Assessing Quantile Prediction with Censored Quantile Regression Models

An important goal of censored quantile regression is to provide reliable predictions of survival quantiles, which are often reported in practice to offer robust and comprehensive biomedical summaries. However, formal methods for evaluating and comparing working quantile regression models in terms of...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 73; no. 2; pp. 517 - 528
Main Authors Li, Ruosha, Peng, Limin
Format Journal Article
LanguageEnglish
Published United States Wiley-Blackwell 01.06.2017
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
1541-0420
DOI10.1111/biom.12627

Cover

Abstract An important goal of censored quantile regression is to provide reliable predictions of survival quantiles, which are often reported in practice to offer robust and comprehensive biomedical summaries. However, formal methods for evaluating and comparing working quantile regression models in terms of their performance in predicting survival quantiles have been lacking, especially when the working models are subject to model mis-specification. In this article, we proposes a sensible and rigorous framework to fill in this gap. We introduce and justify a predictive performance measure defined based on the check loss function. We derive estimators of the proposed predictive performance measure and study their distributional properties and the corresponding inference procedures. More importantly, we develop model comparison procedures that enable thorough evaluations of model predictive performance among nested or non-nested models. Our proposals properly accommodate random censoring to the survival outcome and the realistic complication of model mis-specification, and thus are generally applicable. Extensive simulations and a real data example demonstrate satisfactory performances of the proposed methods in real life settings.
AbstractList An important goal of censored quantile regression is to provide reliable predictions of survival quantiles, which are often reported in practice to offer robust and comprehensive biomedical summaries. However, formal methods for evaluating and comparing working quantile regression models in terms of their performance in predicting survival quantiles have been lacking, especially when the working models are subject to model mis‐specification. In this article, we proposes a sensible and rigorous framework to fill in this gap. We introduce and justify a predictive performance measure defined based on the check loss function. We derive estimators of the proposed predictive performance measure and study their distributional properties and the corresponding inference procedures. More importantly, we develop model comparison procedures that enable thorough evaluations of model predictive performance among nested or non‐nested models. Our proposals properly accommodate random censoring to the survival outcome and the realistic complication of model mis‐specification, and thus are generally applicable. Extensive simulations and a real data example demonstrate satisfactory performances of the proposed methods in real life settings.
An important goal of censored quantile regression is to provide reliable predictions of survival quantiles, which are often reported in practice to offer robust and comprehensive biomedical summaries. However, formal methods for evaluating and comparing working quantile regression models in terms of their performance in predicting survival quantiles have been lacking, especially when the working models are subject to model mis-specification. In this article, we proposes a sensible and rigorous framework to fill in this gap. We introduce and justify a predictive performance measure defined based on the check loss function. We derive estimators of the proposed predictive performance measure and study their distributional properties and the corresponding inference procedures. More importantly, we develop model comparison procedures that enable thorough evaluations of model predictive performance among nested or non-nested models. Our proposals properly accommodate random censoring to the survival outcome and the realistic complication of model mis-specification, and thus are generally applicable. Extensive simulations and a real data example demonstrate satisfactory performances of the proposed methods in real life settings.An important goal of censored quantile regression is to provide reliable predictions of survival quantiles, which are often reported in practice to offer robust and comprehensive biomedical summaries. However, formal methods for evaluating and comparing working quantile regression models in terms of their performance in predicting survival quantiles have been lacking, especially when the working models are subject to model mis-specification. In this article, we proposes a sensible and rigorous framework to fill in this gap. We introduce and justify a predictive performance measure defined based on the check loss function. We derive estimators of the proposed predictive performance measure and study their distributional properties and the corresponding inference procedures. More importantly, we develop model comparison procedures that enable thorough evaluations of model predictive performance among nested or non-nested models. Our proposals properly accommodate random censoring to the survival outcome and the realistic complication of model mis-specification, and thus are generally applicable. Extensive simulations and a real data example demonstrate satisfactory performances of the proposed methods in real life settings.
An important goal of censored quantile regression is to provide reliable predictions of survival quantiles, which are often reported in practice to offer robust and comprehensive biomedical summaries. However, formal methods for evaluating and comparing working quantile regression models in terms of their performance in predicting survival quantiles have been lacking, especially when the working models are subject to model mis-specification. In this paper, we proposes a sensible and rigorous framework to fill in this gap. We introduce and justify a predictive performance measure defined based on the check loss function. We derive estimators of the proposed predictive performance measure and study their distributional properties and the corresponding inference procedures. More importantly, we develop model comparison procedures that enable thorough evaluations of model predictive performance among nested or non-nested models. Our proposals properly accommodate random censoring to the survival outcome and the realistic complication of model mis-specification, and thus are generally applicable. Extensive simulations and a real data example demonstrate satisfactory performances of the proposed methods in real life settings.
Summary An important goal of censored quantile regression is to provide reliable predictions of survival quantiles, which are often reported in practice to offer robust and comprehensive biomedical summaries. However, formal methods for evaluating and comparing working quantile regression models in terms of their performance in predicting survival quantiles have been lacking, especially when the working models are subject to model mis‐specification. In this article, we proposes a sensible and rigorous framework to fill in this gap. We introduce and justify a predictive performance measure defined based on the check loss function. We derive estimators of the proposed predictive performance measure and study their distributional properties and the corresponding inference procedures. More importantly, we develop model comparison procedures that enable thorough evaluations of model predictive performance among nested or non‐nested models. Our proposals properly accommodate random censoring to the survival outcome and the realistic complication of model mis‐specification, and thus are generally applicable. Extensive simulations and a real data example demonstrate satisfactory performances of the proposed methods in real life settings.
Summary An important goal of censored quantile regression is to provide reliable predictions of survival quantiles, which are often reported in practice to offer robust and comprehensive biomedical summaries. However, formal methods for evaluating and comparing working quantile regression models in terms of their performance in predicting survival quantiles have been lacking, especially when the working models are subject to model mis-specification. In this article, we proposes a sensible and rigorous framework to fill in this gap. We introduce and justify a predictive performance measure defined based on the check loss function. We derive estimators of the proposed predictive performance measure and study their distributional properties and the corresponding inference procedures. More importantly, we develop model comparison procedures that enable thorough evaluations of model predictive performance among nested or non-nested models. Our proposals properly accommodate random censoring to the survival outcome and the realistic complication of model mis-specification, and thus are generally applicable. Extensive simulations and a real data example demonstrate satisfactory performances of the proposed methods in real life settings.
Author Peng, Limin
Li, Ruosha
AuthorAffiliation 2 Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322
1 Department of Biostatistics, The University of Texas School of Public Health, Houston, TX
AuthorAffiliation_xml – name: 1 Department of Biostatistics, The University of Texas School of Public Health, Houston, TX
– name: 2 Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322
Author_xml – sequence: 1
  givenname: Ruosha
  surname: Li
  fullname: Li, Ruosha
– sequence: 2
  givenname: Limin
  surname: Peng
  fullname: Peng, Limin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27931075$$D View this record in MEDLINE/PubMed
BookMark eNqFkd1rFDEUxYNU7Lb64ruy4EsRpt6bycfmpVCXVgstVVHwLWQy2W2W2aQmM5b-92bcbtUimpeQm9853HvPHtkJMThCniMcYjlvGh_Xh0gFlY_IBDnDChiFHTIBAFHVDL_ukr2cV-WpONAnZJdKVSNIPiGnxzm7nH1YTj8OJvS-c9MPybXe9j6G6Y3vr6ZzF3IstV_EJ7dMo6oQF7F1XX5KHi9Ml92zu3uffDk9-Tx_X51fvjubH59XlkMtK2sWyMEwM2PGKIXGUccaZ23TomQM2wYsIheNZQIQbMsXnLuaUm5Emc_U--Ro43s9NGvXWhf6ZDp9nfzapFsdjdd__gR_pZfxu-ZM0JmSxeDgziDFb4PLvV77bF3XmeDikDUFCgqVAPpfFGdMzlTN6Oj66gG6ikMKZRMaFSgpkNYj9fL35u-73qZRANgANsWck1to63szBlFm8Z1G0GPgegxc_wy8SF4_kGxd_wrjBr4pId7-g9Rvzy4vtpoXG80q9zHdaxgTiqMU9Q-Tm8T5
CitedBy_id crossref_primary_10_1111_rssc_12571
crossref_primary_10_1146_annurev_statistics_032921_020240
crossref_primary_10_1080_03610918_2021_1938122
crossref_primary_10_1002_sim_8871
crossref_primary_10_1016_j_csda_2021_107323
crossref_primary_10_1007_s00362_024_01634_1
crossref_primary_10_1007_s10462_023_10698_8
crossref_primary_10_1111_ecog_04720
Cites_doi 10.1214/09-AOS771
10.2307/1913643
10.1080/01621459.1995.10476500
10.1093/biomet/88.2.381
10.1093/biomet/asm082
10.1198/106186008X289155
10.1080/01621459.1998.10473722
10.1214/12-AOS968
10.1198/016214503000000954
10.1053/ajkd.2002.32775
10.1198/016214507000000509
10.1016/j.csda.2012.07.020
10.1002/sim.5328
10.1017/CBO9780511754098
10.1007/s11222-013-9406-4
10.1111/j.1468-0262.2006.00671.x
10.1198/jasa.2009.tm08230
10.1093/biomet/asm036
10.1198/016214503000000963
10.1080/01621459.1999.10473882
10.1198/016214507000000149
10.1002/cjs.5550360209
10.1002/sim.3758
10.1093/biostatistics/kxt050
10.1214/07-AOS507
10.1111/j.0006-341X.2001.01030.x
10.1198/016214508000000355
ContentType Journal Article
Copyright Copyright © 2017 International Biometric Society
2016, The International Biometric Society
2016, The International Biometric Society.
2017, The International Biometric Society
Copyright_xml – notice: Copyright © 2017 International Biometric Society
– notice: 2016, The International Biometric Society
– notice: 2016, The International Biometric Society.
– notice: 2017, The International Biometric Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7S9
L.6
5PM
DOI 10.1111/biom.12627
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef
MEDLINE - Academic

MEDLINE


ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 528
ExternalDocumentID PMC5462897
27931075
10_1111_biom_12627
BIOM12627
44695176
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL113548
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1OC
23N
2AX
2QV
33P
36B
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAMMB
AANLZ
AAONW
AASGY
AAUAY
AAWIL
AAXRX
AAYCA
AAZKR
AAZSN
ABAWQ
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABXSQ
ABXVV
ABYWD
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACPOU
ACPRK
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADODI
ADOZA
ADVOB
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEUPB
AEUYR
AFBPY
AFDVO
AFEBI
AFGKR
AFVYC
AFWVQ
AFZJQ
AGLNM
AGORE
AGTJU
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
AIHAF
AIURR
AJAOE
AJNCP
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BCRHZ
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FD6
G-S
G.N
GODZA
GS5
H.T
H.X
HQ6
HZI
HZ~
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K48
KOP
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NU-
O66
O9-
OIG
OJZSN
OWPYF
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
ROX
RX1
RXW
SA0
SUPJJ
SV3
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZZTAW
~02
~IA
~KM
~WT
.GJ
.Y3
3-9
31~
3V.
7X7
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAHHS
AANHP
ABJCF
ABTAH
ABUWG
ACBWZ
ACCFJ
ACKIV
ACRPL
ACYXJ
ADNMO
ADULT
ADZOD
AEEZP
AELPN
AEQDE
AEUQT
AFFTP
AFKRA
AFPWT
AIBGX
AIWBW
AJBDE
ALEEW
ARAPS
ASPBG
AS~
AVWKF
AZFZN
AZQEC
BBNVY
BGLVJ
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
DWQXO
FEDTE
FXEWX
FYUFA
GNUQQ
HCIFZ
HF~
HGD
HMCUK
HVGLF
IHE
JSODD
K6V
K7-
L6V
LK8
M1P
M2P
M7P
M7S
NHB
P0-
P62
PROAC
PSQYO
PTHSS
Q2X
RNS
RWL
TAE
UAP
UKHRP
VQA
WRC
ZGI
ZXP
ZY4
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
H13
JQ2
7X8
ESTFP
7S9
L.6
5PM
AGQPQ
ID FETCH-LOGICAL-c5037-caf150a4a84aa991ae2e4beccbd17441db0c1156bc46010cd5f55e3225a6262a3
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Thu Aug 21 13:58:34 EDT 2025
Fri Sep 05 17:27:24 EDT 2025
Mon Sep 08 16:25:42 EDT 2025
Wed Aug 13 03:28:26 EDT 2025
Wed Feb 19 02:43:22 EST 2025
Thu Apr 24 23:00:10 EDT 2025
Tue Jul 01 00:58:06 EDT 2025
Wed Jan 22 16:45:38 EST 2025
Thu Jul 03 22:05:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Model comparisons
Perturbation resampling
Survival quantiles
Model mis-specification
Censored quantile regression
Predictive performance
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
2016, The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5037-caf150a4a84aa991ae2e4beccbd17441db0c1156bc46010cd5f55e3225a6262a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5462897
PMID 27931075
PQID 1909761237
PQPubID 35366
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5462897
proquest_miscellaneous_2020919602
proquest_miscellaneous_1847893427
proquest_journals_1909761237
pubmed_primary_27931075
crossref_citationtrail_10_1111_biom_12627
crossref_primary_10_1111_biom_12627
wiley_primary_10_1111_biom_12627_BIOM12627
jstor_primary_44695176
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2017
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: June 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2017
Publisher Wiley-Blackwell
Blackwell Publishing Ltd
Publisher_xml – name: Wiley-Blackwell
– name: Blackwell Publishing Ltd
References 2002; 39
2007; 102
2006; 74
2010; 38
1995; 90
2006; 16
2008; 17
2008; 36
2014; 24
2005
2007; 94
2008; 103
2001; 88
2008; 95
1992; 54
2012; 31
2003; 98
2010; 29
2013; 57
2014; 15
1978; 46
1999; 94
1998; 93
2009; 19
2001; 57
2009; 104
2012; 40
Wang (2024011603174233200_biom12627-bib-0023) 2007; 102
Koenker (2024011603174233200_biom12627-bib-0009) 2005
Huang (2024011603174233200_biom12627-bib-0007) 2010; 38
Lawless (2024011603174233200_biom12627-bib-0013) 2010; 29
Chen (2024011603174233200_biom12627-bib-0003) 2001; 57
Chen (2024011603174233200_biom12627-bib-0002) 2008; 95
Peng (2024011603174233200_biom12627-bib-0016) 2008; 103
Zucker (2024011603174233200_biom12627-bib-0030) 1998; 93
Li (2024011603174233200_biom12627-bib-0014) 2008; 17
Zhou (2024011603174233200_biom12627-bib-0028) 2006; 16
Tian (2024011603174233200_biom12627-bib-0020) 2007; 94
Goldberg (2024011603174233200_biom12627-bib-0005) 2012; 40
Peng (2024011603174233200_biom12627-bib-0017) 2014; 24
Jin (2024011603174233200_biom12627-bib-0008) 2001; 88
Zou (2024011603174233200_biom12627-bib-0029) 2008; 36
Wang (2024011603174233200_biom12627-bib-0025) 2008; 36
Ying (2024011603174233200_biom12627-bib-0027) 1995; 90
He (2024011603174233200_biom12627-bib-0006) 2003; 98
Portnoy (2024011603174233200_biom12627-bib-0018) 2003; 98
Uno (2024011603174233200_biom12627-bib-0022) 2007; 102
Koenker (2024011603174233200_biom12627-bib-0010) 1978; 46
Angrist (2024011603174233200_biom12627-bib-0001) 2006; 74
Kutner (2024011603174233200_biom12627-bib-0012) 2002; 39
Tian (2024011603174233200_biom12627-bib-0021) 2014; 15
Wu (2024011603174233200_biom12627-bib-0026) 2009; 19
Koenker (2024011603174233200_biom12627-bib-0011) 1999; 94
Wang (2024011603174233200_biom12627-bib-0024) 2009; 104
Rao (2024011603174233200_biom12627-bib-0019) 1992; 54
Demler (2024011603174233200_biom12627-bib-0004) 2012; 31
Noh (2024011603174233200_biom12627-bib-0015) 2013; 57
11979345 - Am J Kidney Dis. 2002 May;39(5):1018-24
22754029 - Ann Stat. 2012 Feb 1;40(1):529-560
22415937 - Stat Med. 2012 Oct 15;31(23):2577-87
19882678 - Stat Med. 2010 Jan 30;29(2):262-74
11764241 - Biometrics. 2001 Dec;57(4):1030-8
24292992 - Biostatistics. 2014 Apr;15(2):222-33
25332515 - Stat Comput. 2014 Sep 1;24(5):853-869
20592942 - Ann Stat. 2010 Jun 1;38(3):1607-1637
References_xml – volume: 15
  start-page: 222
  year: 2014
  end-page: 233
  article-title: Predicting the restricted mean event time with the subject's baseline covariates in survival analysis
  publication-title: Biostatistics
– volume: 24
  start-page: 853
  year: 2014
  end-page: 869
  article-title: Shrinkage estimation of varying covariate effects based on quantile regression
  publication-title: Statistics and Computing
– volume: 39
  start-page: 1018
  year: 2002
  end-page: 1024
  article-title: Association of fish intake and survival in a cohort of incident dialysis patients
  publication-title: American Journal of Kidney Diseases
– year: 2005
– volume: 93
  start-page: 702
  year: 1998
  end-page: 709
  article-title: Restricted mean life with covariates: Modification and extension of a useful survival analysis method
  publication-title: Journal of the American Statistical Association
– volume: 36
  start-page: 1108
  year: 2008
  end-page: 1126
  article-title: Composite quantile regression and the oracle model selection theory
  publication-title: The Annals of Statistics
– volume: 57
  start-page: 1030
  year: 2001
  end-page: 1038
  article-title: Causal inference on the difference of the restricted mean lifetime between two groups
  publication-title: Biometrics
– volume: 46
  start-page: 33
  year: 1978
  end-page: 50
  article-title: Regression quantiles
  publication-title: Econometrica
– volume: 38
  start-page: 1607
  year: 2010
  end-page: 1637
  article-title: Quantile calculus and censored regression
  publication-title: The Annals of Statistics
– volume: 19
  start-page: 801
  year: 2009
  end-page: 817
  article-title: Variable selection in quantile regression
  publication-title: Statistica Sinica
– volume: 31
  start-page: 2577
  year: 2012
  end-page: 2587
  article-title: Misuse of DeLong test to compare AUCs for nested models
  publication-title: Statistics in Medicine
– volume: 90
  start-page: 178
  year: 1995
  end-page: 184
  article-title: Survival analysis with median regression models
  publication-title: Journal of the American Statistical Association
– volume: 103
  start-page: 637
  year: 2008
  end-page: 649
  article-title: Survival analysis with quantile regression models
  publication-title: Journal of the American Statistical Association
– volume: 104
  start-page: 1117
  year: 2009
  end-page: 1128
  article-title: Locally weighted censored quantile regression
  publication-title: Journal of the American Statistical Association
– volume: 54
  start-page: 323
  year: 1992
  end-page: 331
  article-title: Approximation to the distribution of m‐estimates in linear models by randomly weighted bootstrap
  publication-title: Sankhyā: The Indian Journal of Statistics, Series A
– volume: 16
  start-page: 1043
  year: 2006
  end-page: 1058
  article-title: A simple censored median regression estimator
  publication-title: Statistica Sinica
– volume: 40
  start-page: 529
  year: 2012
  end-page: 560
  article-title: Q‐learning with censored data
  publication-title: The Annals of Statistics
– volume: 98
  start-page: 1013
  year: 2003
  end-page: 1022
  article-title: A lack‐of‐fit test for quantile regression
  publication-title: Journal of the American Statistical Association
– volume: 36
  start-page: 321
  year: 2008
  end-page: 336
  article-title: Nonparametric test for checking lack of fit of the quantile regression model under random censoring
  publication-title: Canadian Journal of Statistics
– volume: 17
  start-page: 163
  year: 2008
  end-page: 185
  article-title: L1‐norm quantile regression
  publication-title: Journal of Computational and Graphical Statistics
– volume: 94
  start-page: 297
  year: 2007
  end-page: 311
  article-title: Model evaluation based on the sampling distribution of estimated absolute prediction error
  publication-title: Biometrika
– volume: 94
  start-page: 1296
  year: 1999
  end-page: 1310
  article-title: Goodness of fit and related inference processes for quantile regression
  publication-title: Journal of the American Statistical Association
– volume: 98
  start-page: 1001
  year: 2003
  end-page: 1012
  article-title: Censored regression quantiles
  publication-title: Journal of the American Statistical Association
– volume: 74
  start-page: 539
  year: 2006
  end-page: 563
  article-title: Quantile regression under misspecification, with an application to the US wage structure
  publication-title: Econometrica
– volume: 88
  start-page: 381
  year: 2001
  end-page: 390
  article-title: A simple resampling method by perturbing the minimand
  publication-title: Biometrika
– volume: 29
  start-page: 262
  year: 2010
  end-page: 274
  article-title: Estimation of prediction error for survival models
  publication-title: Statistics in Medicine
– volume: 102
  start-page: 1039
  year: 2007
  end-page: 1048
  article-title: Unified LASSO estimation by least squares approximation
  publication-title: Journal of the American Statistical Association
– volume: 57
  start-page: 558
  year: 2013
  end-page: 569
  article-title: Assessing model adequacy in possibly misspecified quantile regression
  publication-title: Computational Statistics & Data Analysis
– volume: 95
  start-page: 107
  year: 2008
  end-page: 122
  article-title: Analysis of least absolute deviation
  publication-title: Biometrika
– volume: 102
  start-page: 527
  year: 2007
  end-page: 537
  article-title: Evaluating prediction rules for t‐year survivors with censored regression models
  publication-title: Journal of the American Statistical Association
– volume: 16
  start-page: 1043
  year: 2006
  ident: 2024011603174233200_biom12627-bib-0028
  article-title: A simple censored median regression estimator
  publication-title: Statistica Sinica
– volume: 54
  start-page: 323
  year: 1992
  ident: 2024011603174233200_biom12627-bib-0019
  article-title: Approximation to the distribution of m-estimates in linear models by randomly weighted bootstrap
  publication-title: Sankhyā: The Indian Journal of Statistics, Series A
– volume: 38
  start-page: 1607
  year: 2010
  ident: 2024011603174233200_biom12627-bib-0007
  article-title: Quantile calculus and censored regression
  publication-title: The Annals of Statistics
  doi: 10.1214/09-AOS771
– volume: 46
  start-page: 33
  year: 1978
  ident: 2024011603174233200_biom12627-bib-0010
  article-title: Regression quantiles
  publication-title: Econometrica
  doi: 10.2307/1913643
– volume: 90
  start-page: 178
  year: 1995
  ident: 2024011603174233200_biom12627-bib-0027
  article-title: Survival analysis with median regression models
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1995.10476500
– volume: 88
  start-page: 381
  year: 2001
  ident: 2024011603174233200_biom12627-bib-0008
  article-title: A simple resampling method by perturbing the minimand
  publication-title: Biometrika
  doi: 10.1093/biomet/88.2.381
– volume: 95
  start-page: 107
  year: 2008
  ident: 2024011603174233200_biom12627-bib-0002
  article-title: Analysis of least absolute deviation
  publication-title: Biometrika
  doi: 10.1093/biomet/asm082
– volume: 17
  start-page: 163
  year: 2008
  ident: 2024011603174233200_biom12627-bib-0014
  article-title: L1-norm quantile regression
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/106186008X289155
– volume: 93
  start-page: 702
  year: 1998
  ident: 2024011603174233200_biom12627-bib-0030
  article-title: Restricted mean life with covariates: Modification and extension of a useful survival analysis method
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1998.10473722
– volume: 40
  start-page: 529
  year: 2012
  ident: 2024011603174233200_biom12627-bib-0005
  article-title: Q-learning with censored data
  publication-title: The Annals of Statistics
  doi: 10.1214/12-AOS968
– volume: 98
  start-page: 1001
  year: 2003
  ident: 2024011603174233200_biom12627-bib-0018
  article-title: Censored regression quantiles
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214503000000954
– volume: 39
  start-page: 1018
  year: 2002
  ident: 2024011603174233200_biom12627-bib-0012
  article-title: Association of fish intake and survival in a cohort of incident dialysis patients
  publication-title: American Journal of Kidney Diseases
  doi: 10.1053/ajkd.2002.32775
– volume: 102
  start-page: 1039
  year: 2007
  ident: 2024011603174233200_biom12627-bib-0023
  article-title: Unified LASSO estimation by least squares approximation
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214507000000509
– volume: 19
  start-page: 801
  year: 2009
  ident: 2024011603174233200_biom12627-bib-0026
  article-title: Variable selection in quantile regression
  publication-title: Statistica Sinica
– volume: 57
  start-page: 558
  year: 2013
  ident: 2024011603174233200_biom12627-bib-0015
  article-title: Assessing model adequacy in possibly misspecified quantile regression
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2012.07.020
– volume: 31
  start-page: 2577
  year: 2012
  ident: 2024011603174233200_biom12627-bib-0004
  article-title: Misuse of DeLong test to compare AUCs for nested models
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.5328
– year: 2005
  ident: 2024011603174233200_biom12627-bib-0009
  article-title: Quantile Regression
  doi: 10.1017/CBO9780511754098
– volume: 24
  start-page: 853
  year: 2014
  ident: 2024011603174233200_biom12627-bib-0017
  article-title: Shrinkage estimation of varying covariate effects based on quantile regression
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-013-9406-4
– volume: 74
  start-page: 539
  year: 2006
  ident: 2024011603174233200_biom12627-bib-0001
  article-title: Quantile regression under misspecification, with an application to the US wage structure
  publication-title: Econometrica
  doi: 10.1111/j.1468-0262.2006.00671.x
– volume: 104
  start-page: 1117
  year: 2009
  ident: 2024011603174233200_biom12627-bib-0024
  article-title: Locally weighted censored quantile regression
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/jasa.2009.tm08230
– volume: 94
  start-page: 297
  year: 2007
  ident: 2024011603174233200_biom12627-bib-0020
  article-title: Model evaluation based on the sampling distribution of estimated absolute prediction error
  publication-title: Biometrika
  doi: 10.1093/biomet/asm036
– volume: 98
  start-page: 1013
  year: 2003
  ident: 2024011603174233200_biom12627-bib-0006
  article-title: A lack-of-fit test for quantile regression
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214503000000963
– volume: 94
  start-page: 1296
  year: 1999
  ident: 2024011603174233200_biom12627-bib-0011
  article-title: Goodness of fit and related inference processes for quantile regression
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1999.10473882
– volume: 102
  start-page: 527
  year: 2007
  ident: 2024011603174233200_biom12627-bib-0022
  article-title: Evaluating prediction rules for t-year survivors with censored regression models
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214507000000149
– volume: 36
  start-page: 321
  year: 2008
  ident: 2024011603174233200_biom12627-bib-0025
  article-title: Nonparametric test for checking lack of fit of the quantile regression model under random censoring
  publication-title: Canadian Journal of Statistics
  doi: 10.1002/cjs.5550360209
– volume: 29
  start-page: 262
  year: 2010
  ident: 2024011603174233200_biom12627-bib-0013
  article-title: Estimation of prediction error for survival models
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.3758
– volume: 15
  start-page: 222
  year: 2014
  ident: 2024011603174233200_biom12627-bib-0021
  article-title: Predicting the restricted mean event time with the subject's baseline covariates in survival analysis
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxt050
– volume: 36
  start-page: 1108
  year: 2008
  ident: 2024011603174233200_biom12627-bib-0029
  article-title: Composite quantile regression and the oracle model selection theory
  publication-title: The Annals of Statistics
  doi: 10.1214/07-AOS507
– volume: 57
  start-page: 1030
  year: 2001
  ident: 2024011603174233200_biom12627-bib-0003
  article-title: Causal inference on the difference of the restricted mean lifetime between two groups
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2001.01030.x
– volume: 103
  start-page: 637
  year: 2008
  ident: 2024011603174233200_biom12627-bib-0016
  article-title: Survival analysis with quantile regression models
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214508000000355
– reference: 11764241 - Biometrics. 2001 Dec;57(4):1030-8
– reference: 20592942 - Ann Stat. 2010 Jun 1;38(3):1607-1637
– reference: 25332515 - Stat Comput. 2014 Sep 1;24(5):853-869
– reference: 19882678 - Stat Med. 2010 Jan 30;29(2):262-74
– reference: 22754029 - Ann Stat. 2012 Feb 1;40(1):529-560
– reference: 24292992 - Biostatistics. 2014 Apr;15(2):222-33
– reference: 11979345 - Am J Kidney Dis. 2002 May;39(5):1018-24
– reference: 22415937 - Stat Med. 2012 Oct 15;31(23):2577-87
SSID ssj0009502
Score 2.2709584
Snippet An important goal of censored quantile regression is to provide reliable predictions of survival quantiles, which are often reported in practice to offer...
Summary An important goal of censored quantile regression is to provide reliable predictions of survival quantiles, which are often reported in practice to...
Summary An important goal of censored quantile regression is to provide reliable predictions of survival quantiles, which are often reported in practice to...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 517
SubjectTerms BIOMETRIC METHODOLOGY
biometry
Censored quantile regression
Computer Simulation
Economic models
Estimators
Inference
Mathematical models
Model comparisons
Model mis‐specification
Models, Statistical
Performance prediction
Perturbation resampling
prediction
Predictive performance
Proposals
Quantiles
Regression
Regression Analysis
Robustness
Summaries
Survival
Survival quantiles
Title Assessing Quantile Prediction with Censored Quantile Regression Models
URI https://www.jstor.org/stable/44695176
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.12627
https://www.ncbi.nlm.nih.gov/pubmed/27931075
https://www.proquest.com/docview/1909761237
https://www.proquest.com/docview/1847893427
https://www.proquest.com/docview/2020919602
https://pubmed.ncbi.nlm.nih.gov/PMC5462897
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED5KSqF7aLdsab12xaN72cAhUSTZhb00y0I7SAtlhbwMI1tyNzacLo4ftr--d5LtJlsotG_BPuPIuh_fSXefAN5xozP0-oMAQ6sOeCiyQDGNuozu0khtzMCeEjG5kGfX_MtUTDfgY90L4_ghmgU3sgzrr8nAVVIsGTm1p3f7TDJqJe8PJBHnj67YEuNuz1GFU3EX708rblIq47l_dCUauYLEdVDz_4rJZSRrQ9F4F77Vg3AVKD-75SLppn__4Xd86iifw06FUf1Tp1QvYMPkbdhyp1b-acOzSUP1WrRhm-CqY3t-CWO3h4zh0P9d4pzhK_3bOe0F0fz7tOjr4-CKGV67l5ibG1eNm_v2YJ7iFVyPP3_9dBZUJzUEqaA-w1RlCCwVVxFXChGnMsxw0o5EY8bD-zrppQg9ZZJySgBTLTIhDPkShQkVU4MOtPJZbvbBR_yjwyzTJMgTySPDOaKIMJJC6UgmHryvZyxOKxpzOk3jV1ynM_TJYvvJPDhuZG8decdaqY6d-EYEM2TEnaH04LDWhLiy7CJGAIUIDuM9Pve2uY02SRstKjezEmUw5CMO5OwBGYY4_QTdX495sOeUq_kDDJ0mpuXCg3BF7RoB4gRfvZP_-G65wQX1Gp_gez9YrXpg2PHw_HJif71-jPABbDNCNnYh6hBai3lp3iAuWyRHsHk6HA3HR9YO7wBx2DWg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED7BEGJ7gFHYCIwRBC8gpWpdO-ke-VV1Yx0S2qS-RU7swLQpHU37MP56vrPTrIVpEnurkotSx_fjO_v8HdFbaU0Br9-LEFpNJBNVRFoY6DLcpY2NtT3XJWJ0FA9P5MFYjevaHD4L4_khmgU3tgznr9nAeUF6ycr5fHq7K2KR3KV7EkiDc6_P38US527Hk4VzeZfsjmt2Ui7kuXp2JR75ksTrwOa_NZPLWNYFo8Ej33G1chyGXINy1p7Psnb--y-Gx1uPc5Me1jA1_OD16jHdsWWL7vvGlZct2hg1bK9Vi9YZsXrC5yc08NvIiIjhrzmmDe8ML6a8HcQqEPK6b4jRVRNcu5KY2h--ILcMXW-e6imdDL4cfxpGdbOGKFd81DDXBbCllrovtQbo1FZYyQqSGSQ9smuyTg70GWe55BwwN6pQyrI70ciphO5t0Vo5Ke0zCgGBTFIUhgVlFsu-lRJAIunHSpt-nAX0bjFlaV4zmXNDjfN0kdHwJ0vdJwvoTSN74fk7rpXacjPfiCBJBvRM4oB2FqqQ1sZdpcBQAHEI-XjudXMbZsl7Lbq0kzlkEPUBBaW4QUYAqu_BA3ZEQNteu5o_IOA3kZmrgJIVvWsEmBZ89U55-tPRgys-bryH9753anXDsNOP-99G7tfz_xF-RQ-Gx6PD9HD_6OsLWhcMdNy61A6tzaZz-xIwbZbtOmP8A_KwOE0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4ti0DLgUdhIbBAEFxAStW6ttOVuPCqdoEuCLFSLyhyYgcQKC19HODX842dZFtYrQS3KpkodTyPb-zxN0SPpLMlvP4gQWi1iUxVmRhhoctwl05b5wa-S8T4SB8cy9cTNdmip81ZmMAP0S64sWV4f80GPrPlmpHz8fRuX2iRnqPzUgNKMCT6INYod3uBK5yru2R_UpOTch3PybMb4ShUJJ6GNf8umVyHsj4Wja7Qp2YUoQTlW3e1zLvFrz8IHv93mFfpcg1S42dBq67Rlqs6dCG0rfzZoUvjlut10aEdxquB7vk6jcImMuJh_GOFScMr49mcN4NYAWJe9Y0xuMUU104k5u5zKMetYt-ZZ3GDjkevPr44SOpWDUmh-KBhYUogSyPNUBoDyGmccJLVI7dIeWTf5r0C2FPnheQMsLCqVMqxMzHIqIQZ7NJ2Na3cLYoBgGxalpYFZa7l0EkJGJEOtTJ2qPOIHjczlhU1jzm30_ieNfkMf7LMf7KIHrays8DecarUrp_4VgQpMoBnqiPaazQhq017kQFBAcIh4OO5B-1tGCXvtJjKTVeQQcwHEJTiDBkBoL4P_9cTEd0MytX-AQGvibxcRZRuqF0rwKTgm3eqr188Objiw8b7eO8Tr1VnDDt7fvhu7H_d_hfh-3Tx_ctR9vbw6M0d2hGMcvyi1B5tL-crdxcYbZnf86b4GySvNvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+quantile+prediction+with+censored+quantile+regression+models&rft.jtitle=Biometrics&rft.au=Li%2C+Ruosha&rft.au=Peng%2C+Limin&rft.date=2017-06-01&rft.issn=0006-341X&rft.volume=73&rft.issue=2+p.517-528&rft.spage=517&rft.epage=528&rft_id=info:doi/10.1111%2Fbiom.12627&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon