Assessing Quantile Prediction with Censored Quantile Regression Models
An important goal of censored quantile regression is to provide reliable predictions of survival quantiles, which are often reported in practice to offer robust and comprehensive biomedical summaries. However, formal methods for evaluating and comparing working quantile regression models in terms of...
Saved in:
Published in | Biometrics Vol. 73; no. 2; pp. 517 - 528 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley-Blackwell
01.06.2017
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0006-341X 1541-0420 1541-0420 |
DOI | 10.1111/biom.12627 |
Cover
Abstract | An important goal of censored quantile regression is to provide reliable predictions of survival quantiles, which are often reported in practice to offer robust and comprehensive biomedical summaries. However, formal methods for evaluating and comparing working quantile regression models in terms of their performance in predicting survival quantiles have been lacking, especially when the working models are subject to model mis-specification. In this article, we proposes a sensible and rigorous framework to fill in this gap. We introduce and justify a predictive performance measure defined based on the check loss function. We derive estimators of the proposed predictive performance measure and study their distributional properties and the corresponding inference procedures. More importantly, we develop model comparison procedures that enable thorough evaluations of model predictive performance among nested or non-nested models. Our proposals properly accommodate random censoring to the survival outcome and the realistic complication of model mis-specification, and thus are generally applicable. Extensive simulations and a real data example demonstrate satisfactory performances of the proposed methods in real life settings. |
---|---|
AbstractList | An important goal of censored quantile regression is to provide reliable predictions of survival quantiles, which are often reported in practice to offer robust and comprehensive biomedical summaries. However, formal methods for evaluating and comparing working quantile regression models in terms of their performance in predicting survival quantiles have been lacking, especially when the working models are subject to model mis‐specification. In this article, we proposes a sensible and rigorous framework to fill in this gap. We introduce and justify a predictive performance measure defined based on the check loss function. We derive estimators of the proposed predictive performance measure and study their distributional properties and the corresponding inference procedures. More importantly, we develop model comparison procedures that enable thorough evaluations of model predictive performance among nested or non‐nested models. Our proposals properly accommodate random censoring to the survival outcome and the realistic complication of model mis‐specification, and thus are generally applicable. Extensive simulations and a real data example demonstrate satisfactory performances of the proposed methods in real life settings. An important goal of censored quantile regression is to provide reliable predictions of survival quantiles, which are often reported in practice to offer robust and comprehensive biomedical summaries. However, formal methods for evaluating and comparing working quantile regression models in terms of their performance in predicting survival quantiles have been lacking, especially when the working models are subject to model mis-specification. In this article, we proposes a sensible and rigorous framework to fill in this gap. We introduce and justify a predictive performance measure defined based on the check loss function. We derive estimators of the proposed predictive performance measure and study their distributional properties and the corresponding inference procedures. More importantly, we develop model comparison procedures that enable thorough evaluations of model predictive performance among nested or non-nested models. Our proposals properly accommodate random censoring to the survival outcome and the realistic complication of model mis-specification, and thus are generally applicable. Extensive simulations and a real data example demonstrate satisfactory performances of the proposed methods in real life settings.An important goal of censored quantile regression is to provide reliable predictions of survival quantiles, which are often reported in practice to offer robust and comprehensive biomedical summaries. However, formal methods for evaluating and comparing working quantile regression models in terms of their performance in predicting survival quantiles have been lacking, especially when the working models are subject to model mis-specification. In this article, we proposes a sensible and rigorous framework to fill in this gap. We introduce and justify a predictive performance measure defined based on the check loss function. We derive estimators of the proposed predictive performance measure and study their distributional properties and the corresponding inference procedures. More importantly, we develop model comparison procedures that enable thorough evaluations of model predictive performance among nested or non-nested models. Our proposals properly accommodate random censoring to the survival outcome and the realistic complication of model mis-specification, and thus are generally applicable. Extensive simulations and a real data example demonstrate satisfactory performances of the proposed methods in real life settings. An important goal of censored quantile regression is to provide reliable predictions of survival quantiles, which are often reported in practice to offer robust and comprehensive biomedical summaries. However, formal methods for evaluating and comparing working quantile regression models in terms of their performance in predicting survival quantiles have been lacking, especially when the working models are subject to model mis-specification. In this paper, we proposes a sensible and rigorous framework to fill in this gap. We introduce and justify a predictive performance measure defined based on the check loss function. We derive estimators of the proposed predictive performance measure and study their distributional properties and the corresponding inference procedures. More importantly, we develop model comparison procedures that enable thorough evaluations of model predictive performance among nested or non-nested models. Our proposals properly accommodate random censoring to the survival outcome and the realistic complication of model mis-specification, and thus are generally applicable. Extensive simulations and a real data example demonstrate satisfactory performances of the proposed methods in real life settings. Summary An important goal of censored quantile regression is to provide reliable predictions of survival quantiles, which are often reported in practice to offer robust and comprehensive biomedical summaries. However, formal methods for evaluating and comparing working quantile regression models in terms of their performance in predicting survival quantiles have been lacking, especially when the working models are subject to model mis‐specification. In this article, we proposes a sensible and rigorous framework to fill in this gap. We introduce and justify a predictive performance measure defined based on the check loss function. We derive estimators of the proposed predictive performance measure and study their distributional properties and the corresponding inference procedures. More importantly, we develop model comparison procedures that enable thorough evaluations of model predictive performance among nested or non‐nested models. Our proposals properly accommodate random censoring to the survival outcome and the realistic complication of model mis‐specification, and thus are generally applicable. Extensive simulations and a real data example demonstrate satisfactory performances of the proposed methods in real life settings. Summary An important goal of censored quantile regression is to provide reliable predictions of survival quantiles, which are often reported in practice to offer robust and comprehensive biomedical summaries. However, formal methods for evaluating and comparing working quantile regression models in terms of their performance in predicting survival quantiles have been lacking, especially when the working models are subject to model mis-specification. In this article, we proposes a sensible and rigorous framework to fill in this gap. We introduce and justify a predictive performance measure defined based on the check loss function. We derive estimators of the proposed predictive performance measure and study their distributional properties and the corresponding inference procedures. More importantly, we develop model comparison procedures that enable thorough evaluations of model predictive performance among nested or non-nested models. Our proposals properly accommodate random censoring to the survival outcome and the realistic complication of model mis-specification, and thus are generally applicable. Extensive simulations and a real data example demonstrate satisfactory performances of the proposed methods in real life settings. |
Author | Peng, Limin Li, Ruosha |
AuthorAffiliation | 2 Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322 1 Department of Biostatistics, The University of Texas School of Public Health, Houston, TX |
AuthorAffiliation_xml | – name: 1 Department of Biostatistics, The University of Texas School of Public Health, Houston, TX – name: 2 Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322 |
Author_xml | – sequence: 1 givenname: Ruosha surname: Li fullname: Li, Ruosha – sequence: 2 givenname: Limin surname: Peng fullname: Peng, Limin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27931075$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd1rFDEUxYNU7Lb64ruy4EsRpt6bycfmpVCXVgstVVHwLWQy2W2W2aQmM5b-92bcbtUimpeQm9853HvPHtkJMThCniMcYjlvGh_Xh0gFlY_IBDnDChiFHTIBAFHVDL_ukr2cV-WpONAnZJdKVSNIPiGnxzm7nH1YTj8OJvS-c9MPybXe9j6G6Y3vr6ZzF3IstV_EJ7dMo6oQF7F1XX5KHi9Ml92zu3uffDk9-Tx_X51fvjubH59XlkMtK2sWyMEwM2PGKIXGUccaZ23TomQM2wYsIheNZQIQbMsXnLuaUm5Emc_U--Ro43s9NGvXWhf6ZDp9nfzapFsdjdd__gR_pZfxu-ZM0JmSxeDgziDFb4PLvV77bF3XmeDikDUFCgqVAPpfFGdMzlTN6Oj66gG6ikMKZRMaFSgpkNYj9fL35u-73qZRANgANsWck1to63szBlFm8Z1G0GPgegxc_wy8SF4_kGxd_wrjBr4pId7-g9Rvzy4vtpoXG80q9zHdaxgTiqMU9Q-Tm8T5 |
CitedBy_id | crossref_primary_10_1111_rssc_12571 crossref_primary_10_1146_annurev_statistics_032921_020240 crossref_primary_10_1080_03610918_2021_1938122 crossref_primary_10_1002_sim_8871 crossref_primary_10_1016_j_csda_2021_107323 crossref_primary_10_1007_s00362_024_01634_1 crossref_primary_10_1007_s10462_023_10698_8 crossref_primary_10_1111_ecog_04720 |
Cites_doi | 10.1214/09-AOS771 10.2307/1913643 10.1080/01621459.1995.10476500 10.1093/biomet/88.2.381 10.1093/biomet/asm082 10.1198/106186008X289155 10.1080/01621459.1998.10473722 10.1214/12-AOS968 10.1198/016214503000000954 10.1053/ajkd.2002.32775 10.1198/016214507000000509 10.1016/j.csda.2012.07.020 10.1002/sim.5328 10.1017/CBO9780511754098 10.1007/s11222-013-9406-4 10.1111/j.1468-0262.2006.00671.x 10.1198/jasa.2009.tm08230 10.1093/biomet/asm036 10.1198/016214503000000963 10.1080/01621459.1999.10473882 10.1198/016214507000000149 10.1002/cjs.5550360209 10.1002/sim.3758 10.1093/biostatistics/kxt050 10.1214/07-AOS507 10.1111/j.0006-341X.2001.01030.x 10.1198/016214508000000355 |
ContentType | Journal Article |
Copyright | Copyright © 2017 International Biometric Society 2016, The International Biometric Society 2016, The International Biometric Society. 2017, The International Biometric Society |
Copyright_xml | – notice: Copyright © 2017 International Biometric Society – notice: 2016, The International Biometric Society – notice: 2016, The International Biometric Society. – notice: 2017, The International Biometric Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7X8 7S9 L.6 5PM |
DOI | 10.1111/biom.12627 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef MEDLINE - Academic MEDLINE ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology Mathematics |
EISSN | 1541-0420 |
EndPage | 528 |
ExternalDocumentID | PMC5462897 27931075 10_1111_biom_12627 BIOM12627 44695176 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL113548 |
GroupedDBID | --- -~X .3N .4S .DC .GA 05W 0R~ 10A 1OC 23N 2AX 2QV 33P 36B 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAMMB AANLZ AAONW AASGY AAUAY AAWIL AAXRX AAYCA AAZKR AAZSN ABAWQ ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABGNP ABJNI ABLJU ABMNT ABPPZ ABPVW ABXSQ ABXVV ABYWD ACAHQ ACCZN ACFBH ACGFO ACGFS ACGOD ACHJO ACIWK ACMTB ACNCT ACPOU ACPRK ACSCC ACTMH ACUHS ACXBN ACXQS ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNBA ADODI ADOZA ADVOB ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEOTA AEUPB AEUYR AFBPY AFDVO AFEBI AFGKR AFVYC AFWVQ AFZJQ AGLNM AGORE AGTJU AGXDD AHMBA AIAGR AIDQK AIDYY AIHAF AIURR AJAOE AJNCP AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMYDB APXXL ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BCRHZ BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FD6 G-S G.N GODZA GS5 H.T H.X HQ6 HZI HZ~ IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K48 KOP LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NU- O66 O9- OIG OJZSN OWPYF P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL ROX RX1 RXW SA0 SUPJJ SV3 TN5 TUS UB1 V8K W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ X6Y XBAML XG1 XSW ZZTAW ~02 ~IA ~KM ~WT .GJ .Y3 3-9 31~ 3V. 7X7 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAHHS AANHP ABJCF ABTAH ABUWG ACBWZ ACCFJ ACKIV ACRPL ACYXJ ADNMO ADULT ADZOD AEEZP AELPN AEQDE AEUQT AFFTP AFKRA AFPWT AIBGX AIWBW AJBDE ALEEW ARAPS ASPBG AS~ AVWKF AZFZN AZQEC BBNVY BGLVJ BHPHI BPHCQ BVXVI CAG CCPQU COF DWQXO FEDTE FXEWX FYUFA GNUQQ HCIFZ HF~ HGD HMCUK HVGLF IHE JSODD K6V K7- L6V LK8 M1P M2P M7P M7S NHB P0- P62 PROAC PSQYO PTHSS Q2X RNS RWL TAE UAP UKHRP VQA WRC ZGI ZXP ZY4 AAYXX CITATION CGR CUY CVF ECM EIF NPM PKN H13 JQ2 7X8 ESTFP 7S9 L.6 5PM AGQPQ |
ID | FETCH-LOGICAL-c5037-caf150a4a84aa991ae2e4beccbd17441db0c1156bc46010cd5f55e3225a6262a3 |
IEDL.DBID | DR2 |
ISSN | 0006-341X 1541-0420 |
IngestDate | Thu Aug 21 13:58:34 EDT 2025 Fri Sep 05 17:27:24 EDT 2025 Mon Sep 08 16:25:42 EDT 2025 Wed Aug 13 03:28:26 EDT 2025 Wed Feb 19 02:43:22 EST 2025 Thu Apr 24 23:00:10 EDT 2025 Tue Jul 01 00:58:06 EDT 2025 Wed Jan 22 16:45:38 EST 2025 Thu Jul 03 22:05:33 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Model comparisons Perturbation resampling Survival quantiles Model mis-specification Censored quantile regression Predictive performance |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model 2016, The International Biometric Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5037-caf150a4a84aa991ae2e4beccbd17441db0c1156bc46010cd5f55e3225a6262a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5462897 |
PMID | 27931075 |
PQID | 1909761237 |
PQPubID | 35366 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5462897 proquest_miscellaneous_2020919602 proquest_miscellaneous_1847893427 proquest_journals_1909761237 pubmed_primary_27931075 crossref_citationtrail_10_1111_biom_12627 crossref_primary_10_1111_biom_12627 wiley_primary_10_1111_biom_12627_BIOM12627 jstor_primary_44695176 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2017 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: June 2017 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Biometrics |
PublicationTitleAlternate | Biometrics |
PublicationYear | 2017 |
Publisher | Wiley-Blackwell Blackwell Publishing Ltd |
Publisher_xml | – name: Wiley-Blackwell – name: Blackwell Publishing Ltd |
References | 2002; 39 2007; 102 2006; 74 2010; 38 1995; 90 2006; 16 2008; 17 2008; 36 2014; 24 2005 2007; 94 2008; 103 2001; 88 2008; 95 1992; 54 2012; 31 2003; 98 2010; 29 2013; 57 2014; 15 1978; 46 1999; 94 1998; 93 2009; 19 2001; 57 2009; 104 2012; 40 Wang (2024011603174233200_biom12627-bib-0023) 2007; 102 Koenker (2024011603174233200_biom12627-bib-0009) 2005 Huang (2024011603174233200_biom12627-bib-0007) 2010; 38 Lawless (2024011603174233200_biom12627-bib-0013) 2010; 29 Chen (2024011603174233200_biom12627-bib-0003) 2001; 57 Chen (2024011603174233200_biom12627-bib-0002) 2008; 95 Peng (2024011603174233200_biom12627-bib-0016) 2008; 103 Zucker (2024011603174233200_biom12627-bib-0030) 1998; 93 Li (2024011603174233200_biom12627-bib-0014) 2008; 17 Zhou (2024011603174233200_biom12627-bib-0028) 2006; 16 Tian (2024011603174233200_biom12627-bib-0020) 2007; 94 Goldberg (2024011603174233200_biom12627-bib-0005) 2012; 40 Peng (2024011603174233200_biom12627-bib-0017) 2014; 24 Jin (2024011603174233200_biom12627-bib-0008) 2001; 88 Zou (2024011603174233200_biom12627-bib-0029) 2008; 36 Wang (2024011603174233200_biom12627-bib-0025) 2008; 36 Ying (2024011603174233200_biom12627-bib-0027) 1995; 90 He (2024011603174233200_biom12627-bib-0006) 2003; 98 Portnoy (2024011603174233200_biom12627-bib-0018) 2003; 98 Uno (2024011603174233200_biom12627-bib-0022) 2007; 102 Koenker (2024011603174233200_biom12627-bib-0010) 1978; 46 Angrist (2024011603174233200_biom12627-bib-0001) 2006; 74 Kutner (2024011603174233200_biom12627-bib-0012) 2002; 39 Tian (2024011603174233200_biom12627-bib-0021) 2014; 15 Wu (2024011603174233200_biom12627-bib-0026) 2009; 19 Koenker (2024011603174233200_biom12627-bib-0011) 1999; 94 Wang (2024011603174233200_biom12627-bib-0024) 2009; 104 Rao (2024011603174233200_biom12627-bib-0019) 1992; 54 Demler (2024011603174233200_biom12627-bib-0004) 2012; 31 Noh (2024011603174233200_biom12627-bib-0015) 2013; 57 11979345 - Am J Kidney Dis. 2002 May;39(5):1018-24 22754029 - Ann Stat. 2012 Feb 1;40(1):529-560 22415937 - Stat Med. 2012 Oct 15;31(23):2577-87 19882678 - Stat Med. 2010 Jan 30;29(2):262-74 11764241 - Biometrics. 2001 Dec;57(4):1030-8 24292992 - Biostatistics. 2014 Apr;15(2):222-33 25332515 - Stat Comput. 2014 Sep 1;24(5):853-869 20592942 - Ann Stat. 2010 Jun 1;38(3):1607-1637 |
References_xml | – volume: 15 start-page: 222 year: 2014 end-page: 233 article-title: Predicting the restricted mean event time with the subject's baseline covariates in survival analysis publication-title: Biostatistics – volume: 24 start-page: 853 year: 2014 end-page: 869 article-title: Shrinkage estimation of varying covariate effects based on quantile regression publication-title: Statistics and Computing – volume: 39 start-page: 1018 year: 2002 end-page: 1024 article-title: Association of fish intake and survival in a cohort of incident dialysis patients publication-title: American Journal of Kidney Diseases – year: 2005 – volume: 93 start-page: 702 year: 1998 end-page: 709 article-title: Restricted mean life with covariates: Modification and extension of a useful survival analysis method publication-title: Journal of the American Statistical Association – volume: 36 start-page: 1108 year: 2008 end-page: 1126 article-title: Composite quantile regression and the oracle model selection theory publication-title: The Annals of Statistics – volume: 57 start-page: 1030 year: 2001 end-page: 1038 article-title: Causal inference on the difference of the restricted mean lifetime between two groups publication-title: Biometrics – volume: 46 start-page: 33 year: 1978 end-page: 50 article-title: Regression quantiles publication-title: Econometrica – volume: 38 start-page: 1607 year: 2010 end-page: 1637 article-title: Quantile calculus and censored regression publication-title: The Annals of Statistics – volume: 19 start-page: 801 year: 2009 end-page: 817 article-title: Variable selection in quantile regression publication-title: Statistica Sinica – volume: 31 start-page: 2577 year: 2012 end-page: 2587 article-title: Misuse of DeLong test to compare AUCs for nested models publication-title: Statistics in Medicine – volume: 90 start-page: 178 year: 1995 end-page: 184 article-title: Survival analysis with median regression models publication-title: Journal of the American Statistical Association – volume: 103 start-page: 637 year: 2008 end-page: 649 article-title: Survival analysis with quantile regression models publication-title: Journal of the American Statistical Association – volume: 104 start-page: 1117 year: 2009 end-page: 1128 article-title: Locally weighted censored quantile regression publication-title: Journal of the American Statistical Association – volume: 54 start-page: 323 year: 1992 end-page: 331 article-title: Approximation to the distribution of m‐estimates in linear models by randomly weighted bootstrap publication-title: Sankhyā: The Indian Journal of Statistics, Series A – volume: 16 start-page: 1043 year: 2006 end-page: 1058 article-title: A simple censored median regression estimator publication-title: Statistica Sinica – volume: 40 start-page: 529 year: 2012 end-page: 560 article-title: Q‐learning with censored data publication-title: The Annals of Statistics – volume: 98 start-page: 1013 year: 2003 end-page: 1022 article-title: A lack‐of‐fit test for quantile regression publication-title: Journal of the American Statistical Association – volume: 36 start-page: 321 year: 2008 end-page: 336 article-title: Nonparametric test for checking lack of fit of the quantile regression model under random censoring publication-title: Canadian Journal of Statistics – volume: 17 start-page: 163 year: 2008 end-page: 185 article-title: L1‐norm quantile regression publication-title: Journal of Computational and Graphical Statistics – volume: 94 start-page: 297 year: 2007 end-page: 311 article-title: Model evaluation based on the sampling distribution of estimated absolute prediction error publication-title: Biometrika – volume: 94 start-page: 1296 year: 1999 end-page: 1310 article-title: Goodness of fit and related inference processes for quantile regression publication-title: Journal of the American Statistical Association – volume: 98 start-page: 1001 year: 2003 end-page: 1012 article-title: Censored regression quantiles publication-title: Journal of the American Statistical Association – volume: 74 start-page: 539 year: 2006 end-page: 563 article-title: Quantile regression under misspecification, with an application to the US wage structure publication-title: Econometrica – volume: 88 start-page: 381 year: 2001 end-page: 390 article-title: A simple resampling method by perturbing the minimand publication-title: Biometrika – volume: 29 start-page: 262 year: 2010 end-page: 274 article-title: Estimation of prediction error for survival models publication-title: Statistics in Medicine – volume: 102 start-page: 1039 year: 2007 end-page: 1048 article-title: Unified LASSO estimation by least squares approximation publication-title: Journal of the American Statistical Association – volume: 57 start-page: 558 year: 2013 end-page: 569 article-title: Assessing model adequacy in possibly misspecified quantile regression publication-title: Computational Statistics & Data Analysis – volume: 95 start-page: 107 year: 2008 end-page: 122 article-title: Analysis of least absolute deviation publication-title: Biometrika – volume: 102 start-page: 527 year: 2007 end-page: 537 article-title: Evaluating prediction rules for t‐year survivors with censored regression models publication-title: Journal of the American Statistical Association – volume: 16 start-page: 1043 year: 2006 ident: 2024011603174233200_biom12627-bib-0028 article-title: A simple censored median regression estimator publication-title: Statistica Sinica – volume: 54 start-page: 323 year: 1992 ident: 2024011603174233200_biom12627-bib-0019 article-title: Approximation to the distribution of m-estimates in linear models by randomly weighted bootstrap publication-title: Sankhyā: The Indian Journal of Statistics, Series A – volume: 38 start-page: 1607 year: 2010 ident: 2024011603174233200_biom12627-bib-0007 article-title: Quantile calculus and censored regression publication-title: The Annals of Statistics doi: 10.1214/09-AOS771 – volume: 46 start-page: 33 year: 1978 ident: 2024011603174233200_biom12627-bib-0010 article-title: Regression quantiles publication-title: Econometrica doi: 10.2307/1913643 – volume: 90 start-page: 178 year: 1995 ident: 2024011603174233200_biom12627-bib-0027 article-title: Survival analysis with median regression models publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1995.10476500 – volume: 88 start-page: 381 year: 2001 ident: 2024011603174233200_biom12627-bib-0008 article-title: A simple resampling method by perturbing the minimand publication-title: Biometrika doi: 10.1093/biomet/88.2.381 – volume: 95 start-page: 107 year: 2008 ident: 2024011603174233200_biom12627-bib-0002 article-title: Analysis of least absolute deviation publication-title: Biometrika doi: 10.1093/biomet/asm082 – volume: 17 start-page: 163 year: 2008 ident: 2024011603174233200_biom12627-bib-0014 article-title: L1-norm quantile regression publication-title: Journal of Computational and Graphical Statistics doi: 10.1198/106186008X289155 – volume: 93 start-page: 702 year: 1998 ident: 2024011603174233200_biom12627-bib-0030 article-title: Restricted mean life with covariates: Modification and extension of a useful survival analysis method publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1998.10473722 – volume: 40 start-page: 529 year: 2012 ident: 2024011603174233200_biom12627-bib-0005 article-title: Q-learning with censored data publication-title: The Annals of Statistics doi: 10.1214/12-AOS968 – volume: 98 start-page: 1001 year: 2003 ident: 2024011603174233200_biom12627-bib-0018 article-title: Censored regression quantiles publication-title: Journal of the American Statistical Association doi: 10.1198/016214503000000954 – volume: 39 start-page: 1018 year: 2002 ident: 2024011603174233200_biom12627-bib-0012 article-title: Association of fish intake and survival in a cohort of incident dialysis patients publication-title: American Journal of Kidney Diseases doi: 10.1053/ajkd.2002.32775 – volume: 102 start-page: 1039 year: 2007 ident: 2024011603174233200_biom12627-bib-0023 article-title: Unified LASSO estimation by least squares approximation publication-title: Journal of the American Statistical Association doi: 10.1198/016214507000000509 – volume: 19 start-page: 801 year: 2009 ident: 2024011603174233200_biom12627-bib-0026 article-title: Variable selection in quantile regression publication-title: Statistica Sinica – volume: 57 start-page: 558 year: 2013 ident: 2024011603174233200_biom12627-bib-0015 article-title: Assessing model adequacy in possibly misspecified quantile regression publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2012.07.020 – volume: 31 start-page: 2577 year: 2012 ident: 2024011603174233200_biom12627-bib-0004 article-title: Misuse of DeLong test to compare AUCs for nested models publication-title: Statistics in Medicine doi: 10.1002/sim.5328 – year: 2005 ident: 2024011603174233200_biom12627-bib-0009 article-title: Quantile Regression doi: 10.1017/CBO9780511754098 – volume: 24 start-page: 853 year: 2014 ident: 2024011603174233200_biom12627-bib-0017 article-title: Shrinkage estimation of varying covariate effects based on quantile regression publication-title: Statistics and Computing doi: 10.1007/s11222-013-9406-4 – volume: 74 start-page: 539 year: 2006 ident: 2024011603174233200_biom12627-bib-0001 article-title: Quantile regression under misspecification, with an application to the US wage structure publication-title: Econometrica doi: 10.1111/j.1468-0262.2006.00671.x – volume: 104 start-page: 1117 year: 2009 ident: 2024011603174233200_biom12627-bib-0024 article-title: Locally weighted censored quantile regression publication-title: Journal of the American Statistical Association doi: 10.1198/jasa.2009.tm08230 – volume: 94 start-page: 297 year: 2007 ident: 2024011603174233200_biom12627-bib-0020 article-title: Model evaluation based on the sampling distribution of estimated absolute prediction error publication-title: Biometrika doi: 10.1093/biomet/asm036 – volume: 98 start-page: 1013 year: 2003 ident: 2024011603174233200_biom12627-bib-0006 article-title: A lack-of-fit test for quantile regression publication-title: Journal of the American Statistical Association doi: 10.1198/016214503000000963 – volume: 94 start-page: 1296 year: 1999 ident: 2024011603174233200_biom12627-bib-0011 article-title: Goodness of fit and related inference processes for quantile regression publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1999.10473882 – volume: 102 start-page: 527 year: 2007 ident: 2024011603174233200_biom12627-bib-0022 article-title: Evaluating prediction rules for t-year survivors with censored regression models publication-title: Journal of the American Statistical Association doi: 10.1198/016214507000000149 – volume: 36 start-page: 321 year: 2008 ident: 2024011603174233200_biom12627-bib-0025 article-title: Nonparametric test for checking lack of fit of the quantile regression model under random censoring publication-title: Canadian Journal of Statistics doi: 10.1002/cjs.5550360209 – volume: 29 start-page: 262 year: 2010 ident: 2024011603174233200_biom12627-bib-0013 article-title: Estimation of prediction error for survival models publication-title: Statistics in Medicine doi: 10.1002/sim.3758 – volume: 15 start-page: 222 year: 2014 ident: 2024011603174233200_biom12627-bib-0021 article-title: Predicting the restricted mean event time with the subject's baseline covariates in survival analysis publication-title: Biostatistics doi: 10.1093/biostatistics/kxt050 – volume: 36 start-page: 1108 year: 2008 ident: 2024011603174233200_biom12627-bib-0029 article-title: Composite quantile regression and the oracle model selection theory publication-title: The Annals of Statistics doi: 10.1214/07-AOS507 – volume: 57 start-page: 1030 year: 2001 ident: 2024011603174233200_biom12627-bib-0003 article-title: Causal inference on the difference of the restricted mean lifetime between two groups publication-title: Biometrics doi: 10.1111/j.0006-341X.2001.01030.x – volume: 103 start-page: 637 year: 2008 ident: 2024011603174233200_biom12627-bib-0016 article-title: Survival analysis with quantile regression models publication-title: Journal of the American Statistical Association doi: 10.1198/016214508000000355 – reference: 11764241 - Biometrics. 2001 Dec;57(4):1030-8 – reference: 20592942 - Ann Stat. 2010 Jun 1;38(3):1607-1637 – reference: 25332515 - Stat Comput. 2014 Sep 1;24(5):853-869 – reference: 19882678 - Stat Med. 2010 Jan 30;29(2):262-74 – reference: 22754029 - Ann Stat. 2012 Feb 1;40(1):529-560 – reference: 24292992 - Biostatistics. 2014 Apr;15(2):222-33 – reference: 11979345 - Am J Kidney Dis. 2002 May;39(5):1018-24 – reference: 22415937 - Stat Med. 2012 Oct 15;31(23):2577-87 |
SSID | ssj0009502 |
Score | 2.2709584 |
Snippet | An important goal of censored quantile regression is to provide reliable predictions of survival quantiles, which are often reported in practice to offer... Summary An important goal of censored quantile regression is to provide reliable predictions of survival quantiles, which are often reported in practice to... Summary An important goal of censored quantile regression is to provide reliable predictions of survival quantiles, which are often reported in practice to... |
SourceID | pubmedcentral proquest pubmed crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 517 |
SubjectTerms | BIOMETRIC METHODOLOGY biometry Censored quantile regression Computer Simulation Economic models Estimators Inference Mathematical models Model comparisons Model mis‐specification Models, Statistical Performance prediction Perturbation resampling prediction Predictive performance Proposals Quantiles Regression Regression Analysis Robustness Summaries Survival Survival quantiles |
Title | Assessing Quantile Prediction with Censored Quantile Regression Models |
URI | https://www.jstor.org/stable/44695176 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.12627 https://www.ncbi.nlm.nih.gov/pubmed/27931075 https://www.proquest.com/docview/1909761237 https://www.proquest.com/docview/1847893427 https://www.proquest.com/docview/2020919602 https://pubmed.ncbi.nlm.nih.gov/PMC5462897 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED5KSqF7aLdsab12xaN72cAhUSTZhb00y0I7SAtlhbwMI1tyNzacLo4ftr--d5LtJlsotG_BPuPIuh_fSXefAN5xozP0-oMAQ6sOeCiyQDGNuozu0khtzMCeEjG5kGfX_MtUTDfgY90L4_ghmgU3sgzrr8nAVVIsGTm1p3f7TDJqJe8PJBHnj67YEuNuz1GFU3EX708rblIq47l_dCUauYLEdVDz_4rJZSRrQ9F4F77Vg3AVKD-75SLppn__4Xd86iifw06FUf1Tp1QvYMPkbdhyp1b-acOzSUP1WrRhm-CqY3t-CWO3h4zh0P9d4pzhK_3bOe0F0fz7tOjr4-CKGV67l5ibG1eNm_v2YJ7iFVyPP3_9dBZUJzUEqaA-w1RlCCwVVxFXChGnMsxw0o5EY8bD-zrppQg9ZZJySgBTLTIhDPkShQkVU4MOtPJZbvbBR_yjwyzTJMgTySPDOaKIMJJC6UgmHryvZyxOKxpzOk3jV1ynM_TJYvvJPDhuZG8decdaqY6d-EYEM2TEnaH04LDWhLiy7CJGAIUIDuM9Pve2uY02SRstKjezEmUw5CMO5OwBGYY4_QTdX495sOeUq_kDDJ0mpuXCg3BF7RoB4gRfvZP_-G65wQX1Gp_gez9YrXpg2PHw_HJif71-jPABbDNCNnYh6hBai3lp3iAuWyRHsHk6HA3HR9YO7wBx2DWg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED7BEGJ7gFHYCIwRBC8gpWpdO-ke-VV1Yx0S2qS-RU7swLQpHU37MP56vrPTrIVpEnurkotSx_fjO_v8HdFbaU0Br9-LEFpNJBNVRFoY6DLcpY2NtT3XJWJ0FA9P5MFYjevaHD4L4_khmgU3tgznr9nAeUF6ycr5fHq7K2KR3KV7EkiDc6_P38US527Hk4VzeZfsjmt2Ui7kuXp2JR75ksTrwOa_NZPLWNYFo8Ej33G1chyGXINy1p7Psnb--y-Gx1uPc5Me1jA1_OD16jHdsWWL7vvGlZct2hg1bK9Vi9YZsXrC5yc08NvIiIjhrzmmDe8ML6a8HcQqEPK6b4jRVRNcu5KY2h--ILcMXW-e6imdDL4cfxpGdbOGKFd81DDXBbCllrovtQbo1FZYyQqSGSQ9smuyTg70GWe55BwwN6pQyrI70ciphO5t0Vo5Ke0zCgGBTFIUhgVlFsu-lRJAIunHSpt-nAX0bjFlaV4zmXNDjfN0kdHwJ0vdJwvoTSN74fk7rpXacjPfiCBJBvRM4oB2FqqQ1sZdpcBQAHEI-XjudXMbZsl7Lbq0kzlkEPUBBaW4QUYAqu_BA3ZEQNteu5o_IOA3kZmrgJIVvWsEmBZ89U55-tPRgys-bryH9753anXDsNOP-99G7tfz_xF-RQ-Gx6PD9HD_6OsLWhcMdNy61A6tzaZz-xIwbZbtOmP8A_KwOE0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4ti0DLgUdhIbBAEFxAStW6ttOVuPCqdoEuCLFSLyhyYgcQKC19HODX842dZFtYrQS3KpkodTyPb-zxN0SPpLMlvP4gQWi1iUxVmRhhoctwl05b5wa-S8T4SB8cy9cTNdmip81ZmMAP0S64sWV4f80GPrPlmpHz8fRuX2iRnqPzUgNKMCT6INYod3uBK5yru2R_UpOTch3PybMb4ShUJJ6GNf8umVyHsj4Wja7Qp2YUoQTlW3e1zLvFrz8IHv93mFfpcg1S42dBq67Rlqs6dCG0rfzZoUvjlut10aEdxquB7vk6jcImMuJh_GOFScMr49mcN4NYAWJe9Y0xuMUU104k5u5zKMetYt-ZZ3GDjkevPr44SOpWDUmh-KBhYUogSyPNUBoDyGmccJLVI7dIeWTf5r0C2FPnheQMsLCqVMqxMzHIqIQZ7NJ2Na3cLYoBgGxalpYFZa7l0EkJGJEOtTJ2qPOIHjczlhU1jzm30_ieNfkMf7LMf7KIHrays8DecarUrp_4VgQpMoBnqiPaazQhq017kQFBAcIh4OO5B-1tGCXvtJjKTVeQQcwHEJTiDBkBoL4P_9cTEd0MytX-AQGvibxcRZRuqF0rwKTgm3eqr188Objiw8b7eO8Tr1VnDDt7fvhu7H_d_hfh-3Tx_ctR9vbw6M0d2hGMcvyi1B5tL-crdxcYbZnf86b4GySvNvw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+quantile+prediction+with+censored+quantile+regression+models&rft.jtitle=Biometrics&rft.au=Li%2C+Ruosha&rft.au=Peng%2C+Limin&rft.date=2017-06-01&rft.issn=0006-341X&rft.volume=73&rft.issue=2+p.517-528&rft.spage=517&rft.epage=528&rft_id=info:doi/10.1111%2Fbiom.12627&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |