Identifying high-yield low-emission pathways for the cereal production in South Asia
Increasing agricultural production to meet the growing demand for food whilst reducing agricultural greenhouse gas (GHG) emissions is the major challenge under the changing climate. To develop long-term policies that address these challenges, strategies are needed to identify high-yield low-emission...
Saved in:
Published in | Mitigation and adaptation strategies for global change Vol. 23; no. 4; pp. 621 - 641 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.04.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1381-2386 1573-1596 1573-1596 |
DOI | 10.1007/s11027-017-9752-1 |
Cover
Loading…
Abstract | Increasing agricultural production to meet the growing demand for food whilst reducing agricultural greenhouse gas (GHG) emissions is the major challenge under the changing climate. To develop long-term policies that address these challenges, strategies are needed to identify high-yield low-emission pathways for particular agricultural production systems. In this paper, we used bio-physical and socio-economic models to analyze the impact of different management practices on crop yield and emissions in two contrasting agricultural production systems of the Indo-Gangetic Plain (IGP) of India. The result revealed the importance of considering both management and socio-economic factors in the development of high-yield low-emission pathways for cereal production systems. Nitrogen use rate and frequency of application, tillage and residue management and manure application significantly affected GHG emissions from the cereal systems. In addition, various socio-economic factors such as gender, level of education, training on climate change adaptation and mitigation and access to information significantly influenced the adoption of technologies contributing to high-yield low-emission pathways. We discussed the policy implications of these findings in the context of food security and climate change. |
---|---|
AbstractList | Increasing agricultural production to meet the growing demand for food whilst reducing agricultural greenhouse gas (GHG) emissions is the major challenge under the changing climate. To develop long-term policies that address these challenges, strategies are needed to identify high-yield low-emission pathways for particular agricultural production systems. In this paper, we used bio-physical and socio-economic models to analyze the impact of different management practices on crop yield and emissions in two contrasting agricultural production systems of the Indo-Gangetic Plain (IGP) of India. The result revealed the importance of considering both management and socio-economic factors in the development of high-yield low-emission pathways for cereal production systems. Nitrogen use rate and frequency of application, tillage and residue management and manure application significantly affected GHG emissions from the cereal systems. In addition, various socio-economic factors such as gender, level of education, training on climate change adaptation and mitigation and access to information significantly influenced the adoption of technologies contributing to high-yield low-emission pathways. We discussed the policy implications of these findings in the context of food security and climate change.Increasing agricultural production to meet the growing demand for food whilst reducing agricultural greenhouse gas (GHG) emissions is the major challenge under the changing climate. To develop long-term policies that address these challenges, strategies are needed to identify high-yield low-emission pathways for particular agricultural production systems. In this paper, we used bio-physical and socio-economic models to analyze the impact of different management practices on crop yield and emissions in two contrasting agricultural production systems of the Indo-Gangetic Plain (IGP) of India. The result revealed the importance of considering both management and socio-economic factors in the development of high-yield low-emission pathways for cereal production systems. Nitrogen use rate and frequency of application, tillage and residue management and manure application significantly affected GHG emissions from the cereal systems. In addition, various socio-economic factors such as gender, level of education, training on climate change adaptation and mitigation and access to information significantly influenced the adoption of technologies contributing to high-yield low-emission pathways. We discussed the policy implications of these findings in the context of food security and climate change. Increasing agricultural production to meet the growing demand for food whilst reducing agricultural greenhouse gas (GHG) emissions is the major challenge under the changing climate. To develop long-term policies that address these challenges, strategies are needed to identify high-yield low-emission pathways for particular agricultural production systems. In this paper, we used bio-physical and socio-economic models to analyze the impact of different management practices on crop yield and emissions in two contrasting agricultural production systems of the Indo-Gangetic Plain (IGP) of India. The result revealed the importance of considering both management and socio-economic factors in the development of high-yield low-emission pathways for cereal production systems. Nitrogen use rate and frequency of application, tillage and residue management and manure application significantly affected GHG emissions from the cereal systems. In addition, various socio-economic factors such as gender, level of education, training on climate change adaptation and mitigation and access to information significantly influenced the adoption of technologies contributing to high-yield low-emission pathways. We discussed the policy implications of these findings in the context of food security and climate change. |
Author | Sapkota, Tek B. Arumugam, Ponraj Aryal, Jeetendra P. Shirsath, Paresh B. Khatri-Chhetri, Arun Stirling, Clare M. |
Author_xml | – sequence: 1 givenname: Tek B. surname: Sapkota fullname: Sapkota, Tek B. email: t.sapkota@cgiar.org organization: International Maize and Wheat Improvement Centre (CIMMYT), NASC complex – sequence: 2 givenname: Jeetendra P. surname: Aryal fullname: Aryal, Jeetendra P. organization: International Maize and Wheat Improvement Centre (CIMMYT) – sequence: 3 givenname: Arun surname: Khatri-Chhetri fullname: Khatri-Chhetri, Arun organization: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Borlaug Institute for South Asia (BISA)/CIMMYT – sequence: 4 givenname: Paresh B. surname: Shirsath fullname: Shirsath, Paresh B. organization: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Borlaug Institute for South Asia (BISA)/CIMMYT – sequence: 5 givenname: Ponraj surname: Arumugam fullname: Arumugam, Ponraj organization: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Borlaug Institute for South Asia (BISA)/CIMMYT – sequence: 6 givenname: Clare M. surname: Stirling fullname: Stirling, Clare M. organization: International Maize and Wheat Improvement Centre (CIMMYT) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30093835$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtrFTEYhoNU7EV_gBsZcNNNar5cJslGKMVqodCFdR3STOZMypzkmMy0nH9vhtPWWlBcJZDn_S55DtFeTNEj9B7ICRAiPxUAQiUmILGWgmJ4hQ5ASIZB6Hav3pkCTJlq99FhKbeEEAYC3qB9RohmiokDdH3R-TiFfhviqhnCasDb4MeuGdM99utQSkix2dhpuLfb0vQpN9PgG-ezt2Ozyamb3bQgITbf0zwNzWkJ9i163dux-HcP5xH6cf7l-uwbvrz6enF2eomdIGzCYC3pHXVUO6657LhyQvecK61vJOWSgGsp99BysD113mqqwToFleh0y9gR-ryru5lv1r5zdZNsR7PJYW3z1iQbzJ8vMQxmle5MSwQnIGqB44cCOf2cfZlMXdn5cbTRp7kYSpQUSnFg_4EKppQimlT04wv0Ns051p-oVPUDgoul94fnwz9N_eimArADXE6lZN8_IUDM4t_s_Jvq3yz-DdSMfJFxYbKLobp_GP-ZpLtkqV3iyuffQ_899At-gcLu |
CitedBy_id | crossref_primary_10_1007_s11027_024_10126_4 crossref_primary_10_3390_su12010195 crossref_primary_10_1016_j_eja_2022_126655 crossref_primary_10_1007_s11356_021_13975_7 crossref_primary_10_1080_03650340_2019_1708332 crossref_primary_10_1111_rode_12670 crossref_primary_10_1080_17583004_2019_1650579 crossref_primary_10_1111_1477_8947_12152 crossref_primary_10_2139_ssrn_4173867 crossref_primary_10_3390_su152316303 crossref_primary_10_1080_01904167_2021_1998522 crossref_primary_10_1080_17583004_2020_1752061 crossref_primary_10_1016_j_fcr_2022_108737 crossref_primary_10_56093_ijas_v90i1_98535 crossref_primary_10_3390_su11061520 crossref_primary_10_1016_j_crsust_2022_100169 crossref_primary_10_1088_1748_9326_ab2f57 crossref_primary_10_1002_jpln_202000371 crossref_primary_10_1016_j_agsy_2023_103620 crossref_primary_10_1080_07352689_2020_1782069 crossref_primary_10_1016_j_agsy_2019_03_002 crossref_primary_10_1080_01904167_2021_2014872 crossref_primary_10_1108_IJCCSM_09_2018_0065 crossref_primary_10_3390_atmos11040394 crossref_primary_10_1016_j_fcr_2021_108328 crossref_primary_10_1016_j_landusepol_2024_107208 crossref_primary_10_20961_stjssa_v17i2_42729 crossref_primary_10_1016_j_ecolmodel_2018_04_008 crossref_primary_10_1007_s42729_020_00277_z |
Cites_doi | 10.1126/science.1185383 10.1016/j.atmosenv.2005.07.052 10.13140/2.1.4143.4245 10.1080/1943815X.2015.1110181 10.1016/j.fcr.2014.04.015 10.1016/j.agee.2014.07.015 10.1016/j.soilbio.2009.01.024 10.1016/j.agee.2016.12.024 10.1016/j.foodpol.2008.11.002 10.1046/j.1365-2486.1997.00055.x 10.1007/978-0-387-98141-3 10.1016/j.fcr.2010.01.003 10.1016/j.agee.2010.09.003 10.1007/s10533-004-0360-2 10.1046/j.1365-3040.1997.d01-142.x 10.3390/agriculture7010007 10.1016/S2095-3119(15)61093-0 10.1038/srep19355 10.1016/j.jrurstud.2016.06.012 10.1016/j.fcr.2013.09.001 10.1525/bio.2013.63.4.6 10.1016/j.gloenvcha.2016.08.005 10.1029/2004GB002401 10.1073/pnas.1322434111 10.1016/j.agrformet.2006.06.011 10.18520/cs/v110/i7/1251-1256 10.1016/j.fcr.2012.10.007 10.1029/2001GB001811 10.1111/j.1365-2486.2010.02374.x 10.1002/2013MS000293 10.1016/j.chemosphere.2004.09.003 10.1016/j.agee.2008.09.003 10.1016/j.agee.2010.07.002 10.1111/j.1365-2486.2011.02502.x 10.1088/1748-9326/9/5/054002 10.1007/s12571-015-0492-3 10.1111/gcb.13340 10.5194/bg-11-2287-2014 10.1016/j.agee.2016.01.005 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Mitigation and Adaptation Strategies for Global Change is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: The Author(s) 2017 – notice: Mitigation and Adaptation Strategies for Global Change is a copyright of Springer, (2017). All Rights Reserved. |
DBID | C6C AAYXX CITATION NPM 3V. 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI BKSAR C1K CCPQU DWQXO F1W FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ L.- L.G M0C M2P PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS PYCSY Q9U SOI 7S9 L.6 7X8 5PM |
DOI | 10.1007/s11027-017-9752-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ABI/INFORM Global Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Business Collection Environmental Science Collection ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Business (Alumni) Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Environmental Sciences Economics Education |
EISSN | 1573-1596 |
EndPage | 641 |
ExternalDocumentID | PMC6054015 30093835 10_1007_s11027_017_9752_1 |
Genre | Journal Article |
GeographicLocations | South Asia Indo-Gangetic Plain India |
GeographicLocations_xml | – name: South Asia – name: Indo-Gangetic Plain – name: India |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 7WY 7XC 88I 8FE 8FH 8FL 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BKSAR BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EIS EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- K60 K6~ KDC KOV KOW L8X LAK LLZTM M0C M2P M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7V Z7Y Z7Z Z81 Z86 Z8P Z8S Z8T Z8U ZMTXR ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM 7ST 7UA 7XB 8FK ABRTQ C1K F1W H97 L.- L.G PKEHL PQEST PQUKI PRINS Q9U SOI 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c503t-1aa0fc2c29c4947d48c59f44899b724701c624e1641af2cea9291ac81489d9633 |
IEDL.DBID | U2A |
ISSN | 1381-2386 1573-1596 |
IngestDate | Thu Aug 21 18:37:06 EDT 2025 Tue Aug 05 11:26:33 EDT 2025 Thu Jul 10 22:29:56 EDT 2025 Fri Jul 25 21:35:55 EDT 2025 Wed Feb 19 02:43:01 EST 2025 Thu Apr 24 22:59:26 EDT 2025 Tue Jul 01 04:12:54 EDT 2025 Fri Feb 21 02:33:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Climate change Cereal systems High-yield low-emission pathway Greenhouse gas emissions |
Language | English |
License | Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c503t-1aa0fc2c29c4947d48c59f44899b724701c624e1641af2cea9291ac81489d9633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://link.springer.com/10.1007/s11027-017-9752-1 |
PMID | 30093835 |
PQID | 2015715455 |
PQPubID | 54623 |
PageCount | 21 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6054015 proquest_miscellaneous_2087588413 proquest_miscellaneous_2053888090 proquest_journals_2015715455 pubmed_primary_30093835 crossref_primary_10_1007_s11027_017_9752_1 crossref_citationtrail_10_1007_s11027_017_9752_1 springer_journals_10_1007_s11027_017_9752_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Netherlands |
PublicationSubtitle | An International Journal Devoted to Scientific, Engineering, Socio-Economic and Policy Responses to Environmental Change |
PublicationTitle | Mitigation and adaptation strategies for global change |
PublicationTitleAbbrev | Mitig Adapt Strateg Glob Change |
PublicationTitleAlternate | Mitig Adapt Strateg Glob Chang |
PublicationYear | 2018 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | CameronCATrivediPKMicroeconometrics using Stata2009TexasStata Press KhanSKhanMAHanjraMAMuJPathways to reduce the environmental footprints of water and energy inputs in food productionFood Policy20093414114910.1016/j.foodpol.2008.11.002 Wassmann R, Lantin RS, Neue HU, et al (2000) Characterization of methane emissions from rice fields in Asia. III . Mitigation options and future research needs. 23–36 JatMLSaharawatYSGuptaRKConservation agriculture in cereal systems of south Asia : nutrient management perspectivesKarnataka J Agric Sci201124100105 MaJMaEXuHWheat straw management affects CH 4 and N 2 O emissions from rice fieldsSoil Biol Biochem2009411022102810.1016/j.soilbio.2009.01.024 PathakHJainNBhatiaACarbon footprints of Indian food itemsAgric Ecosyst Environ2010139667310.1016/j.agee.2010.07.002 Khatri-Chhetri A, Aryal JP, Sapkota TB, Khurana R (2016) Economic benefits of climate-smart agricultural practices to smallholder farmers in the indo-Gangetic Plains of India. Curr Sci. doi:10.18520/cs/v110/i7/1251-1256 JuXGuBWuYGallowayJNReducing China’s fertilizer use by increasing farm sizeGlob Environ Chang201641263210.1016/j.gloenvcha.2016.08.005 LinquistBGroenigenKJAdviento-BorbeMAAn agronomic assessment of greenhouse gas emissions from major cereal cropsGlob Chang Biol20121819420910.1111/j.1365-2486.2011.02502.x BasakRBenefits and costs of nitrogen fertilizer management for climate change mitigation: focus on India and Mexico. CCAFS working paper no. 1612016CopenhagenCGIAR research program on climate change, agriculture and food security (CCAFS) R Core TeamR: A language and environment for statistical computing2016ViennaR Foundation for Statistical Computingwww.R-project.org DattaANayakDRRSinhababuDPPAdhyaTKKMethane and nitrous oxide emissions from an integrated rainfed rice-fish farming system of eastern IndiaAgric Ecosyst Environ200912922823710.1016/j.agee.2008.09.003 SapkotaTBMajumdarKJatMLPrecision nutrient management in conservation agriculture based wheat production of Northwest India: profitability, nutrient use efficiency and environmental footprintField Crop Res201415523324410.1016/j.fcr.2013.09.001 MuellerNDWestPCGerberJSA tradeoff frontier for global nitrogen use and cereal productionEnviron Res Lett201495400210.1088/1748-9326/9/5/054002 IPCC (2013) Climate change 2013. The physical science basis. Working group I contribuiton to the fifth assessment report of the intergovernmental panel on climate change. Chapter 8: anthropogenic and natural RAdiative forcing. Intergovernmental panel on climate Chang SapkotaTBJatMLShankarVTillage, residue and nitrogen management effects on methane and nitrous oxide emission from rice–wheat system of Indian northwest indo-Gangetic PlainsJ Integr Environ Sci20151211610.1080/1943815X.2015.1110181 KeilAD’souzaAMcDonaldAZero-tillage as a pathway for sustainable wheat intensification in the eastern indo-Gangetic Plains: does it work in farmers’ fields?Food Secur20157983100110.1007/s12571-015-0492-3 Ge M, Friedrich J, Damassa T (2014). 6 graphs explains the world’s top 10 emitters. https://wri.org/blog/2014/11/6-graphs-explain-world's-top-10-emitters Saharawat YS, Singh B, Malik RK, et al (2010) Evaluation of alternative tillage and crop establishment methods in a rice–wheat rotation in North Western IGP. F Crop Res 116:260–267. doi:10.1016/j.fcr.2010.01.003 SmithPPowlsonDGlendiningMSmithJOPotential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experimentsGlob Chang Biol19973677910.1046/j.1365-2486.1997.00055.x Verge X, de Kimpe C, Desjardins, R (2007) Agricultural production, greenhouse gas emissions and mitigation potential. Agric Forest Meteorol 142:255–269 Ecoinvent CenterEcoinvent data v2.0. Ecoinvent report No. 1–252007DubendorfSwiss Centre of Life Cycle Inventories DobermannAFairhurstTHRice straw managementBetter Crop Int200216711 PowlsonDSStirlingCMThierfelderCDoes conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems?Agric Ecosyst Environ201622016417410.1016/j.agee.2016.01.005 Godfray H, Muir J, Beddington JR, et al (2010) Food Security: the challenge of feeding 9 billion people ShangQYangXGaoCNet annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experimentsGlob Chang Biol2011172196221010.1111/j.1365-2486.2010.02374.x JatRKSapkotaTBSinghRGSeven years of conservation agriculture in a rice–wheat rotation of eastern Gangetic Plains of South Asia: yield trends and economic profitabilityField Crop Res201416419921010.1016/j.fcr.2014.04.015 CCAFSMitigating direct agriculture emissions. CGIAR research program on agriculture2015CopenhagenClimate Change and Food Security BouwmanAFBoumansLJMBatjesNHEmissions of N2O and NO from fertilized fields: summary of available measurement dataGlob Biogeochem Cycles2002161058 ShcherbakIMillarNRobertsonGPGlobal metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogenProc Natl Acad Sci U S A20141119199920410.1073/pnas.1322434111 TandonHLSFertilizers, organic manures, recyclable wastes and biofertilizers1994New DelhiFertilizer Development and Consultantcy Organization (FDCO) Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer Science & Business Media OgleSBreidtFJPaustianKAgricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regionsBiogeochemistry2005728712110.1007/s10533-004-0360-2LA–English Richards M, Bruun TB, Campbell BM, et al (2016) How countries plan to address agricultural adaptation and mitigation: an analysis of intended nationally determined contributions. CCAFS dataset SapkotaTBJatMLAryalJPClimate change adaptation, greenhouse gas mitigation and economic profitability of conservation agriculture: some examples from cereal systems of indo-Gangetic PlainsJ Integr Agric2015141524153310.1016/S2095-3119(15)61093-0 Butterbach-bahlKPapenHRennenbergHImpact of gas transport through rice cultivars on methane emission from rice paddy fieldsPlant Cell Environ1997201175118310.1046/j.1365-3040.1997.d01-142.x ZhangACuiLPanGEffect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from tai Lake plain, ChinaAgric Ecosyst Environ201013946947510.1016/j.agee.2010.09.003 BhatiaAPathakHJainNGlobal warming potential of manure amended soils under rice–wheat system in the indo-Gangetic plainsAtmos Environ2005396976698410.1016/j.atmosenv.2005.07.052 INCCAIndia: greenhouse gas emissions 2007. Indian network for climate change assessment2010Government of IndiaMinistry of Environment and Forests CuiZLWuLYeYLTrade-offs between high yields and greenhouse gas emissions in irrigation wheat cropland in ChinaBiogeosciences2014112287229410.5194/bg-11-2287-2014 Tubiello FN, Salvatore M, Cóndor Golec RD, et al (2014) Agriculture, Forestry and Other Land Use Emissions by Sources and Removals by Sinks. FAO - e Food Agric Organ United Nations 2:4–89. doi:10.13140/2.1.4143.4245 Aryal JP, Farnworth CR, Khurana R, et al (2014) Gender dimensions of climate change adaptation through cliamte smart agricultural practices in India. In: Innovation in Indian agriculture: ways forward. Institute of Economic Growth (IEG), New Delhi, and international food policy research institute (IFPRI), Washington DC, New Delhi, India LadhaJKTirol-PadreAReddyCKGlobal nitrogen budgets in cereals: a 50-year assessment for maize, rice, and wheat production systemsSci Rep201661935510.1038/srep19355 BoatengKObengGMensahERice cultivation and greenhouse gas emissions: a review and conceptual framework with reference to GhanaAgriculture20177710.3390/agriculture7010007 ShangguanWDaiYDuanQA global soil data set for earth system modelingJ Adv Model Earth Syst2014624926310.1002/2013MS000293 SmithPBustamanteMAhammadHEdenhoferOPichs-MadrugaRSokonaYAgriculture, forestry and other land use (AFOLU)Climate change 2014: mitigation of climate change, contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change2014CambridgeCambridge University Press TittonellPGillerKEWhen yield gaps are poverty traps: the paradigm of ecological intensification in African smallholder agricultureField Crop Res2013143769010.1016/j.fcr.2012.10.007 MottalebKAKrupnikTJErensteinOFactors associated with small-scale agricultural machinery adoption in Bangladesh: census findingsJ Rural Stud20164615516810.1016/j.jrurstud.2016.06.012 Feliciano D, Nayak D, Vetter SH, Hillier J (2016) CCAFS Mitigation Options Tool. www.ccafs.cgiar.org FAO/IFAGlobal estimates of gaseous emissions of NH3, NO and N2O from agricultural land2001RomeFAO and IFA MallaGBhatiaAPathakHMitigating nitrous oxide and methane emissions from soil in rice–wheat system of the indo-Gangetic plain with nitrification and urease inhibitorsChemosphere20055814114710.1016/j.chemosphere.2004.09.003 CamargoGGTRyanMRRichardTOMLEnergy use and greenhouse gas emissions from crop production using the farm energy analysis toolBioscience20136326327310.1525/bio.2013.63.4.6 ZouJHuangYJiangJA 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: effects of water regime, crop residue, and fertilizer applicationGlob Biogeochem Cycles2005191910.1029/2004GB002401 Wollenberg E, Richards M, Smith P et al (2016) Reducing emissions from agriculture to meet the 2°C target. Glob Chang Biol 1–6. doi:10.1111/gcb.13340 BellarbyJStirlingCVetterSHIdentifying secure and low carbon food production practices: a case study in Kenya and EthiopiaAgric Ecosyst Environ201419713714610.1016/j.agee.2014.07.015 IPCCEgglestonSBuendiaLMiwaKIPCC guidelines for national greenhouse gas inventoriesIPCC guidelines for national greenhouse gas inventories2006KanagawaInstitute for Global Environmental Strategies VetterSHSapkotaTBHillierJGreenhouse gas emissions from agricultural food productio AF Bouwman (9752_CR6) 2002; 16 J Bellarby (9752_CR3) 2014; 197 9752_CR21 ZL Cui (9752_CR11) 2014; 11 P Tittonell (9752_CR49) 2013; 143 Q Shang (9752_CR43) 2011; 17 9752_CR27 X Ju (9752_CR24) 2016; 41 R Basak (9752_CR2) 2016 P Smith (9752_CR47) 2014 TB Sapkota (9752_CR40) 2014; 155 GGT Camargo (9752_CR8) 2013; 63 ML Jat (9752_CR22) 2011; 24 9752_CR53 9752_CR54 9752_CR55 A Bhatia (9752_CR4) 2005; 39 9752_CR16 9752_CR17 9752_CR18 INCCA (9752_CR19) 2010 DS Powlson (9752_CR36) 2016; 220 K Butterbach-bahl (9752_CR7) 1997; 20 J Ma (9752_CR30) 2009; 41 CA Cameron (9752_CR9) 2009 9752_CR50 9752_CR51 TB Sapkota (9752_CR41) 2015; 14 A Zhang (9752_CR56) 2010; 139 R Core Team (9752_CR37) 2016 A Keil (9752_CR25) 2015; 7 SH Vetter (9752_CR52) 2017; 237 FAO/IFA (9752_CR15) 2001 A Dobermann (9752_CR13) 2002; 16 H Pathak (9752_CR35) 2010; 139 ND Mueller (9752_CR33) 2014; 9 IPCC (9752_CR20) 2006 K Boateng (9752_CR5) 2017; 7 S Ogle (9752_CR34) 2005; 72 KA Mottaleb (9752_CR32) 2016; 46 JK Ladha (9752_CR28) 2016; 6 TB Sapkota (9752_CR42) 2015; 12 RK Jat (9752_CR23) 2014; 164 CCAFS (9752_CR10) 2015 W Shangguan (9752_CR44) 2014; 6 9752_CR1 G Malla (9752_CR31) 2005; 58 9752_CR38 9752_CR39 S Khan (9752_CR26) 2009; 34 HLS Tandon (9752_CR48) 1994 J Zou (9752_CR57) 2005; 19 Ecoinvent Center (9752_CR14) 2007 I Shcherbak (9752_CR45) 2014; 111 A Datta (9752_CR12) 2009; 129 B Linquist (9752_CR29) 2012; 18 P Smith (9752_CR46) 1997; 3 |
References_xml | – reference: PathakHJainNBhatiaACarbon footprints of Indian food itemsAgric Ecosyst Environ2010139667310.1016/j.agee.2010.07.002 – reference: DobermannAFairhurstTHRice straw managementBetter Crop Int200216711 – reference: KhanSKhanMAHanjraMAMuJPathways to reduce the environmental footprints of water and energy inputs in food productionFood Policy20093414114910.1016/j.foodpol.2008.11.002 – reference: TittonellPGillerKEWhen yield gaps are poverty traps: the paradigm of ecological intensification in African smallholder agricultureField Crop Res2013143769010.1016/j.fcr.2012.10.007 – reference: CCAFSMitigating direct agriculture emissions. CGIAR research program on agriculture2015CopenhagenClimate Change and Food Security – reference: ShangguanWDaiYDuanQA global soil data set for earth system modelingJ Adv Model Earth Syst2014624926310.1002/2013MS000293 – reference: FAO/IFAGlobal estimates of gaseous emissions of NH3, NO and N2O from agricultural land2001RomeFAO and IFA – reference: CamargoGGTRyanMRRichardTOMLEnergy use and greenhouse gas emissions from crop production using the farm energy analysis toolBioscience20136326327310.1525/bio.2013.63.4.6 – reference: CuiZLWuLYeYLTrade-offs between high yields and greenhouse gas emissions in irrigation wheat cropland in ChinaBiogeosciences2014112287229410.5194/bg-11-2287-2014 – reference: SmithPPowlsonDGlendiningMSmithJOPotential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experimentsGlob Chang Biol19973677910.1046/j.1365-2486.1997.00055.x – reference: MottalebKAKrupnikTJErensteinOFactors associated with small-scale agricultural machinery adoption in Bangladesh: census findingsJ Rural Stud20164615516810.1016/j.jrurstud.2016.06.012 – reference: Saharawat YS, Singh B, Malik RK, et al (2010) Evaluation of alternative tillage and crop establishment methods in a rice–wheat rotation in North Western IGP. F Crop Res 116:260–267. doi:10.1016/j.fcr.2010.01.003 – reference: CameronCATrivediPKMicroeconometrics using Stata2009TexasStata Press – reference: ZouJHuangYJiangJA 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: effects of water regime, crop residue, and fertilizer applicationGlob Biogeochem Cycles2005191910.1029/2004GB002401 – reference: KeilAD’souzaAMcDonaldAZero-tillage as a pathway for sustainable wheat intensification in the eastern indo-Gangetic Plains: does it work in farmers’ fields?Food Secur20157983100110.1007/s12571-015-0492-3 – reference: ShangQYangXGaoCNet annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experimentsGlob Chang Biol2011172196221010.1111/j.1365-2486.2010.02374.x – reference: BasakRBenefits and costs of nitrogen fertilizer management for climate change mitigation: focus on India and Mexico. CCAFS working paper no. 1612016CopenhagenCGIAR research program on climate change, agriculture and food security (CCAFS) – reference: Richards M, Bruun TB, Campbell BM, et al (2016) How countries plan to address agricultural adaptation and mitigation: an analysis of intended nationally determined contributions. CCAFS dataset – reference: LinquistBGroenigenKJAdviento-BorbeMAAn agronomic assessment of greenhouse gas emissions from major cereal cropsGlob Chang Biol20121819420910.1111/j.1365-2486.2011.02502.x – reference: TandonHLSFertilizers, organic manures, recyclable wastes and biofertilizers1994New DelhiFertilizer Development and Consultantcy Organization (FDCO) – reference: Ecoinvent CenterEcoinvent data v2.0. Ecoinvent report No. 1–252007DubendorfSwiss Centre of Life Cycle Inventories – reference: SmithPBustamanteMAhammadHEdenhoferOPichs-MadrugaRSokonaYAgriculture, forestry and other land use (AFOLU)Climate change 2014: mitigation of climate change, contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change2014CambridgeCambridge University Press – reference: SapkotaTBMajumdarKJatMLPrecision nutrient management in conservation agriculture based wheat production of Northwest India: profitability, nutrient use efficiency and environmental footprintField Crop Res201415523324410.1016/j.fcr.2013.09.001 – reference: Khatri-Chhetri A, Aryal JP, Sapkota TB, Khurana R (2016) Economic benefits of climate-smart agricultural practices to smallholder farmers in the indo-Gangetic Plains of India. Curr Sci. doi:10.18520/cs/v110/i7/1251-1256 – reference: JatRKSapkotaTBSinghRGSeven years of conservation agriculture in a rice–wheat rotation of eastern Gangetic Plains of South Asia: yield trends and economic profitabilityField Crop Res201416419921010.1016/j.fcr.2014.04.015 – reference: Ge M, Friedrich J, Damassa T (2014). 6 graphs explains the world’s top 10 emitters. https://wri.org/blog/2014/11/6-graphs-explain-world's-top-10-emitters – reference: VetterSHSapkotaTBHillierJGreenhouse gas emissions from agricultural food production to supply Indian diets: implications for climate change mitigationAgric Ecosyst Environ201723723424110.1016/j.agee.2016.12.024 – reference: MallaGBhatiaAPathakHMitigating nitrous oxide and methane emissions from soil in rice–wheat system of the indo-Gangetic plain with nitrification and urease inhibitorsChemosphere20055814114710.1016/j.chemosphere.2004.09.003 – reference: SapkotaTBJatMLShankarVTillage, residue and nitrogen management effects on methane and nitrous oxide emission from rice–wheat system of Indian northwest indo-Gangetic PlainsJ Integr Environ Sci20151211610.1080/1943815X.2015.1110181 – reference: OgleSBreidtFJPaustianKAgricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regionsBiogeochemistry2005728712110.1007/s10533-004-0360-2LA–English – reference: Tubiello FN, Salvatore M, Cóndor Golec RD, et al (2014) Agriculture, Forestry and Other Land Use Emissions by Sources and Removals by Sinks. FAO - e Food Agric Organ United Nations 2:4–89. doi:10.13140/2.1.4143.4245 – reference: R Core TeamR: A language and environment for statistical computing2016ViennaR Foundation for Statistical Computingwww.R-project.org – reference: IPCC (2013) Climate change 2013. The physical science basis. Working group I contribuiton to the fifth assessment report of the intergovernmental panel on climate change. Chapter 8: anthropogenic and natural RAdiative forcing. Intergovernmental panel on climate Chang – reference: MaJMaEXuHWheat straw management affects CH 4 and N 2 O emissions from rice fieldsSoil Biol Biochem2009411022102810.1016/j.soilbio.2009.01.024 – reference: BellarbyJStirlingCVetterSHIdentifying secure and low carbon food production practices: a case study in Kenya and EthiopiaAgric Ecosyst Environ201419713714610.1016/j.agee.2014.07.015 – reference: SapkotaTBJatMLAryalJPClimate change adaptation, greenhouse gas mitigation and economic profitability of conservation agriculture: some examples from cereal systems of indo-Gangetic PlainsJ Integr Agric2015141524153310.1016/S2095-3119(15)61093-0 – reference: BouwmanAFBoumansLJMBatjesNHEmissions of N2O and NO from fertilized fields: summary of available measurement dataGlob Biogeochem Cycles2002161058 – reference: JuXGuBWuYGallowayJNReducing China’s fertilizer use by increasing farm sizeGlob Environ Chang201641263210.1016/j.gloenvcha.2016.08.005 – reference: Butterbach-bahlKPapenHRennenbergHImpact of gas transport through rice cultivars on methane emission from rice paddy fieldsPlant Cell Environ1997201175118310.1046/j.1365-3040.1997.d01-142.x – reference: PowlsonDSStirlingCMThierfelderCDoes conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems?Agric Ecosyst Environ201622016417410.1016/j.agee.2016.01.005 – reference: BhatiaAPathakHJainNGlobal warming potential of manure amended soils under rice–wheat system in the indo-Gangetic plainsAtmos Environ2005396976698410.1016/j.atmosenv.2005.07.052 – reference: BoatengKObengGMensahERice cultivation and greenhouse gas emissions: a review and conceptual framework with reference to GhanaAgriculture20177710.3390/agriculture7010007 – reference: ShcherbakIMillarNRobertsonGPGlobal metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogenProc Natl Acad Sci U S A20141119199920410.1073/pnas.1322434111 – reference: JatMLSaharawatYSGuptaRKConservation agriculture in cereal systems of south Asia : nutrient management perspectivesKarnataka J Agric Sci201124100105 – reference: INCCAIndia: greenhouse gas emissions 2007. Indian network for climate change assessment2010Government of IndiaMinistry of Environment and Forests – reference: Wassmann R, Lantin RS, Neue HU, et al (2000) Characterization of methane emissions from rice fields in Asia. III . Mitigation options and future research needs. 23–36 – reference: IPCCEgglestonSBuendiaLMiwaKIPCC guidelines for national greenhouse gas inventoriesIPCC guidelines for national greenhouse gas inventories2006KanagawaInstitute for Global Environmental Strategies – reference: Verge X, de Kimpe C, Desjardins, R (2007) Agricultural production, greenhouse gas emissions and mitigation potential. Agric Forest Meteorol 142:255–269 – reference: MuellerNDWestPCGerberJSA tradeoff frontier for global nitrogen use and cereal productionEnviron Res Lett201495400210.1088/1748-9326/9/5/054002 – reference: Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer Science & Business Media – reference: Wollenberg E, Richards M, Smith P et al (2016) Reducing emissions from agriculture to meet the 2°C target. Glob Chang Biol 1–6. doi:10.1111/gcb.13340 – reference: DattaANayakDRRSinhababuDPPAdhyaTKKMethane and nitrous oxide emissions from an integrated rainfed rice-fish farming system of eastern IndiaAgric Ecosyst Environ200912922823710.1016/j.agee.2008.09.003 – reference: Aryal JP, Farnworth CR, Khurana R, et al (2014) Gender dimensions of climate change adaptation through cliamte smart agricultural practices in India. In: Innovation in Indian agriculture: ways forward. Institute of Economic Growth (IEG), New Delhi, and international food policy research institute (IFPRI), Washington DC, New Delhi, India – reference: Feliciano D, Nayak D, Vetter SH, Hillier J (2016) CCAFS Mitigation Options Tool. www.ccafs.cgiar.org – reference: Godfray H, Muir J, Beddington JR, et al (2010) Food Security: the challenge of feeding 9 billion people – reference: ZhangACuiLPanGEffect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from tai Lake plain, ChinaAgric Ecosyst Environ201013946947510.1016/j.agee.2010.09.003 – reference: LadhaJKTirol-PadreAReddyCKGlobal nitrogen budgets in cereals: a 50-year assessment for maize, rice, and wheat production systemsSci Rep201661935510.1038/srep19355 – ident: 9752_CR18 doi: 10.1126/science.1185383 – volume: 39 start-page: 6976 year: 2005 ident: 9752_CR4 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2005.07.052 – volume-title: Fertilizers, organic manures, recyclable wastes and biofertilizers year: 1994 ident: 9752_CR48 – ident: 9752_CR50 doi: 10.13140/2.1.4143.4245 – volume: 12 start-page: 1 year: 2015 ident: 9752_CR42 publication-title: J Integr Environ Sci doi: 10.1080/1943815X.2015.1110181 – volume-title: Mitigating direct agriculture emissions. CGIAR research program on agriculture year: 2015 ident: 9752_CR10 – volume: 164 start-page: 199 year: 2014 ident: 9752_CR23 publication-title: Field Crop Res doi: 10.1016/j.fcr.2014.04.015 – ident: 9752_CR53 – volume: 197 start-page: 137 year: 2014 ident: 9752_CR3 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2014.07.015 – volume: 41 start-page: 1022 year: 2009 ident: 9752_CR30 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2009.01.024 – volume: 237 start-page: 234 year: 2017 ident: 9752_CR52 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2016.12.024 – volume: 34 start-page: 141 year: 2009 ident: 9752_CR26 publication-title: Food Policy doi: 10.1016/j.foodpol.2008.11.002 – volume: 3 start-page: 67 year: 1997 ident: 9752_CR46 publication-title: Glob Chang Biol doi: 10.1046/j.1365-2486.1997.00055.x – ident: 9752_CR54 doi: 10.1007/978-0-387-98141-3 – ident: 9752_CR39 doi: 10.1016/j.fcr.2010.01.003 – volume: 139 start-page: 469 year: 2010 ident: 9752_CR56 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2010.09.003 – volume: 24 start-page: 100 year: 2011 ident: 9752_CR22 publication-title: Karnataka J Agric Sci – volume: 72 start-page: 87 year: 2005 ident: 9752_CR34 publication-title: Biogeochemistry doi: 10.1007/s10533-004-0360-2 – volume: 20 start-page: 1175 year: 1997 ident: 9752_CR7 publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.1997.d01-142.x – ident: 9752_CR21 – volume: 7 start-page: 7 year: 2017 ident: 9752_CR5 publication-title: Agriculture doi: 10.3390/agriculture7010007 – volume: 14 start-page: 1524 year: 2015 ident: 9752_CR41 publication-title: J Integr Agric doi: 10.1016/S2095-3119(15)61093-0 – volume: 6 start-page: 19355 year: 2016 ident: 9752_CR28 publication-title: Sci Rep doi: 10.1038/srep19355 – volume: 46 start-page: 155 year: 2016 ident: 9752_CR32 publication-title: J Rural Stud doi: 10.1016/j.jrurstud.2016.06.012 – volume: 155 start-page: 233 year: 2014 ident: 9752_CR40 publication-title: Field Crop Res doi: 10.1016/j.fcr.2013.09.001 – ident: 9752_CR17 – volume: 63 start-page: 263 year: 2013 ident: 9752_CR8 publication-title: Bioscience doi: 10.1525/bio.2013.63.4.6 – volume: 41 start-page: 26 year: 2016 ident: 9752_CR24 publication-title: Glob Environ Chang doi: 10.1016/j.gloenvcha.2016.08.005 – ident: 9752_CR38 – volume-title: Microeconometrics using Stata year: 2009 ident: 9752_CR9 – volume: 19 start-page: 1 year: 2005 ident: 9752_CR57 publication-title: Glob Biogeochem Cycles doi: 10.1029/2004GB002401 – volume: 111 start-page: 9199 year: 2014 ident: 9752_CR45 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1322434111 – volume-title: Climate change 2014: mitigation of climate change, contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change year: 2014 ident: 9752_CR47 – volume-title: Global estimates of gaseous emissions of NH3, NO and N2O from agricultural land year: 2001 ident: 9752_CR15 – ident: 9752_CR51 doi: 10.1016/j.agrformet.2006.06.011 – ident: 9752_CR27 doi: 10.18520/cs/v110/i7/1251-1256 – volume: 143 start-page: 76 year: 2013 ident: 9752_CR49 publication-title: Field Crop Res doi: 10.1016/j.fcr.2012.10.007 – volume-title: Ecoinvent data v2.0. Ecoinvent report No. 1–25 year: 2007 ident: 9752_CR14 – volume: 16 start-page: 1058 year: 2002 ident: 9752_CR6 publication-title: Glob Biogeochem Cycles doi: 10.1029/2001GB001811 – volume: 17 start-page: 2196 year: 2011 ident: 9752_CR43 publication-title: Glob Chang Biol doi: 10.1111/j.1365-2486.2010.02374.x – volume: 6 start-page: 249 year: 2014 ident: 9752_CR44 publication-title: J Adv Model Earth Syst doi: 10.1002/2013MS000293 – volume-title: India: greenhouse gas emissions 2007. Indian network for climate change assessment year: 2010 ident: 9752_CR19 – volume: 58 start-page: 141 year: 2005 ident: 9752_CR31 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.09.003 – ident: 9752_CR16 – ident: 9752_CR1 – volume-title: R: A language and environment for statistical computing year: 2016 ident: 9752_CR37 – volume: 129 start-page: 228 year: 2009 ident: 9752_CR12 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2008.09.003 – volume-title: Benefits and costs of nitrogen fertilizer management for climate change mitigation: focus on India and Mexico. CCAFS working paper no. 161 year: 2016 ident: 9752_CR2 – volume: 139 start-page: 66 year: 2010 ident: 9752_CR35 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2010.07.002 – volume: 18 start-page: 194 year: 2012 ident: 9752_CR29 publication-title: Glob Chang Biol doi: 10.1111/j.1365-2486.2011.02502.x – volume: 9 start-page: 54002 year: 2014 ident: 9752_CR33 publication-title: Environ Res Lett doi: 10.1088/1748-9326/9/5/054002 – volume-title: IPCC guidelines for national greenhouse gas inventories year: 2006 ident: 9752_CR20 – volume: 7 start-page: 983 year: 2015 ident: 9752_CR25 publication-title: Food Secur doi: 10.1007/s12571-015-0492-3 – ident: 9752_CR55 doi: 10.1111/gcb.13340 – volume: 11 start-page: 2287 year: 2014 ident: 9752_CR11 publication-title: Biogeosciences doi: 10.5194/bg-11-2287-2014 – volume: 16 start-page: 7 year: 2002 ident: 9752_CR13 publication-title: Better Crop Int – volume: 220 start-page: 164 year: 2016 ident: 9752_CR36 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2016.01.005 |
SSID | ssj0003151 |
Score | 2.330151 |
Snippet | Increasing agricultural production to meet the growing demand for food whilst reducing agricultural greenhouse gas (GHG) emissions is the major challenge under... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 621 |
SubjectTerms | Access to information Agricultural practices Agricultural production Atmospheric Sciences Climate adaptation Climate change Climate change adaptation Climate Change Management and Policy Crop yield Earth and Environmental Science Earth Sciences Econometric models Economic analysis Economic factors Economic models Economics education Emission Emissions Environmental Management Food security Gender Greenhouse effect greenhouse gas emissions Greenhouse gases Impact analysis India Indo-Gangetic Plain Information dissemination issues and policy Management manure spreading Mitigation nitrogen Original Original Article production technology Security Socioeconomic factors Socioeconomics Tillage Training |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB-sPrQgUm3VWCtb6FPLQnaTTTZPYuVEhEopCr6FzWaPHhy505yI_70z2U2Oq3iPYWchyczOzG92PgC-S6vqSjvFnZQIUDIneGWzmotaZoiHhBSGipN_X2eXt-nVnboLAbc2pFX2OrFT1PXMUowcQbpQOdl7dTq_5zQ1im5XwwiNd7CFKlgj-Nr6Nbr-83fQxYlQHnJpwdE4Zf29Zlc8h7aV0i5zXuRKcrFqmV65m6-zJv-7Ou0s0sVH2AmuJDvzvN-FDdfswfu-0rjdg_3RsooNCcMxxoVtH6xjvgbpE9z4ct2u5IlRA2P-TIltbDp74jQPjiJqjGYXP5nnlqGby9BtZNahwzllc98zlkgmDetG8rGzdmI-w-3F6Ob8kodxC9yqOFlwYUw8ttLKwqZFmteptqoYI3wriiqXaR4Lm8nUIb4SZiytM-hZISc1AqqixnOc7MNmM2vcITDlrEBkZFxsdFrhupbOjmvkkExQKEwEcf-rSxt6kdNIjGm57KJM3CmROyVxpxQR_Bi2zH0jjnXExz3_ynAm23IpQRF8G5bxJ9IViWnc7JFo0ACgSividTSI8bRG6x_BgReJ4Y0SihChUxtBviIsAwF1815daSb_uq7eGTnPAnf-7MVq-epvfujR-g_9Ah_wQftMo2PYXDw8uq_oRC2qk3BSXgBmvxg5 priority: 102 providerName: ProQuest |
Title | Identifying high-yield low-emission pathways for the cereal production in South Asia |
URI | https://link.springer.com/article/10.1007/s11027-017-9752-1 https://www.ncbi.nlm.nih.gov/pubmed/30093835 https://www.proquest.com/docview/2015715455 https://www.proquest.com/docview/2053888090 https://www.proquest.com/docview/2087588413 https://pubmed.ncbi.nlm.nih.gov/PMC6054015 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED669mUwytaum7cuaNCnDoElW7b8mIRkZWVhjAbaJyPLCgsEp8wppf997yzbIetW2JMfdDK2TtJ9n3Q_AM6kVWWhneJOSiQoiRO8sEnJRSkT5ENCCkPByd9nycU8_natrts47rrzdu-uJJudehvshraQ3CRTnqVKcqQ8B4qoO07iuRz2228klGdZWnC0R0l3lfm3V-waoycI86mj5B-3pY0Rmr6GwxY9sqFX9xvYc9URnEy2wWrY2K7W-ghe-TM55kONjuHKR-U2kU2M8hTzB_JfY6v1Paeyb3RwxqhE8b15qBmiWYbokFmHuHLFbn1qWBJZVqypvMeG9dK8hfl0cjW-4G1VBW5VGG24MCZcWGllZuMsTstYW5UtkKVlWZHKOA2FTWTskEYJs5DWGQRQqDCNvCkrcblGJ7BfrSv3HphyViABMi40Oi6wXUtnFyWSMBmh7k0AYTe8uW1TjlPli1W-TZZMGslRIzlpJBcBnPddbn2-jeeETzud5e3Sq3NENColYKgC-Nw34yDSTYip3PqOZHCfx50rC5-TQSqnNRr5AN75adB_UUQHQYhdA0h3JkgvQEm7d1uq5a8meXdCGFlgzy_dVNp--j9_9MN_SX-ElzgI2vsXncL-5ved-4TQaVMM4GA4HY1m9Px6cznB52gy-_FzAC_GyXjQLKRHuYsVMQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7mFICMFgEBhgJHgBWYqdOB8PCA3o1LGtQqiT9hYcxxWVqrRbOlX9p_gbuYuTVGWib3u-S-Tkznf3s-8D4J00qsgTq7iVEgFKZAXPTVRwUcgI8ZCQQlNx8vkwGlyE3y_V5Q78aWthKK2ytYm1oS5mhs7IEaQLFZO_V5_nV5ymRtHtajtCw6nFqV0tEbJVn06-oXzfS3ncH30d8GaqADfKDxZcaO2PjTQyNWEaxkWYGJWOEaWkaR7LMPaFiWRoEUYIPZbGagwgcMEJ4oa0QHUN8L33YDcMEMr0YPdLf_jjZ2f7A6EcxEsER2cYtfeodbEe-nJK84x5GivJxaYnvBXe3s7S_OeqtvaAx4_gYRO6siOna49hx5b7sNdWNlf7cNBfV80hY2M2kPDAHQ4yV_P0BEauPLgusWLUMJmvKJGOTWdLTvPn6ASP0azkpV5VDMNqhmEqMxYD3Cmbux61xDIpWT0CkB1VE_0ULu5EEAfQK2elfQ5MWSMQiWnr6yTMkZ5Ia8YFokEZoBJqD_z2V2em6X1OIzim2bprM0knQ-lkJJ1MePChe2TuGn9sYz5s5Zc1NqDK1hrrwduOjD-RrmR0aWc3xIMOB01o6m_jQUyZJBhtePDMqUS3ooBOpDCI9iDeUJaOgbqHb1LKye-6i3hEwbrAJz-2arVe-n8_9MX2D30De4PR-Vl2djI8fQn3kZC4LKdD6C2ub-wrDOAW-etm1zD4ddcb9S8WKlN2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgIkhGAwFhhgJHgBWcROnI8HhAZrtTGoJrRJe8scxxGVqrSjnar-a_x13MVJqjLRt73Wl8rJnX2_n30fAG-lUUWeWMWtlEhQIit4bqKCi0JGyIeEFJqSk38Mo6Pz8NuFutiCP20uDIVVtntivVEXE0Nn5EjShYrJ36uPZRMWcXo4-Dy94tRBim5a23YazkRO7HKB9G326fgQdf1OykH_7OsRbzoMcKP8YM6F1n5ppJGpCdMwLsLEqLRExpKmeSzD2BcmkqFFSiF0KY3VCCZw8glyiLRA0w3wf-_AdoysyO_B9pf-8PRn5wcCoRzdSwRHxxi1d6p14h76dQr5jHkaK8nFule8AXVvRmz-c21be8PBI3jYwFh24OzuMWzZagfutVnOsx3Y7a8y6FCw2UJw4IE7KGQu_-kJnLlU4TrdilHxZL6koDo2niw49aKj0zxGfZMXejljCLEZQlZmLILdMZu6erUkMqpY3Q6QHcxG-imc34oidqFXTSq7B0xZI5CVaevrJMxxPJHWlAUyQxmgQWoP_PZTZ6apg07tOMbZqoIzaSdD7WSknUx48L57ZOqKgGwS3m_1lzX7wSxbWa8Hb7ph_Ih0PaMrO7kmGXQ-uJ2m_iYZ5JdJgsjDg2fOJLoZBXQ6hYDag3jNWDoBqiS-PlKNftUVxSMC7gKf_NCa1Wrq_33R55tf9DXcxQWafT8enryA-_h74gKe9qE3_31tXyKWm-evmkXD4PK21-lfJwdXqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+high-yield+low-emission+pathways+for+the+cereal+production+in+South+Asia&rft.jtitle=Mitigation+and+adaptation+strategies+for+global+change&rft.au=Sapkota%2C+TekB&rft.au=Aryal%2C+JeetendraP&rft.au=Khatri-Chhetri%2C+Arun&rft.au=Shirsath%2C+PareshB&rft.date=2018-04-01&rft.issn=1381-2386&rft.volume=23&rft.issue=4+p.621-641&rft.spage=621&rft.epage=641&rft_id=info:doi/10.1007%2Fs11027-017-9752-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1381-2386&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1381-2386&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1381-2386&client=summon |