Dynamics and processivity of 40S ribosome scanning on mRNA in yeast

Summary The eukaryotic 40S ribosomal subunit locates the translation initiation codon on an mRNA via the so‐called scanning process that follows 40S binding to the capped 5′ end. This key step in translation is required for the expression of almost all eukaryotic genes, yet the mechanism and dynamic...

Full description

Saved in:
Bibliographic Details
Published inMolecular microbiology Vol. 51; no. 4; pp. 987 - 1001
Main Authors Berthelot, Karine, Muldoon, Mark, Rajkowitsch, Lukas, Hughes, John, McCarthy, John E. G.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Ltd 01.02.2004
Blackwell Science
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The eukaryotic 40S ribosomal subunit locates the translation initiation codon on an mRNA via the so‐called scanning process that follows 40S binding to the capped 5′ end. This key step in translation is required for the expression of almost all eukaryotic genes, yet the mechanism and dynamics of scanning are unknown. We have performed quantitative studies in vivo and in vitro of the movement of yeast 40S ribosomes along 5′ untranslated regions (UTRs) of different lengths. 40S subunits perform cap‐dependent scanning with high processivity for more than 1700 nucleotides in cells of Saccharomyces cerevisiae. Moreover, the observed rates of expression indicate that scanning is performed by an untethered 40S subunit that has been released from the 5′ cap complex. Unexpectedly, the capability to maintain scanning competence on a long 5′ UTR is more dependent on the Ded1/Dbp1 type of helicase than on eIF4A or eIF4B. In a yeast cell‐free extract, scanning shows reduced processivity, with an estimated net 5′→3′ rate of approximately 10 nucleotides per second at 26°C. We have developed a biased bidirectional walking model of ribosomal scanning that provides a framework for understanding the above observations as well as other known quantitative and qualitative features of this process.
AbstractList The eukaryotic 40S ribosomal subunit locates the translation initiation codon on an mRNA via the so-called scanning process that follows 40S binding to the capped 5' end. This key step in translation is required for the expression of almost all eukaryotic genes, yet the mechanism and dynamics of scanning are unknown. We have performed quantitative studies in vivo and in vitro of the movement of yeast 40S ribosomes along 5' untranslated regions (UTRs) of different lengths. 40S subunits perform cap-dependent scanning with high processivity for more than 1700 nucleotides in cells of Saccharomyces cerevisiae. Moreover, the observed rates of expression indicate that scanning is performed by an untethered 40S subunit that has been released from the 5' cap complex. Unexpectedly, the capability to maintain scanning competence on a long 5' UTR is more dependent on the Ded1/Dbp1 type of helicase than on eIF4A or eIF4B. In a yeast cell-free extract, scanning shows reduced processivity, with an estimated net 5'-->3' rate of approximately 10 nucleotides per second at 26 degrees C. We have developed a biased bidirectional walking model of ribosomal scanning that provides a framework for understanding the above observations as well as other known quantitative and qualitative features of this process.
The eukaryotic 40S ribosomal subunit locates the translation initiation codon on an mRNA via the so-called scanning process that follows 40S binding to the capped 5' end. This key step in translation is required for the expression of almost all eukaryotic genes, yet the mechanism and dynamics of scanning are unknown. We have performed quantitative studies in vivo and in vitro of the movement of yeast 40S ribosomes along 5' untranslated regions (UTRs) of different lengths. 40S subunits perform cap-dependent scanning with high processivity for more than 1700 nucleotides in cells of Saccharomyces cerevisiae. Moreover, the observed rates of expression indicate that scanning is performed by an untethered 40S subunit that has been released from the 5' cap complex. Unexpectedly, the capability to maintain scanning competence on a long 5' UTR is more dependent on the Ded1/Dbp1 type of helicase than on eIF4A or eIF4B. In a yeast cell-free extract, scanning shows reduced processivity, with an estimated net 5' arrow right 3' rate of approximately 10 nucleotides per second at 26 degree C. We have developed a biased bidirectional walking model of ribosomal scanning that provides a framework for understanding the above observations as well as other known quantitative and qualitative features of this process.
Summary The eukaryotic 40S ribosomal subunit locates the translation initiation codon on an mRNA via the so‐called scanning process that follows 40S binding to the capped 5′ end. This key step in translation is required for the expression of almost all eukaryotic genes, yet the mechanism and dynamics of scanning are unknown. We have performed quantitative studies in vivo and in vitro of the movement of yeast 40S ribosomes along 5′ untranslated regions (UTRs) of different lengths. 40S subunits perform cap‐dependent scanning with high processivity for more than 1700 nucleotides in cells of Saccharomyces cerevisiae. Moreover, the observed rates of expression indicate that scanning is performed by an untethered 40S subunit that has been released from the 5′ cap complex. Unexpectedly, the capability to maintain scanning competence on a long 5′ UTR is more dependent on the Ded1/Dbp1 type of helicase than on eIF4A or eIF4B. In a yeast cell‐free extract, scanning shows reduced processivity, with an estimated net 5′→3′ rate of approximately 10 nucleotides per second at 26°C. We have developed a biased bidirectional walking model of ribosomal scanning that provides a framework for understanding the above observations as well as other known quantitative and qualitative features of this process.
The eukaryotic 40S ribosomal subunit locates the translation initiation codon on an mRNA via the so‐called scanning process that follows 40S binding to the capped 5′ end. This key step in translation is required for the expression of almost all eukaryotic genes, yet the mechanism and dynamics of scanning are unknown. We have performed quantitative studies in vivo and in vitro of the movement of yeast 40S ribosomes along 5′ untranslated regions (UTRs) of different lengths. 40S subunits perform cap‐dependent scanning with high processivity for more than 1700 nucleotides in cells of Saccharomyces cerevisiae . Moreover, the observed rates of expression indicate that scanning is performed by an untethered 40S subunit that has been released from the 5′ cap complex. Unexpectedly, the capability to maintain scanning competence on a long 5′ UTR is more dependent on the Ded1/Dbp1 type of helicase than on eIF4A or eIF4B. In a yeast cell‐free extract, scanning shows reduced processivity, with an estimated net 5′→3′ rate of approximately 10 nucleotides per second at 26°C. We have developed a biased bidirectional walking model of ribosomal scanning that provides a framework for understanding the above observations as well as other known quantitative and qualitative features of this process.
The eukaryotic 40S ribosomal subunit locates the translation initiation codon on an mRNA via the so-called scanning process that follows 40S binding to the capped 5' end. This key step in translation is required for the expression of almost all eukaryotic genes, yet the mechanism and dynamics of scanning are unknown. We have performed quantitative studies in vivo and in vitro of the movement of yeast 40S ribosomes along 5' untranslated regions (UTRs) of different lengths. 40S subunits perform cap-dependent scanning with high processivity for more than 1700 nucleotides in cells of Saccharomyces cerevisiae. Moreover, the observed rates of expression indicate that scanning is performed by an untethered 40S subunit that has been released from the 5' cap complex. Unexpectedly, the capability to maintain scanning competence on a long 5' UTR is more dependent on the Ded1/Dbp1 type of helicase than on eIF4A or eIF4B. In a yeast cell-free extract, scanning shows reduced processivity, with an estimated net 5'-->3' rate of approximately 10 nucleotides per second at 26 degrees C. We have developed a biased bidirectional walking model of ribosomal scanning that provides a framework for understanding the above observations as well as other known quantitative and qualitative features of this process.
Author Berthelot, Karine
Muldoon, Mark
McCarthy, John E. G.
Rajkowitsch, Lukas
Hughes, John
Author_xml – sequence: 1
  givenname: Karine
  surname: Berthelot
  fullname: Berthelot, Karine
– sequence: 2
  givenname: Mark
  surname: Muldoon
  fullname: Muldoon, Mark
– sequence: 3
  givenname: Lukas
  surname: Rajkowitsch
  fullname: Rajkowitsch, Lukas
– sequence: 4
  givenname: John
  surname: Hughes
  fullname: Hughes, John
– sequence: 5
  givenname: John E. G.
  surname: McCarthy
  fullname: McCarthy, John E. G.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15523745$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/14763975$$D View this record in MEDLINE/PubMed
BookMark eNqNkVtv1DAQhS1URLeFv4AsJHhLGMeX2A88VFsulVqQuEi8WY53jLxK7BLvQvPvSdgVlXiBpxlpvhmdOeeMnKSckBDKoGYg1MttzbiSVWOkrhsAXgPXRtd3D8jqz-CErMBIqLhuvp6Ss1K2AIyD4o_IKROt4qaVK7K-nJIboi_UpQ29HbPHUuKPuJtoDlTAJzrGLpc8IC3epRTTN5oTHT6-v6Ax0Qld2T0mD4PrCz451nPy5c3rz-t31fWHt1fri-vKy1lfJRGwE0aIBo1p29BJrjsjZGCS8xDAs40LHeq5Cwb9RikhNSgjsAsNB-Tn5MXh7izz-x7Lzg6xeOx7lzDvi9XAhAJt_gmytmmZZAv47C9wm_djmp-wzCjJBVN6hvQB8mMuZcRgb8c4uHGyDOwSh93axXW7uG6XOOzvOOzdvPr0eH_fDbi5Xzz6PwPPj4Cb7e3D6JKP5Z6TsuGtWLhXB-5n7HH6bwH25uZq6fgv1RGlvg
CitedBy_id crossref_primary_10_1016_j_ydbio_2004_09_009
crossref_primary_10_1146_annurev_biochem_060713_035802
crossref_primary_10_1016_j_bcp_2009_08_032
crossref_primary_10_15252_embr_201847498
crossref_primary_10_1093_nar_gks825
crossref_primary_10_1016_j_jmb_2009_12_025
crossref_primary_10_1128_MCB_00280_10
crossref_primary_10_1002_wrna_1845
crossref_primary_10_1093_nar_gkm283
crossref_primary_10_3390_v8040097
crossref_primary_10_1002_wrna_1165
crossref_primary_10_1093_nar_gkx430
crossref_primary_10_1134_S0006297912130056
crossref_primary_10_1016_j_virusres_2012_10_006
crossref_primary_10_1016_j_biotechadv_2022_108081
crossref_primary_10_1016_j_cell_2020_04_009
crossref_primary_10_1038_emboj_2012_220
crossref_primary_10_1038_nprot_2016_189
crossref_primary_10_1128_MCB_00560_10
crossref_primary_10_1074_jbc_M113_529370
crossref_primary_10_1016_j_bbagrm_2015_09_006
crossref_primary_10_1146_annurev_ento_112408_085457
crossref_primary_10_3390_ijms20184464
crossref_primary_10_1128_MCB_00018_15
crossref_primary_10_1016_j_jmb_2006_06_016
crossref_primary_10_1016_j_tibs_2009_02_001
crossref_primary_10_1017_S0033583516000056
crossref_primary_10_1074_jbc_M112_347278
crossref_primary_10_1093_nar_gkz1066
crossref_primary_10_3390_genes14081566
crossref_primary_10_7554_eLife_93255
crossref_primary_10_1002_wrna_1748
crossref_primary_10_1371_journal_pone_0068665
crossref_primary_10_7554_eLife_93255_3
crossref_primary_10_1016_j_jbc_2023_104936
crossref_primary_10_1016_j_jtbi_2010_01_015
crossref_primary_10_1016_j_bbagrm_2013_01_005
crossref_primary_10_1186_1752_0509_5_131
crossref_primary_10_1073_pnas_1612398113
crossref_primary_10_1186_1471_2164_12_68
crossref_primary_10_1371_journal_pbio_1001981
crossref_primary_10_1261_rna_035113_112
crossref_primary_10_1093_nar_gkl468
crossref_primary_10_1038_srep25996
crossref_primary_10_1186_s12967_021_02948_6
crossref_primary_10_1038_sj_emboj_7600540
crossref_primary_10_1534_genetics_115_186221
crossref_primary_10_1016_j_gene_2005_10_019
crossref_primary_10_1038_s41598_018_20010_2
crossref_primary_10_1002_wrna_1473
crossref_primary_10_1016_j_bbagrm_2013_03_007
crossref_primary_10_1038_nrm3083
crossref_primary_10_1261_rna_67906
crossref_primary_10_1016_j_jgg_2018_01_003
crossref_primary_10_1016_j_molcel_2020_06_005
crossref_primary_10_1038_msb_2012_73
crossref_primary_10_1038_s41559_022_01925_6
crossref_primary_10_1073_pnas_1203831109
crossref_primary_10_1093_nar_gkac021
crossref_primary_10_1093_nar_gkn454
crossref_primary_10_1016_j_gene_2012_04_039
crossref_primary_10_1074_jbc_M110_132027
crossref_primary_10_1016_j_jprot_2012_01_009
crossref_primary_10_1038_s41580_023_00624_9
crossref_primary_10_1074_jbc_M600262200
crossref_primary_10_7554_eLife_38892
crossref_primary_10_5936_csbj_201204002
crossref_primary_10_1021_bi901379a
crossref_primary_10_1074_jbc_R110_144196
crossref_primary_10_1186_1475_2859_12_74
crossref_primary_10_1261_rna_035865_112
crossref_primary_10_3390_biom14070803
crossref_primary_10_1038_s42003_022_03534_2
crossref_primary_10_1128_MCB_00430_10
crossref_primary_10_1016_j_gene_2005_06_037
crossref_primary_10_1186_s13059_022_02829_1
crossref_primary_10_3390_ijms232113369
crossref_primary_10_1016_j_mod_2005_04_002
crossref_primary_10_1093_nar_gkr147
crossref_primary_10_1016_j_ydbio_2009_04_003
crossref_primary_10_1101_gad_282418_116
crossref_primary_10_1126_science_aad9868
crossref_primary_10_1016_j_molcel_2020_07_025
crossref_primary_10_1101_gr_191601_115
crossref_primary_10_7554_eLife_32563
crossref_primary_10_1016_j_ydbio_2016_02_014
crossref_primary_10_1146_annurev_phyto_44_070505_143353
crossref_primary_10_1186_1752_0509_1_S1_P1
crossref_primary_10_1093_nar_gky706
crossref_primary_10_1093_nar_gkr474
crossref_primary_10_1016_j_bbagrm_2009_07_005
crossref_primary_10_1109_TBCAS_2013_2290063
crossref_primary_10_1128_MCB_00139_17
crossref_primary_10_1016_j_mbs_2021_108762
crossref_primary_10_1016_j_celrep_2020_107534
crossref_primary_10_1093_nar_gkw764
crossref_primary_10_1093_nar_gku584
crossref_primary_10_1016_j_jbc_2021_100296
crossref_primary_10_1093_nar_gkz595
crossref_primary_10_1038_nsmb_2303
crossref_primary_10_1261_rna_7160404
crossref_primary_10_1371_journal_pgen_1010460
crossref_primary_10_1074_jbc_R110_111476
crossref_primary_10_1002_yea_1092
crossref_primary_10_1101_cshperspect_a033092
crossref_primary_10_1007_s12275_016_5599_5
crossref_primary_10_1371_journal_pcbi_1003136
crossref_primary_10_1038_nrm3154
crossref_primary_10_1093_nar_gkw534
crossref_primary_10_1371_journal_pgen_1003085
crossref_primary_10_1128_MMBR_00008_11
crossref_primary_10_1111_febs_15059
crossref_primary_10_1074_jbc_M111_299321
crossref_primary_10_4161_trla_24400
crossref_primary_10_1093_nar_gkad433
crossref_primary_10_1128_MCB_01555_07
crossref_primary_10_1038_s41586_018_0258_0
crossref_primary_10_1091_mbc_e07_12_1264
Cites_doi 10.1128/MCB.21.3.916-927.2001
10.1002/j.1460-2075.1991.tb05001.x
10.1111/j.1432-1033.1991.tb16184.x
10.1093/emboj/19.9.2127
10.1002/bip.10210
10.1074/jbc.274.25.17677
10.1038/418229a
10.1093/emboj/20.22.6453
10.1007/BF00340712
10.1111/j.1365-2958.1991.tb00753.x
10.1128/MCB.11.7.3463
10.1073/pnas.81.20.6442
10.1126/science.275.5305.1468
10.1046/j.1365-2958.2002.03172.x
10.1093/emboj/20.9.2326
10.1046/j.1365-2958.2003.03656.x
10.1074/jbc.M103772200
10.1128/MCB.23.15.5431-5445.2003
10.1016/0092-8674(80)90356-6
10.1074/jbc.272.35.21661
10.1128/MCB.19.8.5557
10.1128/MCB.11.1.486
10.1017/S135583820100108X
10.1073/pnas.94.10.5201
10.1002/j.1460-2075.1993.tb06077.x
10.1016/0076-6879(90)85032-J
10.1016/0092-8674(78)90039-9
10.1074/jbc.M100157200
10.1073/pnas.83.9.2850
10.1006/meth.1996.0433
10.1093/nar/29.22.4561
10.1093/nar/29.24.5226
10.1074/jbc.274.38.26720
10.1128/MMBR.62.4.1492-1553.1998
10.1083/jcb.115.4.887
10.1016/S0248-4900(03)00032-7
10.1016/0378-1119(89)90094-2
10.1093/emboj/18.23.6705
10.1016/S0378-1119(02)01056-9
10.1111/j.1365-2958.1993.tb01713.x
10.1007/978-1-4757-3247-4
10.1016/S0021-9258(18)53273-7
10.1038/29703
10.1074/jbc.272.26.16531
10.1128/MCB.9.11.5134
10.1093/nar/12.9.3873
10.1002/j.1460-2075.1993.tb06078.x
ContentType Journal Article
Copyright 2004 INIST-CNRS
Copyright Blackwell Scientific Publications Ltd. Feb 2004
Copyright_xml – notice: 2004 INIST-CNRS
– notice: Copyright Blackwell Scientific Publications Ltd. Feb 2004
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
DOI 10.1046/j.1365-2958.2003.03898.x
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2958
EndPage 1001
ExternalDocumentID 550669711
10_1046_j_1365_2958_2003_03898_x
14763975
15523745
MMI3898
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
.3N
.55
.GA
.GJ
.HR
.Y3
05W
0R~
10A
123
1OB
1OC
24P
29M
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FSRTE
FZ0
G-S
G.N
GODZA
GX1
H.T
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OEB
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TR2
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XG1
Y6R
YFH
YUY
ZGI
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAJUZ
AAPBV
AAUGY
ABCVL
ABHUG
ABPTK
ABWRO
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
AKALU
IQODW
XFK
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ACRPL
CITATION
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c5038-5e0eb49442e9977fb538b945f1533ff0c1dafbe8f0cf9ecd664580694ebf230e3
IEDL.DBID DR2
ISSN 0950-382X
IngestDate Wed Dec 04 15:44:33 EST 2024
Wed Dec 04 02:22:47 EST 2024
Thu Oct 10 18:51:02 EDT 2024
Fri Dec 06 03:58:35 EST 2024
Sat Sep 28 08:39:33 EDT 2024
Sun Oct 22 16:04:22 EDT 2023
Sat Aug 24 00:57:11 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Yeast
Messenger RNA
Microbiology
40S-Ribosome
Language English
License CC BY 4.0
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5038-5e0eb49442e9977fb538b945f1533ff0c1dafbe8f0cf9ecd664580694ebf230e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1046/j.1365-2958.2003.03898.x
PMID 14763975
PQID 196534168
PQPubID 35968
PageCount 15
ParticipantIDs proquest_miscellaneous_80146089
proquest_miscellaneous_17271519
proquest_journals_196534168
crossref_primary_10_1046_j_1365_2958_2003_03898_x
pubmed_primary_14763975
pascalfrancis_primary_15523745
wiley_primary_10_1046_j_1365_2958_2003_03898_x_MMI3898
PublicationCentury 2000
PublicationDate February 2004
PublicationDateYYYYMMDD 2004-02-01
PublicationDate_xml – month: 02
  year: 2004
  text: February 2004
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle Molecular microbiology
PublicationTitleAlternate Mol Microbiol
PublicationYear 2004
Publisher Blackwell Science Ltd
Blackwell Science
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Science Ltd
– name: Blackwell Science
– name: Blackwell Publishing Ltd
References 1993; 9
1991; 0
1984; 81
1997; 272
1991; 10
1991; 11
1997; 275
1980; 22
1989; 9
2002; 299
2002; 418
1978; 15
2001; 29
1957; 1
1993; 268
1998; 62
2003; 95
1991; 115
1990; 185
2001; 20
1991; 5
2001; 21
1998; 394
2001; 276
1993; 12
1997; 94
2000; 19
1991; 200
1986; 83
2001
1997; 11
1990
2001; 7
2000
1999; 19
1999; 18
2002; 46
1984; 12
1999; 274
2003; 68
1986
2003; 49
1989; 16
1989; 79
1989
2003; 23
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
Sambrook J. (e_1_2_6_47_1) 1989
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
Feller W. (e_1_2_6_11_1) 1957
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_52_1
e_1_2_6_54_1
Coppolechia R. (e_1_2_6_6_1) 1993; 12
e_1_2_6_10_1
e_1_2_6_31_1
Raught B. (e_1_2_6_44_1) 2000
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
Rose M.D. (e_1_2_6_46_1) 1990
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
Vega Laso M.R. (e_1_2_6_53_1) 1993; 268
McCarthy J.E.G. (e_1_2_6_38_1) 1998; 62
Sherman F. (e_1_2_6_50_1) 1986
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
Hershey J.W.B. (e_1_2_6_17_1) 2000
e_1_2_6_27_1
References_xml – volume: 10
  start-page: 4231
  year: 1991
  end-page: 4239
  article-title: Depletion of U3 small nucleolar RNA inhibits cleavage in the 5′ external transcribed spacer of yeast pre‐ribosomal RNA and impairs formation of 18S ribosomal RNA
  publication-title: EMBO J
– year: 2001
– year: 1989
– volume: 83
  start-page: 2850
  year: 1986
  end-page: 2854
  article-title: Influences of mRNA secondary structure on initiation by eukaryotic ribosomes
  publication-title: Proc Natl Acad Sci USA
– volume: 16
  start-page: 339
  year: 1989
  end-page: 346
  article-title: High efficiency transformation of intact yeast cells using single stranded nucleic acids as carrier
  publication-title: Curr Genet
– volume: 12
  start-page: 3997
  year: 1993
  end-page: 4003
  article-title: A homologue of mammalian translation initiation factor 4B contributes to RNA helicase activity
  publication-title: EMBO J
– volume: 21
  start-page: 916
  year: 2001
  end-page: 927
  article-title: Global and specific translational regulation in the genomic response of to a rapid transfer form a fermentable to a nonfermentable carbon source
  publication-title: Mol Cell Biol
– year: 1990
– volume: 7
  start-page: 382
  year: 2001
  end-page: 394
  article-title: The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure
  publication-title: RNA
– volume: 276
  start-page: 3382
  year: 2001
  end-page: 33825
  article-title: Expression of a micro‐protein
  publication-title: J Biol Chem
– volume: 81
  start-page: 6442
  year: 1984
  end-page: 6446
  article-title: Evidence for translational regulation of the activator of general amino acid control in yeast
  publication-title: Proc Natl Acad Sci USA
– year: 1986
– volume: 200
  start-page: 285
  year: 1991
  end-page: 294
  article-title: The ATP requirement for initiation of eukaryotic translation varies according to the mRNA species
  publication-title: Eur J Biochem
– volume: 275
  start-page: 1468
  year: 1997
  end-page: 1471
  article-title: Requirement of the DEAD‐Box protein ded1p for messenger RNA translation
  publication-title: Science
– volume: 274
  start-page: 26720
  year: 1999
  end-page: 26726
  article-title: Interaction of translation initiation factor eIF4G with eIF4A in the yeast
  publication-title: J Biol Chem
– volume: 18
  start-page: 6705
  year: 1999
  end-page: 6717
  article-title: Kinetic dissection of fundamental processes of eukaryotic translation initiation
  publication-title: EMBO J
– volume: 268
  start-page: 6453
  year: 1993
  end-page: 6462
  article-title: Inhibition of translation initiation in the yeast as a function of the stability and the position of hairpin structures in the mRNA leader
  publication-title: J Biol Chem
– volume: 29
  start-page: 5226
  year: 2001
  end-page: 5232
  article-title: Constraints on reinitiation of translation in mammals
  publication-title: Nucleic Acids Res
– volume: 418
  start-page: 229
  year: 2002
  end-page: 235
  article-title: The involvement of RNA in ribosome function
  publication-title: Nature
– volume: 23
  start-page: 5431
  year: 2003
  end-page: 5445
  article-title: The yeast eukaryotic initiation factor 4G (eIF4G) HEAT domain interacts with eIF1 and eIF5 and is involved in stringent AUG selection
  publication-title: Mol Cell Biol
– start-page: 33
  year: 2000
  end-page: 88
– volume: 19
  start-page: 5557
  year: 1999
  end-page: 5564
  article-title: Eukaryotic translation initiation factors 4G and 4A from interact physically and functionally
  publication-title: Mol Cell Biol
– volume: 46
  start-page: 531
  year: 2002
  end-page: 544
  article-title: Intracellular translation initiation factor levels in and their role in cap‐complex function
  publication-title: Mol Microbiol
– volume: 20
  start-page: 6453
  year: 2001
  end-page: 6463
  article-title: Physical evidence for distinct mechanisms of translational control by upstream open reading frames
  publication-title: EMBO J
– volume: 11
  start-page: 3463
  year: 1991
  end-page: 3471
  article-title: Translation initiation factor 4A from : analysis of residues conserved in the D‐E‐A‐D family of RNA helicases
  publication-title: Mol Cell Biol
– start-page: 245
  year: 2000
  end-page: 293
– volume: 20
  start-page: 2326
  year: 2001
  end-page: 2337
  article-title: Multiple roles for the C‐terminal domain of eIF5 in translation initiation complex assembly and GTPase activation
  publication-title: EMBO J
– volume: 19
  start-page: 2127
  year: 2000
  end-page: 2136
  article-title: Late events of translation initiation in bacteria: a kinetic analysis
  publication-title: EMBO J
– volume: 115
  start-page: 887
  year: 1991
  end-page: 903
  article-title: An analysis of vertebrate mRNA sequences: intimations of translational control
  publication-title: J Cell Biol
– volume: 272
  start-page: 16531
  year: 1997
  end-page: 16539
  article-title: The position dependence of translational regulation via RNA–RNA and RNA–protein interactions in the 5′‐untranslated region of eukaryotic mRNA is a function of the thermodynamic competence of 40S ribosomes in translation initiation
  publication-title: J Biol Chem
– volume: 94
  start-page: 5201
  year: 1997
  end-page: 5206
  article-title: The p20 and Ded1 proteins have antagonistic roles in eIF4E‐dependent translation in
  publication-title: Proc Natl Acad Sci USA
– volume: 11
  start-page: 353
  year: 1997
  end-page: 360
  article-title: Translation‐competent extracts from : effects of L‐A RNA, 5′ cap, and 3′ poly (A) tail on translational efficiency of mRNAs
  publication-title: Methods
– volume: 299
  start-page: 1
  year: 2002
  end-page: 34
  article-title: Pushing the limits of the scanning mechanism for initiation of translation
  publication-title: Gene
– volume: 5
  start-page: 805
  year: 1991
  end-page: 812
  article-title: A suppressor of yeast / mutations encodes a very similar putative ATP‐dependent RNA helicase
  publication-title: Mol Microbiol
– volume: 62
  start-page: 1492
  year: 1998
  end-page: 1553
  article-title: Posttranscriptional control of gene expression
  publication-title: Microbiol Mol Biol Rev
– volume: 22
  start-page: 459
  year: 1980
  end-page: 467
  article-title: Role of ATP in binding and migration of 40S ribosomal subunits
  publication-title: Cell
– volume: 68
  start-page: 223
  year: 2003
  end-page: 233
  article-title: Electron microscopy of functional ribosome complexes
  publication-title: Biopolymers
– volume: 12
  start-page: 3873
  year: 1984
  end-page: 3893
  article-title: Selection of initiation sites by eucaryotic ribosomes: effect of inserting AUG triplets upstream from the coding sequence for preproinsulin
  publication-title: Nucleic Acids Res
– volume: 15
  start-page: 1109
  year: 1978
  end-page: 1123
  article-title: How do eucaryotic ribosomes select initiation regions in messenger mRNA?
  publication-title: Cell
– volume: 95
  start-page: 157
  year: 2003
  end-page: 167
  article-title: Yeast helicases of the DEAD‐box family involved in translation initiation
  publication-title: Biol Cell
– volume: 272
  start-page: 21661
  year: 1997
  end-page: 21664
  article-title: Translational regulation of yeast . A window on factors that control initiator‐tRNA binding to the ribosome
  publication-title: J Biol Chem
– volume: 1
  year: 1957
– volume: 276
  start-page: 30914
  year: 2001
  end-page: 30922
  article-title: Modulation of the helicase activity of eIF4A by eIF4B, eIF4H and eIF4F
  publication-title: J Biol Chem
– volume: 185
  start-page: 366
  year: 1990
  end-page: 372
  article-title: Sequence and structural requirements for efficient translation in yeast
  publication-title: Methods Enzymol
– volume: 9
  start-page: 5134
  year: 1989
  end-page: 5142
  article-title: Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs
  publication-title: Mol Cell Biol
– volume: 394
  start-page: 854
  year: 1998
  end-page: 859
  article-title: Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons
  publication-title: Nature
– volume: 12
  start-page: 4005
  year: 1993
  end-page: 4011
  article-title: A new yeast translation factor suppresses a mutation in the eIF4A RNA helicase
  publication-title: EMBO J
– volume: 0
  start-page: 486
  year: 1991
  end-page: 496
  article-title: Suppression of ribosomal reinitiation at upstream open reading frames in amino acid‐starved cells forms the basis for translational control
  publication-title: Mol Cell Biol
– volume: 29
  start-page: 4561
  year: 2001
  end-page: 4569
  article-title: A second eIF4E protein in has distinct 5′cap‐ and eIF4G‐binding properties
  publication-title: Nucleic Acids Res
– volume: 9
  start-page: 521
  year: 1993
  end-page: 532
  article-title: Inhibition of translational initiation in by secondary structure: the role of the stability and position of stem‐loops in the mRNA leader
  publication-title: Mol Microbiol
– volume: 79
  start-page: 83
  year: 1989
  end-page: 95
  article-title: Effect of deletions in the 5′‐noncoding region on the translational efficiency of phosphoglycerate kinase mRNA in yeast
  publication-title: Gene
– volume: 274
  start-page: 7677
  year: 1999
  end-page: 7683
  article-title: Ded1p, a DEAD‐box protein required for translation initiation in , is an RNA helicase
  publication-title: J Biol Chem
– volume: 49
  start-page: 1627
  year: 2003
  end-page: 1637
  article-title: Tetracycline‐aptamer‐mediated translational regulation in yeast
  publication-title: Mol Microbiol
– ident: e_1_2_6_35_1
  doi: 10.1128/MCB.21.3.916-927.2001
– ident: e_1_2_6_21_1
  doi: 10.1002/j.1460-2075.1991.tb05001.x
– ident: e_1_2_6_24_1
  doi: 10.1111/j.1432-1033.1991.tb16184.x
– ident: e_1_2_6_52_1
  doi: 10.1093/emboj/19.9.2127
– volume-title: An Introduction to Probability and its Applications
  year: 1957
  ident: e_1_2_6_11_1
  contributor:
    fullname: Feller W.
– volume-title: Methods in Yeast Genetics: A Laboratory Manual.
  year: 1990
  ident: e_1_2_6_46_1
  contributor:
    fullname: Rose M.D.
– ident: e_1_2_6_12_1
  doi: 10.1002/bip.10210
– volume-title: Laboratory Course Manual for Methods in Yeast Genetics.
  year: 1986
  ident: e_1_2_6_50_1
  contributor:
    fullname: Sherman F.
– ident: e_1_2_6_23_1
  doi: 10.1074/jbc.274.25.17677
– ident: e_1_2_6_39_1
  doi: 10.1038/418229a
– ident: e_1_2_6_13_1
  doi: 10.1093/emboj/20.22.6453
– ident: e_1_2_6_48_1
  doi: 10.1007/BF00340712
– ident: e_1_2_6_25_1
  doi: 10.1111/j.1365-2958.1991.tb00753.x
– ident: e_1_2_6_49_1
  doi: 10.1128/MCB.11.7.3463
– ident: e_1_2_6_19_1
  doi: 10.1073/pnas.81.20.6442
– ident: e_1_2_6_5_1
  doi: 10.1126/science.275.5305.1468
– ident: e_1_2_6_14_1
  doi: 10.1046/j.1365-2958.2002.03172.x
– ident: e_1_2_6_4_1
  doi: 10.1093/emboj/20.9.2326
– ident: e_1_2_6_15_1
  doi: 10.1046/j.1365-2958.2003.03656.x
– ident: e_1_2_6_54_1
  doi: 10.1074/jbc.M103772200
– start-page: 33
  volume-title: Translational Control of Gene Expression
  year: 2000
  ident: e_1_2_6_17_1
  contributor:
    fullname: Hershey J.W.B.
– ident: e_1_2_6_16_1
  doi: 10.1128/MCB.23.15.5431-5445.2003
– ident: e_1_2_6_28_1
  doi: 10.1016/0092-8674(80)90356-6
– ident: e_1_2_6_20_1
  doi: 10.1074/jbc.272.35.21661
– ident: e_1_2_6_40_1
  doi: 10.1128/MCB.19.8.5557
– ident: e_1_2_6_2_1
  doi: 10.1128/MCB.11.1.486
– ident: e_1_2_6_51_1
  doi: 10.1017/S135583820100108X
– ident: e_1_2_6_7_1
  doi: 10.1073/pnas.94.10.5201
– ident: e_1_2_6_3_1
  doi: 10.1002/j.1460-2075.1993.tb06077.x
– ident: e_1_2_6_9_1
  doi: 10.1016/0076-6879(90)85032-J
– ident: e_1_2_6_27_1
  doi: 10.1016/0092-8674(78)90039-9
– volume-title: Molecular Cloning: a Laboratory Manual
  year: 1989
  ident: e_1_2_6_47_1
  contributor:
    fullname: Sambrook J.
– ident: e_1_2_6_45_1
  doi: 10.1074/jbc.M100157200
– ident: e_1_2_6_30_1
  doi: 10.1073/pnas.83.9.2850
– ident: e_1_2_6_22_1
  doi: 10.1006/meth.1996.0433
– ident: e_1_2_6_43_1
  doi: 10.1093/nar/29.22.4561
– ident: e_1_2_6_33_1
  doi: 10.1093/nar/29.24.5226
– ident: e_1_2_6_8_1
  doi: 10.1074/jbc.274.38.26720
– volume: 62
  start-page: 1492
  year: 1998
  ident: e_1_2_6_38_1
  article-title: Posttranscriptional control of gene expression
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.62.4.1492-1553.1998
  contributor:
    fullname: McCarthy J.E.G.
– ident: e_1_2_6_32_1
  doi: 10.1083/jcb.115.4.887
– start-page: 245
  volume-title: Translational Control of Gene Expression.
  year: 2000
  ident: e_1_2_6_44_1
  contributor:
    fullname: Raught B.
– ident: e_1_2_6_36_1
  doi: 10.1016/S0248-4900(03)00032-7
– ident: e_1_2_6_18_1
  doi: 10.1016/0378-1119(89)90094-2
– ident: e_1_2_6_37_1
  doi: 10.1093/emboj/18.23.6705
– ident: e_1_2_6_34_1
  doi: 10.1016/S0378-1119(02)01056-9
– ident: e_1_2_6_41_1
  doi: 10.1111/j.1365-2958.1993.tb01713.x
– ident: e_1_2_6_10_1
  doi: 10.1007/978-1-4757-3247-4
– volume: 268
  start-page: 6453
  year: 1993
  ident: e_1_2_6_53_1
  article-title: Inhibition of translation initiation in the yeast Saccharomyces cerevisiae as a function of the stability and the position of hairpin structures in the mRNA leader
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)53273-7
  contributor:
    fullname: Vega Laso M.R.
– ident: e_1_2_6_42_1
  doi: 10.1038/29703
– ident: e_1_2_6_26_1
  doi: 10.1074/jbc.272.26.16531
– ident: e_1_2_6_31_1
  doi: 10.1128/MCB.9.11.5134
– ident: e_1_2_6_29_1
  doi: 10.1093/nar/12.9.3873
– volume: 12
  start-page: 4005
  year: 1993
  ident: e_1_2_6_6_1
  article-title: A new yeast translation factor suppresses a mutation in the eIF4A RNA helicase
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1993.tb06078.x
  contributor:
    fullname: Coppolechia R.
SSID ssj0013063
Score 2.2027447
Snippet Summary The eukaryotic 40S ribosomal subunit locates the translation initiation codon on an mRNA via the so‐called scanning process that follows 40S binding to...
The eukaryotic 40S ribosomal subunit locates the translation initiation codon on an mRNA via the so-called scanning process that follows 40S binding to the...
The eukaryotic 40S ribosomal subunit locates the translation initiation codon on an mRNA via the so‐called scanning process that follows 40S binding to the...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 987
SubjectTerms 5' Untranslated Regions - physiology
Biological and medical sciences
Cell Cycle Proteins - physiology
Codon, Initiator - metabolism
DEAD-box RNA Helicases
Eukaryotic Initiation Factor-4A - physiology
Eukaryotic Initiation Factors - physiology
Fundamental and applied biological sciences. Psychology
Fungal Proteins - physiology
Microbiology
Peptide Chain Initiation, Translational
Protein Biosynthesis
ribosome 40S
Ribosomes - physiology
RNA Caps - metabolism
RNA Helicases - physiology
RNA, Bacterial - metabolism
RNA, Messenger - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - physiology
Title Dynamics and processivity of 40S ribosome scanning on mRNA in yeast
URI https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1365-2958.2003.03898.x
https://www.ncbi.nlm.nih.gov/pubmed/14763975
https://www.proquest.com/docview/196534168
https://search.proquest.com/docview/17271519
https://search.proquest.com/docview/80146089
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFA4iCIK4L-O45OC1Q5ckbY4y7jAeXGBupUkTELEdZgH11_te0nEYURDxUgpNWrK85kvee99HyAnsMHRqNVhaIUs8uuGBUjYObBSVthBpkUlMTu7diqtHdtPn_Sb-CXNhPD_E54EbWob7X6OBF8qrkISO3XYaoSV55mg9O0gVl3UQT0ZJitF9Z3fxzKHQiKpJjnSycb8J6mkcnN--aG6lWhkUI-g069UuvoOj8-jWLU8Xa-R52jAflfLcmYxVR79_4Xz8n5avk9UGxdJTP-02yIKpNsmS17V82yLdM69zP6JFVdKBz0VwKhW0tpSF93T4pOpR_WIoNNeJJtG6oi93t6f0qaJvqCe0TR4vzh-6V0Gj1hBopJQJuAmNYpKx2EgAlVbBr1RJxi0iSmtDHZWFVSaDOyuNLoVgPMO0WwNzIwlNskMWq7oye4SmUZnIpNQqThKmw1hqmSqBWEZoUwrVItF0ZPKBJ-XInTOdYeIZdk6OnYMSm0nuOid_bZGjuSGcVeSwF08Zb5H2dEzzxo5HOfItwjovshY5_nwKBohelaIy9QSKAAIE2CR_LuEIesIMSuz6qTL7NkvRsQrfFm7Af92avNe7xrv9v1Zsk2Ufg4SBOQdkcTycmEOAV2N15AwHrpf96APcQBYo
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KSmmh9N1mmzbRoVdv_ZBk6xiShk2b3UOawN6EJUsQ0thLdheS_vrOSN4sW1IopTeBJRs9Rvqsmfk-gE_4h2FLb9HSatXQ1Y1IjPF54rOs8bUs60pRcvJ4Ikfn_OtUTHs5IMqFifwQdxduZBlhvyYDpwvpz71bMlp5CNFSogq8nkPiiquGCCgfovVnFN91eJqvXQq9rJoSRCibT_uwnt7Fee-bNs6qp7N6jsPmo97FfYB0E9-GA-roOfxYdS3GpVwOlwsztD9_Y338T31_Ac96IMv248p7CQ9c-woeRWnL29dwcBil7uesbhs2i-kIQaiCdZ7x9Du7vjDdvLtyDPsbdJNY17Kr08k-u2jZLUkKvYHzoy9nB6OkF2xILLHKJMKlznDFee4U4kpvcDc1igtPoNL71GZN7Y2rsOSVs42UXFSUeetweRSpK97CVtu1bhtYmTWFKhpr8qLgNs2VVaWRBGekdY00A8hWU6NnkZdDB386p9wzGhxNg0Mqm4UOg6NvBrC7MYfrhgJ_x0suBrCzmlTdm_JcE-UiHvWyGsDe3VO0QXKs1K3rllgFQSAiJ_XnGoGjJ62wxru4Vtbf5iX5VvHbMsz4X_dGj8fHVHr_rw334PHobHyiT44n33bgSQxJojidD7C1uF66j4i2FmY3WNEvy_4ZWA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBalpWNQdt-admv1sFdnvkiy9ViahV6WMLoV8iasG5RSOzQJtP31O0dyGjI6GGNvAssWuhzpk88530fIZ7hhmNIbsLRaWvx1wxOtfZ74LLO-FmVdSUxOHo3FySU7m_BJF_-EuTCRH-LxhxtaRtiv0cCn1n_pvJLRyEOEluRVoPXsI1Vc1Qc8ucVELpFHf3CRrzwKnaqa5Mgnm0-6qJ7Ow_nkl9aOqp1pPYNR81Hu4ik8ug5vw_k0fEmulz2LYSnX_cVc983Db6SP_6frr8iLDsbSo7juXpMN17wh21HY8v4tOR5EofsZrRtLpzEZIchU0NZTlv6gt1e6nbU3jkJ3g2oSbRt6czE-olcNvUdBoXfkcvj15_FJ0sk1JAY5ZRLuUqeZZCx3ElCl17CXasm4R0jpfWoyW3vtKih56YwVgvEK824dLI4idcV7stm0jdsltMxsIQtrdF4UzKS5NLLUAsGMMM4K3SPZcmbUNLJyqOBNZ5h5hoOjcHBQY7NQYXDUXY8crE3h6kUOl_GS8R7ZX86p6gx5ppBwEQ56UfXI4eNTsEB0q9SNaxdQBSAg4Cb55xqBoSetoMaHuFRWbbMSPavQtggT_te9UaPRKZb2_vXFQ_Ls-2Covp2Oz_fJ8xiPhEE6H8nm_HbhPgHUmuuDYEO_AFjxGAc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+and+processivity+of+40S+ribosome+scanning+on+mRNA+in+yeast&rft.jtitle=Molecular+microbiology&rft.au=Berthelot%2C+Karine&rft.au=Muldoon%2C+Mark&rft.au=Rajkowitsch%2C+Lukas&rft.au=Hughes%2C+John&rft.date=2004-02-01&rft.issn=0950-382X&rft.volume=51&rft.issue=4&rft.spage=987&rft.epage=1001&rft_id=info:doi/10.1046%2Fj.1365-2958.2003.03898.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon