Using a surrogate marker for early testing of a treatment effect

The development of methods to identify, validate, and use surrogate markers to test for a treatment effect has been an area of intense research interest given the potential for valid surrogate markers to reduce the required costs and follow-up times of future studies. Several quantities and procedur...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 75; no. 4; pp. 1253 - 1263
Main Authors Parast, Layla, Cai, Tianxi, Tian, Lu
Format Journal Article
LanguageEnglish
Published United States Wiley Periodicals, Inc 01.12.2019
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
1541-0420
DOI10.1111/biom.13067

Cover

Abstract The development of methods to identify, validate, and use surrogate markers to test for a treatment effect has been an area of intense research interest given the potential for valid surrogate markers to reduce the required costs and follow-up times of future studies. Several quantities and procedures have been proposed to assess the utility of a surrogate marker. However, few methods have been proposed to address how one might use the surrogate marker information to test for a treatment effect at an earlier time point, especially in settings where the primary outcome and the surrogate marker are subject to censoring. In this paper, we propose a novel test statistic to test for a treatment effect using surrogate marker information measured prior to the end of the study in a timeto-event outcome setting. We propose a robust nonparametric estimation procedure and propose inference procedures. In addition, we evaluate the power for the design of a future study based on surrogate marker information. We illustrate the proposed procedure and relative power of the proposed test compared to a test performed at the end of the study using simulation studies and an application to data from the Diabetes Prevention Program.
AbstractList The development of methods to identify, validate, and use surrogate markers to test for a treatment effect has been an area of intense research interest given the potential for valid surrogate markers to reduce the required costs and follow-up times of future studies. Several quantities and procedures have been proposed to assess the utility of a surrogate marker. However, few methods have been proposed to address how one might use the surrogate marker information to test for a treatment effect at an earlier time point, especially in settings where the primary outcome and the surrogate marker are subject to censoring. In this paper, we propose a novel test statistic to test for a treatment effect using surrogate marker information measured prior to the end of the study in a time-to-event outcome setting. We propose a robust nonparametric estimation procedure and propose inference procedures. In addition, we evaluate the power for the design of a future study based on surrogate marker information. We illustrate the proposed procedure and relative power of the proposed test compared to a test performed at the end of the study using simulation studies and an application to data from the Diabetes Prevention Program.
The development of methods to identify, validate, and use surrogate markers to test for a treatment effect has been an area of intense research interest given the potential for valid surrogate markers to reduce the required costs and follow-up times of future studies. Several quantities and procedures have been proposed to assess the utility of a surrogate marker. However, few methods have been proposed to address how one might use the surrogate marker information to test for a treatment effect at an earlier time point, especially in settings where the primary outcome and the surrogate marker are subject to censoring. In this paper, we propose a novel test statistic to test for a treatment effect using surrogate marker information measured prior to the end of the study in a time-to-event outcome setting. We propose a robust nonparametric estimation procedure and propose inference procedures. In addition, we evaluate the power for the design of a future study based on surrogate marker information. We illustrate the proposed procedure and relative power of the proposed test compared to a test performed at the end of the study using simulation studies and an application to data from the Diabetes Prevention Program.The development of methods to identify, validate, and use surrogate markers to test for a treatment effect has been an area of intense research interest given the potential for valid surrogate markers to reduce the required costs and follow-up times of future studies. Several quantities and procedures have been proposed to assess the utility of a surrogate marker. However, few methods have been proposed to address how one might use the surrogate marker information to test for a treatment effect at an earlier time point, especially in settings where the primary outcome and the surrogate marker are subject to censoring. In this paper, we propose a novel test statistic to test for a treatment effect using surrogate marker information measured prior to the end of the study in a time-to-event outcome setting. We propose a robust nonparametric estimation procedure and propose inference procedures. In addition, we evaluate the power for the design of a future study based on surrogate marker information. We illustrate the proposed procedure and relative power of the proposed test compared to a test performed at the end of the study using simulation studies and an application to data from the Diabetes Prevention Program.
The development of methods to identify, validate, and use surrogate markers to test for a treatment effect has been an area of intense research interest given the potential for valid surrogate markers to reduce the required costs and follow-up times of future studies. Several quantities and procedures have been proposed to assess the utility of a surrogate marker. However, few methods have been proposed to address how one might use the surrogate marker information to test for a treatment effect at an earlier time point, especially in settings where the primary outcome and the surrogate marker are subject to censoring. In this paper, we propose a novel test statistic to test for a treatment effect using surrogate marker information measured prior to the end of the study in a timeto-event outcome setting. We propose a robust nonparametric estimation procedure and propose inference procedures. In addition, we evaluate the power for the design of a future study based on surrogate marker information. We illustrate the proposed procedure and relative power of the proposed test compared to a test performed at the end of the study using simulation studies and an application to data from the Diabetes Prevention Program.
Author Cai, Tianxi
Parast, Layla
Tian, Lu
AuthorAffiliation 1 RAND Corporation, Statistics Group, 1776 Main Street, Santa Monica, California, U.S.A
3 Stanford University, Department of Biomedical Data Science, Stanford, California, U.S.A
2 Harvard University, Department of Biostatistics, Boston, Massachusetts, U.S.A
AuthorAffiliation_xml – name: 3 Stanford University, Department of Biomedical Data Science, Stanford, California, U.S.A
– name: 2 Harvard University, Department of Biostatistics, Boston, Massachusetts, U.S.A
– name: 1 RAND Corporation, Statistics Group, 1776 Main Street, Santa Monica, California, U.S.A
Author_xml – sequence: 1
  givenname: Layla
  surname: Parast
  fullname: Parast, Layla
– sequence: 2
  givenname: Tianxi
  surname: Cai
  fullname: Cai, Tianxi
– sequence: 3
  givenname: Lu
  surname: Tian
  fullname: Tian, Lu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31009073$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URLeFC3dQJC4IKWU8duLkgoCKj0pFvRSJm-X1ThYvSdzaDmj_exy2W0GFwBfb8u89vfE7YgejH4mxxxxOeF4vl84PJ1xAre6xBa8kL0EiHLAFANSlkPzLITuKcZOvbQX4gB0Kno-gxIK9_hzduC5MEacQ_NokKgYTvlEoOh8KMqHfFolimiHfZS4FMmmgMRXUdWTTQ3a_M32kRzf7Mbt8_-7y9GN5fvHh7PTNeWkrEKoUaOWqtS0ayEG5kXXboJJLJBKZaNu6I1kjNzWIFTWqFcZUtCTqEIWy4pi92tleTcuBVjYHCKbXV8HluFvtjdN_vozuq17777puOChossHzG4Pgr6c8kR5ctNT3ZiQ_RY0SoELkXP0fRY4KQfI6o8_uoBs_hTF_hEaBvFKNaGfDp7-Hv029ryEDsANs8DEG6rR1ySTn51lcrznouWk9N61_NZ0lL-5I9q5_hfkO_uF62v6D1G_PLj7tNU92mk1MPtxqZIWiUfn9J8nawQA
CitedBy_id crossref_primary_10_1002_sim_10122
crossref_primary_10_1093_cid_ciac851
crossref_primary_10_1002_sim_9602
crossref_primary_10_1002_sim_9986
crossref_primary_10_1093_biomtc_ujae108
crossref_primary_10_1002_sim_9352
crossref_primary_10_1093_biomtc_ujad035
crossref_primary_10_1093_biostatistics_kxac020
crossref_primary_10_1097_CCM_0000000000006537
crossref_primary_10_1111_biom_13600
Cites_doi 10.1093/biostatistics/kxt055
10.1111/j.1541-0420.2005.00380.x
10.1056/NEJMoa012512
10.1093/biomet/64.2.191
10.1016/S0140-6736(10)60746-5
10.1111/j.1541-0420.2011.01603.x
10.1111/j.0006-341X.1999.01171.x
10.2307/2533853
10.1002/(SICI)1097-0258(19970915)16:17<1965::AID-SIM630>3.0.CO;2-M
10.1089/met.2008.0034
10.1111/j.0006-341X.2002.00021.x
10.1002/sim.7220
10.1177/193229681100500127
10.1201/9780367805326
10.1093/biostatistics/kxt051
10.1002/sim.4780080407
10.1093/biomet/82.4.805
10.1111/j.1541-0420.2008.01014.x
10.1007/s00125-005-0097-z
10.1002/sim.4780110204
10.1111/biom.12071
10.1111/j.0006-341X.2002.00803.x
10.1007/978-1-4757-1229-2_14
10.2337/diacare.22.4.623
10.4239/wjd.v1.i2.36
10.1002/9780470316849
10.1080/01621459.2013.842488
10.1093/biostatistics/kxu043
10.1093/biomet/79.2.355
ContentType Journal Article
Copyright Copyright © 2019 International Biometric Society
2019 The International Biometric Society
2019 The International Biometric Society.
Copyright_xml – notice: Copyright © 2019 International Biometric Society
– notice: 2019 The International Biometric Society
– notice: 2019 The International Biometric Society.
DBID AAYXX
CITATION
NPM
JQ2
7X8
7S9
L.6
5PM
DOI 10.1111/biom.13067
DatabaseName CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
PubMed
ProQuest Computer Science Collection

AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 1263
ExternalDocumentID PMC6810708
31009073
10_1111_biom_13067
BIOM13067
45238767
Genre article
Research Support, U.S. Gov't, P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Diabetes and Digestive and Kidney Diseases
  funderid: R01DK11835; R21DK1031184
– fundername: NIDDK NIH HHS
  grantid: R21 DK103118
– fundername: NIDDK NIH HHS
  grantid: R01 DK118354
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1OC
23N
2QV
33P
36B
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAMMB
AANLZ
AAONW
AASGY
AAUAY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABXVV
ABYWD
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACPOU
ACPRK
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADOZA
ADVOB
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEUYR
AFBPY
AFEBI
AFGKR
AFVYC
AFWVQ
AFZJQ
AGORE
AGTJU
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
AIURR
AJAOE
AJNCP
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BCRHZ
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DXH
EAD
EAP
EBC
EBD
EBS
EDO
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FD6
G-S
G.N
GODZA
GS5
H.T
H.X
HZI
HZ~
IX1
J0M
JAC
JENOY
JST
K48
KOP
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NU-
O66
O9-
OIG
OJZSN
OWPYF
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
ROX
RX1
RXW
SUPJJ
SV3
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZZTAW
~02
~IA
~KM
~WT
.GJ
.Y3
2AX
3-9
31~
3V.
7X7
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAHHS
AANHP
AAZSN
ABBHK
ABJCF
ABTAH
ABUWG
ABXSQ
ACBWZ
ACCFJ
ACKIV
ACRPL
ACYXJ
ADNMO
ADODI
ADULT
ADZOD
AEEZP
AELPN
AEQDE
AEUPB
AEUQT
AFDVO
AFFTP
AFKRA
AFPWT
AIBGX
AIWBW
AJBDE
ALEEW
ALRMG
APXXL
ARAPS
ASPBG
AS~
AVWKF
AZFZN
AZQEC
BBNVY
BGLVJ
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
DQDLB
DSRWC
DWQXO
ECEWR
EJD
FEDTE
FXEWX
FYUFA
GNUQQ
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
IHE
IPSME
JAAYA
JBMMH
JBZCM
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
K6V
K7-
L6V
LK8
LW6
M1P
M2P
M7P
M7S
NHB
P0-
P62
PROAC
PSQYO
PTHSS
Q2X
RNS
RWL
SA0
TAE
UAP
UKHRP
VQA
WRC
ZGI
ZXP
ZY4
AAYXX
CITATION
AIHAF
NPM
PKN
H13
JQ2
7X8
ESTFP
7S9
L.6
5PM
ID FETCH-LOGICAL-c5037-32c4d9c92a03061a4698274b2ee3c50996fe4621a603de8793aa5ebeef2237c3
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Thu Aug 21 13:48:29 EDT 2025
Fri Sep 05 17:28:46 EDT 2025
Mon Sep 08 16:46:17 EDT 2025
Wed Aug 13 02:49:14 EDT 2025
Wed Feb 19 02:31:27 EST 2025
Tue Jul 01 00:58:09 EDT 2025
Thu Apr 24 22:58:54 EDT 2025
Wed Jan 22 16:39:34 EST 2025
Thu Jul 03 21:28:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords kernel smoothing
surrogate
nonparametric method
survival analysis
resampling
testing
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
2019 The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5037-32c4d9c92a03061a4698274b2ee3c50996fe4621a603de8793aa5ebeef2237c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5893-0169
0000-0002-7288-1009
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6810708
PMID 31009073
PQID 2321578397
PQPubID 35366
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6810708
proquest_miscellaneous_2400522117
proquest_miscellaneous_2212720416
proquest_journals_2321578397
pubmed_primary_31009073
crossref_citationtrail_10_1111_biom_13067
crossref_primary_10_1111_biom_13067
wiley_primary_10_1111_biom_13067_BIOM13067
jstor_primary_45238767
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2019
Publisher Wiley Periodicals, Inc
Blackwell Publishing Ltd
Publisher_xml – name: Wiley Periodicals, Inc
– name: Blackwell Publishing Ltd
References 2002; 58
2015; 16
2013; 69
2012
1989; 8
1998
1999; 22
1977; 64
1992; 79
2008; 6
1992
2005; 61
1992; 11
2011; 5
1999
1995; 82
2014; 109
2010; 1
2017; 36
2006; 49
2010; 376
2014; 15
2002; 346
1999; 55
1997; 16
2011; 67
2008; 64
Robins (2024011612153198800_b21) 1992
Buyse (2024011612153198800_b2) 1998
Parast (2024011612153198800_b16) 2014; 109
Scott (2024011612153198800_b23) 1992
Simental-Mendía (2024011612153198800_b24) 2008; 6
Parast (2024011612153198800_b15) 2017; 36
Daniels (2024011612153198800_b5) 1997; 16
Zinman (2024011612153198800_b30) 2010; 376
Jennison (2024011612153198800_b14) 1999
VanderWeele (2024011612153198800_b27) 2013; 69
Prentice (2024011612153198800_b19) 1989; 8
Taylor (2024011612153198800_b26) 2005; 61
Gilbert (2024011612153198800_b12) 2008; 64
Pocock (2024011612153198800_b18) 1977; 64
Rotnitzky (2024011612153198800_b22) 1995; 82
Bartroff (2024011612153198800_b1) 2012
Wang (2024011612153198800_b29) 2002; 58
Caveney (2024011612153198800_b3) 2011; 5
DPPG (2024011612153198800_b7) 2002; 346
Gabriel (2024011612153198800_b11) 2014; 15
Singh (2024011612153198800_b25) 2010; 1
Frangakis (2024011612153198800_b9) 2002; 58
Pepe (2024011612153198800_b17) 1992; 79
Elliott (2024011612153198800_b8) 2015; 16
DPPG (2024011612153198800_b6) 1999; 22
Venkatraman (2024011612153198800_b28) 1999; 55
Huang (2024011612153198800_b13) 2011; 67
Freedman (2024011612153198800_b10) 1992; 11
Conlon (2024011612153198800_b4) 2014; 15
Ramachandran (2024011612153198800_b20) 2006; 49
References_xml – volume: 64
  start-page: 191
  year: 1977
  end-page: 199
  article-title: Group sequential methods in the design and analysis of clinical trials
  publication-title: Biometrika
– start-page: 1014
  year: 1998
  end-page: 1029
  article-title: Criteria for the validation of surrogate endpoints in randomized experiments
  publication-title: Biometrics
– volume: 15
  start-page: 251
  year: 2014
  end-page: 265
  article-title: Evaluating principal surrogate endpoints with time‐to‐event data accounting for time‐varying treatment efficacy
  publication-title: Biostatistics
– volume: 36
  start-page: 1767
  year: 2017
  end-page: 1782
  article-title: Evaluating surrogate marker information using censored data
  publication-title: Statistics in Medicine
– volume: 58
  start-page: 803
  year: 2002
  end-page: 812
  article-title: A measure of the proportion of treatment effect explained by a surrogate marker
  publication-title: Biometrics
– volume: 376
  start-page: 103
  year: 2010
  end-page: 111
  article-title: Low‐dose combination therapy with rosiglitazone and metformin to prevent type 2 diabetes mellitus (canoe trial): a double‐blind randomised controlled study
  publication-title: The Lancet
– volume: 11
  start-page: 167
  year: 1992
  end-page: 178
  article-title: Statistical validation of intermediate endpoints for chronic diseases
  publication-title: Statistics in Medicine
– volume: 79
  start-page: 355
  year: 1992
  end-page: 365
  article-title: Inference using surrogate outcome data and a validation sample
  publication-title: Biometrika
– volume: 8
  start-page: 431
  year: 1989
  end-page: 440
  article-title: Surrogate endpoints in clinical trials: definition and operational criteria
  publication-title: Statistics in Medicine
– volume: 82
  start-page: 805
  year: 1995
  end-page: 820
  article-title: Semiparametric regression estimation in the presence of dependent censoring
  publication-title: Biometrika
– volume: 15
  start-page: 266
  year: 2014
  end-page: 283
  article-title: Surrogacy assessment using principal stratification when surrogate and outcome measures are multivariate normal
  publication-title: Biostatistics
– volume: 346
  start-page: 393
  year: 2002
  end-page: 403
  article-title: Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin
  publication-title: New England Journal of Medicine
– volume: 1
  start-page: 36
  year: 2010
  article-title: Surrogate markers of insulin resistance: a review
  publication-title: World Journal of Diabetes
– volume: 16
  start-page: 400
  year: 2015
  end-page: 412
  article-title: Surrogacy marker paradox measures in meta‐analytic settings
  publication-title: Biostatistics
– year: 1992
– year: 2012
– volume: 61
  start-page: 1102
  year: 2005
  end-page: 1111
  article-title: Counterfactual links to the proportion of treatment effect explained by a surrogate marker
  publication-title: Biometrics
– volume: 58
  start-page: 21
  year: 2002
  end-page: 29
  article-title: Principal stratification in causal inference
  publication-title: Biometrics
– volume: 16
  start-page: 1965
  year: 1997
  end-page: 1982
  article-title: Meta‐analysis for the evaluation of potential surrogate markers
  publication-title: Statistics in Medicine
– volume: 22
  start-page: 623
  year: 1999
  article-title: The diabetes prevention program: design and methods for a clinical trial in the prevention of type 2 diabetes
  publication-title: Diabetes Care
– volume: 55
  start-page: 1171
  year: 1999
  end-page: 1176
  article-title: Properties of a nonparametric test for early comparison of treatments in clinical trials in the presence of surrogate endpoints
  publication-title: Biometrics
– volume: 67
  start-page: 1442
  year: 2011
  end-page: 1451
  article-title: Comparing biomarkers as principal surrogate endpoints
  publication-title: Biometrics
– volume: 5
  start-page: 192
  year: 2011
  end-page: 197
  article-title: Diabetes and biomarkers
  publication-title: Journal of Diabetes Science and Technology
– volume: 6
  start-page: 299
  year: 2008
  end-page: 304
  article-title: The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects
  publication-title: Metabolic Syndrome and Related Disorders
– volume: 69
  start-page: 561
  year: 2013
  end-page: 565
  article-title: Surrogate measures and consistent surrogates
  publication-title: Biometrics
– volume: 64
  start-page: 1146
  year: 2008
  end-page: 1154
  article-title: Evaluating candidate principal surrogate endpoints
  publication-title: Biometrics
– start-page: 297
  year: 1992
  end-page: 331
– volume: 49
  start-page: 289
  year: 2006
  end-page: 297
  article-title: The indian diabetes prevention programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (idpp‐1)
  publication-title: Diabetologia
– year: 1999
– volume: 109
  start-page: 384
  year: 2014
  end-page: 394
  article-title: Landmark estimation of survival and treatment effect in a randomized clinical trial
  publication-title: Journal of the American Statistical Association
– volume: 15
  start-page: 251
  year: 2014
  ident: 2024011612153198800_b11
  article-title: Evaluating principal surrogate endpoints with time-to-event data accounting for time-varying treatment efficacy
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxt055
– volume: 61
  start-page: 1102
  year: 2005
  ident: 2024011612153198800_b26
  article-title: Counterfactual links to the proportion of treatment effect explained by a surrogate marker
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2005.00380.x
– volume: 346
  start-page: 393
  year: 2002
  ident: 2024011612153198800_b7
  article-title: Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMoa012512
– volume: 64
  start-page: 191
  year: 1977
  ident: 2024011612153198800_b18
  article-title: Group sequential methods in the design and analysis of clinical trials
  publication-title: Biometrika
  doi: 10.1093/biomet/64.2.191
– volume: 376
  start-page: 103
  year: 2010
  ident: 2024011612153198800_b30
  article-title: Low-dose combination therapy with rosiglitazone and metformin to prevent type 2 diabetes mellitus (canoe trial): a double-blind randomised controlled study
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(10)60746-5
– volume: 67
  start-page: 1442
  year: 2011
  ident: 2024011612153198800_b13
  article-title: Comparing biomarkers as principal surrogate endpoints
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2011.01603.x
– volume: 55
  start-page: 1171
  year: 1999
  ident: 2024011612153198800_b28
  article-title: Properties of a nonparametric test for early comparison of treatments in clinical trials in the presence of surrogate endpoints
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.01171.x
– start-page: 1014
  year: 1998
  ident: 2024011612153198800_b2
  article-title: Criteria for the validation of surrogate endpoints in randomized experiments
  publication-title: Biometrics
  doi: 10.2307/2533853
– volume: 16
  start-page: 1965
  year: 1997
  ident: 2024011612153198800_b5
  article-title: Meta-analysis for the evaluation of potential surrogate markers
  publication-title: Statistics in Medicine
  doi: 10.1002/(SICI)1097-0258(19970915)16:17<1965::AID-SIM630>3.0.CO;2-M
– volume: 6
  start-page: 299
  year: 2008
  ident: 2024011612153198800_b24
  article-title: The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects
  publication-title: Metabolic Syndrome and Related Disorders
  doi: 10.1089/met.2008.0034
– volume: 58
  start-page: 21
  year: 2002
  ident: 2024011612153198800_b9
  article-title: Principal stratification in causal inference
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2002.00021.x
– volume: 36
  start-page: 1767
  year: 2017
  ident: 2024011612153198800_b15
  article-title: Evaluating surrogate marker information using censored data
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.7220
– volume: 5
  start-page: 192
  year: 2011
  ident: 2024011612153198800_b3
  article-title: Diabetes and biomarkers
  publication-title: Journal of Diabetes Science and Technology
  doi: 10.1177/193229681100500127
– volume-title: Group Sequential Methods with Applications to Clinical Trials
  year: 1999
  ident: 2024011612153198800_b14
  doi: 10.1201/9780367805326
– volume: 15
  start-page: 266
  year: 2014
  ident: 2024011612153198800_b4
  article-title: Surrogacy assessment using principal stratification when surrogate and outcome measures are multivariate normal
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxt051
– volume: 8
  start-page: 431
  year: 1989
  ident: 2024011612153198800_b19
  article-title: Surrogate endpoints in clinical trials: definition and operational criteria
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.4780080407
– volume: 82
  start-page: 805
  year: 1995
  ident: 2024011612153198800_b22
  article-title: Semiparametric regression estimation in the presence of dependent censoring
  publication-title: Biometrika
  doi: 10.1093/biomet/82.4.805
– volume: 64
  start-page: 1146
  year: 2008
  ident: 2024011612153198800_b12
  article-title: Evaluating candidate principal surrogate endpoints
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2008.01014.x
– volume: 49
  start-page: 289
  year: 2006
  ident: 2024011612153198800_b20
  article-title: The indian diabetes prevention programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (idpp-1)
  publication-title: Diabetologia
  doi: 10.1007/s00125-005-0097-z
– volume: 11
  start-page: 167
  year: 1992
  ident: 2024011612153198800_b10
  article-title: Statistical validation of intermediate endpoints for chronic diseases
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.4780110204
– volume: 69
  start-page: 561
  year: 2013
  ident: 2024011612153198800_b27
  article-title: Surrogate measures and consistent surrogates
  publication-title: Biometrics
  doi: 10.1111/biom.12071
– volume: 58
  start-page: 803
  year: 2002
  ident: 2024011612153198800_b29
  article-title: A measure of the proportion of treatment effect explained by a surrogate marker
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2002.00803.x
– start-page: 297
  volume-title: AIDS Epidemiology: Methodological Issues
  year: 1992
  ident: 2024011612153198800_b21
  article-title: Recovery of information and adjustment for dependent censoring using surrogate markers
  doi: 10.1007/978-1-4757-1229-2_14
– volume: 22
  start-page: 623
  year: 1999
  ident: 2024011612153198800_b6
  article-title: The diabetes prevention program: design and methods for a clinical trial in the prevention of type 2 diabetes
  publication-title: Diabetes Care
  doi: 10.2337/diacare.22.4.623
– volume: 1
  start-page: 36
  year: 2010
  ident: 2024011612153198800_b25
  article-title: Surrogate markers of insulin resistance: a review
  publication-title: World Journal of Diabetes
  doi: 10.4239/wjd.v1.i2.36
– volume-title: Multivariate Density Estimation
  year: 1992
  ident: 2024011612153198800_b23
  doi: 10.1002/9780470316849
– volume-title: Sequential Experimentation in Clinical Trials: Design and Analysis
  year: 2012
  ident: 2024011612153198800_b1
– volume: 109
  start-page: 384
  year: 2014
  ident: 2024011612153198800_b16
  article-title: Landmark estimation of survival and treatment effect in a randomized clinical trial
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2013.842488
– volume: 16
  start-page: 400
  year: 2015
  ident: 2024011612153198800_b8
  article-title: Surrogacy marker paradox measures in meta-analytic settings
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxu043
– volume: 79
  start-page: 355
  year: 1992
  ident: 2024011612153198800_b17
  article-title: Inference using surrogate outcome data and a validation sample
  publication-title: Biometrika
  doi: 10.1093/biomet/79.2.355
SSID ssj0009502
Score 2.3455958
Snippet The development of methods to identify, validate, and use surrogate markers to test for a treatment effect has been an area of intense research interest given...
The development of methods to identify, validate and use surrogate markers to test for a treatment effect has been an area of intense research interest given...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1253
SubjectTerms Antiretroviral drugs
BIOMETRIC METHODOLOGY
biometry
diabetes
Diabetes mellitus
disease control programs
Identification methods
kernel smoothing
Markers
nonparametric method
Nonparametric statistics
resampling
surrogate
survival analysis
testing
Title Using a surrogate marker for early testing of a treatment effect
URI https://www.jstor.org/stable/45238767
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.13067
https://www.ncbi.nlm.nih.gov/pubmed/31009073
https://www.proquest.com/docview/2321578397
https://www.proquest.com/docview/2212720416
https://www.proquest.com/docview/2400522117
https://pubmed.ncbi.nlm.nih.gov/PMC6810708
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS9xAEB5EEexD1WutqT_Y0r60EMkmm-QWfNBTD1u4FoqFeylhN9lQ0ebK_XjQv96Z3STeqQj17WAn4TaZ2f1m8803AJ9STGRNZLp-UUjtC1kKX2rJ_bAQuig0F6mk4uTB9-T8l_g2jIdLcNjUwjh9iPbAjSLDrtcU4EpP5oKcytOpl3FCpeQ8Skg4__RnOKe4GzipcCJ3CT6stUmJxnN_6cJu5AiJT0HNx4zJeSRrt6L-OvxuJuEYKFcHs6k-yG8f6Du-dJYb8LrGqOzYOdUmLJmqA6uua-VNB14NWqnXSQfWCK46tec3cGQZCEyxyWw8HtEJHftL_J8xQ2zMDIkpsynpeqDRqES7lufOHLHkLVz0zy5Ozv26R4Ofx1RhGIW5KGQuQ0XJB1fUkBITXR0aE6EFZlOlEUnIVRJEheniaqBUjI5jSsQlaR5twXI1qsw2MFGSME3KQ14ooUWsVBBrFSspukFkAuPB5-ZVZXmtX05tNK6zJo-hZ5XZZ-XBx9b2n1PteNJqy77x1kRgVo67Aw7sNi6Q1SE9yRB6clzeEL958KEdxmCkLyyqMqMZ2pBefhggyH3GRtBRPObdeJ93zqvaP0BfWyQuuh6kC_7WGpAY-OJIdfnHioKTrlwadD34Yt3pmWlnva8_BvbX-_8x3oE1BIvSUXl2YXk6npk9BGRTvQ8rx73TXn_fBuAd0Ogxow
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4VKlR6oJACNQ2wCC5FMvJjHWdv9EEUHgEJBSk3a9deCwQ4KI9D--uZ2XVMAgip3CLtlyi2Z3a_WX_7DcBejIWsDnXTzTKhXC5y7golfDfIuMoy5fNY0OHkznmjfcVPelGv1ObQWRjrD1FtuFFmmPmaEpw2pKeynM6nUzPjRjwHHzkyDaq9_lwGU567njULJ3kX93ulOykJeZ6-O7MeWUnia2TzpWZymsuaxaj1xXZcHRoPQ9Kg3B6MR-og_ffM4fHd17kMSyVNZT9tXK3AB13UYME2rvxbg8-dyu11WINFYqzW8PkrHBoRApNsOB4M-rRJx-5JAjRgSI-ZJj9lNiJrDwT1c8RVUndmtSWr0G0ddX-33bJNg5tGdMgwDFKeiVQEkuoPX1JPSqx1VaB1iAgsqHLNG4EvG16Y6SZOCFJGGDs6R2oSp-EazBf9Qn8DxnPypon9wM8kVzyS0ouUjKTgTS_Unnbgx-RZJWlpYU6dNO6SSSlD9yox98qB3Qr7YI07XkWtmUdeQTgW5rhA4EB9EgNJmdXDBNmnjzMcUjgHdqphzEd6ySIL3R8jhizzAw957hsYTrvxWHrj76zbsKr-AL1wETjvOhDPBFwFID_w2ZHi5tr4gpO1XOw1Hdg38fTGZSe_ji865tPG_4C34VO72zlLzo7PT7_DInJHYZU9dZgfDcZ6E_nZSG2ZLHwEOuI0UA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xUBE9QLstNIWCq_ZCpaA8nGQtceiLFdAurRBIe6kiO3ZUBM2ifRzaX8-MnaS7LUJqbyv5S7ROZuxvnM-fAV5nWMia2HR9rYXyuSi5L5QI_UhzpbUKeSZoc3L_ND264CeDZLAAB81eGOcP0S64UWbY8ZoS_EaXM0lO29PpLOM0W4RlniKVIEp0Fs1Y7gbOK5zUXTwc1OakpOP5fe3cdOQUiXdxzb8lk7NU1s5FvXX41vTCSVCu9qcTtV_8-sPg8X-7-QjWapLK3rmoegwLpurAA3ds5c8OPOy3Xq_jDqwSX3V2z0_grZUgMMnG09FoSEt07AcJgEYMyTEz5KbMJmTsgaBhibhW6M6csuQpnPcOzz8c-fUhDX6R0BbDOCq4FoWIJFUfoaQTKbHSVZExMSKwnCoNT6NQpkGsTReHAykTjBxTIjHJingDlqphZZ4B4yU502RhFGrJFU-kDBIlEyl4N4hNYDzYa15VXtQG5nSOxnXeFDL0rHL7rDx41WJvnG3HnagN-8ZbCMeyHKcHbNhuQiCvc3qcI_cMcXxDAufBy7YZs5E-scjKDKeIIcP8KECWew-G01o8Ft54n00XVe0foM8tAkddD7K5eGsB5AY-31Jdfreu4GQslwVdD97YcLqn2_n74y99--v5v4B3YeXrx17--fj00xasInEUTtazDUuT0dS8QHI2UTs2B28Bdo0y_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+a+surrogate+marker+for+early+testing+of+a+treatment+effect&rft.jtitle=Biometrics&rft.au=Parast%2C+Layla&rft.au=Cai%2C+Tianxi&rft.au=Tian%2C+Lu&rft.date=2019-12-01&rft.issn=1541-0420&rft.eissn=1541-0420&rft.volume=75&rft.issue=4&rft.spage=1253&rft_id=info:doi/10.1111%2Fbiom.13067&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon