Using a surrogate marker for early testing of a treatment effect
The development of methods to identify, validate, and use surrogate markers to test for a treatment effect has been an area of intense research interest given the potential for valid surrogate markers to reduce the required costs and follow-up times of future studies. Several quantities and procedur...
Saved in:
Published in | Biometrics Vol. 75; no. 4; pp. 1253 - 1263 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Periodicals, Inc
01.12.2019
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0006-341X 1541-0420 1541-0420 |
DOI | 10.1111/biom.13067 |
Cover
Abstract | The development of methods to identify, validate, and use surrogate markers to test for a treatment effect has been an area of intense research interest given the potential for valid surrogate markers to reduce the required costs and follow-up times of future studies. Several quantities and procedures have been proposed to assess the utility of a surrogate marker. However, few methods have been proposed to address how one might use the surrogate marker information to test for a treatment effect at an earlier time point, especially in settings where the primary outcome and the surrogate marker are subject to censoring. In this paper, we propose a novel test statistic to test for a treatment effect using surrogate marker information measured prior to the end of the study in a timeto-event outcome setting. We propose a robust nonparametric estimation procedure and propose inference procedures. In addition, we evaluate the power for the design of a future study based on surrogate marker information. We illustrate the proposed procedure and relative power of the proposed test compared to a test performed at the end of the study using simulation studies and an application to data from the Diabetes Prevention Program. |
---|---|
AbstractList | The development of methods to identify, validate, and use surrogate markers to test for a treatment effect has been an area of intense research interest given the potential for valid surrogate markers to reduce the required costs and follow-up times of future studies. Several quantities and procedures have been proposed to assess the utility of a surrogate marker. However, few methods have been proposed to address how one might use the surrogate marker information to test for a treatment effect at an earlier time point, especially in settings where the primary outcome and the surrogate marker are subject to censoring. In this paper, we propose a novel test statistic to test for a treatment effect using surrogate marker information measured prior to the end of the study in a time-to-event outcome setting. We propose a robust nonparametric estimation procedure and propose inference procedures. In addition, we evaluate the power for the design of a future study based on surrogate marker information. We illustrate the proposed procedure and relative power of the proposed test compared to a test performed at the end of the study using simulation studies and an application to data from the Diabetes Prevention Program. The development of methods to identify, validate, and use surrogate markers to test for a treatment effect has been an area of intense research interest given the potential for valid surrogate markers to reduce the required costs and follow-up times of future studies. Several quantities and procedures have been proposed to assess the utility of a surrogate marker. However, few methods have been proposed to address how one might use the surrogate marker information to test for a treatment effect at an earlier time point, especially in settings where the primary outcome and the surrogate marker are subject to censoring. In this paper, we propose a novel test statistic to test for a treatment effect using surrogate marker information measured prior to the end of the study in a time-to-event outcome setting. We propose a robust nonparametric estimation procedure and propose inference procedures. In addition, we evaluate the power for the design of a future study based on surrogate marker information. We illustrate the proposed procedure and relative power of the proposed test compared to a test performed at the end of the study using simulation studies and an application to data from the Diabetes Prevention Program.The development of methods to identify, validate, and use surrogate markers to test for a treatment effect has been an area of intense research interest given the potential for valid surrogate markers to reduce the required costs and follow-up times of future studies. Several quantities and procedures have been proposed to assess the utility of a surrogate marker. However, few methods have been proposed to address how one might use the surrogate marker information to test for a treatment effect at an earlier time point, especially in settings where the primary outcome and the surrogate marker are subject to censoring. In this paper, we propose a novel test statistic to test for a treatment effect using surrogate marker information measured prior to the end of the study in a time-to-event outcome setting. We propose a robust nonparametric estimation procedure and propose inference procedures. In addition, we evaluate the power for the design of a future study based on surrogate marker information. We illustrate the proposed procedure and relative power of the proposed test compared to a test performed at the end of the study using simulation studies and an application to data from the Diabetes Prevention Program. The development of methods to identify, validate, and use surrogate markers to test for a treatment effect has been an area of intense research interest given the potential for valid surrogate markers to reduce the required costs and follow-up times of future studies. Several quantities and procedures have been proposed to assess the utility of a surrogate marker. However, few methods have been proposed to address how one might use the surrogate marker information to test for a treatment effect at an earlier time point, especially in settings where the primary outcome and the surrogate marker are subject to censoring. In this paper, we propose a novel test statistic to test for a treatment effect using surrogate marker information measured prior to the end of the study in a timeto-event outcome setting. We propose a robust nonparametric estimation procedure and propose inference procedures. In addition, we evaluate the power for the design of a future study based on surrogate marker information. We illustrate the proposed procedure and relative power of the proposed test compared to a test performed at the end of the study using simulation studies and an application to data from the Diabetes Prevention Program. |
Author | Cai, Tianxi Parast, Layla Tian, Lu |
AuthorAffiliation | 1 RAND Corporation, Statistics Group, 1776 Main Street, Santa Monica, California, U.S.A 3 Stanford University, Department of Biomedical Data Science, Stanford, California, U.S.A 2 Harvard University, Department of Biostatistics, Boston, Massachusetts, U.S.A |
AuthorAffiliation_xml | – name: 3 Stanford University, Department of Biomedical Data Science, Stanford, California, U.S.A – name: 2 Harvard University, Department of Biostatistics, Boston, Massachusetts, U.S.A – name: 1 RAND Corporation, Statistics Group, 1776 Main Street, Santa Monica, California, U.S.A |
Author_xml | – sequence: 1 givenname: Layla surname: Parast fullname: Parast, Layla – sequence: 2 givenname: Tianxi surname: Cai fullname: Cai, Tianxi – sequence: 3 givenname: Lu surname: Tian fullname: Tian, Lu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31009073$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS1URLeFC3dQJC4IKWU8duLkgoCKj0pFvRSJm-X1ThYvSdzaDmj_exy2W0GFwBfb8u89vfE7YgejH4mxxxxOeF4vl84PJ1xAre6xBa8kL0EiHLAFANSlkPzLITuKcZOvbQX4gB0Kno-gxIK9_hzduC5MEacQ_NokKgYTvlEoOh8KMqHfFolimiHfZS4FMmmgMRXUdWTTQ3a_M32kRzf7Mbt8_-7y9GN5fvHh7PTNeWkrEKoUaOWqtS0ayEG5kXXboJJLJBKZaNu6I1kjNzWIFTWqFcZUtCTqEIWy4pi92tleTcuBVjYHCKbXV8HluFvtjdN_vozuq17777puOChossHzG4Pgr6c8kR5ctNT3ZiQ_RY0SoELkXP0fRY4KQfI6o8_uoBs_hTF_hEaBvFKNaGfDp7-Hv029ryEDsANs8DEG6rR1ySTn51lcrznouWk9N61_NZ0lL-5I9q5_hfkO_uF62v6D1G_PLj7tNU92mk1MPtxqZIWiUfn9J8nawQA |
CitedBy_id | crossref_primary_10_1002_sim_10122 crossref_primary_10_1093_cid_ciac851 crossref_primary_10_1002_sim_9602 crossref_primary_10_1002_sim_9986 crossref_primary_10_1093_biomtc_ujae108 crossref_primary_10_1002_sim_9352 crossref_primary_10_1093_biomtc_ujad035 crossref_primary_10_1093_biostatistics_kxac020 crossref_primary_10_1097_CCM_0000000000006537 crossref_primary_10_1111_biom_13600 |
Cites_doi | 10.1093/biostatistics/kxt055 10.1111/j.1541-0420.2005.00380.x 10.1056/NEJMoa012512 10.1093/biomet/64.2.191 10.1016/S0140-6736(10)60746-5 10.1111/j.1541-0420.2011.01603.x 10.1111/j.0006-341X.1999.01171.x 10.2307/2533853 10.1002/(SICI)1097-0258(19970915)16:17<1965::AID-SIM630>3.0.CO;2-M 10.1089/met.2008.0034 10.1111/j.0006-341X.2002.00021.x 10.1002/sim.7220 10.1177/193229681100500127 10.1201/9780367805326 10.1093/biostatistics/kxt051 10.1002/sim.4780080407 10.1093/biomet/82.4.805 10.1111/j.1541-0420.2008.01014.x 10.1007/s00125-005-0097-z 10.1002/sim.4780110204 10.1111/biom.12071 10.1111/j.0006-341X.2002.00803.x 10.1007/978-1-4757-1229-2_14 10.2337/diacare.22.4.623 10.4239/wjd.v1.i2.36 10.1002/9780470316849 10.1080/01621459.2013.842488 10.1093/biostatistics/kxu043 10.1093/biomet/79.2.355 |
ContentType | Journal Article |
Copyright | Copyright © 2019 International Biometric Society 2019 The International Biometric Society 2019 The International Biometric Society. |
Copyright_xml | – notice: Copyright © 2019 International Biometric Society – notice: 2019 The International Biometric Society – notice: 2019 The International Biometric Society. |
DBID | AAYXX CITATION NPM JQ2 7X8 7S9 L.6 5PM |
DOI | 10.1111/biom.13067 |
DatabaseName | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed ProQuest Computer Science Collection AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology Mathematics |
EISSN | 1541-0420 |
EndPage | 1263 |
ExternalDocumentID | PMC6810708 31009073 10_1111_biom_13067 BIOM13067 45238767 |
Genre | article Research Support, U.S. Gov't, P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute of Diabetes and Digestive and Kidney Diseases funderid: R01DK11835; R21DK1031184 – fundername: NIDDK NIH HHS grantid: R21 DK103118 – fundername: NIDDK NIH HHS grantid: R01 DK118354 |
GroupedDBID | --- -~X .3N .4S .DC .GA 05W 0R~ 10A 1OC 23N 2QV 33P 36B 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAMMB AANLZ AAONW AASGY AAUAY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABGNP ABJNI ABLJU ABMNT ABPPZ ABPVW ABXVV ABYWD ACAHQ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACPOU ACPRK ACSCC ACTMH ACUHS ACXBN ACXQS ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNBA ADOZA ADVOB ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEOTA AEUYR AFBPY AFEBI AFGKR AFVYC AFWVQ AFZJQ AGORE AGTJU AGXDD AHMBA AIAGR AIDQK AIDYY AIURR AJAOE AJNCP AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BCRHZ BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DXH EAD EAP EBC EBD EBS EDO EMB EMK EMOBN EST ESX F00 F01 F04 F5P FD6 G-S G.N GODZA GS5 H.T H.X HZI HZ~ IX1 J0M JAC JENOY JST K48 KOP LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NU- O66 O9- OIG OJZSN OWPYF P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL ROX RX1 RXW SUPJJ SV3 TN5 TUS UB1 V8K W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ X6Y XBAML XG1 XSW ZZTAW ~02 ~IA ~KM ~WT .GJ .Y3 2AX 3-9 31~ 3V. 7X7 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAHHS AANHP AAZSN ABBHK ABJCF ABTAH ABUWG ABXSQ ACBWZ ACCFJ ACKIV ACRPL ACYXJ ADNMO ADODI ADULT ADZOD AEEZP AELPN AEQDE AEUPB AEUQT AFDVO AFFTP AFKRA AFPWT AIBGX AIWBW AJBDE ALEEW ALRMG APXXL ARAPS ASPBG AS~ AVWKF AZFZN AZQEC BBNVY BGLVJ BHPHI BPHCQ BVXVI CAG CCPQU COF DQDLB DSRWC DWQXO ECEWR EJD FEDTE FXEWX FYUFA GNUQQ HCIFZ HF~ HGD HMCUK HQ6 HVGLF IHE IPSME JAAYA JBMMH JBZCM JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD K6V K7- L6V LK8 LW6 M1P M2P M7P M7S NHB P0- P62 PROAC PSQYO PTHSS Q2X RNS RWL SA0 TAE UAP UKHRP VQA WRC ZGI ZXP ZY4 AAYXX CITATION AIHAF NPM PKN H13 JQ2 7X8 ESTFP 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c5037-32c4d9c92a03061a4698274b2ee3c50996fe4621a603de8793aa5ebeef2237c3 |
IEDL.DBID | DR2 |
ISSN | 0006-341X 1541-0420 |
IngestDate | Thu Aug 21 13:48:29 EDT 2025 Fri Sep 05 17:28:46 EDT 2025 Mon Sep 08 16:46:17 EDT 2025 Wed Aug 13 02:49:14 EDT 2025 Wed Feb 19 02:31:27 EST 2025 Tue Jul 01 00:58:09 EDT 2025 Thu Apr 24 22:58:54 EDT 2025 Wed Jan 22 16:39:34 EST 2025 Thu Jul 03 21:28:59 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | kernel smoothing surrogate nonparametric method survival analysis resampling testing |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model 2019 The International Biometric Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5037-32c4d9c92a03061a4698274b2ee3c50996fe4621a603de8793aa5ebeef2237c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5893-0169 0000-0002-7288-1009 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6810708 |
PMID | 31009073 |
PQID | 2321578397 |
PQPubID | 35366 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6810708 proquest_miscellaneous_2400522117 proquest_miscellaneous_2212720416 proquest_journals_2321578397 pubmed_primary_31009073 crossref_citationtrail_10_1111_biom_13067 crossref_primary_10_1111_biom_13067 wiley_primary_10_1111_biom_13067_BIOM13067 jstor_primary_45238767 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2019 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Biometrics |
PublicationTitleAlternate | Biometrics |
PublicationYear | 2019 |
Publisher | Wiley Periodicals, Inc Blackwell Publishing Ltd |
Publisher_xml | – name: Wiley Periodicals, Inc – name: Blackwell Publishing Ltd |
References | 2002; 58 2015; 16 2013; 69 2012 1989; 8 1998 1999; 22 1977; 64 1992; 79 2008; 6 1992 2005; 61 1992; 11 2011; 5 1999 1995; 82 2014; 109 2010; 1 2017; 36 2006; 49 2010; 376 2014; 15 2002; 346 1999; 55 1997; 16 2011; 67 2008; 64 Robins (2024011612153198800_b21) 1992 Buyse (2024011612153198800_b2) 1998 Parast (2024011612153198800_b16) 2014; 109 Scott (2024011612153198800_b23) 1992 Simental-Mendía (2024011612153198800_b24) 2008; 6 Parast (2024011612153198800_b15) 2017; 36 Daniels (2024011612153198800_b5) 1997; 16 Zinman (2024011612153198800_b30) 2010; 376 Jennison (2024011612153198800_b14) 1999 VanderWeele (2024011612153198800_b27) 2013; 69 Prentice (2024011612153198800_b19) 1989; 8 Taylor (2024011612153198800_b26) 2005; 61 Gilbert (2024011612153198800_b12) 2008; 64 Pocock (2024011612153198800_b18) 1977; 64 Rotnitzky (2024011612153198800_b22) 1995; 82 Bartroff (2024011612153198800_b1) 2012 Wang (2024011612153198800_b29) 2002; 58 Caveney (2024011612153198800_b3) 2011; 5 DPPG (2024011612153198800_b7) 2002; 346 Gabriel (2024011612153198800_b11) 2014; 15 Singh (2024011612153198800_b25) 2010; 1 Frangakis (2024011612153198800_b9) 2002; 58 Pepe (2024011612153198800_b17) 1992; 79 Elliott (2024011612153198800_b8) 2015; 16 DPPG (2024011612153198800_b6) 1999; 22 Venkatraman (2024011612153198800_b28) 1999; 55 Huang (2024011612153198800_b13) 2011; 67 Freedman (2024011612153198800_b10) 1992; 11 Conlon (2024011612153198800_b4) 2014; 15 Ramachandran (2024011612153198800_b20) 2006; 49 |
References_xml | – volume: 64 start-page: 191 year: 1977 end-page: 199 article-title: Group sequential methods in the design and analysis of clinical trials publication-title: Biometrika – start-page: 1014 year: 1998 end-page: 1029 article-title: Criteria for the validation of surrogate endpoints in randomized experiments publication-title: Biometrics – volume: 15 start-page: 251 year: 2014 end-page: 265 article-title: Evaluating principal surrogate endpoints with time‐to‐event data accounting for time‐varying treatment efficacy publication-title: Biostatistics – volume: 36 start-page: 1767 year: 2017 end-page: 1782 article-title: Evaluating surrogate marker information using censored data publication-title: Statistics in Medicine – volume: 58 start-page: 803 year: 2002 end-page: 812 article-title: A measure of the proportion of treatment effect explained by a surrogate marker publication-title: Biometrics – volume: 376 start-page: 103 year: 2010 end-page: 111 article-title: Low‐dose combination therapy with rosiglitazone and metformin to prevent type 2 diabetes mellitus (canoe trial): a double‐blind randomised controlled study publication-title: The Lancet – volume: 11 start-page: 167 year: 1992 end-page: 178 article-title: Statistical validation of intermediate endpoints for chronic diseases publication-title: Statistics in Medicine – volume: 79 start-page: 355 year: 1992 end-page: 365 article-title: Inference using surrogate outcome data and a validation sample publication-title: Biometrika – volume: 8 start-page: 431 year: 1989 end-page: 440 article-title: Surrogate endpoints in clinical trials: definition and operational criteria publication-title: Statistics in Medicine – volume: 82 start-page: 805 year: 1995 end-page: 820 article-title: Semiparametric regression estimation in the presence of dependent censoring publication-title: Biometrika – volume: 15 start-page: 266 year: 2014 end-page: 283 article-title: Surrogacy assessment using principal stratification when surrogate and outcome measures are multivariate normal publication-title: Biostatistics – volume: 346 start-page: 393 year: 2002 end-page: 403 article-title: Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin publication-title: New England Journal of Medicine – volume: 1 start-page: 36 year: 2010 article-title: Surrogate markers of insulin resistance: a review publication-title: World Journal of Diabetes – volume: 16 start-page: 400 year: 2015 end-page: 412 article-title: Surrogacy marker paradox measures in meta‐analytic settings publication-title: Biostatistics – year: 1992 – year: 2012 – volume: 61 start-page: 1102 year: 2005 end-page: 1111 article-title: Counterfactual links to the proportion of treatment effect explained by a surrogate marker publication-title: Biometrics – volume: 58 start-page: 21 year: 2002 end-page: 29 article-title: Principal stratification in causal inference publication-title: Biometrics – volume: 16 start-page: 1965 year: 1997 end-page: 1982 article-title: Meta‐analysis for the evaluation of potential surrogate markers publication-title: Statistics in Medicine – volume: 22 start-page: 623 year: 1999 article-title: The diabetes prevention program: design and methods for a clinical trial in the prevention of type 2 diabetes publication-title: Diabetes Care – volume: 55 start-page: 1171 year: 1999 end-page: 1176 article-title: Properties of a nonparametric test for early comparison of treatments in clinical trials in the presence of surrogate endpoints publication-title: Biometrics – volume: 67 start-page: 1442 year: 2011 end-page: 1451 article-title: Comparing biomarkers as principal surrogate endpoints publication-title: Biometrics – volume: 5 start-page: 192 year: 2011 end-page: 197 article-title: Diabetes and biomarkers publication-title: Journal of Diabetes Science and Technology – volume: 6 start-page: 299 year: 2008 end-page: 304 article-title: The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects publication-title: Metabolic Syndrome and Related Disorders – volume: 69 start-page: 561 year: 2013 end-page: 565 article-title: Surrogate measures and consistent surrogates publication-title: Biometrics – volume: 64 start-page: 1146 year: 2008 end-page: 1154 article-title: Evaluating candidate principal surrogate endpoints publication-title: Biometrics – start-page: 297 year: 1992 end-page: 331 – volume: 49 start-page: 289 year: 2006 end-page: 297 article-title: The indian diabetes prevention programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (idpp‐1) publication-title: Diabetologia – year: 1999 – volume: 109 start-page: 384 year: 2014 end-page: 394 article-title: Landmark estimation of survival and treatment effect in a randomized clinical trial publication-title: Journal of the American Statistical Association – volume: 15 start-page: 251 year: 2014 ident: 2024011612153198800_b11 article-title: Evaluating principal surrogate endpoints with time-to-event data accounting for time-varying treatment efficacy publication-title: Biostatistics doi: 10.1093/biostatistics/kxt055 – volume: 61 start-page: 1102 year: 2005 ident: 2024011612153198800_b26 article-title: Counterfactual links to the proportion of treatment effect explained by a surrogate marker publication-title: Biometrics doi: 10.1111/j.1541-0420.2005.00380.x – volume: 346 start-page: 393 year: 2002 ident: 2024011612153198800_b7 article-title: Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin publication-title: New England Journal of Medicine doi: 10.1056/NEJMoa012512 – volume: 64 start-page: 191 year: 1977 ident: 2024011612153198800_b18 article-title: Group sequential methods in the design and analysis of clinical trials publication-title: Biometrika doi: 10.1093/biomet/64.2.191 – volume: 376 start-page: 103 year: 2010 ident: 2024011612153198800_b30 article-title: Low-dose combination therapy with rosiglitazone and metformin to prevent type 2 diabetes mellitus (canoe trial): a double-blind randomised controlled study publication-title: The Lancet doi: 10.1016/S0140-6736(10)60746-5 – volume: 67 start-page: 1442 year: 2011 ident: 2024011612153198800_b13 article-title: Comparing biomarkers as principal surrogate endpoints publication-title: Biometrics doi: 10.1111/j.1541-0420.2011.01603.x – volume: 55 start-page: 1171 year: 1999 ident: 2024011612153198800_b28 article-title: Properties of a nonparametric test for early comparison of treatments in clinical trials in the presence of surrogate endpoints publication-title: Biometrics doi: 10.1111/j.0006-341X.1999.01171.x – start-page: 1014 year: 1998 ident: 2024011612153198800_b2 article-title: Criteria for the validation of surrogate endpoints in randomized experiments publication-title: Biometrics doi: 10.2307/2533853 – volume: 16 start-page: 1965 year: 1997 ident: 2024011612153198800_b5 article-title: Meta-analysis for the evaluation of potential surrogate markers publication-title: Statistics in Medicine doi: 10.1002/(SICI)1097-0258(19970915)16:17<1965::AID-SIM630>3.0.CO;2-M – volume: 6 start-page: 299 year: 2008 ident: 2024011612153198800_b24 article-title: The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects publication-title: Metabolic Syndrome and Related Disorders doi: 10.1089/met.2008.0034 – volume: 58 start-page: 21 year: 2002 ident: 2024011612153198800_b9 article-title: Principal stratification in causal inference publication-title: Biometrics doi: 10.1111/j.0006-341X.2002.00021.x – volume: 36 start-page: 1767 year: 2017 ident: 2024011612153198800_b15 article-title: Evaluating surrogate marker information using censored data publication-title: Statistics in Medicine doi: 10.1002/sim.7220 – volume: 5 start-page: 192 year: 2011 ident: 2024011612153198800_b3 article-title: Diabetes and biomarkers publication-title: Journal of Diabetes Science and Technology doi: 10.1177/193229681100500127 – volume-title: Group Sequential Methods with Applications to Clinical Trials year: 1999 ident: 2024011612153198800_b14 doi: 10.1201/9780367805326 – volume: 15 start-page: 266 year: 2014 ident: 2024011612153198800_b4 article-title: Surrogacy assessment using principal stratification when surrogate and outcome measures are multivariate normal publication-title: Biostatistics doi: 10.1093/biostatistics/kxt051 – volume: 8 start-page: 431 year: 1989 ident: 2024011612153198800_b19 article-title: Surrogate endpoints in clinical trials: definition and operational criteria publication-title: Statistics in Medicine doi: 10.1002/sim.4780080407 – volume: 82 start-page: 805 year: 1995 ident: 2024011612153198800_b22 article-title: Semiparametric regression estimation in the presence of dependent censoring publication-title: Biometrika doi: 10.1093/biomet/82.4.805 – volume: 64 start-page: 1146 year: 2008 ident: 2024011612153198800_b12 article-title: Evaluating candidate principal surrogate endpoints publication-title: Biometrics doi: 10.1111/j.1541-0420.2008.01014.x – volume: 49 start-page: 289 year: 2006 ident: 2024011612153198800_b20 article-title: The indian diabetes prevention programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (idpp-1) publication-title: Diabetologia doi: 10.1007/s00125-005-0097-z – volume: 11 start-page: 167 year: 1992 ident: 2024011612153198800_b10 article-title: Statistical validation of intermediate endpoints for chronic diseases publication-title: Statistics in Medicine doi: 10.1002/sim.4780110204 – volume: 69 start-page: 561 year: 2013 ident: 2024011612153198800_b27 article-title: Surrogate measures and consistent surrogates publication-title: Biometrics doi: 10.1111/biom.12071 – volume: 58 start-page: 803 year: 2002 ident: 2024011612153198800_b29 article-title: A measure of the proportion of treatment effect explained by a surrogate marker publication-title: Biometrics doi: 10.1111/j.0006-341X.2002.00803.x – start-page: 297 volume-title: AIDS Epidemiology: Methodological Issues year: 1992 ident: 2024011612153198800_b21 article-title: Recovery of information and adjustment for dependent censoring using surrogate markers doi: 10.1007/978-1-4757-1229-2_14 – volume: 22 start-page: 623 year: 1999 ident: 2024011612153198800_b6 article-title: The diabetes prevention program: design and methods for a clinical trial in the prevention of type 2 diabetes publication-title: Diabetes Care doi: 10.2337/diacare.22.4.623 – volume: 1 start-page: 36 year: 2010 ident: 2024011612153198800_b25 article-title: Surrogate markers of insulin resistance: a review publication-title: World Journal of Diabetes doi: 10.4239/wjd.v1.i2.36 – volume-title: Multivariate Density Estimation year: 1992 ident: 2024011612153198800_b23 doi: 10.1002/9780470316849 – volume-title: Sequential Experimentation in Clinical Trials: Design and Analysis year: 2012 ident: 2024011612153198800_b1 – volume: 109 start-page: 384 year: 2014 ident: 2024011612153198800_b16 article-title: Landmark estimation of survival and treatment effect in a randomized clinical trial publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2013.842488 – volume: 16 start-page: 400 year: 2015 ident: 2024011612153198800_b8 article-title: Surrogacy marker paradox measures in meta-analytic settings publication-title: Biostatistics doi: 10.1093/biostatistics/kxu043 – volume: 79 start-page: 355 year: 1992 ident: 2024011612153198800_b17 article-title: Inference using surrogate outcome data and a validation sample publication-title: Biometrika doi: 10.1093/biomet/79.2.355 |
SSID | ssj0009502 |
Score | 2.3455958 |
Snippet | The development of methods to identify, validate, and use surrogate markers to test for a treatment effect has been an area of intense research interest given... The development of methods to identify, validate and use surrogate markers to test for a treatment effect has been an area of intense research interest given... |
SourceID | pubmedcentral proquest pubmed crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1253 |
SubjectTerms | Antiretroviral drugs BIOMETRIC METHODOLOGY biometry diabetes Diabetes mellitus disease control programs Identification methods kernel smoothing Markers nonparametric method Nonparametric statistics resampling surrogate survival analysis testing |
Title | Using a surrogate marker for early testing of a treatment effect |
URI | https://www.jstor.org/stable/45238767 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.13067 https://www.ncbi.nlm.nih.gov/pubmed/31009073 https://www.proquest.com/docview/2321578397 https://www.proquest.com/docview/2212720416 https://www.proquest.com/docview/2400522117 https://pubmed.ncbi.nlm.nih.gov/PMC6810708 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS9xAEB5EEexD1WutqT_Y0r60EMkmm-QWfNBTD1u4FoqFeylhN9lQ0ebK_XjQv96Z3STeqQj17WAn4TaZ2f1m8803AJ9STGRNZLp-UUjtC1kKX2rJ_bAQuig0F6mk4uTB9-T8l_g2jIdLcNjUwjh9iPbAjSLDrtcU4EpP5oKcytOpl3FCpeQ8Skg4__RnOKe4GzipcCJ3CT6stUmJxnN_6cJu5AiJT0HNx4zJeSRrt6L-OvxuJuEYKFcHs6k-yG8f6Du-dJYb8LrGqOzYOdUmLJmqA6uua-VNB14NWqnXSQfWCK46tec3cGQZCEyxyWw8HtEJHftL_J8xQ2zMDIkpsynpeqDRqES7lufOHLHkLVz0zy5Ozv26R4Ofx1RhGIW5KGQuQ0XJB1fUkBITXR0aE6EFZlOlEUnIVRJEheniaqBUjI5jSsQlaR5twXI1qsw2MFGSME3KQ14ooUWsVBBrFSspukFkAuPB5-ZVZXmtX05tNK6zJo-hZ5XZZ-XBx9b2n1PteNJqy77x1kRgVo67Aw7sNi6Q1SE9yRB6clzeEL958KEdxmCkLyyqMqMZ2pBefhggyH3GRtBRPObdeJ93zqvaP0BfWyQuuh6kC_7WGpAY-OJIdfnHioKTrlwadD34Yt3pmWlnva8_BvbX-_8x3oE1BIvSUXl2YXk6npk9BGRTvQ8rx73TXn_fBuAd0Ogxow |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4VKlR6oJACNQ2wCC5FMvJjHWdv9EEUHgEJBSk3a9deCwQ4KI9D--uZ2XVMAgip3CLtlyi2Z3a_WX_7DcBejIWsDnXTzTKhXC5y7golfDfIuMoy5fNY0OHkznmjfcVPelGv1ObQWRjrD1FtuFFmmPmaEpw2pKeynM6nUzPjRjwHHzkyDaq9_lwGU567njULJ3kX93ulOykJeZ6-O7MeWUnia2TzpWZymsuaxaj1xXZcHRoPQ9Kg3B6MR-og_ffM4fHd17kMSyVNZT9tXK3AB13UYME2rvxbg8-dyu11WINFYqzW8PkrHBoRApNsOB4M-rRJx-5JAjRgSI-ZJj9lNiJrDwT1c8RVUndmtSWr0G0ddX-33bJNg5tGdMgwDFKeiVQEkuoPX1JPSqx1VaB1iAgsqHLNG4EvG16Y6SZOCFJGGDs6R2oSp-EazBf9Qn8DxnPypon9wM8kVzyS0ouUjKTgTS_Unnbgx-RZJWlpYU6dNO6SSSlD9yox98qB3Qr7YI07XkWtmUdeQTgW5rhA4EB9EgNJmdXDBNmnjzMcUjgHdqphzEd6ySIL3R8jhizzAw957hsYTrvxWHrj76zbsKr-AL1wETjvOhDPBFwFID_w2ZHi5tr4gpO1XOw1Hdg38fTGZSe_ji865tPG_4C34VO72zlLzo7PT7_DInJHYZU9dZgfDcZ6E_nZSG2ZLHwEOuI0UA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xUBE9QLstNIWCq_ZCpaA8nGQtceiLFdAurRBIe6kiO3ZUBM2ifRzaX8-MnaS7LUJqbyv5S7ROZuxvnM-fAV5nWMia2HR9rYXyuSi5L5QI_UhzpbUKeSZoc3L_ND264CeDZLAAB81eGOcP0S64UWbY8ZoS_EaXM0lO29PpLOM0W4RlniKVIEp0Fs1Y7gbOK5zUXTwc1OakpOP5fe3cdOQUiXdxzb8lk7NU1s5FvXX41vTCSVCu9qcTtV_8-sPg8X-7-QjWapLK3rmoegwLpurAA3ds5c8OPOy3Xq_jDqwSX3V2z0_grZUgMMnG09FoSEt07AcJgEYMyTEz5KbMJmTsgaBhibhW6M6csuQpnPcOzz8c-fUhDX6R0BbDOCq4FoWIJFUfoaQTKbHSVZExMSKwnCoNT6NQpkGsTReHAykTjBxTIjHJingDlqphZZ4B4yU502RhFGrJFU-kDBIlEyl4N4hNYDzYa15VXtQG5nSOxnXeFDL0rHL7rDx41WJvnG3HnagN-8ZbCMeyHKcHbNhuQiCvc3qcI_cMcXxDAufBy7YZs5E-scjKDKeIIcP8KECWew-G01o8Ft54n00XVe0foM8tAkddD7K5eGsB5AY-31Jdfreu4GQslwVdD97YcLqn2_n74y99--v5v4B3YeXrx17--fj00xasInEUTtazDUuT0dS8QHI2UTs2B28Bdo0y_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+a+surrogate+marker+for+early+testing+of+a+treatment+effect&rft.jtitle=Biometrics&rft.au=Parast%2C+Layla&rft.au=Cai%2C+Tianxi&rft.au=Tian%2C+Lu&rft.date=2019-12-01&rft.issn=1541-0420&rft.eissn=1541-0420&rft.volume=75&rft.issue=4&rft.spage=1253&rft_id=info:doi/10.1111%2Fbiom.13067&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |