2005.07.052
– volume-title: Fertilizers, organic manures, recyclable wastes and biofertilizers
  year: 1994
  ident: 9752_CR48
– ident: 9752_CR50
  doi: 10.13140/2.1.4143.4245
– volume: 12
  start-page: 1
  year: 2015
  ident: 9752_CR42
  publication-title: J Integr Environ Sci
  doi: 10.1080/1943815X.2015.1110181
– volume-title: Mitigating direct agriculture emissions. CGIAR research program on agriculture
  year: 2015
  ident: 9752_CR10
– volume: 164
  start-page: 199
  year: 2014
  ident: 9752_CR23
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2014.04.015
– ident: 9752_CR53
– volume: 197
  start-page: 137
  year: 2014
  ident: 9752_CR3
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2014.07.015
– volume: 41
  start-page: 1022
  year: 2009
  ident: 9752_CR30
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2009.01.024
– volume: 237
  start-page: 234
  year: 2017
  ident: 9752_CR52
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2016.12.024
– volume: 34
  start-page: 141
  year: 2009
  ident: 9752_CR26
  publication-title: Food Policy
  doi: 10.1016/j.foodpol.2008.11.002
– volume: 3
  start-page: 67
  year: 1997
  ident: 9752_CR46
  publication-title: Glob Chang Biol
  doi: 10.1046/j.1365-2486.1997.00055.x
– ident: 9752_CR54
  doi: 10.1007/978-0-387-98141-3
– ident: 9752_CR39
  doi: 10.1016/j.fcr.2010.01.003
– volume: 139
  start-page: 469
  year: 2010
  ident: 9752_CR56
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2010.09.003
– volume: 24
  start-page: 100
  year: 2011
  ident: 9752_CR22
  publication-title: Karnataka J Agric Sci
– volume: 72
  start-page: 87
  year: 2005
  ident: 9752_CR34
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-004-0360-2
– volume: 20
  start-page: 1175
  year: 1997
  ident: 9752_CR7
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.1997.d01-142.x
– ident: 9752_CR21
– volume: 7
  start-page: 7
  year: 2017
  ident: 9752_CR5
  publication-title: Agriculture
  doi: 10.3390/agriculture7010007
– volume: 14
  start-page: 1524
  year: 2015
  ident: 9752_CR41
  publication-title: J Integr Agric
  doi: 10.1016/S2095-3119(15)61093-0
– volume: 6
  start-page: 19355
  year: 2016
  ident: 9752_CR28
  publication-title: Sci Rep
  doi: 10.1038/srep19355
– volume: 46
  start-page: 155
  year: 2016
  ident: 9752_CR32
  publication-title: J Rural Stud
  doi: 10.1016/j.jrurstud.2016.06.012
– volume: 155
  start-page: 233
  year: 2014
  ident: 9752_CR40
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2013.09.001
– ident: 9752_CR17
– volume: 63
  start-page: 263
  year: 2013
  ident: 9752_CR8
  publication-title: Bioscience
  doi: 10.1525/bio.2013.63.4.6
– volume: 41
  start-page: 26
  year: 2016
  ident: 9752_CR24
  publication-title: Glob Environ Chang
  doi: 10.1016/j.gloenvcha.2016.08.005
– ident: 9752_CR38
– volume-title: Microeconometrics using Stata
  year: 2009
  ident: 9752_CR9
– volume: 19
  start-page: 1
  year: 2005
  ident: 9752_CR57
  publication-title: Glob Biogeochem Cycles
  doi: 10.1029/2004GB002401
– volume: 111
  start-page: 9199
  year: 2014
  ident: 9752_CR45
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1322434111
– volume-title: Climate change 2014: mitigation of climate change, contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change
  year: 2014
  ident: 9752_CR47
– volume-title: Global estimates of gaseous emissions of NH3, NO and N2O from agricultural land
  year: 2001
  ident: 9752_CR15
– ident: 9752_CR51
  doi: 10.1016/j.agrformet.2006.06.011
– ident: 9752_CR27
  doi: 10.18520/cs/v110/i7/1251-1256
– volume: 143
  start-page: 76
  year: 2013
  ident: 9752_CR49
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2012.10.007
– volume-title: Ecoinvent data v2.0. Ecoinvent report No. 1–25
  year: 2007
  ident: 9752_CR14
– volume: 16
  start-page: 1058
  year: 2002
  ident: 9752_CR6
  publication-title: Glob Biogeochem Cycles
  doi: 10.1029/2001GB001811
– volume: 17
  start-page: 2196
  year: 2011
  ident: 9752_CR43
  publication-title: Glob Chang Biol
  doi: 10.1111/j.1365-2486.2010.02374.x
– volume: 6
  start-page: 249
  year: 2014
  ident: 9752_CR44
  publication-title: J Adv Model Earth Syst
  doi: 10.1002/2013MS000293
– volume-title: India: greenhouse gas emissions 2007. Indian network for climate change assessment
  year: 2010
  ident: 9752_CR19
– volume: 58
  start-page: 141
  year: 2005
  ident: 9752_CR31
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2004.09.003
– ident: 9752_CR16
– ident: 9752_CR1
– volume-title: R: A language and environment for statistical computing
  year: 2016
  ident: 9752_CR37
– volume: 129
  start-page: 228
  year: 2009
  ident: 9752_CR12
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2008.09.003
– volume-title: Benefits and costs of nitrogen fertilizer management for climate change mitigation: focus on India and Mexico. CCAFS working paper no. 161
  year: 2016
  ident: 9752_CR2
– volume: 139
  start-page: 66
  year: 2010
  ident: 9752_CR35
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2010.07.002
– volume: 18
  start-page: 194
  year: 2012
  ident: 9752_CR29
  publication-title: Glob Chang Biol
  doi: 10.1111/j.1365-2486.2011.02502.x
– volume: 9
  start-page: 54002
  year: 2014
  ident: 9752_CR33
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/9/5/054002
– volume-title: IPCC guidelines for national greenhouse gas inventories
  year: 2006
  ident: 9752_CR20
– volume: 7
  start-page: 983
  year: 2015
  ident: 9752_CR25
  publication-title: Food Secur
  doi: 10.1007/s12571-015-0492-3
– ident: 9752_CR55
  doi: 10.1111/gcb.13340
– volume: 11
  start-page: 2287
  year: 2014
  ident: 9752_CR11
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-2287-2014
– volume: 16
  start-page: 7
  year: 2002
  ident: 9752_CR13
  publication-title: Better Crop Int
– volume: 220
  start-page: 164
  year: 2016
  ident: 9752_CR36
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2016.01.005
SSID ssj0003151
Score 2.330151
Snippet Increasing agricultural production to meet the growing demand for food whilst reducing agricultural greenhouse gas (GHG) emissions is the major challenge under...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 621
SubjectTerms Access to information
Agricultural practices
Agricultural production
Atmospheric Sciences
Climate adaptation
Climate change
Climate change adaptation
Climate Change Management and Policy
Crop yield
Earth and Environmental Science
Earth Sciences
Econometric models
Economic analysis
Economic factors
Economic models
Economics
education
Emission
Emissions
Environmental Management
Food security
Gender
Greenhouse effect
greenhouse gas emissions
Greenhouse gases
Impact analysis
India
Indo-Gangetic Plain
Information dissemination
issues and policy
Management
manure spreading
Mitigation
nitrogen
Original
Original Article
production technology
Security
Socioeconomic factors
Socioeconomics
Tillage
Training
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB-sPrQgUm3VWCtb6FPLQnaTTTZPYuVEhEopCr6FzWaPHhy505yI_70z2U2Oq3iPYWchyczOzG92PgC-S6vqSjvFnZQIUDIneGWzmotaZoiHhBSGipN_X2eXt-nVnboLAbc2pFX2OrFT1PXMUowcQbpQOdl7dTq_5zQ1im5XwwiNd7CFKlgj-Nr6Nbr-83fQxYlQHnJpwdE4Zf29Zlc8h7aV0i5zXuRKcrFqmV65m6-zJv-7Ou0s0sVH2AmuJDvzvN-FDdfswfu-0rjdg_3RsooNCcMxxoVtH6xjvgbpE9z4ct2u5IlRA2P-TIltbDp74jQPjiJqjGYXP5nnlqGby9BtZNahwzllc98zlkgmDetG8rGzdmI-w-3F6Ob8kodxC9yqOFlwYUw8ttLKwqZFmteptqoYI3wriiqXaR4Lm8nUIb4SZiytM-hZISc1AqqixnOc7MNmM2vcITDlrEBkZFxsdFrhupbOjmvkkExQKEwEcf-rSxt6kdNIjGm57KJM3CmROyVxpxQR_Bi2zH0jjnXExz3_ynAm23IpQRF8G5bxJ9IViWnc7JFo0ACgSividTSI8bRG6x_BgReJ4Y0SihChUxtBviIsAwF1815daSb_uq7eGTnPAnf-7MVq-epvfujR-g_9Ah_wQftMo2PYXDw8uq_oRC2qk3BSXgBmvxg5
  priority: 102
  providerName: ProQuest
Title Identifying high-yield low-emission pathways for the cereal production in South Asia
URI https://link.springer.com/article/10.1007/s11027-017-9752-1
https://www.ncbi.nlm.nih.gov/pubmed/30093835
https://www.proquest.com/docview/2015715455
https://www.proquest.com/docview/2053888090
https://www.proquest.com/docview/2087588413
https://pubmed.ncbi.nlm.nih.gov/PMC6054015
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED669mUwytaum7cuaNCnDoElW7b8mIRkZWVhjAbaJyPLCgsEp8wppf997yzbIetW2JMfdDK2TtJ9n3Q_AM6kVWWhneJOSiQoiRO8sEnJRSkT5ENCCkPByd9nycU8_natrts47rrzdu-uJJudehvshraQ3CRTnqVKcqQ8B4qoO07iuRz2228klGdZWnC0R0l3lfm3V-waoycI86mj5B-3pY0Rmr6GwxY9sqFX9xvYc9URnEy2wWrY2K7W-ghe-TM55kONjuHKR-U2kU2M8hTzB_JfY6v1Paeyb3RwxqhE8b15qBmiWYbokFmHuHLFbn1qWBJZVqypvMeG9dK8hfl0cjW-4G1VBW5VGG24MCZcWGllZuMsTstYW5UtkKVlWZHKOA2FTWTskEYJs5DWGQRQqDCNvCkrcblGJ7BfrSv3HphyViABMi40Oi6wXUtnFyWSMBmh7k0AYTe8uW1TjlPli1W-TZZMGslRIzlpJBcBnPddbn2-jeeETzud5e3Sq3NENColYKgC-Nw34yDSTYip3PqOZHCfx50rC5-TQSqnNRr5AN75adB_UUQHQYhdA0h3JkgvQEm7d1uq5a8meXdCGFlgzy_dVNp--j9_9MN_SX-ElzgI2vsXncL-5ved-4TQaVMM4GA4HY1m9Px6cznB52gy-_FzAC_GyXjQLKRHuYsVMQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7mFICMFgEBhgJHgBWYqdOB8PCA3o1LGtQqiT9hYcxxWVqrRbOlX9p_gbuYuTVGWib3u-S-Tkznf3s-8D4J00qsgTq7iVEgFKZAXPTVRwUcgI8ZCQQlNx8vkwGlyE3y_V5Q78aWthKK2ytYm1oS5mhs7IEaQLFZO_V5_nV5ymRtHtajtCw6nFqV0tEbJVn06-oXzfS3ncH30d8GaqADfKDxZcaO2PjTQyNWEaxkWYGJWOEaWkaR7LMPaFiWRoEUYIPZbGagwgcMEJ4oa0QHUN8L33YDcMEMr0YPdLf_jjZ2f7A6EcxEsER2cYtfeodbEe-nJK84x5GivJxaYnvBXe3s7S_OeqtvaAx4_gYRO6siOna49hx5b7sNdWNlf7cNBfV80hY2M2kPDAHQ4yV_P0BEauPLgusWLUMJmvKJGOTWdLTvPn6ASP0azkpV5VDMNqhmEqMxYD3Cmbux61xDIpWT0CkB1VE_0ULu5EEAfQK2elfQ5MWSMQiWnr6yTMkZ5Ia8YFokEZoBJqD_z2V2em6X1OIzim2bprM0knQ-lkJJ1MePChe2TuGn9sYz5s5Zc1NqDK1hrrwduOjD-RrmR0aWc3xIMOB01o6m_jQUyZJBhtePDMqUS3ooBOpDCI9iDeUJaOgbqHb1LKye-6i3hEwbrAJz-2arVe-n8_9MX2D30De4PR-Vl2djI8fQn3kZC4LKdD6C2ub-wrDOAW-etm1zD4ddcb9S8WKlN2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgIkhGAwFhhgJHgBWcROnI8HhAZrtTGoJrRJe8scxxGVqrSjnar-a_x13MVJqjLRt73Wl8rJnX2_n30fAG-lUUWeWMWtlEhQIit4bqKCi0JGyIeEFJqSk38Mo6Pz8NuFutiCP20uDIVVtntivVEXE0Nn5EjShYrJ36uPZRMWcXo4-Dy94tRBim5a23YazkRO7HKB9G326fgQdf1OykH_7OsRbzoMcKP8YM6F1n5ppJGpCdMwLsLEqLRExpKmeSzD2BcmkqFFSiF0KY3VCCZw8glyiLRA0w3wf-_AdoysyO_B9pf-8PRn5wcCoRzdSwRHxxi1d6p14h76dQr5jHkaK8nFule8AXVvRmz-c21be8PBI3jYwFh24OzuMWzZagfutVnOsx3Y7a8y6FCw2UJw4IE7KGQu_-kJnLlU4TrdilHxZL6koDo2niw49aKj0zxGfZMXejljCLEZQlZmLILdMZu6erUkMqpY3Q6QHcxG-imc34oidqFXTSq7B0xZI5CVaevrJMxxPJHWlAUyQxmgQWoP_PZTZ6apg07tOMbZqoIzaSdD7WSknUx48L57ZOqKgGwS3m_1lzX7wSxbWa8Hb7ph_Ih0PaMrO7kmGXQ-uJ2m_iYZ5JdJgsjDg2fOJLoZBXQ6hYDag3jNWDoBqiS-PlKNftUVxSMC7gKf_NCa1Wrq_33R55tf9DXcxQWafT8enryA-_h74gKe9qE3_31tXyKWm-evmkXD4PK21-lfJwdXqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+high-yield+low-emission+pathways+for+the+cereal+production+in+South+Asia&rft.jtitle=Mitigation+and+adaptation+strategies+for+global+change&rft.au=Sapkota%2C+TekB&rft.au=Aryal%2C+JeetendraP&rft.au=Khatri-Chhetri%2C+Arun&rft.au=Shirsath%2C+PareshB&rft.date=2018-04-01&rft.issn=1381-2386&rft.volume=23&rft.issue=4+p.621-641&rft.spage=621&rft.epage=641&rft_id=info:doi/10.1007%2Fs11027-017-9752-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1381-2386&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1381-2386&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1381-2386&client=summon