Measurement of the Thermophysical Properties of a Thermoplastic Ceramic Paste Across its Solidification Range Using Power-Compensated Differential Scanning Calorimeter
The specific heat capacity, thermal conductivity, and thermal diffusivity of a thermoplastic ceramic paste were investigated on a power‐compensated, differential scanning calorimeter (DSC) using the heat capacity spectral analysis method developed by Merzlyakov and Schick for measuring these paramet...
Saved in:
Published in | Journal of the American Ceramic Society Vol. 88; no. 11; pp. 3116 - 3124 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Science Inc
01.11.2005
Blackwell Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The specific heat capacity, thermal conductivity, and thermal diffusivity of a thermoplastic ceramic paste were investigated on a power‐compensated, differential scanning calorimeter (DSC) using the heat capacity spectral analysis method developed by Merzlyakov and Schick for measuring these parameters on low thermal conductivity solids. The paste features an ultra‐fine zinc oxide powder (a number‐length mean diameter, D1,0, of 85 nm) as the discrete phase, and a thermoplastic continuous phase comprising a blend of organic waxes with a melting range of ca. 30°–70°C. This paste is formulated with a solids loading of 50 vol% and is currently used in a novel continuous casting process to manufacture pharmaceutical products. The properties of the paste were investigated over a temperature range encompassing the melt and solid states, and for solid loadings from 0 to 70 vol%. The results compare favorably with those obtained using transient line source and transient plane methods. |
---|---|
AbstractList | The specific heat capacity, thermal conductivity, and thermal diffusivity of a thermoplastic ceramic paste were investigated on a power‐compensated, differential scanning calorimeter (DSC) using the heat capacity spectral analysis method developed by Merzlyakov and Schick for measuring these parameters on low thermal conductivity solids. The paste features an ultra‐fine zinc oxide powder (a number‐length mean diameter,
D
1,0
, of 85 nm) as the discrete phase, and a thermoplastic continuous phase comprising a blend of organic waxes with a melting range of ca. 30°–70°C. This paste is formulated with a solids loading of 50 vol% and is currently used in a novel continuous casting process to manufacture pharmaceutical products. The properties of the paste were investigated over a temperature range encompassing the melt and solid states, and for solid loadings from 0 to 70 vol%. The results compare favorably with those obtained using transient line source and transient plane methods. The specific heat capacity, thermal conductivity, and thermal diffusivity of a thermoplastic ceramic paste were investigated using a power-compensated DSC using the heat capacity spectral analysis method developed by Merzlyakov and Schick for measuring these parameters on low thermal conductivity solids. The paste features an ultra-fine zinc oxide powder (a number-length mean diameter of 85 nm) as the discrete phase, and a thermoplastic continuous phase comprising a blend of organic waxes with a melting range of about 30-70 C. This paste is formulated with a solids loading of 50 vol% and is currently used in a novel continuous casting process to manufacture pharmaceutical products. The properties of the paste were investigated over a temperature range encompassing the melt and solid states, and for solids loadings from 0 to 70 vol%. The results compare favourably with those obtained using transient line source and transient plane methods. 20 refs. The specific heat capacity, thermal conductivity, and thermal diffusivity of a thermoplastic ceramic paste were investigated on a power-compensated, differential scanning calorimeter (DSC) using the heat capacity spectral analysis method developed by Merzlyakov and Schick for measuring these parameters on low thermal conductivity solids. The paste features an ultra-fine zinc oxide powder (a number-length mean diameter, D^sub 1,0^, of 85 nm) as the discrete phase, and a thermoplastic continuous phase comprising a blend of organic waxes with a melting range of ca. 30°-70°C. This paste is formulated with a solids loading of 50 vol% and is currently used in a novel continuous casting process to manufacture pharmaceutical products. The properties of the paste were investigated over a temperature range encompassing the melt and solid states, and for solid loadings from 0 to 70 vol%. The results compare favorably with those obtained using transient line source and transient plane methods. [PUBLICATION ABSTRACT] The specific heat capacity, thermal conductivity, and thermal diffusivity of a thermoplastic ceramic paste were investigated on a power‐compensated, differential scanning calorimeter (DSC) using the heat capacity spectral analysis method developed by Merzlyakov and Schick for measuring these parameters on low thermal conductivity solids. The paste features an ultra‐fine zinc oxide powder (a number‐length mean diameter, D1,0, of 85 nm) as the discrete phase, and a thermoplastic continuous phase comprising a blend of organic waxes with a melting range of ca. 30°–70°C. This paste is formulated with a solids loading of 50 vol% and is currently used in a novel continuous casting process to manufacture pharmaceutical products. The properties of the paste were investigated over a temperature range encompassing the melt and solid states, and for solid loadings from 0 to 70 vol%. The results compare favorably with those obtained using transient line source and transient plane methods. |
Author | Barker, Dean A. Ian Wilson, D. |
Author_xml | – sequence: 1 givenname: Dean A. surname: Barker fullname: Barker, Dean A. organization: Department of Chemical Engineering, Cambridge, CB2 3RA U.K – sequence: 2 givenname: D. surname: Ian Wilson fullname: Ian Wilson, D. email: ian_wilson@cheng.cam.ac.uk organization: Department of Chemical Engineering, Cambridge, CB2 3RA U.K |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17287936$$DView record in Pascal Francis |
BookMark | eNqNkt9v0zAQxy00JLrC_2AhwVuK48SO84SqMDamARXrxKNl0svqktiZnWrtX8S_yaUdQ-KFWbZ85_v46x93p-TEeQeE0JTNUmzvNrNUiDThZSpnnDExwyHVbPeMTB4DJ2TCGONJoTh7QU5j3KCbliqfkF-fwcRtgA7cQH1DhzXQ5RpC5_v1PtratHQRfA9hsBBHwPwJtyYOtqYVBNPhvEAX6LwOPkZqh0ivfWtXtkGJwXpHvxl3C_QmWndLF_4eQlL5rgcXzQAr-sE2DQS8g8UDr2vj3MhVpvXBdjBAeEmeN6aN8OphnpKbj2fL6iK5-nr-qZpfJbVgmUpkDoCGyXnOS1mkDedCGmaUapiSktfwQxRcrkSRZfUKCmBG5hJEmZVC5Lg4JW-Pun3wd1uIg-5srKFtjQO_jZqXmWQ5V_8HlRIqT58EZkxygeDrf8CN3waHr9U8LTCNGfYpUUfo8NEBGt3jD5mw1ynTY0HojR7zrse867Eg9KEg9A63vnnQNxHz2gTjahv_7i-4KvB1yL0_cve2hf2T9fXlvDo72KiQHBUs1sTuUcGEn1oWWSH09y_nurrgeXkpSr3MfgNxz9tI |
CODEN | JACTAW |
CitedBy_id | crossref_primary_10_1007_s10853_012_6627_4 crossref_primary_10_1063_1_4829921 crossref_primary_10_1016_j_ces_2007_12_004 |
Cites_doi | 10.1063/1.459240 10.1016/j.tca.2004.02.008 10.1016/0921-5107(94)90340-9 10.1016/S1359-835X(02)00085-4 10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3 10.1016/S0260-8774(97)00043-5 10.1016/S0040-6031(01)00553-6 10.1016/j.compositesa.2004.07.002 10.1063/1.1142087 |
ContentType | Journal Article |
Copyright | 2006 INIST-CNRS Copyright American Ceramic Society Nov 2005 |
Copyright_xml | – notice: 2006 INIST-CNRS – notice: Copyright American Ceramic Society Nov 2005 |
DBID | BSCLL IQODW AAYXX CITATION 7QQ 7SR 8FD JG9 7TB FR3 |
DOI | 10.1111/j.1551-2916.2005.00568.x |
DatabaseName | Istex Pascal-Francis CrossRef Ceramic Abstracts Engineered Materials Abstracts Technology Research Database Materials Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Ceramic Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitleList | CrossRef Materials Research Database Materials Research Database Materials Research Database Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts Engineering Applied Sciences |
EISSN | 1551-2916 |
EndPage | 3124 |
ExternalDocumentID | 1001379291 10_1111_j_1551_2916_2005_00568_x 17287936 JACE00568 ark_67375_WNG_CH249J59_T |
Genre | article Feature |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OB 1OC 29L 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABDPE ABEFU ABEML ABJNI ABPVW ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACKIV ACNCT ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBO EBS EDO EJD EMK ESX F00 F01 F04 FEDTE FOJGT FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 I-F IRD ITF ITG ITH IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QF4 QM1 QN7 QO4 R.K RAX RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TAE TH9 TN5 TUS UB1 UPT V8K VH1 W8V W99 WBKPD WFSAM WH7 WIH WIK WOHZO WQJ WRC WTY WXSBR WYISQ XG1 YQT ZCG ZE2 ZY4 ZZTAW ~02 ~IA ~WT G8K 08R AAJUZ ABCVL ABHUG ABPTK ACSMX ACXME ADAWD ADDAD AFVGU AGJLS IQODW PK8 AAYXX CITATION 7QQ 7SR 8FD JG9 7TB FR3 |
ID | FETCH-LOGICAL-c5038-64ee503a42429671f2256a0a88f08662ceb5726d5733cde7e0a646e5939554733 |
IEDL.DBID | DR2 |
ISSN | 0002-7820 |
IngestDate | Fri Oct 25 22:49:31 EDT 2024 Fri Oct 25 09:39:13 EDT 2024 Fri Oct 25 05:55:43 EDT 2024 Thu Oct 10 16:34:14 EDT 2024 Fri Aug 23 00:37:30 EDT 2024 Sun Oct 29 17:08:40 EDT 2023 Sat Aug 24 00:47:09 EDT 2024 Wed Oct 30 09:53:36 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Differential scanning calorimetry Green properties Ceramic body Heat capacity Thermal diffusivity Experimental study Oxide ceramics Solidification Thermal conductivity Technical ceramics Zinc oxide Manufacturing Thermophysical properties |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5038-64ee503a42429671f2256a0a88f08662ceb5726d5733cde7e0a646e5939554733 |
Notes | ark:/67375/WNG-CH249J59-T ArticleID:JACE00568 istex:992C32E0ED71014D412B94BC03CEA238D921CDB8 Support for DAB provided by the Tertiary Education Commission, New Zealand. H. M. Jennings—contributing editor ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 217916316 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_29360428 proquest_miscellaneous_28858418 proquest_miscellaneous_28830625 proquest_journals_217916316 crossref_primary_10_1111_j_1551_2916_2005_00568_x pascalfrancis_primary_17287936 wiley_primary_10_1111_j_1551_2916_2005_00568_x_JACE00568 istex_primary_ark_67375_WNG_CH249J59_T |
PublicationCentury | 2000 |
PublicationDate | November 2005 |
PublicationDateYYYYMMDD | 2005-11-01 |
PublicationDate_xml | – month: 11 year: 2005 text: November 2005 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Malden,MA – name: Columbus |
PublicationTitle | Journal of the American Ceramic Society |
PublicationYear | 2005 |
Publisher | Blackwell Science Inc Blackwell Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Science Inc – name: Blackwell – name: Wiley Subscription Services, Inc |
References | J. E. Parrott and D. Audrey Stuckes, Thermal Conductivity of Solids. Pion, London, 1975. M. J. Morley and C. A. Miles, "Modelling the Thermal Conductivity of Starch-Water Gels,"J. Food Eng., 33, 1-2 (1997). C. P. Wong and R. S. Bollampally, "Thermal Conductivity, Elastic Modulus, and Coefficient of Thermal Expansion of Polymer Composites Filled With Ceramic Particles for Electronic Packaging,"J. Appl. Polym. Sci., 74, 14 (1999). B. Weidenfeller, M. Hofer, and F. Schilling, "Thermal and Electrical Properties of Magnetite Filled Polymers,"Compos. Pt. A-Appl. Sci. Manuf., 33, 8 (2002). B Cassel, A Stepwise Specific Heat Technique for Dynamic DSC. Perkin-Elmer Life and Analytical Sciences Inc., Boston, MA, 2000. S. E. Gustafsson, "Transient Plane Source Techniques for Thermal-Conductivity and Thermal-Diffusivity Measurements of Solid Materials,"Rev. Sci. Instrum., 62, 3 (1991). Decagon Devices Inc., KD2 User's Manual version 1.0 Thermal Properties Analyzer. Decagon Devices Inc, Pullman, WA, 2001. C. Rauwendaal, Polymer Extrusion, 3rd edition, Hanser, Munich, 1994. L. Kehoe, P. V. Kelly, G. M. O'Connor, M. O'Reilly, and G. M. Crean, "A Methodology for Laser-Based Thermal Diffusivity Measurement of Advanced Multichip Module Ceramic Materials,"IEEE Trans Compon. Packag. Manuf. Technol. Pt. A, 18, 4 (1995). Yi He, "Heat Capacity, Thermal Conductivity, and Thermal Expansion of Barium Titanate-Based Ceramics,"Thermochim. Acta, 419, 1-2 (2004). D. M. Liu, "Thermal-Diffusivity, Specific-Heat, and Thermal-Conductivity Of (Ca1−x,Mgx)Zr4(Po4)6 Ceramic,"Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 23, 2 (1994). W. J. Sichina, Benefits and Applications of the Power Compensated Pyris 1 DSC. PerkinElmer Life and Analytical Sciences Inc., Boston, MA, 2000. B. Weidenfeller, M. Hofer, and F. R. Schilling, "Cooling Behaviour of Particle Filled Polypropylene During Injection Moulding Process,"Compos. Pt. A-Appl. Sci. Manuf., 36, 3 (2005). Perkin-Elmer Inc., Pyris Software for Windows, ver. 3.81. Perkin-Elmer Life and Analytical Sciences Inc., Boston, MA, 1999. M. Merzlyakov and C. Schick, "Thermal Conductivity from Dynamic Response of DSC,"Thermochim. Acta, 377 (1-2), 183-91 (2001). H. P. R. Frederikse and R. Lide David, CRC Handbook of Chemistry and Physics, 77th edition, CRC Press, Boca Raton, FL, 1996. C. L. Jackson and G. B. McKenna, "The Melting Behavior of Organic Materials Confined in Porous Solids,"J. Chem. Phys., 93, 12 (1990). 2001; 377 2001 1997; 33 2000 2002; 33 1991; 62 1994; 23 1975 1996 1994 1999; 74 1995; 18 2004; 419 1990; 93 2005; 36 1999 Perkin‐Elmer Inc. (e_1_2_6_13_2) 1999 Kehoe L. (e_1_2_6_7_2) 1995; 18 Rauwendaal C. (e_1_2_6_11_2) 1994 Decagon Devices Inc. (e_1_2_6_14_2) 2001 Frederikse H. P. R. (e_1_2_6_19_2) 1996 Parrott J. E. (e_1_2_6_20_2) 1975 e_1_2_6_8_2 Cassel B (e_1_2_6_12_2) 2000 e_1_2_6_18_2 e_1_2_6_9_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 Sichina W. J. (e_1_2_6_17_2) 2000 e_1_2_6_5_2 e_1_2_6_2_2 e_1_2_6_10_2 e_1_2_6_21_2 e_1_2_6_16_2 e_1_2_6_15_2 |
References_xml | – volume: 93 start-page: 12 year: 1990 article-title: The Melting Behavior of Organic Materials Confined in Porous Solids publication-title: J. Chem. Phys. – volume: 23 start-page: 2 year: 1994 article-title: Thermal‐Diffusivity, Specific‐Heat, and Thermal‐Conductivity Of (Ca ,Mg )Zr (Po ) Ceramic publication-title: Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. – volume: 377 start-page: 183 issue: 1–2 year: 2001 end-page: 91 article-title: Thermal Conductivity from Dynamic Response of DSC publication-title: Thermochim. Acta – year: 2001 – volume: 74 start-page: 14 year: 1999 article-title: Thermal Conductivity, Elastic Modulus, and Coefficient of Thermal Expansion of Polymer Composites Filled With Ceramic Particles for Electronic Packaging publication-title: J. Appl. Polym. Sci. – volume: 33 start-page: 8 year: 2002 article-title: Thermal and Electrical Properties of Magnetite Filled Polymers publication-title: Compos. Pt. A-Appl. Sci. Manuf. – year: 2000 – year: 1996 – volume: 419 start-page: 1 year: 2004 end-page: 2 article-title: Heat Capacity, Thermal Conductivity, and Thermal Expansion of Barium Titanate‐Based Ceramics publication-title: Thermochim. Acta – year: 1975 – volume: 33 start-page: 1 year: 1997 end-page: 2 article-title: Modelling the Thermal Conductivity of Starch‐Water Gels publication-title: J. Food Eng. – volume: 36 start-page: 3 year: 2005 article-title: Cooling Behaviour of Particle Filled Polypropylene During Injection Moulding Process publication-title: Compos. Pt. A-Appl. Sci. Manuf. – year: 1994 – volume: 62 start-page: 3 year: 1991 article-title: Transient Plane Source Techniques for Thermal‐Conductivity and Thermal‐Diffusivity Measurements of Solid Materials publication-title: Rev. Sci. Instrum. – volume: 18 start-page: 4 year: 1995 article-title: A Methodology for Laser‐Based Thermal Diffusivity Measurement of Advanced Multichip Module Ceramic Materials publication-title: IEEE Trans Compon. Packag. Manuf. Technol. Pt. A – year: 1999 – volume-title: CRC Handbook of Chemistry and Physics year: 1996 ident: e_1_2_6_19_2 contributor: fullname: Frederikse H. P. R. – volume-title: Benefits and Applications of the Power Compensated Pyris 1 DSC year: 2000 ident: e_1_2_6_17_2 contributor: fullname: Sichina W. J. – ident: e_1_2_6_18_2 doi: 10.1063/1.459240 – ident: e_1_2_6_5_2 doi: 10.1016/j.tca.2004.02.008 – ident: e_1_2_6_8_2 doi: 10.1016/0921-5107(94)90340-9 – ident: e_1_2_6_10_2 – ident: e_1_2_6_4_2 doi: 10.1016/S1359-835X(02)00085-4 – ident: e_1_2_6_6_2 doi: 10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3 – volume: 18 start-page: 4 year: 1995 ident: e_1_2_6_7_2 article-title: A Methodology for Laser‐Based Thermal Diffusivity Measurement of Advanced Multichip Module Ceramic Materials publication-title: IEEE Trans Compon. Packag. Manuf. Technol. Pt. A contributor: fullname: Kehoe L. – volume-title: KD2 User's Manual version 1.0 Thermal Properties Analyzer year: 2001 ident: e_1_2_6_14_2 contributor: fullname: Decagon Devices Inc. – ident: e_1_2_6_21_2 doi: 10.1016/S0260-8774(97)00043-5 – volume-title: Thermal Conductivity of Solids year: 1975 ident: e_1_2_6_20_2 contributor: fullname: Parrott J. E. – ident: e_1_2_6_2_2 doi: 10.1016/S0040-6031(01)00553-6 – ident: e_1_2_6_3_2 doi: 10.1016/j.compositesa.2004.07.002 – volume-title: Polymer Extrusion year: 1994 ident: e_1_2_6_11_2 contributor: fullname: Rauwendaal C. – volume-title: A Stepwise Specific Heat Technique for Dynamic DSC year: 2000 ident: e_1_2_6_12_2 contributor: fullname: Cassel B – ident: e_1_2_6_15_2 – ident: e_1_2_6_16_2 doi: 10.1063/1.1142087 – ident: e_1_2_6_9_2 – volume-title: Pyris Software for Windows, ver. 3.81 year: 1999 ident: e_1_2_6_13_2 contributor: fullname: Perkin‐Elmer Inc. |
SSID | ssj0001984 |
Score | 1.8525552 |
Snippet | The specific heat capacity, thermal conductivity, and thermal diffusivity of a thermoplastic ceramic paste were investigated on a power‐compensated,... The specific heat capacity, thermal conductivity, and thermal diffusivity of a thermoplastic ceramic paste were investigated on a power-compensated,... The specific heat capacity, thermal conductivity, and thermal diffusivity of a thermoplastic ceramic paste were investigated using a power-compensated DSC... |
SourceID | proquest crossref pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3116 |
SubjectTerms | Applied sciences Building materials. Ceramics. Glasses Ceramic industries Ceramics Chemical industry and chemicals Differential scanning calorimetry Exact sciences and technology General studies Solidification Technical ceramics Temperature effects Thermoplastics |
Title | Measurement of the Thermophysical Properties of a Thermoplastic Ceramic Paste Across its Solidification Range Using Power-Compensated Differential Scanning Calorimeter |
URI | https://api.istex.fr/ark:/67375/WNG-CH249J59-T/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1551-2916.2005.00568.x https://www.proquest.com/docview/217916316 https://search.proquest.com/docview/28830625 https://search.proquest.com/docview/28858418 https://search.proquest.com/docview/29360428 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQ7gUOvBFhofiAuKVqHrbjY7fdUlXaVbUP2Jvl2K5UddusklZaceIn8Df4W_wSZvJoG4RWCHFKIk9i2R6Pv7En3xDyQfZSK0ws_CAyqR9rJ31puPMTaWxiLRepxRPd0zM-voon1-y6jn_Cf2EqfojthhvOjNJe4wTXadGe5LDa-yHgm2ZrhPGki3gyiARGdw3Pd0xS4FvHDRJGirh2UM8fP9RaqQ6x0-8wclIX0HmzKutFC5bug9tydRo9IYumXVVQyqK7Wadd8_U3ysf_0_Cn5HENYmm_0rpn5IFbPSeP9qgN4enzvNhUMsUL8uN0txVJsxkF1ElBQfNldlvrCZ3iqUCO9K4ooJtiAPdQCR24XC_hOoVHR_tlj9H5uqAX2c3cYrhTqWH0HP-VoGUcBJ1iArif376jyQNnHUC1pcM6HwzYtRt6YaqETXSgMQ5xiZFBL8nV6ORyMPbrJBG-QSYbn8fOwY2OAWtILoIZGCiuezpJZuCt8dC4lImQW-R9NNYJ19M85o7JSDLMuxy9IgerbOVeEwrQK7QitMzCx3rG6SiVacxAzEjrYueRoFEIdVtxgag9HwoGReGgYGZPpspBUXce-VhqzvYFnS8wlk4w9eXskxqMwf2dMKkuPdJpqdauBgFOrYy4R44aXVO1nSlUiOyyPAqg9P22FAwEnvrolcs2IJIk4BaG7F4JgKFBco8E1I_OtUeSUjP_uvlq0h-clPdv_v3VI_KwIszFja-35GCdb9w7gILrtEMO-8fD41GnnOy_ACz5VAg |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dbtMwFLbQdgFc8I8Ig80XiLtUzY-d-LLKNkpZq2rrYHeWY7tStbaZklaauOIReA1eiyfhnPy0DUITQlwlkU9i2T4-_o598h1C3oluaiIdRq4X6NQNlRWu0Ny6sdAmNoZHqcET3eGI9y_DwRW7qtMB4b8wFT_EZsMNZ0Zpr3GC44Z0e5bDcu_6AHCavRHG4w4Ayn2Y_QGmMzg-33JJgXcdNlgYSeLaYT1__FJrrdrHbr_F2ElVQPdNq7wXLWC6C2_L9en0MZk3LavCUq4761Xa0V9_I338T01_Qh7VOJb2KsV7Su7Z5TPycIfdEJ4-z4p1JVM8Jz-G291Imk0pAE8KOpovsptaVegYDwZyZHhFAdUUA76HSmhic7WA6xgeLe2VXUZnq4JeZPOZwYinUsnoOf4uQctQCDrGHHA_v31Hqwf-OuBqQ4_rlDBg2ub0Qlc5m2iiMBRxgcFBL8jl6ckk6bt1nghXI5mNy0Nr4UaFADcEj7wp2CiuuiqOp-CwcV_blEU-N0j9qI2NbFfxkFsmAsEw9XLwkuwts6V9RSigL99EvmEGPtbVVgWpSEMGYloYG1qHeI1GyJuKDkTuuFEwKBIHBZN7MlkOirx1yPtSdTYvqPwaw-kiJr-MPsikDx7wgAk5cchhS7e2NUTg14qAO-SgUTZZm5pC-kgwywMPSo82pWAj8OBHLW22BpE4Bs_QZ3dKABL14jskoH70rx0Sl6r5182Xg15yUt6__vdXj8j9_mR4Js8-jj4dkAcVfy7ug70he6t8bd8CMlylh-WM_wWZeVaw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELbQroTgwPKrDQu7PiBuqdokduJj1W4pha2q_YG9WY7tSFW3TZW00mpPPAKvwWvxJMzkp20QWiHEKYk8iWV7PP7GnnxDyDvRjk2og9Dt-Dp2A2WFKzS3biS0iYzhYWzwRPdszIdXweiaXVfxT_gvTMkPsdlww5lR2Guc4EuTNCc5rPauB_im3hphPGoBntwPuN_G8K7--ZZKCpzroIbCyBHXjOr545caS9U-9vothk6qHHovKdNeNHDpLrotlqfBAZnVDSujUmat9Spu6bvfOB__T8ufkicViqXdUu2ekQd28Zw83uE2hKcv03xdyuQvyI-z7V4kTRMKsJOChmbzdFkpCp3gsUCG_K4ooOpiQPdQCe3ZTM3hOoFHS7tFj9HpKqcX6c3UYLxToWL0HH-WoEUgBJ1gBrif376jzQNvHVC1of0qIQwYtht6ocuMTbSnMBBxjqFBL8nV4PSyN3SrLBGuRioblwfWwo0KAGwIHnYSsFBctVUUJeCucU_bmIUeN0j8qI0NbVvxgFsmfMEw8bL_iuwt0oU9JBSwl2dCzzADH2trq_xYxAEDMS2MDaxDOrVCyGVJBiJ3nCgYFImDgqk9mSwGRd465H2hOZsXVDbDYLqQya_jD7I3BP93xIS8dMhxQ7W2NYTg1QqfO-So1jVZGZpcekgvy_0OlJ5sSsFC4LGPWth0DSJRBH6hx-6VABzaie6RgPrRu3ZIVGjmXzdfjrq90-L-9b-_ekIeTvoD-fnj-NMReVSS5-Im2Buyt8rW9i3AwlV8XMz3X0QjVV8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+the+thermophysical+properties+of+a+thermoplastic+ceramic+paste+across+its+solidification+range+using+power-compensated+differential+scanning+calorimeter&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=BARKER%2C+Dean+A&rft.au=WILSON%2C+D.+Ian&rft.date=2005-11-01&rft.pub=Blackwell&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=88&rft.issue=11&rft.spage=3116&rft.epage=3124&rft_id=info:doi/10.1111%2Fj.1551-2916.2005.00568.x&rft.externalDBID=n%2Fa&rft.externalDocID=17287936 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon |