Plant–soil feedbacks: role of plant functional group and plant traits

1. Plant–soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known. 2. To test how plant functional groups (FGs: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF, we...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of ecology Vol. 104; no. 6; pp. 1608 - 1617
Main Authors Cortois, Roeland, Schröder-Georgi, Thomas, Weigelt, Alexandra, van der Putten, Wim H., De Deyn, Gerlinde B.
Format Journal Article
LanguageEnglish
Published Oxford John Wiley & Sons Ltd 01.11.2016
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1. Plant–soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known. 2. To test how plant functional groups (FGs: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF, we grew 48 grassland species in sterilized soil, sterilized soil with own species soil inoculum and sterilized soil with soil inoculum from all species, and quantified relative growth rate (RGR), specific leaf area (SLA), specific root length (SRL) and per cent arbuscular mycorrhizal fungi colonization (%AMF). 3. Plant growth response to the plant species' own soil biota relative to sterilized soil (PSFsterilized) reflects net effects of all (generalist + specialized) soil biota. Growth response to the plant species' own soil biota relative to soil biota of all plant species (PSFaway) reveals effects of more specialized soil organisms. 4. PSFsterilized showed that graminoids and small herbs have a negative and tall herbs a positive response to their own soil biota, whereas legumes responded neutrally. However, PSFaway showed that on average, all plant FGs benefitted from growing with other species' soil biota, suggesting that pathogens are more specialized than plant growth-promoting soil biota. Feedback to plant growth from all soil biota (PSFsterilized) was stronger than from more specialized soil biota (PSFaway) and could be predicted by SRL and especially by %AMF colonization. Species with high SRL and low %AMF colonization when grown in away soil experienced most negative soil feedback. 5. Synthesis. Plant species from all plant FGs grow better in soil from other species because of less net negative effects of soil biota (in graminoids), or because of more net positive soil biota effects (in tall herbs). Explorative plant species (high SRL, low %AMF colonization) suffer most from negative feedback of all soil biota, whereas more resource conservative species (low SRL, high %AMF colonization) benefit from soil feedback of all soil biota. These findings help to understand replacement of explorative species during succession. Moreover, we suggest a potentially larger role for species with positive feedback than for species with negative feedback to contribute to maintain plant community productivity of diverse communities over time.
AbstractList 1. Plant-soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known. 2. To test how plant functional groups (FGs: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF, we grew 48 grassland species in sterilized soil, sterilized soil with own species soil inoculum and sterilized soil with soil inoculum from all species, and quantified relative growth rate (RGR), specific leaf area (SLA), specific root length (SRL) and per cent arbuscular mycorrhizal fungi colonization (%AMF). 3. Plant growth response to the plant species' own soil biota relative to sterilized soil (PSFsterilized) reflects net effects of all (generalist + specialized) soil biota. Growth response to the plant species' own soil biota relative to soil biota of all plant species (PSFaway) reveals effects of more specialized soil organisms. 4. PSFsterilized showed that graminoids and small herbs have a negative and tall herbs a positive response to their own soil biota, whereas legumes responded neutrally. However, PSFaway showed that on average, all plant FGs benefitted from growing with other species' soil biota, suggesting that pathogens are more specialized than plant growth-promoting soil biota. Feedback to plant growth from all soil biota (PSFsterilized) was stronger than from more specialized soil biota (PSFaway) and could be predicted by SRL and especially by %AMF colonization. Species with high SRL and low %AMF colonization when grown in away soil experienced most negative soil feedback. 5. Synthesis. Plant species from all plant FGs grow better in soil from other species because of less net negative effects of soil biota (in graminoids), or because of more net positive soil biota effects (in tall herbs). Explorative plant species (high SRL, low %AMF colonization) suffer most from negative feedback of all soil biota, whereas more resource conservative species (low SRL, high %AMF colonization) benefit from soil feedback of all soil biota. These findings help to understand replacement of explorative species during succession. Moreover, we suggest a potentially larger role for species with positive feedback than for species with negative feedback to contribute to maintain plant community productivity of diverse communities over time. Plant species from all plant FGs grow better in soil from other species because of less net negative effects of soil biota (in graminoids), or because of more net positive soil biota effects (in tall herbs). Explorative plant species (high SRL, low %AMF colonization) suffer most from negative feedback of all soil biota, whereas more resource conservative species (low SRL, high %AMF colonization) benefit from soil feedback of all soil biota. These findings help to understand replacement of explorative species during succession. Moreover, we suggest a potentially larger role for species with positive feedback than for species with negative feedback to contribute to maintain plant community productivity of diverse communities over time.
Plant–soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known. To test how plant functional groups (FGs: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF, we grew 48 grassland species in sterilized soil, sterilized soil with own species soil inoculum and sterilized soil with soil inoculum from all species, and quantified relative growth rate (RGR), specific leaf area (SLA), specific root length (SRL) and per cent arbuscular mycorrhizal fungi colonization (%AMF). Plant growth response to the plant species' own soil biota relative to sterilized soil (PSFsterilized) reflects net effects of all (generalist + specialized) soil biota. Growth response to the plant species' own soil biota relative to soil biota of all plant species (PSFaway) reveals effects of more specialized soil organisms. PSFsterilized showed that graminoids and small herbs have a negative and tall herbs a positive response to their own soil biota, whereas legumes responded neutrally. However, PSFaway showed that on average, all plant FGs benefitted from growing with other species' soil biota, suggesting that pathogens are more specialized than plant growth‐promoting soil biota. Feedback to plant growth from all soil biota (PSFsterilized) was stronger than from more specialized soil biota (PSFaway) and could be predicted by SRL and especially by %AMF colonization. Species with high SRL and low %AMF colonization when grown in away soil experienced most negative soil feedback. Synthesis. Plant species from all plant FGs grow better in soil from other species because of less net negative effects of soil biota (in graminoids), or because of more net positive soil biota effects (in tall herbs). Explorative plant species (high SRL, low %AMF colonization) suffer most from negative feedback of all soil biota, whereas more resource conservative species (low SRL, high %AMF colonization) benefit from soil feedback of all soil biota. These findings help to understand replacement of explorative species during succession. Moreover, we suggest a potentially larger role for species with positive feedback than for species with negative feedback to contribute to maintain plant community productivity of diverse communities over time.
1. Plant–soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known. 2. To test how plant functional groups (FGs: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF, we grew 48 grassland species in sterilized soil, sterilized soil with own species soil inoculum and sterilized soil with soil inoculum from all species, and quantified relative growth rate (RGR), specific leaf area (SLA), specific root length (SRL) and per cent arbuscular mycorrhizal fungi colonization (%AMF). 3. Plant growth response to the plant species' own soil biota relative to sterilized soil (PSFsterilized) reflects net effects of all (generalist + specialized) soil biota. Growth response to the plant species' own soil biota relative to soil biota of all plant species (PSFaway) reveals effects of more specialized soil organisms. 4. PSFsterilized showed that graminoids and small herbs have a negative and tall herbs a positive response to their own soil biota, whereas legumes responded neutrally. However, PSFaway showed that on average, all plant FGs benefitted from growing with other species' soil biota, suggesting that pathogens are more specialized than plant growth-promoting soil biota. Feedback to plant growth from all soil biota (PSFsterilized) was stronger than from more specialized soil biota (PSFaway) and could be predicted by SRL and especially by %AMF colonization. Species with high SRL and low %AMF colonization when grown in away soil experienced most negative soil feedback. 5. Synthesis. Plant species from all plant FGs grow better in soil from other species because of less net negative effects of soil biota (in graminoids), or because of more net positive soil biota effects (in tall herbs). Explorative plant species (high SRL, low %AMF colonization) suffer most from negative feedback of all soil biota, whereas more resource conservative species (low SRL, high %AMF colonization) benefit from soil feedback of all soil biota. These findings help to understand replacement of explorative species during succession. Moreover, we suggest a potentially larger role for species with positive feedback than for species with negative feedback to contribute to maintain plant community productivity of diverse communities over time.
Plant–soil feedback ( PSF ), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known. To test how plant functional groups ( FG s: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF , we grew 48 grassland species in sterilized soil, sterilized soil with own species soil inoculum and sterilized soil with soil inoculum from all species, and quantified relative growth rate ( RGR ), specific leaf area ( SLA ), specific root length ( SRL ) and per cent arbuscular mycorrhizal fungi colonization (% AMF ). Plant growth response to the plant species' own soil biota relative to sterilized soil ( PSF sterilized) reflects net effects of all (generalist + specialized) soil biota. Growth response to the plant species' own soil biota relative to soil biota of all plant species ( PSF away) reveals effects of more specialized soil organisms. PSF sterilized showed that graminoids and small herbs have a negative and tall herbs a positive response to their own soil biota, whereas legumes responded neutrally. However, PSF away showed that on average, all plant FG s benefitted from growing with other species' soil biota, suggesting that pathogens are more specialized than plant growth‐promoting soil biota. Feedback to plant growth from all soil biota ( PSF sterilized) was stronger than from more specialized soil biota ( PSF away) and could be predicted by SRL and especially by % AMF colonization. Species with high SRL and low % AMF colonization when grown in away soil experienced most negative soil feedback. Synthesis . Plant species from all plant FG s grow better in soil from other species because of less net negative effects of soil biota (in graminoids), or because of more net positive soil biota effects (in tall herbs). Explorative plant species (high SRL , low % AMF colonization) suffer most from negative feedback of all soil biota, whereas more resource conservative species (low SRL , high % AMF colonization) benefit from soil feedback of all soil biota. These findings help to understand replacement of explorative species during succession. Moreover, we suggest a potentially larger role for species with positive feedback than for species with negative feedback to contribute to maintain plant community productivity of diverse communities over time.
Summary Plant–soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known. To test how plant functional groups (FGs: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF, we grew 48 grassland species in sterilized soil, sterilized soil with own species soil inoculum and sterilized soil with soil inoculum from all species, and quantified relative growth rate (RGR), specific leaf area (SLA), specific root length (SRL) and per cent arbuscular mycorrhizal fungi colonization (%AMF). Plant growth response to the plant species' own soil biota relative to sterilized soil (PSFsterilized) reflects net effects of all (generalist + specialized) soil biota. Growth response to the plant species' own soil biota relative to soil biota of all plant species (PSFaway) reveals effects of more specialized soil organisms. PSFsterilized showed that graminoids and small herbs have a negative and tall herbs a positive response to their own soil biota, whereas legumes responded neutrally. However, PSFaway showed that on average, all plant FGs benefitted from growing with other species' soil biota, suggesting that pathogens are more specialized than plant growth‐promoting soil biota. Feedback to plant growth from all soil biota (PSFsterilized) was stronger than from more specialized soil biota (PSFaway) and could be predicted by SRL and especially by %AMF colonization. Species with high SRL and low %AMF colonization when grown in away soil experienced most negative soil feedback. Synthesis. Plant species from all plant FGs grow better in soil from other species because of less net negative effects of soil biota (in graminoids), or because of more net positive soil biota effects (in tall herbs). Explorative plant species (high SRL, low %AMF colonization) suffer most from negative feedback of all soil biota, whereas more resource conservative species (low SRL, high %AMF colonization) benefit from soil feedback of all soil biota. These findings help to understand replacement of explorative species during succession. Moreover, we suggest a potentially larger role for species with positive feedback than for species with negative feedback to contribute to maintain plant community productivity of diverse communities over time. Plant species from all plant FGs grow better in soil from other species because of less net negative effects of soil biota (in graminoids), or because of more net positive soil biota effects (in tall herbs). Explorative plant species (high SRL, low %AMF colonization) suffer most from negative feedback of all soil biota, whereas more resource conservative species (low SRL, high %AMF colonization) benefit from soil feedback of all soil biota. These findings help to understand replacement of explorative species during succession. Moreover, we suggest a potentially larger role for species with positive feedback than for species with negative feedback to contribute to maintain plant community productivity of diverse communities over time.
Summary Plant-soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known. To test how plant functional groups (FGs: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF, we grew 48 grassland species in sterilized soil, sterilized soil with own species soil inoculum and sterilized soil with soil inoculum from all species, and quantified relative growth rate (RGR), specific leaf area (SLA), specific root length (SRL) and per cent arbuscular mycorrhizal fungi colonization (%AMF). Plant growth response to the plant species' own soil biota relative to sterilized soil (PSFsterilized) reflects net effects of all (generalist + specialized) soil biota. Growth response to the plant species' own soil biota relative to soil biota of all plant species (PSFaway) reveals effects of more specialized soil organisms. PSFsterilized showed that graminoids and small herbs have a negative and tall herbs a positive response to their own soil biota, whereas legumes responded neutrally. However, PSFaway showed that on average, all plant FGs benefitted from growing with other species' soil biota, suggesting that pathogens are more specialized than plant growth-promoting soil biota. Feedback to plant growth from all soil biota (PSFsterilized) was stronger than from more specialized soil biota (PSFaway) and could be predicted by SRL and especially by %AMF colonization. Species with high SRL and low %AMF colonization when grown in away soil experienced most negative soil feedback. Synthesis. Plant species from all plant FGs grow better in soil from other species because of less net negative effects of soil biota (in graminoids), or because of more net positive soil biota effects (in tall herbs). Explorative plant species (high SRL, low %AMF colonization) suffer most from negative feedback of all soil biota, whereas more resource conservative species (low SRL, high %AMF colonization) benefit from soil feedback of all soil biota. These findings help to understand replacement of explorative species during succession. Moreover, we suggest a potentially larger role for species with positive feedback than for species with negative feedback to contribute to maintain plant community productivity of diverse communities over time.
Author Schröder-Georgi, Thomas
Weigelt, Alexandra
Cortois, Roeland
van der Putten, Wim H.
De Deyn, Gerlinde B.
Author_xml – sequence: 1
  givenname: Roeland
  surname: Cortois
  fullname: Cortois, Roeland
– sequence: 2
  givenname: Thomas
  surname: Schröder-Georgi
  fullname: Schröder-Georgi, Thomas
– sequence: 3
  givenname: Alexandra
  surname: Weigelt
  fullname: Weigelt, Alexandra
– sequence: 4
  givenname: Wim H.
  surname: van der Putten
  fullname: van der Putten, Wim H.
– sequence: 5
  givenname: Gerlinde B.
  surname: De Deyn
  fullname: De Deyn, Gerlinde B.
BookMark eNqFkc9qFTEUxoNU8La6djsggptp8z-T7uRS20rBLuo6ZDKZkmuajMkMl-76Dr6hT2LivUoplGaRAznfL4fzfYfgIMRgAXiP4DEq5wQRzlosKDtGmFPyCqz-vxyAFYQYt5AK8QYc5ryBEHLB4AqcX3sd5t8Pv3J0vhmtHXptfuTTJkVvmzg2U-034xLM7GLQvrlNcZkaHYZ9a07azfkteD1qn-27fT0C37-c3awv2qtv55frz1etYZCQduiZNBz3He56LgWRPYRSi5ENWhiNhzKfc2o6SgwlnZa95OPIcamEdBJLcgROd_9u9a0NLpRLBZ2Myypqp7zrk073arskFXwt09JnxaBEnBT40w6eUvy52DyrO5eN9WUPG5escLGFiuIMelGKOiIIZpyxIv3wRLqJSypWVRWWFDKBaVGxncqkmHOyozJu1tXTaqBXCKoao6qhqRqa-htj4U6ecFNyd3XH54n9pK3z9v4lufp6tv7HfdxxmzzH9JjDBAqFORKi-Ej-AEfVu10
CODEN JECOAB
CitedBy_id crossref_primary_10_1111_1462_2920_14882
crossref_primary_10_1126_sciadv_aau4578
crossref_primary_10_1002_ece3_9400
crossref_primary_10_1007_s11104_023_05948_1
crossref_primary_10_3389_ffgc_2020_00064
crossref_primary_10_5194_bg_14_733_2017
crossref_primary_10_1016_j_apsoil_2020_103855
crossref_primary_10_1016_j_baae_2017_06_002
crossref_primary_10_1111_oik_06989
crossref_primary_10_1016_j_soilbio_2024_109343
crossref_primary_10_1111_1365_2745_13220
crossref_primary_10_1038_s41467_019_09615_x
crossref_primary_10_1111_nph_15603
crossref_primary_10_1111_rec_13081
crossref_primary_10_1111_oik_06609
crossref_primary_10_1371_journal_pone_0293906
crossref_primary_10_3390_agriculture11090830
crossref_primary_10_1111_1365_2745_13574
crossref_primary_10_1111_1440_1703_12165
crossref_primary_10_1111_2041_210X_13326
crossref_primary_10_1002_sae2_12119
crossref_primary_10_1002_ecy_3692
crossref_primary_10_1016_j_pedobi_2017_08_001
crossref_primary_10_1186_s13717_022_00410_z
crossref_primary_10_3390_microorganisms12122438
crossref_primary_10_1128_msystems_00418_22
crossref_primary_10_1016_j_still_2022_105492
crossref_primary_10_1186_s12870_022_03514_y
crossref_primary_10_3389_fevo_2024_1361124
crossref_primary_10_1111_1365_2745_13005
crossref_primary_10_1007_s00442_017_3996_z
crossref_primary_10_1038_s41598_018_30340_w
crossref_primary_10_1111_oik_09354
crossref_primary_10_1007_s11104_021_04848_6
crossref_primary_10_1093_jpe_rtac044
crossref_primary_10_1111_ejss_13427
crossref_primary_10_1007_s11104_023_05893_z
crossref_primary_10_1016_j_envexpbot_2018_08_013
crossref_primary_10_3389_fpls_2017_02127
crossref_primary_10_21697_seb_2022_28
crossref_primary_10_1002_ecy_3557
crossref_primary_10_1002_ece3_7819
crossref_primary_10_1111_nph_16227
crossref_primary_10_1093_jpe_rtab087
crossref_primary_10_1007_s10530_022_02853_z
crossref_primary_10_1111_nph_20434
crossref_primary_10_1038_s41467_021_25971_z
crossref_primary_10_1007_s13157_019_01216_0
crossref_primary_10_3389_fsoil_2022_838595
crossref_primary_10_1007_s11104_024_06577_y
crossref_primary_10_1111_ele_13273
crossref_primary_10_1016_j_soilbio_2021_108450
crossref_primary_10_1111_1365_2745_13388
crossref_primary_10_1002_ecy_4295
crossref_primary_10_1093_jpe_rtac022
crossref_primary_10_1111_nph_18118
crossref_primary_10_1007_s11071_021_06314_5
crossref_primary_10_1007_s11104_018_3567_z
crossref_primary_10_1093_jpe_rtab050
crossref_primary_10_1111_1365_2664_13156
crossref_primary_10_1016_j_ecolind_2022_109691
crossref_primary_10_1111_1365_2745_13814
crossref_primary_10_1007_s11252_023_01470_5
crossref_primary_10_1016_j_scitotenv_2018_03_219
crossref_primary_10_1002_jpln_201700093
crossref_primary_10_3389_fpls_2024_1396754
crossref_primary_10_1007_s11104_022_05792_9
crossref_primary_10_1016_j_soilbio_2023_109039
crossref_primary_10_1007_s11356_020_10471_2
crossref_primary_10_1016_j_scitotenv_2022_156022
crossref_primary_10_1111_ele_12879
crossref_primary_10_3389_fevo_2023_1073724
crossref_primary_10_1111_1365_2435_14387
crossref_primary_10_1093_jpe_rtab065
crossref_primary_10_1111_jvs_12717
crossref_primary_10_1007_s00442_020_04762_1
crossref_primary_10_3389_fcimb_2021_695087
crossref_primary_10_1111_oik_03967
crossref_primary_10_3389_fpls_2022_924154
crossref_primary_10_1111_pce_13999
crossref_primary_10_1007_s11104_024_07043_5
crossref_primary_10_1007_s11104_023_06408_6
crossref_primary_10_1111_1365_2745_13048
crossref_primary_10_1111_oik_04149
crossref_primary_10_1007_s11104_017_3282_1
crossref_primary_10_3389_fevo_2019_00451
crossref_primary_10_1007_s00442_017_4033_y
crossref_primary_10_1111_1365_2435_13511
crossref_primary_10_1111_ejss_13582
crossref_primary_10_1016_j_ecolind_2019_105558
crossref_primary_10_1086_692439
crossref_primary_10_2139_ssrn_4153311
crossref_primary_10_1111_nph_17237
crossref_primary_10_3390_plants9111474
crossref_primary_10_1007_s11104_017_3353_3
crossref_primary_10_1111_1365_2745_14009
crossref_primary_10_1111_1365_2745_13157
crossref_primary_10_1155_2021_8835275
crossref_primary_10_1111_1365_2745_13394
crossref_primary_10_1002_pei3_10035
crossref_primary_10_1111_nph_18327
crossref_primary_10_1093_jpe_rtaa075
crossref_primary_10_3389_fenvs_2019_00168
crossref_primary_10_1002_ecs2_1996
crossref_primary_10_1038_s41467_019_09284_w
crossref_primary_10_1093_jpe_rtaa037
crossref_primary_10_1016_j_ecolind_2022_109766
crossref_primary_10_1007_s00442_021_04956_1
crossref_primary_10_1016_j_baae_2019_08_001
crossref_primary_10_1016_j_scitotenv_2022_160154
crossref_primary_10_1016_j_soilbio_2022_108772
crossref_primary_10_1111_1365_2745_12773
crossref_primary_10_1016_j_soilbio_2023_109107
crossref_primary_10_1016_j_tree_2017_11_005
crossref_primary_10_1007_s11104_019_04137_3
crossref_primary_10_1126_sciadv_aaz1834
crossref_primary_10_1007_s00442_023_05329_6
crossref_primary_10_1007_s13199_024_01009_y
crossref_primary_10_1093_ee_nvab047
crossref_primary_10_1007_s00572_018_0866_4
crossref_primary_10_3389_fevo_2023_1224540
crossref_primary_10_1016_j_apsoil_2022_104566
crossref_primary_10_1016_j_flora_2019_151492
crossref_primary_10_1002_ecy_3736
crossref_primary_10_3389_fevo_2019_00300
crossref_primary_10_1111_gcb_70084
crossref_primary_10_1007_s00442_021_04919_6
crossref_primary_10_1111_gcb_15683
crossref_primary_10_3389_fmicb_2021_751794
crossref_primary_10_1111_oik_10061
crossref_primary_10_3390_drones3030054
crossref_primary_10_1093_aob_mcad058
crossref_primary_10_1002_ecs2_2704
crossref_primary_10_1007_s11629_020_6472_x
crossref_primary_10_1111_1365_2664_12929
crossref_primary_10_1111_1365_2745_14177
crossref_primary_10_1002_ecy_3142
crossref_primary_10_1111_ele_12805
crossref_primary_10_1016_j_scitotenv_2021_150513
crossref_primary_10_1086_711662
crossref_primary_10_1093_aobpla_plaa050
crossref_primary_10_1111_nph_16982
crossref_primary_10_1002_ece3_5476
crossref_primary_10_1016_j_scitotenv_2022_160616
crossref_primary_10_1016_j_soilbio_2024_109516
crossref_primary_10_1111_jvs_13100
crossref_primary_10_1016_j_scitotenv_2020_143389
crossref_primary_10_1007_s11104_025_07379_6
crossref_primary_10_1016_j_ejsobi_2018_01_006
crossref_primary_10_1016_j_scitotenv_2020_138476
crossref_primary_10_1111_grs_12368
crossref_primary_10_1111_1365_2435_14006
crossref_primary_10_1007_s00442_019_04442_9
crossref_primary_10_1007_s11104_023_05908_9
crossref_primary_10_1111_rec_12989
crossref_primary_10_1071_BT20122
crossref_primary_10_1002_ecs2_2132
crossref_primary_10_1007_s11104_021_04861_9
crossref_primary_10_1007_s11104_023_06380_1
crossref_primary_10_3389_fmicb_2024_1454617
crossref_primary_10_1111_1365_2745_13535
crossref_primary_10_1002_ece3_3755
crossref_primary_10_1002_ecy_3259
crossref_primary_10_1111_pce_14247
crossref_primary_10_1007_s11104_020_04703_0
crossref_primary_10_1111_oik_06812
crossref_primary_10_1007_s11104_024_07049_z
crossref_primary_10_3390_agronomy10121860
crossref_primary_10_3389_fmicb_2023_1088532
crossref_primary_10_3389_fmicb_2024_1447999
crossref_primary_10_1080_03650340_2019_1679783
crossref_primary_10_1111_1365_2745_13449
crossref_primary_10_1007_s11104_023_06052_0
crossref_primary_10_1038_s41598_017_18103_5
crossref_primary_10_3390_jof9050588
crossref_primary_10_3389_fpls_2022_839920
crossref_primary_10_1016_j_apsoil_2021_104008
crossref_primary_10_1126_science_aal4549
crossref_primary_10_1016_j_scitotenv_2020_137355
crossref_primary_10_1111_nph_18737
crossref_primary_10_1038_s41477_023_01433_w
crossref_primary_10_1111_1365_2745_12907
crossref_primary_10_1007_s11104_018_3837_9
crossref_primary_10_1111_1365_2435_13232
crossref_primary_10_1111_nph_19490
crossref_primary_10_1007_s11104_018_3667_9
crossref_primary_10_1111_1365_2745_13316
crossref_primary_10_1111_1365_2745_13679
crossref_primary_10_1007_s12517_024_12175_0
crossref_primary_10_1016_j_tree_2021_03_011
crossref_primary_10_5194_we_23_1_2023
crossref_primary_10_1007_s10658_018_1573_x
crossref_primary_10_1002_ecy_2146
crossref_primary_10_1007_s11104_019_04050_9
crossref_primary_10_1111_nph_17636
crossref_primary_10_1007_s10530_021_02475_x
Cites_doi 10.2307/2960528
10.1038/ismej.2015.120
10.1890/10-0773.1
10.1111/1365-2435.12201
10.1111/j.1469-8137.2005.01428.x
10.1038/nature16489
10.1146/annurev.es.03.110172.001531
10.1111/j.1461-0248.2008.01209.x
10.1111/1365-2745.12046
10.1111/j.1469-8137.1990.tb00476.x
10.1111/1365-2745.12054
10.1146/annurev.ecolsys.33.010802.150452
10.1111/j.1461-0248.2006.00953.x
10.1098/rspb.2002.2162
10.2307/2261180
10.1890/02-0284
10.1128/AEM.02951-09
10.1073/pnas.0812607106
10.1111/nph.13215
10.1111/nph.12927
10.1093/aob/mcu169
10.1890/07-2056.1
10.1007/s11104-014-2370-8
10.1111/j.0022-0477.2004.00924.x
10.1007/s11104-011-0963-z
10.1111/j.1461-0248.2010.01547.x
10.1111/j.1365-2311.2004.00572.x
10.1016/j.tree.2014.10.006
10.1016/j.tree.2010.05.004
10.1029/2010GB003869
10.1111/nph.12915
10.1016/j.ppees.2015.03.002
10.1111/nph.14007
10.1111/j.1461-0248.2009.01430.x
10.1111/j.1365-2745.2010.01695.x
10.2307/2389540
10.1007/BF00380050
10.1086/283244
10.1007/978-94-011-1494-3
10.1046/j.1469-8137.1997.00729.x
10.1111/j.1365-2435.2010.01811.x
10.1086/417659
10.1515/9781400830640
10.1111/1365-2745.12489
10.1111/oik.01743
10.1071/BT02124
10.1046/j.1469-8137.2001.00133.x
10.1007/s10530-014-0685-2
10.1111/j.1461-0248.2008.01164.x
10.1111/j.1365-2745.2010.01679.x
10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2
10.1111/j.0030-1299.2007.15559.x
10.1111/j.1365-3040.2007.01665.x
10.1890/14-2208.1
10.1111/j.1365-2486.2011.02451.x
10.1126/science.1094875
10.1046/j.1365-2435.2002.00664.x
10.1890/02-0413
10.1111/j.1365-2745.2011.01914.x
10.1078/1439-1791-00216
10.1111/1365-2745.12211
ContentType Journal Article
Copyright 2016 British Ecological Society
2016 The Authors. Journal of Ecology © 2016 British Ecological Society
Journal of Ecology © 2016 British Ecological Society
Wageningen University & Research
Copyright_xml – notice: 2016 British Ecological Society
– notice: 2016 The Authors. Journal of Ecology © 2016 British Ecological Society
– notice: Journal of Ecology © 2016 British Ecological Society
– notice: Wageningen University & Research
DBID 24P
AAYXX
CITATION
7QG
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
7S9
L.6
QVL
DOI 10.1111/1365-2745.12643
DatabaseName Wiley Online Library
CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
NARCIS:Publications
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Ecology Abstracts
AGRICOLA

CrossRef

Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Botany
EISSN 1365-2745
EndPage 1617
ExternalDocumentID oai_library_wur_nl_wurpubs_509163
4216490361
10_1111_1365_2745_12643
JEC12643
26177091
Genre article
GrantInformation_xml – fundername: NWO
  funderid: 832.13.009
– fundername: NWO‐ALW VIDI
  funderid: 864.11.003
– fundername: Deutsche Forschungsgemeinschaft
  funderid: FOR 1451
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1OC
29K
2AX
2WC
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABAWQ
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABPQH
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHIC
ACHJO
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACUBG
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFXHP
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIAGR
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BKOMP
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CUYZI
D-E
D-F
D-I
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EAU
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
YF5
YQT
YZZ
ZCA
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
3-9
31~
42X
8WZ
A6W
AAHHS
ABEFU
ABTAH
ABYAD
ACCFJ
ACTWD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
FVMVE
GTFYD
HF~
HGD
HQ2
HTVGU
HVGLF
JSODD
MVM
WHG
WRC
XIH
YXE
ZCG
ZY4
AAYXX
CITATION
7QG
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
7S9
L.6
08R
AAJUZ
ABCVL
ABHUG
ABPTK
ABWRO
ACXME
ADAWD
ADDAD
ADZLD
AESBF
AFDAS
AFVGU
AGJLS
AIHXQ
B4K
CWIXF
DWIUU
IPNFZ
PQEST
QVL
UMP
ID FETCH-LOGICAL-c5033-db59c62b828b69739b009a7f5da7ca2deed664c843c438a9b96ff629b93389293
IEDL.DBID DR2
ISSN 0022-0477
IngestDate Thu Oct 13 09:30:22 EDT 2022
Fri Jul 11 18:31:48 EDT 2025
Thu Jul 10 23:44:53 EDT 2025
Fri Jul 25 10:38:40 EDT 2025
Tue Jul 01 03:13:40 EDT 2025
Thu Apr 24 22:59:23 EDT 2025
Wed Jan 22 17:12:02 EST 2025
Thu Jul 03 22:16:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution-NonCommercial-NoDerivs
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5033-db59c62b828b69739b009a7f5da7ca2deed664c843c438a9b96ff629b93389293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.12643
PQID 1829405724
PQPubID 37508
PageCount 10
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_509163
proquest_miscellaneous_2000470671
proquest_miscellaneous_1837325655
proquest_journals_1829405724
crossref_citationtrail_10_1111_1365_2745_12643
crossref_primary_10_1111_1365_2745_12643
wiley_primary_10_1111_1365_2745_12643_JEC12643
jstor_primary_10_2307_26177091
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2016
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: November 2016
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle The Journal of ecology
PublicationYear 2016
Publisher John Wiley & Sons Ltd
Blackwell Publishing Ltd
Publisher_xml – name: John Wiley & Sons Ltd
– name: Blackwell Publishing Ltd
References 2002; 16
2010; 98
2010; 13
2015; 389
1997; 85
2004; 5
2014; 29
1988; 74
2016; 104
2007; 30
2011; 14
2014; 28
2011; 17
2003; 51
2014; 204
2010; 25
2014; 16
2002; 269
2011; 25
2003; 84
1988
1997; 135
2010; 76
2015; 17
1995; 93
2012; 100
2010
2015; 124
2015; 96
2006; 9
2016; 529
2002; 33
2009
2016; 10
2013; 101
1954
1996
2008; 11
1993
2015; 206
1991
2004; 304
2014; 114
1991; 5
1972; 3
2012; 350
2001; 150
2004; 92
2007; 116
1990; 115
2006; 87
2005; 167
2011; 92
1997; 79
2008; 89
2016
2013
1977; 111
1992; 67
2009; 106
2014; 102
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
R Core Team (e_1_2_7_52_1) 2013
e_1_2_7_50_1
Hudson H.J. (e_1_2_7_27_1) 1991
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
Smith S.E. (e_1_2_7_59_1) 2010
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
Tilman D. (e_1_2_7_60_1) 1988
e_1_2_7_29_1
Olsen S. (e_1_2_7_47_1) 1954
e_1_2_7_51_1
Brundrett M. (e_1_2_7_10_1) 1996
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 102
  start-page: 275
  year: 2014
  end-page: 301
  article-title: The world‐wide ‘fast–slow’ plant economics spectrum: a traits manifesto
  publication-title: Journal of Ecology
– year: 2009
– volume: 5
  start-page: 773
  year: 1991
  end-page: 779
  article-title: On the relationship between a plant's mycorrhizal dependency and rate of vesicular‐arbuscular mycorrhizal colonization
  publication-title: Functional Ecology
– volume: 29
  start-page: 692
  year: 2014
  end-page: 699
  article-title: Going underground: root traits as drivers of ecosystem processes
  publication-title: Trends in Ecology & Evolution
– volume: 17
  start-page: 227
  year: 2015
  end-page: 235
  article-title: Negative biotic soil‐effects enhance biodiversity by restricting potentially dominant plant species in grasslands
  publication-title: Perspectives in Plant Ecology, Evolution and Systematics
– volume: 96
  start-page: 1768
  year: 2015
  end-page: 1774
  article-title: Mycorrhizal response trades off with plant growth rate
  publication-title: Ecology
– volume: 206
  start-page: 329
  year: 2015
  end-page: 341
  article-title: The soil microbial community predicts the importance of plant traits in plant–soil feedback
  publication-title: New Phytologist
– volume: 5
  start-page: 107
  year: 2004
  end-page: 121
  article-title: The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community
  publication-title: Basic and Applied Ecology
– volume: 13
  start-page: 394
  year: 2010
  end-page: 407
  article-title: A meta‐analysis of context‐dependency in plant response to inoculation with mycorrhizal fungi
  publication-title: Ecology Letters
– volume: 84
  start-page: 2269
  year: 2003
  end-page: 2280
  article-title: Plant defense belowground and spatiotemporal processes in natural vegetation
  publication-title: Ecology
– volume: 98
  start-page: 1063
  year: 2010
  end-page: 1073
  article-title: Plant–soil feedback: experimental approaches, statistical analyses and ecological interpretations
  publication-title: Journal of Ecology
– volume: 14
  start-page: 36
  year: 2011
  end-page: 41
  article-title: Soil fungal pathogens and the relationship between plant diversity and productivity
  publication-title: Ecology Letters
– volume: 85
  start-page: 561
  year: 1997
  end-page: 573
  article-title: Incorporating the soil community into plant population dynamics: the utility of the feedback approach
  publication-title: Journal of Ecology
– volume: 204
  start-page: 408
  year: 2014
  end-page: 423
  article-title: Are plant–soil feedback responses explained by plant traits?
  publication-title: New Phytologist
– volume: 529
  start-page: 167
  year: 2016
  end-page: 171
  article-title: The global spectrum of plant form and function
  publication-title: Nature
– volume: 116
  start-page: 882
  year: 2007
  end-page: 892
  article-title: Let the concept of trait be functional!
  publication-title: Oikos
– volume: 101
  start-page: 309
  year: 2013
  end-page: 315
  article-title: A hierarchical framework for investigating plant‐soil feedbacks in time and space
  publication-title: Journal of Ecology
– volume: 16
  start-page: 2551
  year: 2014
  end-page: 2561
  article-title: Plant–soil feedbacks of exotic plant species across life forms: a meta‐analysis
  publication-title: Biological Invasions
– volume: 92
  start-page: 296
  year: 2011
  end-page: 303
  article-title: Soil microbes drive the classic plant diversity‐productivity pattern
  publication-title: Ecology
– volume: 269
  start-page: 2595
  year: 2002
  end-page: 2601
  article-title: Negative feedback within a mutualism: host‐specific growth of mycorrhizal fungi reduces plant benefit
  publication-title: Proceedings of the Royal Society B‐Biological Sciences
– volume: 115
  start-page: 495
  year: 1990
  end-page: 501
  article-title: A new method which gives an objective measure of colonization of roots by vesicular‐arbuscular mycorrhizal fungi
  publication-title: New Phytologist
– volume: 10
  start-page: 389
  year: 2016
  end-page: 399
  article-title: A widespread plant‐fungal‐bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment
  publication-title: ISME Journal
– volume: 25
  start-page: 368
  year: 2011
  end-page: 379
  article-title: Predicting root defence against herbivores during succession
  publication-title: Functional Ecology
– volume: 3
  start-page: 315
  year: 1972
  end-page: 346
  article-title: The carbon balance of plants
  publication-title: Annual Review of Ecology and Systematics
– volume: 389
  start-page: 361
  year: 2015
  end-page: 374
  article-title: Effects of arbuscular mycorrhizal fungi on plant growth depend on root system: a meta‐analysis
  publication-title: Plant and Soil
– volume: 114
  start-page: 1011
  year: 2014
  end-page: 1021
  article-title: Contribution of above‐and below‐ground plant traits to the structure and function of grassland soil microbial communities
  publication-title: Annals of Botany
– volume: 30
  start-page: 786
  year: 2007
  end-page: 795
  article-title: Consequences of insect herbivory on grape fine root systems with different growth rates
  publication-title: Plant, Cell & Environment
– volume: 89
  start-page: 2399
  year: 2008
  end-page: 2406
  article-title: Janzen‐Connell effects are widespread and strong enough to maintain diversity in grasslands
  publication-title: Ecology
– volume: 16
  start-page: 545
  year: 2002
  end-page: 556
  article-title: Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail
  publication-title: Functional Ecology
– volume: 28
  start-page: 55
  year: 2014
  end-page: 64
  article-title: Are there evolutionary consequences of plant‐soil feedbacks along soil gradients?
  publication-title: Functional Ecology
– year: 1993
– volume: 87
  start-page: S150
  year: 2006
  end-page: S162
  article-title: The growth‐defense trade‐off and habitat specialization by plants in Amazonian forests
  publication-title: Ecology
– volume: 350
  start-page: 27
  year: 2012
  end-page: 33
  article-title: The curse of the black box
  publication-title: Plant and Soil
– volume: 51
  start-page: 335
  year: 2003
  end-page: 380
  article-title: A handbook of protocols for standardised and easy measurement of plant functional traits worldwide
  publication-title: Australian Journal of Botany
– volume: 101
  start-page: 265
  year: 2013
  end-page: 276
  article-title: Plant‐soil feedbacks: the past, the present and future challenges
  publication-title: Journal of Ecology
– volume: 104
  start-page: 206
  year: 2016
  end-page: 218
  article-title: From pots to plots: hierarchical trait‐based prediction of plant performance in a mesic grassland
  publication-title: Journal of Ecology
– volume: 106
  start-page: 7899
  year: 2009
  end-page: 7904
  article-title: Synergy between pathogen release and resource availability in plant invasion
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 135
  start-page: 575
  year: 1997
  end-page: 585
  article-title: Functioning of mycorrhizal associations along the mutualism–parasitism continuum
  publication-title: New Phytologist
– volume: 67
  start-page: 283
  year: 1992
  end-page: 335
  article-title: The dilemma of plants: to grow or defend
  publication-title: The Quarterly Review of Biology
– volume: 11
  start-page: 980
  year: 2008
  end-page: 992
  article-title: Plant–soil feedbacks: a meta‐analytical review
  publication-title: Ecology Letters
– year: 2016
  article-title: Effects of root decomposition on plant–soil feedback of early‐ and mid‐successional plant species
  publication-title: New Phytologist
– volume: 9
  start-page: 1080
  year: 2006
  end-page: 1088
  article-title: Temporal variation in plant–soil feedback controls succession
  publication-title: Ecology Letters
– volume: 17
  start-page: 2905
  year: 2011
  end-page: 2935
  article-title: TRY – a global database of plant traits
  publication-title: Global Change Biology
– volume: 84
  start-page: 2292
  year: 2003
  end-page: 2301
  article-title: Variation in plant response to native and exotic arbuscular mycorrhizal fungi
  publication-title: Ecology
– year: 1996
– volume: 74
  start-page: 531
  year: 1988
  end-page: 536
  article-title: Effects of plant growth rate and leaf lifetime on the amount and type of anti‐herbivore defense
  publication-title: Oecologia
– volume: 33
  start-page: 125
  year: 2002
  end-page: 159
  article-title: Plant ecological strategies: some leading dimensions of variation between species
  publication-title: Annual Review of Ecology and Systematics
– volume: 11
  start-page: 516
  year: 2008
  end-page: 531
  article-title: Plant functional traits and soil carbon sequestration in contrasting biomes
  publication-title: Ecology Letters
– year: 1954
– volume: 93
  start-page: 991
  year: 1995
  end-page: 1000
  article-title: Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field
  publication-title: Journal of Ecology
– volume: 98
  start-page: 1074
  year: 2010
  end-page: 1083
  article-title: Linkages of plant traits to soil properties and the functioning of temperate grassland
  publication-title: Journal of Ecology
– volume: 25
  start-page: 468
  year: 2010
  end-page: 478
  article-title: Rooting theories of plant community ecology in microbial interactions
  publication-title: Trends in Ecology & Evolution
– year: 2010
– volume: 25
  start-page: GB2014
  year: 2011
  article-title: Plant diversity effects on aboveground and belowground N pools in temperate grassland ecosystems: development in the first 5 years after establishment
  publication-title: Global Biogeochemical Cycles
– volume: 100
  start-page: 128
  year: 2012
  end-page: 140
  article-title: How fundamental plant functional trait relationships scale‐up to trade‐offs and synergies in ecosystem services
  publication-title: Journal of Ecology
– volume: 204
  start-page: 192
  year: 2014
  end-page: 200
  article-title: Is there an association between root architecture and mycorrhizal growth response?
  publication-title: New Phytologist
– volume: 79
  start-page: 259
  year: 1997
  end-page: 281
  article-title: Integrated screening validates primary axes of specialisation in plants
  publication-title: Oikos
– volume: 304
  start-page: 1629
  year: 2004
  end-page: 1633
  article-title: Ecological linkages between aboveground and belowground biota
  publication-title: Science
– volume: 111
  start-page: 1169
  year: 1977
  end-page: 1194
  article-title: Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory
  publication-title: The American Naturalist
– year: 1988
– volume: 150
  start-page: 697
  year: 2001
  end-page: 706
  article-title: Interpretation of bioassays in the study of interactions between soil organisms and plants: involvement of nutrient factors
  publication-title: New Phytologist
– volume: 124
  start-page: 994
  year: 2015
  end-page: 1004
  article-title: Intraspecific and intergenerational differences in plant‐soil feedbacks
  publication-title: Oikos
– volume: 92
  start-page: 824
  year: 2004
  end-page: 834
  article-title: Plant community development is affected by nutrients and soil biota
  publication-title: Journal of Ecology
– volume: 167
  start-page: 493
  year: 2005
  end-page: 508
  article-title: Linking leaf and root trait syndromes among 39 grassland and savannah species
  publication-title: New Phytologist
– year: 1991
– volume: 76
  start-page: 3765
  year: 2010
  end-page: 3775
  article-title: TaqMan Real‐Time PCR Assays To assess arbuscular mycorrhizal responses to field manipulation of grassland biodiversity: effects of soil characteristics, plant species richness, and functional traits
  publication-title: Applied and Environmental Microbiology
– year: 2013
– ident: e_1_2_7_6_1
  doi: 10.2307/2960528
– ident: e_1_2_7_22_1
  doi: 10.1038/ismej.2015.120
– ident: e_1_2_7_56_1
  doi: 10.1890/10-0773.1
– ident: e_1_2_7_58_1
  doi: 10.1111/1365-2435.12201
– ident: e_1_2_7_61_1
  doi: 10.1111/j.1469-8137.2005.01428.x
– ident: e_1_2_7_17_1
  doi: 10.1038/nature16489
– ident: e_1_2_7_44_1
  doi: 10.1146/annurev.es.03.110172.001531
– volume-title: Plant Strategies and the Dynamics and Structure of Plant Communities
  year: 1988
  ident: e_1_2_7_60_1
– ident: e_1_2_7_36_1
  doi: 10.1111/j.1461-0248.2008.01209.x
– ident: e_1_2_7_30_1
  doi: 10.1111/1365-2745.12046
– ident: e_1_2_7_42_1
  doi: 10.1111/j.1469-8137.1990.tb00476.x
– ident: e_1_2_7_51_1
  doi: 10.1111/1365-2745.12054
– volume-title: Fungal Biology
  year: 1991
  ident: e_1_2_7_27_1
– ident: e_1_2_7_66_1
  doi: 10.1146/annurev.ecolsys.33.010802.150452
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1461-0248.2006.00953.x
– ident: e_1_2_7_5_1
  doi: 10.1098/rspb.2002.2162
– ident: e_1_2_7_45_1
  doi: 10.2307/2261180
– ident: e_1_2_7_50_1
  doi: 10.1890/02-0284
– ident: e_1_2_7_34_1
  doi: 10.1128/AEM.02951-09
– ident: e_1_2_7_8_1
  doi: 10.1073/pnas.0812607106
– ident: e_1_2_7_32_1
  doi: 10.1111/nph.13215
– ident: e_1_2_7_40_1
  doi: 10.1111/nph.12927
– ident: e_1_2_7_39_1
  doi: 10.1093/aob/mcu169
– ident: e_1_2_7_49_1
  doi: 10.1890/07-2056.1
– ident: e_1_2_7_67_1
  doi: 10.1007/s11104-014-2370-8
– ident: e_1_2_7_16_1
  doi: 10.1111/j.0022-0477.2004.00924.x
– ident: e_1_2_7_13_1
  doi: 10.1007/s11104-011-0963-z
– ident: e_1_2_7_41_1
  doi: 10.1111/j.1461-0248.2010.01547.x
– ident: e_1_2_7_21_1
  doi: 10.1111/j.1365-2311.2004.00572.x
– ident: e_1_2_7_2_1
  doi: 10.1016/j.tree.2014.10.006
– ident: e_1_2_7_7_1
  doi: 10.1016/j.tree.2010.05.004
– ident: e_1_2_7_46_1
  doi: 10.1029/2010GB003869
– ident: e_1_2_7_4_1
  doi: 10.1111/nph.12915
– ident: e_1_2_7_23_1
  doi: 10.1016/j.ppees.2015.03.002
– ident: e_1_2_7_68_1
  doi: 10.1111/nph.14007
– ident: e_1_2_7_26_1
  doi: 10.1111/j.1461-0248.2009.01430.x
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1365-2745.2010.01695.x
– ident: e_1_2_7_19_1
  doi: 10.2307/2389540
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2013
  ident: e_1_2_7_52_1
– ident: e_1_2_7_11_1
  doi: 10.1007/BF00380050
– ident: e_1_2_7_20_1
  doi: 10.1086/283244
– ident: e_1_2_7_24_1
  doi: 10.1007/978-94-011-1494-3
– ident: e_1_2_7_28_1
  doi: 10.1046/j.1469-8137.1997.00729.x
– ident: e_1_2_7_53_1
  doi: 10.1111/j.1365-2435.2010.01811.x
– ident: e_1_2_7_25_1
  doi: 10.1086/417659
– ident: e_1_2_7_14_1
  doi: 10.1515/9781400830640
– volume-title: Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. USDA Circular Nr 939
  year: 1954
  ident: e_1_2_7_47_1
– volume-title: Mycorrhizal Symbiosis
  year: 2010
  ident: e_1_2_7_59_1
– ident: e_1_2_7_57_1
  doi: 10.1111/1365-2745.12489
– ident: e_1_2_7_64_1
  doi: 10.1111/oik.01743
– ident: e_1_2_7_12_1
  doi: 10.1071/BT02124
– ident: e_1_2_7_62_1
  doi: 10.1046/j.1469-8137.2001.00133.x
– ident: e_1_2_7_43_1
  doi: 10.1007/s10530-014-0685-2
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1461-0248.2008.01164.x
– ident: e_1_2_7_48_1
  doi: 10.1111/j.1365-2745.2010.01679.x
– ident: e_1_2_7_18_1
  doi: 10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2
– ident: e_1_2_7_63_1
  doi: 10.1111/j.0030-1299.2007.15559.x
– ident: e_1_2_7_3_1
  doi: 10.1111/j.1365-3040.2007.01665.x
– volume-title: Working With Mycorrhizas in Forestry and Agriculture
  year: 1996
  ident: e_1_2_7_10_1
– ident: e_1_2_7_35_1
  doi: 10.1890/14-2208.1
– ident: e_1_2_7_31_1
  doi: 10.1111/j.1365-2486.2011.02451.x
– ident: e_1_2_7_65_1
  doi: 10.1126/science.1094875
– ident: e_1_2_7_37_1
  doi: 10.1046/j.1365-2435.2002.00664.x
– ident: e_1_2_7_33_1
  doi: 10.1890/02-0413
– ident: e_1_2_7_38_1
  doi: 10.1111/j.1365-2745.2011.01914.x
– ident: e_1_2_7_55_1
  doi: 10.1078/1439-1791-00216
– ident: e_1_2_7_54_1
  doi: 10.1111/1365-2745.12211
SSID ssj0006750
Score 2.5972683
Snippet 1. Plant–soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is...
Summary Plant–soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are...
Plant–soil feedback ( PSF ), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is...
Summary Plant-soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are...
1. Plant-soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is...
Plant–soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is...
SourceID wageningen
proquest
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1608
SubjectTerms above-ground–below-ground interactions
below-ground traits
biodiversity–ecosystem functioning
Biota
Colonization
functional traits
graminoids
Grasslands
Herbs
inoculum
leaf area
Legumes
mycorrhizal fungi
pathogens
Plant communities
Plant ecology
Plant growth
Plant species
Plant–soil (below-ground) interactions
plant–soil feedback
plant–soil interactions
soil
soil biota
soil legacy effects
soil microbes
soil sterilization
soil-plant interactions
Soils
trait-based ecology
Title Plant–soil feedbacks: role of plant functional group and plant traits
URI https://www.jstor.org/stable/26177091
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.12643
https://www.proquest.com/docview/1829405724
https://www.proquest.com/docview/1837325655
https://www.proquest.com/docview/2000470671
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F509163
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB-0WOiLf6rSq_VYwQdfctxl_11803K1FBQRC74tu5ssiEdSmhylPvU7-A39JM7sJtdeoYj4lCU7S7KbmexvkpnfALz2IUytnHl0U-U8E0qGbF4EbLlZVWougg6U7_zxkzo-FSff5BBNSLkwiR9i_cGNLCO-r8nArWtvGHmfTSXkZIabOvF90hmCRV-uCaQQDk8HvvCp0Lon96FYnlvjN_alFJq4ATp3LtC-65jwtIlj40Z09AjcMIUUf_JjsurcxP-8xe74X3N8DA97mMreJb16Aveqehe2U-HKy1148L5BUImN7UVkvb58Ch-o_FH3--pX23xfsoCboqP0_beM4hdZE9gZ9TPaR9PnRxYTSpity76LqlV07TM4PVp8PTzO-ioNmadfoFnpZOFV7tB1c6rQnEgWC6uDLK32Ni_xekoJPxfcCz63hStUCCrHI3rHCM74c9iqm7raA1Y49J5kNbXeOlGF0ua8JICKQhU5ZiOYDM_I-J7CnO5taQZXhhbM0IKZuGAjeLMecJbYO-4WHceHflOOguQNUdZrRFUjOBi0wfR23hr0zgqCvLkYwat1N1oo_XaxddWsSIZrjshSyrtlKGFKaFRXvAy_1jRTU0Gp1hAHeK8v5mJ1buolHdBgW0OAT-HdJz362yzNyeIwNvb_dcAL2EGsqFIa5gFsdeer6iXisc6N4X4uPo-j4f0BNAwoMQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9RAEJ8oSuQFFTWcINbEB196uev-u_oG5PBE4MFAwttmd9tNiJeW0F4IPPkd_IZ-Eme27XFHQozxqZvs9s9uZzq_2c78BuCj835gxNChmypGMZfCx6PUY8sO80wx7pWnfOfjEzk544fn4nwhF6bhh5hvuJFmhO81KThtSC9oeZtOxUV_iFadPYYnVNc7uFXf7yikEBAPOsbwAVeqpfehaJ57F1iyTE1w4hLsXLtGDS9CytMykg2m6OA5uG4STQTKj_6stn13e4_f8f9m-QLWW6Qa7Tai9RIe5cUGrDa1K2824OleibgSG6vjQHx98wq-UAWk-vfPX1V5MY082kVLGfyfIwphjEofXVJ_RKa02YGMQk5JZIqs7aKCFXX1Gs4Oxqf7k7gt1BA7-gsaZ1akTiYWvTcrU8WIZzE1yovMKGeSDO8nJXcjzhxnI5PaVHovEzyig4z4jL2BlaIs8k2IUosOlMgHxhnLc5-ZhGWEUXFQTr5ZD_rdS9KuZTGnZ5vqzpuhBdO0YDosWA8-zU-4bAg8Hh66E9764jiKk9fEWq8QWPVguxMH3ap6pdFBSwn1JrwHH-bdqKT058UUeTmjMUwxBJdCPDyGcqa4QnnF27A7UdMF1ZSqNNGAtwKjr2dXupjSAXW20oT5JD59I0h_m6U-HO-Hxtt_PeE9PJucHh_po68n37ZgDaGjbLIyt2Glvprl7xCe1XYn6N8fuzordQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB5BoagXfgqIQClG4sDFkeP9s7lBm1AKVAhRidtqd-2VEJEd1Y6qcuIdeEOehJm1nTaVKoQ4eaUdx971TOYbe-YbgBfO-8SIicMwVWQxl8LHWe5xZCdloRj3ylO988cjeXDMD7-KIZuQamE6fojVCzeyjPB_TQa-KPwFI--rqbgYT9Cps-twg8skI8Xe_3zOIIV4OBkIwxOuVM_uQ8k8l35gzTF1uYlrqHPrFA28ChVP60A2eKLZHbDDGroElO_jZWvH7sclesf_WuRduN3j1Oh1p1j34FpZbcNm17nybBtuvqkRVeJgcxpor8_uw1vqf9T-_vmrqb_NI49e0VL9_quIEhij2kcLmo_IkXbvH6NQURKZquinqF1F2zyA49n0y95B3LdpiB19A40LK3InU4uxm5W5YsSymBvlRWGUM2mB15OSu4wzx1lmcptL72WKRwyPEZ2xh7BR1VX5CKLcYvgkysQ4Y3npC5OyghAqCpUUmY1gPDwj7XoOc7q3uR5iGdowTRumw4aN4OXqhEVH33G16G546BflKEteE2e9Qlg1gp1BG3Rv6I3G8CwnzJvyETxfTaOJ0ncXU5X1kmSYYggthbhahiqmuEJ1xcuwc03TFXWUajSRgPf6ok-XJ7qa0wEtttGE-CTefadHf1ulPpzuhcHjfz3hGdz6tD_TH94dvX8CW4gbZVeSuQMb7cmyfIrYrLW7wfr-ACMoKi0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant%E2%80%93soil+feedbacks%3A+role+of+plant+functional+group+and+plant+traits&rft.jtitle=The+Journal+of+ecology&rft.au=Cortois%2C+Roeland&rft.au=Schr%C3%B6der%E2%80%90Georgi%2C+Thomas&rft.au=Weigelt%2C+Alexandra&rft.au=van+der+Putten%2C+Wim+H.&rft.date=2016-11-01&rft.issn=0022-0477&rft.volume=104&rft.issue=6+p.1608-1617&rft.spage=1608&rft.epage=1617&rft_id=info:doi/10.1111%2F1365-2745.12643&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon