Dynamics and processivity of 40S ribosome scanning on mRNA in yeast
Summary The eukaryotic 40S ribosomal subunit locates the translation initiation codon on an mRNA via the so‐called scanning process that follows 40S binding to the capped 5′ end. This key step in translation is required for the expression of almost all eukaryotic genes, yet the mechanism and dynamic...
Saved in:
Published in | Molecular microbiology Vol. 51; no. 4; pp. 987 - 1001 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Science Ltd
01.02.2004
Blackwell Science Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
The eukaryotic 40S ribosomal subunit locates the translation initiation codon on an mRNA via the so‐called scanning process that follows 40S binding to the capped 5′ end. This key step in translation is required for the expression of almost all eukaryotic genes, yet the mechanism and dynamics of scanning are unknown. We have performed quantitative studies in vivo and in vitro of the movement of yeast 40S ribosomes along 5′ untranslated regions (UTRs) of different lengths. 40S subunits perform cap‐dependent scanning with high processivity for more than 1700 nucleotides in cells of Saccharomyces cerevisiae. Moreover, the observed rates of expression indicate that scanning is performed by an untethered 40S subunit that has been released from the 5′ cap complex. Unexpectedly, the capability to maintain scanning competence on a long 5′ UTR is more dependent on the Ded1/Dbp1 type of helicase than on eIF4A or eIF4B. In a yeast cell‐free extract, scanning shows reduced processivity, with an estimated net 5′→3′ rate of approximately 10 nucleotides per second at 26°C. We have developed a biased bidirectional walking model of ribosomal scanning that provides a framework for understanding the above observations as well as other known quantitative and qualitative features of this process. |
---|---|
AbstractList | The eukaryotic 40S ribosomal subunit locates the translation initiation codon on an mRNA via the so-called scanning process that follows 40S binding to the capped 5' end. This key step in translation is required for the expression of almost all eukaryotic genes, yet the mechanism and dynamics of scanning are unknown. We have performed quantitative studies in vivo and in vitro of the movement of yeast 40S ribosomes along 5' untranslated regions (UTRs) of different lengths. 40S subunits perform cap-dependent scanning with high processivity for more than 1700 nucleotides in cells of Saccharomyces cerevisiae. Moreover, the observed rates of expression indicate that scanning is performed by an untethered 40S subunit that has been released from the 5' cap complex. Unexpectedly, the capability to maintain scanning competence on a long 5' UTR is more dependent on the Ded1/Dbp1 type of helicase than on eIF4A or eIF4B. In a yeast cell-free extract, scanning shows reduced processivity, with an estimated net 5'-->3' rate of approximately 10 nucleotides per second at 26 degrees C. We have developed a biased bidirectional walking model of ribosomal scanning that provides a framework for understanding the above observations as well as other known quantitative and qualitative features of this process. The eukaryotic 40S ribosomal subunit locates the translation initiation codon on an mRNA via the so-called scanning process that follows 40S binding to the capped 5' end. This key step in translation is required for the expression of almost all eukaryotic genes, yet the mechanism and dynamics of scanning are unknown. We have performed quantitative studies in vivo and in vitro of the movement of yeast 40S ribosomes along 5' untranslated regions (UTRs) of different lengths. 40S subunits perform cap-dependent scanning with high processivity for more than 1700 nucleotides in cells of Saccharomyces cerevisiae. Moreover, the observed rates of expression indicate that scanning is performed by an untethered 40S subunit that has been released from the 5' cap complex. Unexpectedly, the capability to maintain scanning competence on a long 5' UTR is more dependent on the Ded1/Dbp1 type of helicase than on eIF4A or eIF4B. In a yeast cell-free extract, scanning shows reduced processivity, with an estimated net 5' arrow right 3' rate of approximately 10 nucleotides per second at 26 degree C. We have developed a biased bidirectional walking model of ribosomal scanning that provides a framework for understanding the above observations as well as other known quantitative and qualitative features of this process. Summary The eukaryotic 40S ribosomal subunit locates the translation initiation codon on an mRNA via the so‐called scanning process that follows 40S binding to the capped 5′ end. This key step in translation is required for the expression of almost all eukaryotic genes, yet the mechanism and dynamics of scanning are unknown. We have performed quantitative studies in vivo and in vitro of the movement of yeast 40S ribosomes along 5′ untranslated regions (UTRs) of different lengths. 40S subunits perform cap‐dependent scanning with high processivity for more than 1700 nucleotides in cells of Saccharomyces cerevisiae. Moreover, the observed rates of expression indicate that scanning is performed by an untethered 40S subunit that has been released from the 5′ cap complex. Unexpectedly, the capability to maintain scanning competence on a long 5′ UTR is more dependent on the Ded1/Dbp1 type of helicase than on eIF4A or eIF4B. In a yeast cell‐free extract, scanning shows reduced processivity, with an estimated net 5′→3′ rate of approximately 10 nucleotides per second at 26°C. We have developed a biased bidirectional walking model of ribosomal scanning that provides a framework for understanding the above observations as well as other known quantitative and qualitative features of this process. The eukaryotic 40S ribosomal subunit locates the translation initiation codon on an mRNA via the so‐called scanning process that follows 40S binding to the capped 5′ end. This key step in translation is required for the expression of almost all eukaryotic genes, yet the mechanism and dynamics of scanning are unknown. We have performed quantitative studies in vivo and in vitro of the movement of yeast 40S ribosomes along 5′ untranslated regions (UTRs) of different lengths. 40S subunits perform cap‐dependent scanning with high processivity for more than 1700 nucleotides in cells of Saccharomyces cerevisiae . Moreover, the observed rates of expression indicate that scanning is performed by an untethered 40S subunit that has been released from the 5′ cap complex. Unexpectedly, the capability to maintain scanning competence on a long 5′ UTR is more dependent on the Ded1/Dbp1 type of helicase than on eIF4A or eIF4B. In a yeast cell‐free extract, scanning shows reduced processivity, with an estimated net 5′→3′ rate of approximately 10 nucleotides per second at 26°C. We have developed a biased bidirectional walking model of ribosomal scanning that provides a framework for understanding the above observations as well as other known quantitative and qualitative features of this process. The eukaryotic 40S ribosomal subunit locates the translation initiation codon on an mRNA via the so-called scanning process that follows 40S binding to the capped 5' end. This key step in translation is required for the expression of almost all eukaryotic genes, yet the mechanism and dynamics of scanning are unknown. We have performed quantitative studies in vivo and in vitro of the movement of yeast 40S ribosomes along 5' untranslated regions (UTRs) of different lengths. 40S subunits perform cap-dependent scanning with high processivity for more than 1700 nucleotides in cells of Saccharomyces cerevisiae. Moreover, the observed rates of expression indicate that scanning is performed by an untethered 40S subunit that has been released from the 5' cap complex. Unexpectedly, the capability to maintain scanning competence on a long 5' UTR is more dependent on the Ded1/Dbp1 type of helicase than on eIF4A or eIF4B. In a yeast cell-free extract, scanning shows reduced processivity, with an estimated net 5'-->3' rate of approximately 10 nucleotides per second at 26 degrees C. We have developed a biased bidirectional walking model of ribosomal scanning that provides a framework for understanding the above observations as well as other known quantitative and qualitative features of this process. |
Author | Berthelot, Karine Muldoon, Mark McCarthy, John E. G. Rajkowitsch, Lukas Hughes, John |
Author_xml | – sequence: 1 givenname: Karine surname: Berthelot fullname: Berthelot, Karine – sequence: 2 givenname: Mark surname: Muldoon fullname: Muldoon, Mark – sequence: 3 givenname: Lukas surname: Rajkowitsch fullname: Rajkowitsch, Lukas – sequence: 4 givenname: John surname: Hughes fullname: Hughes, John – sequence: 5 givenname: John E. G. surname: McCarthy fullname: McCarthy, John E. G. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15523745$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/14763975$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkVtv1DAQhS1URLeFv4AsJHhLGMeX2A88VFsulVqQuEi8WY53jLxK7BLvQvPvSdgVlXiBpxlpvhmdOeeMnKSckBDKoGYg1MttzbiSVWOkrhsAXgPXRtd3D8jqz-CErMBIqLhuvp6Ss1K2AIyD4o_IKROt4qaVK7K-nJIboi_UpQ29HbPHUuKPuJtoDlTAJzrGLpc8IC3epRTTN5oTHT6-v6Ax0Qld2T0mD4PrCz451nPy5c3rz-t31fWHt1fri-vKy1lfJRGwE0aIBo1p29BJrjsjZGCS8xDAs40LHeq5Cwb9RikhNSgjsAsNB-Tn5MXh7izz-x7Lzg6xeOx7lzDvi9XAhAJt_gmytmmZZAv47C9wm_djmp-wzCjJBVN6hvQB8mMuZcRgb8c4uHGyDOwSh93axXW7uG6XOOzvOOzdvPr0eH_fDbi5Xzz6PwPPj4Cb7e3D6JKP5Z6TsuGtWLhXB-5n7HH6bwH25uZq6fgv1RGlvg |
CitedBy_id | crossref_primary_10_1016_j_ydbio_2004_09_009 crossref_primary_10_1146_annurev_biochem_060713_035802 crossref_primary_10_1016_j_bcp_2009_08_032 crossref_primary_10_15252_embr_201847498 crossref_primary_10_1093_nar_gks825 crossref_primary_10_1016_j_jmb_2009_12_025 crossref_primary_10_1128_MCB_00280_10 crossref_primary_10_1002_wrna_1845 crossref_primary_10_1093_nar_gkm283 crossref_primary_10_3390_v8040097 crossref_primary_10_1002_wrna_1165 crossref_primary_10_1093_nar_gkx430 crossref_primary_10_1134_S0006297912130056 crossref_primary_10_1016_j_virusres_2012_10_006 crossref_primary_10_1016_j_biotechadv_2022_108081 crossref_primary_10_1016_j_cell_2020_04_009 crossref_primary_10_1038_emboj_2012_220 crossref_primary_10_1038_nprot_2016_189 crossref_primary_10_1128_MCB_00560_10 crossref_primary_10_1074_jbc_M113_529370 crossref_primary_10_1016_j_bbagrm_2015_09_006 crossref_primary_10_1146_annurev_ento_112408_085457 crossref_primary_10_3390_ijms20184464 crossref_primary_10_1128_MCB_00018_15 crossref_primary_10_1016_j_jmb_2006_06_016 crossref_primary_10_1016_j_tibs_2009_02_001 crossref_primary_10_1017_S0033583516000056 crossref_primary_10_1074_jbc_M112_347278 crossref_primary_10_1093_nar_gkz1066 crossref_primary_10_3390_genes14081566 crossref_primary_10_7554_eLife_93255 crossref_primary_10_1002_wrna_1748 crossref_primary_10_1371_journal_pone_0068665 crossref_primary_10_7554_eLife_93255_3 crossref_primary_10_1016_j_jbc_2023_104936 crossref_primary_10_1016_j_jtbi_2010_01_015 crossref_primary_10_1016_j_bbagrm_2013_01_005 crossref_primary_10_1186_1752_0509_5_131 crossref_primary_10_1073_pnas_1612398113 crossref_primary_10_1186_1471_2164_12_68 crossref_primary_10_1371_journal_pbio_1001981 crossref_primary_10_1261_rna_035113_112 crossref_primary_10_1093_nar_gkl468 crossref_primary_10_1038_srep25996 crossref_primary_10_1186_s12967_021_02948_6 crossref_primary_10_1038_sj_emboj_7600540 crossref_primary_10_1534_genetics_115_186221 crossref_primary_10_1016_j_gene_2005_10_019 crossref_primary_10_1038_s41598_018_20010_2 crossref_primary_10_1002_wrna_1473 crossref_primary_10_1016_j_bbagrm_2013_03_007 crossref_primary_10_1038_nrm3083 crossref_primary_10_1261_rna_67906 crossref_primary_10_1016_j_jgg_2018_01_003 crossref_primary_10_1016_j_molcel_2020_06_005 crossref_primary_10_1038_msb_2012_73 crossref_primary_10_1038_s41559_022_01925_6 crossref_primary_10_1073_pnas_1203831109 crossref_primary_10_1093_nar_gkac021 crossref_primary_10_1093_nar_gkn454 crossref_primary_10_1016_j_gene_2012_04_039 crossref_primary_10_1074_jbc_M110_132027 crossref_primary_10_1016_j_jprot_2012_01_009 crossref_primary_10_1038_s41580_023_00624_9 crossref_primary_10_1074_jbc_M600262200 crossref_primary_10_7554_eLife_38892 crossref_primary_10_5936_csbj_201204002 crossref_primary_10_1021_bi901379a crossref_primary_10_1074_jbc_R110_144196 crossref_primary_10_1186_1475_2859_12_74 crossref_primary_10_1261_rna_035865_112 crossref_primary_10_3390_biom14070803 crossref_primary_10_1038_s42003_022_03534_2 crossref_primary_10_1128_MCB_00430_10 crossref_primary_10_1016_j_gene_2005_06_037 crossref_primary_10_1186_s13059_022_02829_1 crossref_primary_10_3390_ijms232113369 crossref_primary_10_1016_j_mod_2005_04_002 crossref_primary_10_1093_nar_gkr147 crossref_primary_10_1016_j_ydbio_2009_04_003 crossref_primary_10_1101_gad_282418_116 crossref_primary_10_1126_science_aad9868 crossref_primary_10_1016_j_molcel_2020_07_025 crossref_primary_10_1101_gr_191601_115 crossref_primary_10_7554_eLife_32563 crossref_primary_10_1016_j_ydbio_2016_02_014 crossref_primary_10_1146_annurev_phyto_44_070505_143353 crossref_primary_10_1186_1752_0509_1_S1_P1 crossref_primary_10_1093_nar_gky706 crossref_primary_10_1093_nar_gkr474 crossref_primary_10_1016_j_bbagrm_2009_07_005 crossref_primary_10_1109_TBCAS_2013_2290063 crossref_primary_10_1128_MCB_00139_17 crossref_primary_10_1016_j_mbs_2021_108762 crossref_primary_10_1016_j_celrep_2020_107534 crossref_primary_10_1093_nar_gkw764 crossref_primary_10_1093_nar_gku584 crossref_primary_10_1016_j_jbc_2021_100296 crossref_primary_10_1093_nar_gkz595 crossref_primary_10_1038_nsmb_2303 crossref_primary_10_1261_rna_7160404 crossref_primary_10_1371_journal_pgen_1010460 crossref_primary_10_1074_jbc_R110_111476 crossref_primary_10_1002_yea_1092 crossref_primary_10_1101_cshperspect_a033092 crossref_primary_10_1007_s12275_016_5599_5 crossref_primary_10_1371_journal_pcbi_1003136 crossref_primary_10_1038_nrm3154 crossref_primary_10_1093_nar_gkw534 crossref_primary_10_1371_journal_pgen_1003085 crossref_primary_10_1128_MMBR_00008_11 crossref_primary_10_1111_febs_15059 crossref_primary_10_1074_jbc_M111_299321 crossref_primary_10_4161_trla_24400 crossref_primary_10_1093_nar_gkad433 crossref_primary_10_1128_MCB_01555_07 crossref_primary_10_1038_s41586_018_0258_0 crossref_primary_10_1091_mbc_e07_12_1264 |
Cites_doi | 10.1128/MCB.21.3.916-927.2001 10.1002/j.1460-2075.1991.tb05001.x 10.1111/j.1432-1033.1991.tb16184.x 10.1093/emboj/19.9.2127 10.1002/bip.10210 10.1074/jbc.274.25.17677 10.1038/418229a 10.1093/emboj/20.22.6453 10.1007/BF00340712 10.1111/j.1365-2958.1991.tb00753.x 10.1128/MCB.11.7.3463 10.1073/pnas.81.20.6442 10.1126/science.275.5305.1468 10.1046/j.1365-2958.2002.03172.x 10.1093/emboj/20.9.2326 10.1046/j.1365-2958.2003.03656.x 10.1074/jbc.M103772200 10.1128/MCB.23.15.5431-5445.2003 10.1016/0092-8674(80)90356-6 10.1074/jbc.272.35.21661 10.1128/MCB.19.8.5557 10.1128/MCB.11.1.486 10.1017/S135583820100108X 10.1073/pnas.94.10.5201 10.1002/j.1460-2075.1993.tb06077.x 10.1016/0076-6879(90)85032-J 10.1016/0092-8674(78)90039-9 10.1074/jbc.M100157200 10.1073/pnas.83.9.2850 10.1006/meth.1996.0433 10.1093/nar/29.22.4561 10.1093/nar/29.24.5226 10.1074/jbc.274.38.26720 10.1128/MMBR.62.4.1492-1553.1998 10.1083/jcb.115.4.887 10.1016/S0248-4900(03)00032-7 10.1016/0378-1119(89)90094-2 10.1093/emboj/18.23.6705 10.1016/S0378-1119(02)01056-9 10.1111/j.1365-2958.1993.tb01713.x 10.1007/978-1-4757-3247-4 10.1016/S0021-9258(18)53273-7 10.1038/29703 10.1074/jbc.272.26.16531 10.1128/MCB.9.11.5134 10.1093/nar/12.9.3873 10.1002/j.1460-2075.1993.tb06078.x |
ContentType | Journal Article |
Copyright | 2004 INIST-CNRS Copyright Blackwell Scientific Publications Ltd. Feb 2004 |
Copyright_xml | – notice: 2004 INIST-CNRS – notice: Copyright Blackwell Scientific Publications Ltd. Feb 2004 |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
DOI | 10.1046/j.1365-2958.2003.03898.x |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1365-2958 |
EndPage | 1001 |
ExternalDocumentID | 550669711 10_1046_j_1365_2958_2003_03898_x 14763975 15523745 MMI3898 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ .3N .55 .GA .GJ .HR .Y3 05W 0R~ 10A 123 1OB 1OC 24P 29M 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FSRTE FZ0 G-S G.N GODZA GX1 H.T H.X HF~ HGLYW HH5 HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OEB OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TR2 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WOW WQJ WRC WUP WXSBR WYISQ X7M XG1 Y6R YFH YUY ZGI ZXP ZY4 ZZTAW ~IA ~KM ~WT AAJUZ AAPBV AAUGY ABCVL ABHUG ABPTK ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS AKALU IQODW XFK CGR CUY CVF ECM EIF NPM AAMNL AAYXX ACRPL CITATION 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c5038-5e0eb49442e9977fb538b945f1533ff0c1dafbe8f0cf9ecd664580694ebf230e3 |
IEDL.DBID | DR2 |
ISSN | 0950-382X |
IngestDate | Wed Dec 04 15:44:33 EST 2024 Wed Dec 04 02:22:47 EST 2024 Thu Oct 10 18:51:02 EDT 2024 Fri Dec 06 03:58:35 EST 2024 Sat Sep 28 08:39:33 EDT 2024 Sun Oct 22 16:04:22 EDT 2023 Sat Aug 24 00:57:11 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Yeast Messenger RNA Microbiology 40S-Ribosome |
Language | English |
License | CC BY 4.0 http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5038-5e0eb49442e9977fb538b945f1533ff0c1dafbe8f0cf9ecd664580694ebf230e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1046/j.1365-2958.2003.03898.x |
PMID | 14763975 |
PQID | 196534168 |
PQPubID | 35968 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_80146089 proquest_miscellaneous_17271519 proquest_journals_196534168 crossref_primary_10_1046_j_1365_2958_2003_03898_x pubmed_primary_14763975 pascalfrancis_primary_15523745 wiley_primary_10_1046_j_1365_2958_2003_03898_x_MMI3898 |
PublicationCentury | 2000 |
PublicationDate | February 2004 |
PublicationDateYYYYMMDD | 2004-02-01 |
PublicationDate_xml | – month: 02 year: 2004 text: February 2004 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | Molecular microbiology |
PublicationTitleAlternate | Mol Microbiol |
PublicationYear | 2004 |
Publisher | Blackwell Science Ltd Blackwell Science Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Science Ltd – name: Blackwell Science – name: Blackwell Publishing Ltd |
References | 1993; 9 1991; 0 1984; 81 1997; 272 1991; 10 1991; 11 1997; 275 1980; 22 1989; 9 2002; 299 2002; 418 1978; 15 2001; 29 1957; 1 1993; 268 1998; 62 2003; 95 1991; 115 1990; 185 2001; 20 1991; 5 2001; 21 1998; 394 2001; 276 1993; 12 1997; 94 2000; 19 1991; 200 1986; 83 2001 1997; 11 1990 2001; 7 2000 1999; 19 1999; 18 2002; 46 1984; 12 1999; 274 2003; 68 1986 2003; 49 1989; 16 1989; 79 1989 2003; 23 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 Sambrook J. (e_1_2_6_47_1) 1989 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 Feller W. (e_1_2_6_11_1) 1957 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_52_1 e_1_2_6_54_1 Coppolechia R. (e_1_2_6_6_1) 1993; 12 e_1_2_6_10_1 e_1_2_6_31_1 Raught B. (e_1_2_6_44_1) 2000 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 Rose M.D. (e_1_2_6_46_1) 1990 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 Vega Laso M.R. (e_1_2_6_53_1) 1993; 268 McCarthy J.E.G. (e_1_2_6_38_1) 1998; 62 Sherman F. (e_1_2_6_50_1) 1986 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 Hershey J.W.B. (e_1_2_6_17_1) 2000 e_1_2_6_27_1 |
References_xml | – volume: 10 start-page: 4231 year: 1991 end-page: 4239 article-title: Depletion of U3 small nucleolar RNA inhibits cleavage in the 5′ external transcribed spacer of yeast pre‐ribosomal RNA and impairs formation of 18S ribosomal RNA publication-title: EMBO J – year: 2001 – year: 1989 – volume: 83 start-page: 2850 year: 1986 end-page: 2854 article-title: Influences of mRNA secondary structure on initiation by eukaryotic ribosomes publication-title: Proc Natl Acad Sci USA – volume: 16 start-page: 339 year: 1989 end-page: 346 article-title: High efficiency transformation of intact yeast cells using single stranded nucleic acids as carrier publication-title: Curr Genet – volume: 12 start-page: 3997 year: 1993 end-page: 4003 article-title: A homologue of mammalian translation initiation factor 4B contributes to RNA helicase activity publication-title: EMBO J – volume: 21 start-page: 916 year: 2001 end-page: 927 article-title: Global and specific translational regulation in the genomic response of to a rapid transfer form a fermentable to a nonfermentable carbon source publication-title: Mol Cell Biol – year: 1990 – volume: 7 start-page: 382 year: 2001 end-page: 394 article-title: The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure publication-title: RNA – volume: 276 start-page: 3382 year: 2001 end-page: 33825 article-title: Expression of a micro‐protein publication-title: J Biol Chem – volume: 81 start-page: 6442 year: 1984 end-page: 6446 article-title: Evidence for translational regulation of the activator of general amino acid control in yeast publication-title: Proc Natl Acad Sci USA – year: 1986 – volume: 200 start-page: 285 year: 1991 end-page: 294 article-title: The ATP requirement for initiation of eukaryotic translation varies according to the mRNA species publication-title: Eur J Biochem – volume: 275 start-page: 1468 year: 1997 end-page: 1471 article-title: Requirement of the DEAD‐Box protein ded1p for messenger RNA translation publication-title: Science – volume: 274 start-page: 26720 year: 1999 end-page: 26726 article-title: Interaction of translation initiation factor eIF4G with eIF4A in the yeast publication-title: J Biol Chem – volume: 18 start-page: 6705 year: 1999 end-page: 6717 article-title: Kinetic dissection of fundamental processes of eukaryotic translation initiation publication-title: EMBO J – volume: 268 start-page: 6453 year: 1993 end-page: 6462 article-title: Inhibition of translation initiation in the yeast as a function of the stability and the position of hairpin structures in the mRNA leader publication-title: J Biol Chem – volume: 29 start-page: 5226 year: 2001 end-page: 5232 article-title: Constraints on reinitiation of translation in mammals publication-title: Nucleic Acids Res – volume: 418 start-page: 229 year: 2002 end-page: 235 article-title: The involvement of RNA in ribosome function publication-title: Nature – volume: 23 start-page: 5431 year: 2003 end-page: 5445 article-title: The yeast eukaryotic initiation factor 4G (eIF4G) HEAT domain interacts with eIF1 and eIF5 and is involved in stringent AUG selection publication-title: Mol Cell Biol – start-page: 33 year: 2000 end-page: 88 – volume: 19 start-page: 5557 year: 1999 end-page: 5564 article-title: Eukaryotic translation initiation factors 4G and 4A from interact physically and functionally publication-title: Mol Cell Biol – volume: 46 start-page: 531 year: 2002 end-page: 544 article-title: Intracellular translation initiation factor levels in and their role in cap‐complex function publication-title: Mol Microbiol – volume: 20 start-page: 6453 year: 2001 end-page: 6463 article-title: Physical evidence for distinct mechanisms of translational control by upstream open reading frames publication-title: EMBO J – volume: 11 start-page: 3463 year: 1991 end-page: 3471 article-title: Translation initiation factor 4A from : analysis of residues conserved in the D‐E‐A‐D family of RNA helicases publication-title: Mol Cell Biol – start-page: 245 year: 2000 end-page: 293 – volume: 20 start-page: 2326 year: 2001 end-page: 2337 article-title: Multiple roles for the C‐terminal domain of eIF5 in translation initiation complex assembly and GTPase activation publication-title: EMBO J – volume: 19 start-page: 2127 year: 2000 end-page: 2136 article-title: Late events of translation initiation in bacteria: a kinetic analysis publication-title: EMBO J – volume: 115 start-page: 887 year: 1991 end-page: 903 article-title: An analysis of vertebrate mRNA sequences: intimations of translational control publication-title: J Cell Biol – volume: 272 start-page: 16531 year: 1997 end-page: 16539 article-title: The position dependence of translational regulation via RNA–RNA and RNA–protein interactions in the 5′‐untranslated region of eukaryotic mRNA is a function of the thermodynamic competence of 40S ribosomes in translation initiation publication-title: J Biol Chem – volume: 94 start-page: 5201 year: 1997 end-page: 5206 article-title: The p20 and Ded1 proteins have antagonistic roles in eIF4E‐dependent translation in publication-title: Proc Natl Acad Sci USA – volume: 11 start-page: 353 year: 1997 end-page: 360 article-title: Translation‐competent extracts from : effects of L‐A RNA, 5′ cap, and 3′ poly (A) tail on translational efficiency of mRNAs publication-title: Methods – volume: 299 start-page: 1 year: 2002 end-page: 34 article-title: Pushing the limits of the scanning mechanism for initiation of translation publication-title: Gene – volume: 5 start-page: 805 year: 1991 end-page: 812 article-title: A suppressor of yeast / mutations encodes a very similar putative ATP‐dependent RNA helicase publication-title: Mol Microbiol – volume: 62 start-page: 1492 year: 1998 end-page: 1553 article-title: Posttranscriptional control of gene expression publication-title: Microbiol Mol Biol Rev – volume: 22 start-page: 459 year: 1980 end-page: 467 article-title: Role of ATP in binding and migration of 40S ribosomal subunits publication-title: Cell – volume: 68 start-page: 223 year: 2003 end-page: 233 article-title: Electron microscopy of functional ribosome complexes publication-title: Biopolymers – volume: 12 start-page: 3873 year: 1984 end-page: 3893 article-title: Selection of initiation sites by eucaryotic ribosomes: effect of inserting AUG triplets upstream from the coding sequence for preproinsulin publication-title: Nucleic Acids Res – volume: 15 start-page: 1109 year: 1978 end-page: 1123 article-title: How do eucaryotic ribosomes select initiation regions in messenger mRNA? publication-title: Cell – volume: 95 start-page: 157 year: 2003 end-page: 167 article-title: Yeast helicases of the DEAD‐box family involved in translation initiation publication-title: Biol Cell – volume: 272 start-page: 21661 year: 1997 end-page: 21664 article-title: Translational regulation of yeast . A window on factors that control initiator‐tRNA binding to the ribosome publication-title: J Biol Chem – volume: 1 year: 1957 – volume: 276 start-page: 30914 year: 2001 end-page: 30922 article-title: Modulation of the helicase activity of eIF4A by eIF4B, eIF4H and eIF4F publication-title: J Biol Chem – volume: 185 start-page: 366 year: 1990 end-page: 372 article-title: Sequence and structural requirements for efficient translation in yeast publication-title: Methods Enzymol – volume: 9 start-page: 5134 year: 1989 end-page: 5142 article-title: Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs publication-title: Mol Cell Biol – volume: 394 start-page: 854 year: 1998 end-page: 859 article-title: Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons publication-title: Nature – volume: 12 start-page: 4005 year: 1993 end-page: 4011 article-title: A new yeast translation factor suppresses a mutation in the eIF4A RNA helicase publication-title: EMBO J – volume: 0 start-page: 486 year: 1991 end-page: 496 article-title: Suppression of ribosomal reinitiation at upstream open reading frames in amino acid‐starved cells forms the basis for translational control publication-title: Mol Cell Biol – volume: 29 start-page: 4561 year: 2001 end-page: 4569 article-title: A second eIF4E protein in has distinct 5′cap‐ and eIF4G‐binding properties publication-title: Nucleic Acids Res – volume: 9 start-page: 521 year: 1993 end-page: 532 article-title: Inhibition of translational initiation in by secondary structure: the role of the stability and position of stem‐loops in the mRNA leader publication-title: Mol Microbiol – volume: 79 start-page: 83 year: 1989 end-page: 95 article-title: Effect of deletions in the 5′‐noncoding region on the translational efficiency of phosphoglycerate kinase mRNA in yeast publication-title: Gene – volume: 274 start-page: 7677 year: 1999 end-page: 7683 article-title: Ded1p, a DEAD‐box protein required for translation initiation in , is an RNA helicase publication-title: J Biol Chem – volume: 49 start-page: 1627 year: 2003 end-page: 1637 article-title: Tetracycline‐aptamer‐mediated translational regulation in yeast publication-title: Mol Microbiol – ident: e_1_2_6_35_1 doi: 10.1128/MCB.21.3.916-927.2001 – ident: e_1_2_6_21_1 doi: 10.1002/j.1460-2075.1991.tb05001.x – ident: e_1_2_6_24_1 doi: 10.1111/j.1432-1033.1991.tb16184.x – ident: e_1_2_6_52_1 doi: 10.1093/emboj/19.9.2127 – volume-title: An Introduction to Probability and its Applications year: 1957 ident: e_1_2_6_11_1 contributor: fullname: Feller W. – volume-title: Methods in Yeast Genetics: A Laboratory Manual. year: 1990 ident: e_1_2_6_46_1 contributor: fullname: Rose M.D. – ident: e_1_2_6_12_1 doi: 10.1002/bip.10210 – volume-title: Laboratory Course Manual for Methods in Yeast Genetics. year: 1986 ident: e_1_2_6_50_1 contributor: fullname: Sherman F. – ident: e_1_2_6_23_1 doi: 10.1074/jbc.274.25.17677 – ident: e_1_2_6_39_1 doi: 10.1038/418229a – ident: e_1_2_6_13_1 doi: 10.1093/emboj/20.22.6453 – ident: e_1_2_6_48_1 doi: 10.1007/BF00340712 – ident: e_1_2_6_25_1 doi: 10.1111/j.1365-2958.1991.tb00753.x – ident: e_1_2_6_49_1 doi: 10.1128/MCB.11.7.3463 – ident: e_1_2_6_19_1 doi: 10.1073/pnas.81.20.6442 – ident: e_1_2_6_5_1 doi: 10.1126/science.275.5305.1468 – ident: e_1_2_6_14_1 doi: 10.1046/j.1365-2958.2002.03172.x – ident: e_1_2_6_4_1 doi: 10.1093/emboj/20.9.2326 – ident: e_1_2_6_15_1 doi: 10.1046/j.1365-2958.2003.03656.x – ident: e_1_2_6_54_1 doi: 10.1074/jbc.M103772200 – start-page: 33 volume-title: Translational Control of Gene Expression year: 2000 ident: e_1_2_6_17_1 contributor: fullname: Hershey J.W.B. – ident: e_1_2_6_16_1 doi: 10.1128/MCB.23.15.5431-5445.2003 – ident: e_1_2_6_28_1 doi: 10.1016/0092-8674(80)90356-6 – ident: e_1_2_6_20_1 doi: 10.1074/jbc.272.35.21661 – ident: e_1_2_6_40_1 doi: 10.1128/MCB.19.8.5557 – ident: e_1_2_6_2_1 doi: 10.1128/MCB.11.1.486 – ident: e_1_2_6_51_1 doi: 10.1017/S135583820100108X – ident: e_1_2_6_7_1 doi: 10.1073/pnas.94.10.5201 – ident: e_1_2_6_3_1 doi: 10.1002/j.1460-2075.1993.tb06077.x – ident: e_1_2_6_9_1 doi: 10.1016/0076-6879(90)85032-J – ident: e_1_2_6_27_1 doi: 10.1016/0092-8674(78)90039-9 – volume-title: Molecular Cloning: a Laboratory Manual year: 1989 ident: e_1_2_6_47_1 contributor: fullname: Sambrook J. – ident: e_1_2_6_45_1 doi: 10.1074/jbc.M100157200 – ident: e_1_2_6_30_1 doi: 10.1073/pnas.83.9.2850 – ident: e_1_2_6_22_1 doi: 10.1006/meth.1996.0433 – ident: e_1_2_6_43_1 doi: 10.1093/nar/29.22.4561 – ident: e_1_2_6_33_1 doi: 10.1093/nar/29.24.5226 – ident: e_1_2_6_8_1 doi: 10.1074/jbc.274.38.26720 – volume: 62 start-page: 1492 year: 1998 ident: e_1_2_6_38_1 article-title: Posttranscriptional control of gene expression publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.62.4.1492-1553.1998 contributor: fullname: McCarthy J.E.G. – ident: e_1_2_6_32_1 doi: 10.1083/jcb.115.4.887 – start-page: 245 volume-title: Translational Control of Gene Expression. year: 2000 ident: e_1_2_6_44_1 contributor: fullname: Raught B. – ident: e_1_2_6_36_1 doi: 10.1016/S0248-4900(03)00032-7 – ident: e_1_2_6_18_1 doi: 10.1016/0378-1119(89)90094-2 – ident: e_1_2_6_37_1 doi: 10.1093/emboj/18.23.6705 – ident: e_1_2_6_34_1 doi: 10.1016/S0378-1119(02)01056-9 – ident: e_1_2_6_41_1 doi: 10.1111/j.1365-2958.1993.tb01713.x – ident: e_1_2_6_10_1 doi: 10.1007/978-1-4757-3247-4 – volume: 268 start-page: 6453 year: 1993 ident: e_1_2_6_53_1 article-title: Inhibition of translation initiation in the yeast Saccharomyces cerevisiae as a function of the stability and the position of hairpin structures in the mRNA leader publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)53273-7 contributor: fullname: Vega Laso M.R. – ident: e_1_2_6_42_1 doi: 10.1038/29703 – ident: e_1_2_6_26_1 doi: 10.1074/jbc.272.26.16531 – ident: e_1_2_6_31_1 doi: 10.1128/MCB.9.11.5134 – ident: e_1_2_6_29_1 doi: 10.1093/nar/12.9.3873 – volume: 12 start-page: 4005 year: 1993 ident: e_1_2_6_6_1 article-title: A new yeast translation factor suppresses a mutation in the eIF4A RNA helicase publication-title: EMBO J doi: 10.1002/j.1460-2075.1993.tb06078.x contributor: fullname: Coppolechia R. |
SSID | ssj0013063 |
Score | 2.2027447 |
Snippet | Summary
The eukaryotic 40S ribosomal subunit locates the translation initiation codon on an mRNA via the so‐called scanning process that follows 40S binding to... The eukaryotic 40S ribosomal subunit locates the translation initiation codon on an mRNA via the so-called scanning process that follows 40S binding to the... The eukaryotic 40S ribosomal subunit locates the translation initiation codon on an mRNA via the so‐called scanning process that follows 40S binding to the... |
SourceID | proquest crossref pubmed pascalfrancis wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 987 |
SubjectTerms | 5' Untranslated Regions - physiology Biological and medical sciences Cell Cycle Proteins - physiology Codon, Initiator - metabolism DEAD-box RNA Helicases Eukaryotic Initiation Factor-4A - physiology Eukaryotic Initiation Factors - physiology Fundamental and applied biological sciences. Psychology Fungal Proteins - physiology Microbiology Peptide Chain Initiation, Translational Protein Biosynthesis ribosome 40S Ribosomes - physiology RNA Caps - metabolism RNA Helicases - physiology RNA, Bacterial - metabolism RNA, Messenger - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - physiology |
Title | Dynamics and processivity of 40S ribosome scanning on mRNA in yeast |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1365-2958.2003.03898.x https://www.ncbi.nlm.nih.gov/pubmed/14763975 https://www.proquest.com/docview/196534168 https://search.proquest.com/docview/17271519 https://search.proquest.com/docview/80146089 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFA4iCIK4L-O45OC1Q5ckbY4y7jAeXGBupUkTELEdZgH11_te0nEYURDxUgpNWrK85kvee99HyAnsMHRqNVhaIUs8uuGBUjYObBSVthBpkUlMTu7diqtHdtPn_Sb-CXNhPD_E54EbWob7X6OBF8qrkISO3XYaoSV55mg9O0gVl3UQT0ZJitF9Z3fxzKHQiKpJjnSycb8J6mkcnN--aG6lWhkUI-g069UuvoOj8-jWLU8Xa-R52jAflfLcmYxVR79_4Xz8n5avk9UGxdJTP-02yIKpNsmS17V82yLdM69zP6JFVdKBz0VwKhW0tpSF93T4pOpR_WIoNNeJJtG6oi93t6f0qaJvqCe0TR4vzh-6V0Gj1hBopJQJuAmNYpKx2EgAlVbBr1RJxi0iSmtDHZWFVSaDOyuNLoVgPMO0WwNzIwlNskMWq7oye4SmUZnIpNQqThKmw1hqmSqBWEZoUwrVItF0ZPKBJ-XInTOdYeIZdk6OnYMSm0nuOid_bZGjuSGcVeSwF08Zb5H2dEzzxo5HOfItwjovshY5_nwKBohelaIy9QSKAAIE2CR_LuEIesIMSuz6qTL7NkvRsQrfFm7Af92avNe7xrv9v1Zsk2Ufg4SBOQdkcTycmEOAV2N15AwHrpf96APcQBYo |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KSmmh9N1mmzbRoVdv_ZBk6xiShk2b3UOawN6EJUsQ0thLdheS_vrOSN4sW1IopTeBJRs9Rvqsmfk-gE_4h2FLb9HSatXQ1Y1IjPF54rOs8bUs60pRcvJ4Ikfn_OtUTHs5IMqFifwQdxduZBlhvyYDpwvpz71bMlp5CNFSogq8nkPiiquGCCgfovVnFN91eJqvXQq9rJoSRCibT_uwnt7Fee-bNs6qp7N6jsPmo97FfYB0E9-GA-roOfxYdS3GpVwOlwsztD9_Y338T31_Ac96IMv248p7CQ9c-woeRWnL29dwcBil7uesbhs2i-kIQaiCdZ7x9Du7vjDdvLtyDPsbdJNY17Kr08k-u2jZLUkKvYHzoy9nB6OkF2xILLHKJMKlznDFee4U4kpvcDc1igtPoNL71GZN7Y2rsOSVs42UXFSUeetweRSpK97CVtu1bhtYmTWFKhpr8qLgNs2VVaWRBGekdY00A8hWU6NnkZdDB386p9wzGhxNg0Mqm4UOg6NvBrC7MYfrhgJ_x0suBrCzmlTdm_JcE-UiHvWyGsDe3VO0QXKs1K3rllgFQSAiJ_XnGoGjJ62wxru4Vtbf5iX5VvHbMsz4X_dGj8fHVHr_rw334PHobHyiT44n33bgSQxJojidD7C1uF66j4i2FmY3WNEvy_4ZWA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBalpWNQdt-admv1sFdnvkiy9ViahV6WMLoV8iasG5RSOzQJtP31O0dyGjI6GGNvAssWuhzpk88530fIZ7hhmNIbsLRaWvx1wxOtfZ74LLO-FmVdSUxOHo3FySU7m_BJF_-EuTCRH-LxhxtaRtiv0cCn1n_pvJLRyEOEluRVoPXsI1Vc1Qc8ucVELpFHf3CRrzwKnaqa5Mgnm0-6qJ7Ow_nkl9aOqp1pPYNR81Hu4ik8ug5vw_k0fEmulz2LYSnX_cVc983Db6SP_6frr8iLDsbSo7juXpMN17wh21HY8v4tOR5EofsZrRtLpzEZIchU0NZTlv6gt1e6nbU3jkJ3g2oSbRt6czE-olcNvUdBoXfkcvj15_FJ0sk1JAY5ZRLuUqeZZCx3ElCl17CXasm4R0jpfWoyW3vtKih56YwVgvEK824dLI4idcV7stm0jdsltMxsIQtrdF4UzKS5NLLUAsGMMM4K3SPZcmbUNLJyqOBNZ5h5hoOjcHBQY7NQYXDUXY8crE3h6kUOl_GS8R7ZX86p6gx5ppBwEQ56UfXI4eNTsEB0q9SNaxdQBSAg4Cb55xqBoSetoMaHuFRWbbMSPavQtggT_te9UaPRKZb2_vXFQ_Ls-2Covp2Oz_fJ8xiPhEE6H8nm_HbhPgHUmuuDYEO_AFjxGAc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+and+processivity+of+40S+ribosome+scanning+on+mRNA+in+yeast&rft.jtitle=Molecular+microbiology&rft.au=Berthelot%2C+Karine&rft.au=Muldoon%2C+Mark&rft.au=Rajkowitsch%2C+Lukas&rft.au=Hughes%2C+John&rft.date=2004-02-01&rft.issn=0950-382X&rft.volume=51&rft.issue=4&rft.spage=987&rft.epage=1001&rft_id=info:doi/10.1046%2Fj.1365-2958.2003.03898.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon |