Measurement of the Thermophysical Properties of a Thermoplastic Ceramic Paste Across its Solidification Range Using Power-Compensated Differential Scanning Calorimeter

The specific heat capacity, thermal conductivity, and thermal diffusivity of a thermoplastic ceramic paste were investigated on a power‐compensated, differential scanning calorimeter (DSC) using the heat capacity spectral analysis method developed by Merzlyakov and Schick for measuring these paramet...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Ceramic Society Vol. 88; no. 11; pp. 3116 - 3124
Main Authors Barker, Dean A., Ian Wilson, D.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Inc 01.11.2005
Blackwell
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The specific heat capacity, thermal conductivity, and thermal diffusivity of a thermoplastic ceramic paste were investigated on a power‐compensated, differential scanning calorimeter (DSC) using the heat capacity spectral analysis method developed by Merzlyakov and Schick for measuring these parameters on low thermal conductivity solids. The paste features an ultra‐fine zinc oxide powder (a number‐length mean diameter, D1,0, of 85 nm) as the discrete phase, and a thermoplastic continuous phase comprising a blend of organic waxes with a melting range of ca. 30°–70°C. This paste is formulated with a solids loading of 50 vol% and is currently used in a novel continuous casting process to manufacture pharmaceutical products. The properties of the paste were investigated over a temperature range encompassing the melt and solid states, and for solid loadings from 0 to 70 vol%. The results compare favorably with those obtained using transient line source and transient plane methods.
AbstractList The specific heat capacity, thermal conductivity, and thermal diffusivity of a thermoplastic ceramic paste were investigated on a power‐compensated, differential scanning calorimeter (DSC) using the heat capacity spectral analysis method developed by Merzlyakov and Schick for measuring these parameters on low thermal conductivity solids. The paste features an ultra‐fine zinc oxide powder (a number‐length mean diameter, D 1,0 , of 85 nm) as the discrete phase, and a thermoplastic continuous phase comprising a blend of organic waxes with a melting range of ca. 30°–70°C. This paste is formulated with a solids loading of 50 vol% and is currently used in a novel continuous casting process to manufacture pharmaceutical products. The properties of the paste were investigated over a temperature range encompassing the melt and solid states, and for solid loadings from 0 to 70 vol%. The results compare favorably with those obtained using transient line source and transient plane methods.
The specific heat capacity, thermal conductivity, and thermal diffusivity of a thermoplastic ceramic paste were investigated using a power-compensated DSC using the heat capacity spectral analysis method developed by Merzlyakov and Schick for measuring these parameters on low thermal conductivity solids. The paste features an ultra-fine zinc oxide powder (a number-length mean diameter of 85 nm) as the discrete phase, and a thermoplastic continuous phase comprising a blend of organic waxes with a melting range of about 30-70 C. This paste is formulated with a solids loading of 50 vol% and is currently used in a novel continuous casting process to manufacture pharmaceutical products. The properties of the paste were investigated over a temperature range encompassing the melt and solid states, and for solids loadings from 0 to 70 vol%. The results compare favourably with those obtained using transient line source and transient plane methods. 20 refs.
The specific heat capacity, thermal conductivity, and thermal diffusivity of a thermoplastic ceramic paste were investigated on a power-compensated, differential scanning calorimeter (DSC) using the heat capacity spectral analysis method developed by Merzlyakov and Schick for measuring these parameters on low thermal conductivity solids. The paste features an ultra-fine zinc oxide powder (a number-length mean diameter, D^sub 1,0^, of 85 nm) as the discrete phase, and a thermoplastic continuous phase comprising a blend of organic waxes with a melting range of ca. 30°-70°C. This paste is formulated with a solids loading of 50 vol% and is currently used in a novel continuous casting process to manufacture pharmaceutical products. The properties of the paste were investigated over a temperature range encompassing the melt and solid states, and for solid loadings from 0 to 70 vol%. The results compare favorably with those obtained using transient line source and transient plane methods. [PUBLICATION ABSTRACT]
The specific heat capacity, thermal conductivity, and thermal diffusivity of a thermoplastic ceramic paste were investigated on a power‐compensated, differential scanning calorimeter (DSC) using the heat capacity spectral analysis method developed by Merzlyakov and Schick for measuring these parameters on low thermal conductivity solids. The paste features an ultra‐fine zinc oxide powder (a number‐length mean diameter, D1,0, of 85 nm) as the discrete phase, and a thermoplastic continuous phase comprising a blend of organic waxes with a melting range of ca. 30°–70°C. This paste is formulated with a solids loading of 50 vol% and is currently used in a novel continuous casting process to manufacture pharmaceutical products. The properties of the paste were investigated over a temperature range encompassing the melt and solid states, and for solid loadings from 0 to 70 vol%. The results compare favorably with those obtained using transient line source and transient plane methods.
Author Barker, Dean A.
Ian Wilson, D.
Author_xml – sequence: 1
  givenname: Dean A.
  surname: Barker
  fullname: Barker, Dean A.
  organization: Department of Chemical Engineering, Cambridge, CB2 3RA U.K
– sequence: 2
  givenname: D.
  surname: Ian Wilson
  fullname: Ian Wilson, D.
  email: ian_wilson@cheng.cam.ac.uk
  organization: Department of Chemical Engineering, Cambridge, CB2 3RA U.K
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17287936$$DView record in Pascal Francis
BookMark eNqNkt9v0zAQxy00JLrC_2AhwVuK48SO84SqMDamARXrxKNl0svqktiZnWrtX8S_yaUdQ-KFWbZ85_v46x93p-TEeQeE0JTNUmzvNrNUiDThZSpnnDExwyHVbPeMTB4DJ2TCGONJoTh7QU5j3KCbliqfkF-fwcRtgA7cQH1DhzXQ5RpC5_v1PtratHQRfA9hsBBHwPwJtyYOtqYVBNPhvEAX6LwOPkZqh0ivfWtXtkGJwXpHvxl3C_QmWndLF_4eQlL5rgcXzQAr-sE2DQS8g8UDr2vj3MhVpvXBdjBAeEmeN6aN8OphnpKbj2fL6iK5-nr-qZpfJbVgmUpkDoCGyXnOS1mkDedCGmaUapiSktfwQxRcrkSRZfUKCmBG5hJEmZVC5Lg4JW-Pun3wd1uIg-5srKFtjQO_jZqXmWQ5V_8HlRIqT58EZkxygeDrf8CN3waHr9U8LTCNGfYpUUfo8NEBGt3jD5mw1ynTY0HojR7zrse867Eg9KEg9A63vnnQNxHz2gTjahv_7i-4KvB1yL0_cve2hf2T9fXlvDo72KiQHBUs1sTuUcGEn1oWWSH09y_nurrgeXkpSr3MfgNxz9tI
CODEN JACTAW
CitedBy_id crossref_primary_10_1007_s10853_012_6627_4
crossref_primary_10_1063_1_4829921
crossref_primary_10_1016_j_ces_2007_12_004
Cites_doi 10.1063/1.459240
10.1016/j.tca.2004.02.008
10.1016/0921-5107(94)90340-9
10.1016/S1359-835X(02)00085-4
10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3
10.1016/S0260-8774(97)00043-5
10.1016/S0040-6031(01)00553-6
10.1016/j.compositesa.2004.07.002
10.1063/1.1142087
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright American Ceramic Society Nov 2005
Copyright_xml – notice: 2006 INIST-CNRS
– notice: Copyright American Ceramic Society Nov 2005
DBID BSCLL
IQODW
AAYXX
CITATION
7QQ
7SR
8FD
JG9
7TB
FR3
DOI 10.1111/j.1551-2916.2005.00568.x
DatabaseName Istex
Pascal-Francis
CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList CrossRef
Materials Research Database
Materials Research Database
Materials Research Database
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
Applied Sciences
EISSN 1551-2916
EndPage 3124
ExternalDocumentID 1001379291
10_1111_j_1551_2916_2005_00568_x
17287936
JACE00568
ark_67375_WNG_CH249J59_T
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEFU
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBO
EBS
EDO
EJD
EMK
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
I-F
IRD
ITF
ITG
ITH
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QF4
QM1
QN7
QO4
R.K
RAX
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TAE
TH9
TN5
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WFSAM
WH7
WIH
WIK
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
YQT
ZCG
ZE2
ZY4
ZZTAW
~02
~IA
~WT
G8K
08R
AAJUZ
ABCVL
ABHUG
ABPTK
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IQODW
PK8
AAYXX
CITATION
7QQ
7SR
8FD
JG9
7TB
FR3
ID FETCH-LOGICAL-c5038-64ee503a42429671f2256a0a88f08662ceb5726d5733cde7e0a646e5939554733
IEDL.DBID DR2
ISSN 0002-7820
IngestDate Fri Oct 25 22:49:31 EDT 2024
Fri Oct 25 09:39:13 EDT 2024
Fri Oct 25 05:55:43 EDT 2024
Thu Oct 10 16:34:14 EDT 2024
Fri Aug 23 00:37:30 EDT 2024
Sun Oct 29 17:08:40 EDT 2023
Sat Aug 24 00:47:09 EDT 2024
Wed Oct 30 09:53:36 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Differential scanning calorimetry
Green properties
Ceramic body
Heat capacity
Thermal diffusivity
Experimental study
Oxide ceramics
Solidification
Thermal conductivity
Technical ceramics
Zinc oxide
Manufacturing
Thermophysical properties
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5038-64ee503a42429671f2256a0a88f08662ceb5726d5733cde7e0a646e5939554733
Notes ark:/67375/WNG-CH249J59-T
ArticleID:JACE00568
istex:992C32E0ED71014D412B94BC03CEA238D921CDB8
Support for DAB provided by the Tertiary Education Commission, New Zealand.
H. M. Jennings—contributing editor
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 217916316
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_29360428
proquest_miscellaneous_28858418
proquest_miscellaneous_28830625
proquest_journals_217916316
crossref_primary_10_1111_j_1551_2916_2005_00568_x
pascalfrancis_primary_17287936
wiley_primary_10_1111_j_1551_2916_2005_00568_x_JACE00568
istex_primary_ark_67375_WNG_CH249J59_T
PublicationCentury 2000
PublicationDate November 2005
PublicationDateYYYYMMDD 2005-11-01
PublicationDate_xml – month: 11
  year: 2005
  text: November 2005
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Malden,MA
– name: Columbus
PublicationTitle Journal of the American Ceramic Society
PublicationYear 2005
Publisher Blackwell Science Inc
Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Science Inc
– name: Blackwell
– name: Wiley Subscription Services, Inc
References J. E. Parrott and D. Audrey Stuckes, Thermal Conductivity of Solids. Pion, London, 1975.
M. J. Morley and C. A. Miles, "Modelling the Thermal Conductivity of Starch-Water Gels,"J. Food Eng., 33, 1-2 (1997).
C. P. Wong and R. S. Bollampally, "Thermal Conductivity, Elastic Modulus, and Coefficient of Thermal Expansion of Polymer Composites Filled With Ceramic Particles for Electronic Packaging,"J. Appl. Polym. Sci., 74, 14 (1999).
B. Weidenfeller, M. Hofer, and F. Schilling, "Thermal and Electrical Properties of Magnetite Filled Polymers,"Compos. Pt. A-Appl. Sci. Manuf., 33, 8 (2002).
B Cassel, A Stepwise Specific Heat Technique for Dynamic DSC. Perkin-Elmer Life and Analytical Sciences Inc., Boston, MA, 2000.
S. E. Gustafsson, "Transient Plane Source Techniques for Thermal-Conductivity and Thermal-Diffusivity Measurements of Solid Materials,"Rev. Sci. Instrum., 62, 3 (1991).
Decagon Devices Inc., KD2 User's Manual version 1.0 Thermal Properties Analyzer. Decagon Devices Inc, Pullman, WA, 2001.
C. Rauwendaal, Polymer Extrusion, 3rd edition, Hanser, Munich, 1994.
L. Kehoe, P. V. Kelly, G. M. O'Connor, M. O'Reilly, and G. M. Crean, "A Methodology for Laser-Based Thermal Diffusivity Measurement of Advanced Multichip Module Ceramic Materials,"IEEE Trans Compon. Packag. Manuf. Technol. Pt. A, 18, 4 (1995).
Yi He, "Heat Capacity, Thermal Conductivity, and Thermal Expansion of Barium Titanate-Based Ceramics,"Thermochim. Acta, 419, 1-2 (2004).
D. M. Liu, "Thermal-Diffusivity, Specific-Heat, and Thermal-Conductivity Of (Ca1−x,Mgx)Zr4(Po4)6 Ceramic,"Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 23, 2 (1994).
W. J. Sichina, Benefits and Applications of the Power Compensated Pyris 1 DSC. PerkinElmer Life and Analytical Sciences Inc., Boston, MA, 2000.
B. Weidenfeller, M. Hofer, and F. R. Schilling, "Cooling Behaviour of Particle Filled Polypropylene During Injection Moulding Process,"Compos. Pt. A-Appl. Sci. Manuf., 36, 3 (2005).
Perkin-Elmer Inc., Pyris Software for Windows, ver. 3.81. Perkin-Elmer Life and Analytical Sciences Inc., Boston, MA, 1999.
M. Merzlyakov and C. Schick, "Thermal Conductivity from Dynamic Response of DSC,"Thermochim. Acta, 377 (1-2), 183-91 (2001).
H. P. R. Frederikse and R. Lide David, CRC Handbook of Chemistry and Physics, 77th edition, CRC Press, Boca Raton, FL, 1996.
C. L. Jackson and G. B. McKenna, "The Melting Behavior of Organic Materials Confined in Porous Solids,"J. Chem. Phys., 93, 12 (1990).
2001; 377
2001
1997; 33
2000
2002; 33
1991; 62
1994; 23
1975
1996
1994
1999; 74
1995; 18
2004; 419
1990; 93
2005; 36
1999
Perkin‐Elmer Inc. (e_1_2_6_13_2) 1999
Kehoe L. (e_1_2_6_7_2) 1995; 18
Rauwendaal C. (e_1_2_6_11_2) 1994
Decagon Devices Inc. (e_1_2_6_14_2) 2001
Frederikse H. P. R. (e_1_2_6_19_2) 1996
Parrott J. E. (e_1_2_6_20_2) 1975
e_1_2_6_8_2
Cassel B (e_1_2_6_12_2) 2000
e_1_2_6_18_2
e_1_2_6_9_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
Sichina W. J. (e_1_2_6_17_2) 2000
e_1_2_6_5_2
e_1_2_6_2_2
e_1_2_6_10_2
e_1_2_6_21_2
e_1_2_6_16_2
e_1_2_6_15_2
References_xml – volume: 93
  start-page: 12
  year: 1990
  article-title: The Melting Behavior of Organic Materials Confined in Porous Solids
  publication-title: J. Chem. Phys.
– volume: 23
  start-page: 2
  year: 1994
  article-title: Thermal‐Diffusivity, Specific‐Heat, and Thermal‐Conductivity Of (Ca ,Mg )Zr (Po ) Ceramic
  publication-title: Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
– volume: 377
  start-page: 183
  issue: 1–2
  year: 2001
  end-page: 91
  article-title: Thermal Conductivity from Dynamic Response of DSC
  publication-title: Thermochim. Acta
– year: 2001
– volume: 74
  start-page: 14
  year: 1999
  article-title: Thermal Conductivity, Elastic Modulus, and Coefficient of Thermal Expansion of Polymer Composites Filled With Ceramic Particles for Electronic Packaging
  publication-title: J. Appl. Polym. Sci.
– volume: 33
  start-page: 8
  year: 2002
  article-title: Thermal and Electrical Properties of Magnetite Filled Polymers
  publication-title: Compos. Pt. A-Appl. Sci. Manuf.
– year: 2000
– year: 1996
– volume: 419
  start-page: 1
  year: 2004
  end-page: 2
  article-title: Heat Capacity, Thermal Conductivity, and Thermal Expansion of Barium Titanate‐Based Ceramics
  publication-title: Thermochim. Acta
– year: 1975
– volume: 33
  start-page: 1
  year: 1997
  end-page: 2
  article-title: Modelling the Thermal Conductivity of Starch‐Water Gels
  publication-title: J. Food Eng.
– volume: 36
  start-page: 3
  year: 2005
  article-title: Cooling Behaviour of Particle Filled Polypropylene During Injection Moulding Process
  publication-title: Compos. Pt. A-Appl. Sci. Manuf.
– year: 1994
– volume: 62
  start-page: 3
  year: 1991
  article-title: Transient Plane Source Techniques for Thermal‐Conductivity and Thermal‐Diffusivity Measurements of Solid Materials
  publication-title: Rev. Sci. Instrum.
– volume: 18
  start-page: 4
  year: 1995
  article-title: A Methodology for Laser‐Based Thermal Diffusivity Measurement of Advanced Multichip Module Ceramic Materials
  publication-title: IEEE Trans Compon. Packag. Manuf. Technol. Pt. A
– year: 1999
– volume-title: CRC Handbook of Chemistry and Physics
  year: 1996
  ident: e_1_2_6_19_2
  contributor:
    fullname: Frederikse H. P. R.
– volume-title: Benefits and Applications of the Power Compensated Pyris 1 DSC
  year: 2000
  ident: e_1_2_6_17_2
  contributor:
    fullname: Sichina W. J.
– ident: e_1_2_6_18_2
  doi: 10.1063/1.459240
– ident: e_1_2_6_5_2
  doi: 10.1016/j.tca.2004.02.008
– ident: e_1_2_6_8_2
  doi: 10.1016/0921-5107(94)90340-9
– ident: e_1_2_6_10_2
– ident: e_1_2_6_4_2
  doi: 10.1016/S1359-835X(02)00085-4
– ident: e_1_2_6_6_2
  doi: 10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3
– volume: 18
  start-page: 4
  year: 1995
  ident: e_1_2_6_7_2
  article-title: A Methodology for Laser‐Based Thermal Diffusivity Measurement of Advanced Multichip Module Ceramic Materials
  publication-title: IEEE Trans Compon. Packag. Manuf. Technol. Pt. A
  contributor:
    fullname: Kehoe L.
– volume-title: KD2 User's Manual version 1.0 Thermal Properties Analyzer
  year: 2001
  ident: e_1_2_6_14_2
  contributor:
    fullname: Decagon Devices Inc.
– ident: e_1_2_6_21_2
  doi: 10.1016/S0260-8774(97)00043-5
– volume-title: Thermal Conductivity of Solids
  year: 1975
  ident: e_1_2_6_20_2
  contributor:
    fullname: Parrott J. E.
– ident: e_1_2_6_2_2
  doi: 10.1016/S0040-6031(01)00553-6
– ident: e_1_2_6_3_2
  doi: 10.1016/j.compositesa.2004.07.002
– volume-title: Polymer Extrusion
  year: 1994
  ident: e_1_2_6_11_2
  contributor:
    fullname: Rauwendaal C.
– volume-title: A Stepwise Specific Heat Technique for Dynamic DSC
  year: 2000
  ident: e_1_2_6_12_2
  contributor:
    fullname: Cassel B
– ident: e_1_2_6_15_2
– ident: e_1_2_6_16_2
  doi: 10.1063/1.1142087
– ident: e_1_2_6_9_2
– volume-title: Pyris Software for Windows, ver. 3.81
  year: 1999
  ident: e_1_2_6_13_2
  contributor:
    fullname: Perkin‐Elmer Inc.
SSID ssj0001984
Score 1.8525552
Snippet The specific heat capacity, thermal conductivity, and thermal diffusivity of a thermoplastic ceramic paste were investigated on a power‐compensated,...
The specific heat capacity, thermal conductivity, and thermal diffusivity of a thermoplastic ceramic paste were investigated on a power-compensated,...
The specific heat capacity, thermal conductivity, and thermal diffusivity of a thermoplastic ceramic paste were investigated using a power-compensated DSC...
SourceID proquest
crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 3116
SubjectTerms Applied sciences
Building materials. Ceramics. Glasses
Ceramic industries
Ceramics
Chemical industry and chemicals
Differential scanning calorimetry
Exact sciences and technology
General studies
Solidification
Technical ceramics
Temperature effects
Thermoplastics
Title Measurement of the Thermophysical Properties of a Thermoplastic Ceramic Paste Across its Solidification Range Using Power-Compensated Differential Scanning Calorimeter
URI https://api.istex.fr/ark:/67375/WNG-CH249J59-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1551-2916.2005.00568.x
https://www.proquest.com/docview/217916316
https://search.proquest.com/docview/28830625
https://search.proquest.com/docview/28858418
https://search.proquest.com/docview/29360428
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQ7gUOvBFhofiAuKVqHrbjY7fdUlXaVbUP2Jvl2K5UddusklZaceIn8Df4W_wSZvJoG4RWCHFKIk9i2R6Pv7En3xDyQfZSK0ws_CAyqR9rJ31puPMTaWxiLRepxRPd0zM-voon1-y6jn_Cf2EqfojthhvOjNJe4wTXadGe5LDa-yHgm2ZrhPGki3gyiARGdw3Pd0xS4FvHDRJGirh2UM8fP9RaqQ6x0-8wclIX0HmzKutFC5bug9tydRo9IYumXVVQyqK7Wadd8_U3ysf_0_Cn5HENYmm_0rpn5IFbPSeP9qgN4enzvNhUMsUL8uN0txVJsxkF1ElBQfNldlvrCZ3iqUCO9K4ooJtiAPdQCR24XC_hOoVHR_tlj9H5uqAX2c3cYrhTqWH0HP-VoGUcBJ1iArif376jyQNnHUC1pcM6HwzYtRt6YaqETXSgMQ5xiZFBL8nV6ORyMPbrJBG-QSYbn8fOwY2OAWtILoIZGCiuezpJZuCt8dC4lImQW-R9NNYJ19M85o7JSDLMuxy9IgerbOVeEwrQK7QitMzCx3rG6SiVacxAzEjrYueRoFEIdVtxgag9HwoGReGgYGZPpspBUXce-VhqzvYFnS8wlk4w9eXskxqMwf2dMKkuPdJpqdauBgFOrYy4R44aXVO1nSlUiOyyPAqg9P22FAwEnvrolcs2IJIk4BaG7F4JgKFBco8E1I_OtUeSUjP_uvlq0h-clPdv_v3VI_KwIszFja-35GCdb9w7gILrtEMO-8fD41GnnOy_ACz5VAg
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dbtMwFLbQdgFc8I8Ig80XiLtUzY-d-LLKNkpZq2rrYHeWY7tStbaZklaauOIReA1eiyfhnPy0DUITQlwlkU9i2T4-_o598h1C3oluaiIdRq4X6NQNlRWu0Ny6sdAmNoZHqcET3eGI9y_DwRW7qtMB4b8wFT_EZsMNZ0Zpr3GC44Z0e5bDcu_6AHCavRHG4w4Ayn2Y_QGmMzg-33JJgXcdNlgYSeLaYT1__FJrrdrHbr_F2ElVQPdNq7wXLWC6C2_L9en0MZk3LavCUq4761Xa0V9_I338T01_Qh7VOJb2KsV7Su7Z5TPycIfdEJ4-z4p1JVM8Jz-G291Imk0pAE8KOpovsptaVegYDwZyZHhFAdUUA76HSmhic7WA6xgeLe2VXUZnq4JeZPOZwYinUsnoOf4uQctQCDrGHHA_v31Hqwf-OuBqQ4_rlDBg2ub0Qlc5m2iiMBRxgcFBL8jl6ckk6bt1nghXI5mNy0Nr4UaFADcEj7wp2CiuuiqOp-CwcV_blEU-N0j9qI2NbFfxkFsmAsEw9XLwkuwts6V9RSigL99EvmEGPtbVVgWpSEMGYloYG1qHeI1GyJuKDkTuuFEwKBIHBZN7MlkOirx1yPtSdTYvqPwaw-kiJr-MPsikDx7wgAk5cchhS7e2NUTg14qAO-SgUTZZm5pC-kgwywMPSo82pWAj8OBHLW22BpE4Bs_QZ3dKABL14jskoH70rx0Sl6r5182Xg15yUt6__vdXj8j9_mR4Js8-jj4dkAcVfy7ug70he6t8bd8CMlylh-WM_wWZeVaw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELbQroTgwPKrDQu7PiBuqdokduJj1W4pha2q_YG9WY7tSFW3TZW00mpPPAKvwWvxJMzkp20QWiHEKYk8iWV7PP7GnnxDyDvRjk2og9Dt-Dp2A2WFKzS3biS0iYzhYWzwRPdszIdXweiaXVfxT_gvTMkPsdlww5lR2Guc4EuTNCc5rPauB_im3hphPGoBntwPuN_G8K7--ZZKCpzroIbCyBHXjOr545caS9U-9vothk6qHHovKdNeNHDpLrotlqfBAZnVDSujUmat9Spu6bvfOB__T8ufkicViqXdUu2ekQd28Zw83uE2hKcv03xdyuQvyI-z7V4kTRMKsJOChmbzdFkpCp3gsUCG_K4ooOpiQPdQCe3ZTM3hOoFHS7tFj9HpKqcX6c3UYLxToWL0HH-WoEUgBJ1gBrif376jzQNvHVC1of0qIQwYtht6ocuMTbSnMBBxjqFBL8nV4PSyN3SrLBGuRioblwfWwo0KAGwIHnYSsFBctVUUJeCucU_bmIUeN0j8qI0NbVvxgFsmfMEw8bL_iuwt0oU9JBSwl2dCzzADH2trq_xYxAEDMS2MDaxDOrVCyGVJBiJ3nCgYFImDgqk9mSwGRd465H2hOZsXVDbDYLqQya_jD7I3BP93xIS8dMhxQ7W2NYTg1QqfO-So1jVZGZpcekgvy_0OlJ5sSsFC4LGPWth0DSJRBH6hx-6VABzaie6RgPrRu3ZIVGjmXzdfjrq90-L-9b-_ekIeTvoD-fnj-NMReVSS5-Im2Buyt8rW9i3AwlV8XMz3X0QjVV8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+the+thermophysical+properties+of+a+thermoplastic+ceramic+paste+across+its+solidification+range+using+power-compensated+differential+scanning+calorimeter&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=BARKER%2C+Dean+A&rft.au=WILSON%2C+D.+Ian&rft.date=2005-11-01&rft.pub=Blackwell&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=88&rft.issue=11&rft.spage=3116&rft.epage=3124&rft_id=info:doi/10.1111%2Fj.1551-2916.2005.00568.x&rft.externalDBID=n%2Fa&rft.externalDocID=17287936
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon