Plant–soil feedbacks: role of plant functional group and plant traits
1. Plant–soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known. 2. To test how plant functional groups (FGs: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF, we...
Saved in:
Published in | The Journal of ecology Vol. 104; no. 6; pp. 1608 - 1617 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
John Wiley & Sons Ltd
01.11.2016
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 1. Plant–soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known. 2. To test how plant functional groups (FGs: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF, we grew 48 grassland species in sterilized soil, sterilized soil with own species soil inoculum and sterilized soil with soil inoculum from all species, and quantified relative growth rate (RGR), specific leaf area (SLA), specific root length (SRL) and per cent arbuscular mycorrhizal fungi colonization (%AMF). 3. Plant growth response to the plant species' own soil biota relative to sterilized soil (PSFsterilized) reflects net effects of all (generalist + specialized) soil biota. Growth response to the plant species' own soil biota relative to soil biota of all plant species (PSFaway) reveals effects of more specialized soil organisms. 4. PSFsterilized showed that graminoids and small herbs have a negative and tall herbs a positive response to their own soil biota, whereas legumes responded neutrally. However, PSFaway showed that on average, all plant FGs benefitted from growing with other species' soil biota, suggesting that pathogens are more specialized than plant growth-promoting soil biota. Feedback to plant growth from all soil biota (PSFsterilized) was stronger than from more specialized soil biota (PSFaway) and could be predicted by SRL and especially by %AMF colonization. Species with high SRL and low %AMF colonization when grown in away soil experienced most negative soil feedback. 5. Synthesis. Plant species from all plant FGs grow better in soil from other species because of less net negative effects of soil biota (in graminoids), or because of more net positive soil biota effects (in tall herbs). Explorative plant species (high SRL, low %AMF colonization) suffer most from negative feedback of all soil biota, whereas more resource conservative species (low SRL, high %AMF colonization) benefit from soil feedback of all soil biota. These findings help to understand replacement of explorative species during succession. Moreover, we suggest a potentially larger role for species with positive feedback than for species with negative feedback to contribute to maintain plant community productivity of diverse communities over time. |
---|---|
AbstractList | 1. Plant-soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known. 2. To test how plant functional groups (FGs: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF, we grew 48 grassland species in sterilized soil, sterilized soil with own species soil inoculum and sterilized soil with soil inoculum from all species, and quantified relative growth rate (RGR), specific leaf area (SLA), specific root length (SRL) and per cent arbuscular mycorrhizal fungi colonization (%AMF). 3. Plant growth response to the plant species' own soil biota relative to sterilized soil (PSFsterilized) reflects net effects of all (generalist + specialized) soil biota. Growth response to the plant species' own soil biota relative to soil biota of all plant species (PSFaway) reveals effects of more specialized soil organisms. 4. PSFsterilized showed that graminoids and small herbs have a negative and tall herbs a positive response to their own soil biota, whereas legumes responded neutrally. However, PSFaway showed that on average, all plant FGs benefitted from growing with other species' soil biota, suggesting that pathogens are more specialized than plant growth-promoting soil biota. Feedback to plant growth from all soil biota (PSFsterilized) was stronger than from more specialized soil biota (PSFaway) and could be predicted by SRL and especially by %AMF colonization. Species with high SRL and low %AMF colonization when grown in away soil experienced most negative soil feedback. 5. Synthesis. Plant species from all plant FGs grow better in soil from other species because of less net negative effects of soil biota (in graminoids), or because of more net positive soil biota effects (in tall herbs). Explorative plant species (high SRL, low %AMF colonization) suffer most from negative feedback of all soil biota, whereas more resource conservative species (low SRL, high %AMF colonization) benefit from soil feedback of all soil biota. These findings help to understand replacement of explorative species during succession. Moreover, we suggest a potentially larger role for species with positive feedback than for species with negative feedback to contribute to maintain plant community productivity of diverse communities over time. Plant species from all plant FGs grow better in soil from other species because of less net negative effects of soil biota (in graminoids), or because of more net positive soil biota effects (in tall herbs). Explorative plant species (high SRL, low %AMF colonization) suffer most from negative feedback of all soil biota, whereas more resource conservative species (low SRL, high %AMF colonization) benefit from soil feedback of all soil biota. These findings help to understand replacement of explorative species during succession. Moreover, we suggest a potentially larger role for species with positive feedback than for species with negative feedback to contribute to maintain plant community productivity of diverse communities over time. Plant–soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known. To test how plant functional groups (FGs: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF, we grew 48 grassland species in sterilized soil, sterilized soil with own species soil inoculum and sterilized soil with soil inoculum from all species, and quantified relative growth rate (RGR), specific leaf area (SLA), specific root length (SRL) and per cent arbuscular mycorrhizal fungi colonization (%AMF). Plant growth response to the plant species' own soil biota relative to sterilized soil (PSFsterilized) reflects net effects of all (generalist + specialized) soil biota. Growth response to the plant species' own soil biota relative to soil biota of all plant species (PSFaway) reveals effects of more specialized soil organisms. PSFsterilized showed that graminoids and small herbs have a negative and tall herbs a positive response to their own soil biota, whereas legumes responded neutrally. However, PSFaway showed that on average, all plant FGs benefitted from growing with other species' soil biota, suggesting that pathogens are more specialized than plant growth‐promoting soil biota. Feedback to plant growth from all soil biota (PSFsterilized) was stronger than from more specialized soil biota (PSFaway) and could be predicted by SRL and especially by %AMF colonization. Species with high SRL and low %AMF colonization when grown in away soil experienced most negative soil feedback. Synthesis. Plant species from all plant FGs grow better in soil from other species because of less net negative effects of soil biota (in graminoids), or because of more net positive soil biota effects (in tall herbs). Explorative plant species (high SRL, low %AMF colonization) suffer most from negative feedback of all soil biota, whereas more resource conservative species (low SRL, high %AMF colonization) benefit from soil feedback of all soil biota. These findings help to understand replacement of explorative species during succession. Moreover, we suggest a potentially larger role for species with positive feedback than for species with negative feedback to contribute to maintain plant community productivity of diverse communities over time. 1. Plant–soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known. 2. To test how plant functional groups (FGs: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF, we grew 48 grassland species in sterilized soil, sterilized soil with own species soil inoculum and sterilized soil with soil inoculum from all species, and quantified relative growth rate (RGR), specific leaf area (SLA), specific root length (SRL) and per cent arbuscular mycorrhizal fungi colonization (%AMF). 3. Plant growth response to the plant species' own soil biota relative to sterilized soil (PSFsterilized) reflects net effects of all (generalist + specialized) soil biota. Growth response to the plant species' own soil biota relative to soil biota of all plant species (PSFaway) reveals effects of more specialized soil organisms. 4. PSFsterilized showed that graminoids and small herbs have a negative and tall herbs a positive response to their own soil biota, whereas legumes responded neutrally. However, PSFaway showed that on average, all plant FGs benefitted from growing with other species' soil biota, suggesting that pathogens are more specialized than plant growth-promoting soil biota. Feedback to plant growth from all soil biota (PSFsterilized) was stronger than from more specialized soil biota (PSFaway) and could be predicted by SRL and especially by %AMF colonization. Species with high SRL and low %AMF colonization when grown in away soil experienced most negative soil feedback. 5. Synthesis. Plant species from all plant FGs grow better in soil from other species because of less net negative effects of soil biota (in graminoids), or because of more net positive soil biota effects (in tall herbs). Explorative plant species (high SRL, low %AMF colonization) suffer most from negative feedback of all soil biota, whereas more resource conservative species (low SRL, high %AMF colonization) benefit from soil feedback of all soil biota. These findings help to understand replacement of explorative species during succession. Moreover, we suggest a potentially larger role for species with positive feedback than for species with negative feedback to contribute to maintain plant community productivity of diverse communities over time. Plant–soil feedback ( PSF ), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known. To test how plant functional groups ( FG s: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF , we grew 48 grassland species in sterilized soil, sterilized soil with own species soil inoculum and sterilized soil with soil inoculum from all species, and quantified relative growth rate ( RGR ), specific leaf area ( SLA ), specific root length ( SRL ) and per cent arbuscular mycorrhizal fungi colonization (% AMF ). Plant growth response to the plant species' own soil biota relative to sterilized soil ( PSF sterilized) reflects net effects of all (generalist + specialized) soil biota. Growth response to the plant species' own soil biota relative to soil biota of all plant species ( PSF away) reveals effects of more specialized soil organisms. PSF sterilized showed that graminoids and small herbs have a negative and tall herbs a positive response to their own soil biota, whereas legumes responded neutrally. However, PSF away showed that on average, all plant FG s benefitted from growing with other species' soil biota, suggesting that pathogens are more specialized than plant growth‐promoting soil biota. Feedback to plant growth from all soil biota ( PSF sterilized) was stronger than from more specialized soil biota ( PSF away) and could be predicted by SRL and especially by % AMF colonization. Species with high SRL and low % AMF colonization when grown in away soil experienced most negative soil feedback. Synthesis . Plant species from all plant FG s grow better in soil from other species because of less net negative effects of soil biota (in graminoids), or because of more net positive soil biota effects (in tall herbs). Explorative plant species (high SRL , low % AMF colonization) suffer most from negative feedback of all soil biota, whereas more resource conservative species (low SRL , high % AMF colonization) benefit from soil feedback of all soil biota. These findings help to understand replacement of explorative species during succession. Moreover, we suggest a potentially larger role for species with positive feedback than for species with negative feedback to contribute to maintain plant community productivity of diverse communities over time. Summary Plant–soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known. To test how plant functional groups (FGs: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF, we grew 48 grassland species in sterilized soil, sterilized soil with own species soil inoculum and sterilized soil with soil inoculum from all species, and quantified relative growth rate (RGR), specific leaf area (SLA), specific root length (SRL) and per cent arbuscular mycorrhizal fungi colonization (%AMF). Plant growth response to the plant species' own soil biota relative to sterilized soil (PSFsterilized) reflects net effects of all (generalist + specialized) soil biota. Growth response to the plant species' own soil biota relative to soil biota of all plant species (PSFaway) reveals effects of more specialized soil organisms. PSFsterilized showed that graminoids and small herbs have a negative and tall herbs a positive response to their own soil biota, whereas legumes responded neutrally. However, PSFaway showed that on average, all plant FGs benefitted from growing with other species' soil biota, suggesting that pathogens are more specialized than plant growth‐promoting soil biota. Feedback to plant growth from all soil biota (PSFsterilized) was stronger than from more specialized soil biota (PSFaway) and could be predicted by SRL and especially by %AMF colonization. Species with high SRL and low %AMF colonization when grown in away soil experienced most negative soil feedback. Synthesis. Plant species from all plant FGs grow better in soil from other species because of less net negative effects of soil biota (in graminoids), or because of more net positive soil biota effects (in tall herbs). Explorative plant species (high SRL, low %AMF colonization) suffer most from negative feedback of all soil biota, whereas more resource conservative species (low SRL, high %AMF colonization) benefit from soil feedback of all soil biota. These findings help to understand replacement of explorative species during succession. Moreover, we suggest a potentially larger role for species with positive feedback than for species with negative feedback to contribute to maintain plant community productivity of diverse communities over time. Plant species from all plant FGs grow better in soil from other species because of less net negative effects of soil biota (in graminoids), or because of more net positive soil biota effects (in tall herbs). Explorative plant species (high SRL, low %AMF colonization) suffer most from negative feedback of all soil biota, whereas more resource conservative species (low SRL, high %AMF colonization) benefit from soil feedback of all soil biota. These findings help to understand replacement of explorative species during succession. Moreover, we suggest a potentially larger role for species with positive feedback than for species with negative feedback to contribute to maintain plant community productivity of diverse communities over time. Summary Plant-soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known. To test how plant functional groups (FGs: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF, we grew 48 grassland species in sterilized soil, sterilized soil with own species soil inoculum and sterilized soil with soil inoculum from all species, and quantified relative growth rate (RGR), specific leaf area (SLA), specific root length (SRL) and per cent arbuscular mycorrhizal fungi colonization (%AMF). Plant growth response to the plant species' own soil biota relative to sterilized soil (PSFsterilized) reflects net effects of all (generalist + specialized) soil biota. Growth response to the plant species' own soil biota relative to soil biota of all plant species (PSFaway) reveals effects of more specialized soil organisms. PSFsterilized showed that graminoids and small herbs have a negative and tall herbs a positive response to their own soil biota, whereas legumes responded neutrally. However, PSFaway showed that on average, all plant FGs benefitted from growing with other species' soil biota, suggesting that pathogens are more specialized than plant growth-promoting soil biota. Feedback to plant growth from all soil biota (PSFsterilized) was stronger than from more specialized soil biota (PSFaway) and could be predicted by SRL and especially by %AMF colonization. Species with high SRL and low %AMF colonization when grown in away soil experienced most negative soil feedback. Synthesis. Plant species from all plant FGs grow better in soil from other species because of less net negative effects of soil biota (in graminoids), or because of more net positive soil biota effects (in tall herbs). Explorative plant species (high SRL, low %AMF colonization) suffer most from negative feedback of all soil biota, whereas more resource conservative species (low SRL, high %AMF colonization) benefit from soil feedback of all soil biota. These findings help to understand replacement of explorative species during succession. Moreover, we suggest a potentially larger role for species with positive feedback than for species with negative feedback to contribute to maintain plant community productivity of diverse communities over time. |
Author | Schröder-Georgi, Thomas Weigelt, Alexandra Cortois, Roeland van der Putten, Wim H. De Deyn, Gerlinde B. |
Author_xml | – sequence: 1 givenname: Roeland surname: Cortois fullname: Cortois, Roeland – sequence: 2 givenname: Thomas surname: Schröder-Georgi fullname: Schröder-Georgi, Thomas – sequence: 3 givenname: Alexandra surname: Weigelt fullname: Weigelt, Alexandra – sequence: 4 givenname: Wim H. surname: van der Putten fullname: van der Putten, Wim H. – sequence: 5 givenname: Gerlinde B. surname: De Deyn fullname: De Deyn, Gerlinde B. |
BookMark | eNqFkc9qFTEUxoNU8La6djsggptp8z-T7uRS20rBLuo6ZDKZkmuajMkMl-76Dr6hT2LivUoplGaRAznfL4fzfYfgIMRgAXiP4DEq5wQRzlosKDtGmFPyCqz-vxyAFYQYt5AK8QYc5ryBEHLB4AqcX3sd5t8Pv3J0vhmtHXptfuTTJkVvmzg2U-034xLM7GLQvrlNcZkaHYZ9a07azfkteD1qn-27fT0C37-c3awv2qtv55frz1etYZCQduiZNBz3He56LgWRPYRSi5ENWhiNhzKfc2o6SgwlnZa95OPIcamEdBJLcgROd_9u9a0NLpRLBZ2Myypqp7zrk073arskFXwt09JnxaBEnBT40w6eUvy52DyrO5eN9WUPG5escLGFiuIMelGKOiIIZpyxIv3wRLqJSypWVRWWFDKBaVGxncqkmHOyozJu1tXTaqBXCKoao6qhqRqa-htj4U6ecFNyd3XH54n9pK3z9v4lufp6tv7HfdxxmzzH9JjDBAqFORKi-Ej-AEfVu10 |
CODEN | JECOAB |
CitedBy_id | crossref_primary_10_1111_1462_2920_14882 crossref_primary_10_1126_sciadv_aau4578 crossref_primary_10_1002_ece3_9400 crossref_primary_10_1007_s11104_023_05948_1 crossref_primary_10_3389_ffgc_2020_00064 crossref_primary_10_5194_bg_14_733_2017 crossref_primary_10_1016_j_apsoil_2020_103855 crossref_primary_10_1016_j_baae_2017_06_002 crossref_primary_10_1111_oik_06989 crossref_primary_10_1016_j_soilbio_2024_109343 crossref_primary_10_1111_1365_2745_13220 crossref_primary_10_1038_s41467_019_09615_x crossref_primary_10_1111_nph_15603 crossref_primary_10_1111_rec_13081 crossref_primary_10_1111_oik_06609 crossref_primary_10_1371_journal_pone_0293906 crossref_primary_10_3390_agriculture11090830 crossref_primary_10_1111_1365_2745_13574 crossref_primary_10_1111_1440_1703_12165 crossref_primary_10_1111_2041_210X_13326 crossref_primary_10_1002_sae2_12119 crossref_primary_10_1002_ecy_3692 crossref_primary_10_1016_j_pedobi_2017_08_001 crossref_primary_10_1186_s13717_022_00410_z crossref_primary_10_3390_microorganisms12122438 crossref_primary_10_1128_msystems_00418_22 crossref_primary_10_1016_j_still_2022_105492 crossref_primary_10_1186_s12870_022_03514_y crossref_primary_10_3389_fevo_2024_1361124 crossref_primary_10_1111_1365_2745_13005 crossref_primary_10_1007_s00442_017_3996_z crossref_primary_10_1038_s41598_018_30340_w crossref_primary_10_1111_oik_09354 crossref_primary_10_1007_s11104_021_04848_6 crossref_primary_10_1093_jpe_rtac044 crossref_primary_10_1111_ejss_13427 crossref_primary_10_1007_s11104_023_05893_z crossref_primary_10_1016_j_envexpbot_2018_08_013 crossref_primary_10_3389_fpls_2017_02127 crossref_primary_10_21697_seb_2022_28 crossref_primary_10_1002_ecy_3557 crossref_primary_10_1002_ece3_7819 crossref_primary_10_1111_nph_16227 crossref_primary_10_1093_jpe_rtab087 crossref_primary_10_1007_s10530_022_02853_z crossref_primary_10_1111_nph_20434 crossref_primary_10_1038_s41467_021_25971_z crossref_primary_10_1007_s13157_019_01216_0 crossref_primary_10_3389_fsoil_2022_838595 crossref_primary_10_1007_s11104_024_06577_y crossref_primary_10_1111_ele_13273 crossref_primary_10_1016_j_soilbio_2021_108450 crossref_primary_10_1111_1365_2745_13388 crossref_primary_10_1002_ecy_4295 crossref_primary_10_1093_jpe_rtac022 crossref_primary_10_1111_nph_18118 crossref_primary_10_1007_s11071_021_06314_5 crossref_primary_10_1007_s11104_018_3567_z crossref_primary_10_1093_jpe_rtab050 crossref_primary_10_1111_1365_2664_13156 crossref_primary_10_1016_j_ecolind_2022_109691 crossref_primary_10_1111_1365_2745_13814 crossref_primary_10_1007_s11252_023_01470_5 crossref_primary_10_1016_j_scitotenv_2018_03_219 crossref_primary_10_1002_jpln_201700093 crossref_primary_10_3389_fpls_2024_1396754 crossref_primary_10_1007_s11104_022_05792_9 crossref_primary_10_1016_j_soilbio_2023_109039 crossref_primary_10_1007_s11356_020_10471_2 crossref_primary_10_1016_j_scitotenv_2022_156022 crossref_primary_10_1111_ele_12879 crossref_primary_10_3389_fevo_2023_1073724 crossref_primary_10_1111_1365_2435_14387 crossref_primary_10_1093_jpe_rtab065 crossref_primary_10_1111_jvs_12717 crossref_primary_10_1007_s00442_020_04762_1 crossref_primary_10_3389_fcimb_2021_695087 crossref_primary_10_1111_oik_03967 crossref_primary_10_3389_fpls_2022_924154 crossref_primary_10_1111_pce_13999 crossref_primary_10_1007_s11104_024_07043_5 crossref_primary_10_1007_s11104_023_06408_6 crossref_primary_10_1111_1365_2745_13048 crossref_primary_10_1111_oik_04149 crossref_primary_10_1007_s11104_017_3282_1 crossref_primary_10_3389_fevo_2019_00451 crossref_primary_10_1007_s00442_017_4033_y crossref_primary_10_1111_1365_2435_13511 crossref_primary_10_1111_ejss_13582 crossref_primary_10_1016_j_ecolind_2019_105558 crossref_primary_10_1086_692439 crossref_primary_10_2139_ssrn_4153311 crossref_primary_10_1111_nph_17237 crossref_primary_10_3390_plants9111474 crossref_primary_10_1007_s11104_017_3353_3 crossref_primary_10_1111_1365_2745_14009 crossref_primary_10_1111_1365_2745_13157 crossref_primary_10_1155_2021_8835275 crossref_primary_10_1111_1365_2745_13394 crossref_primary_10_1002_pei3_10035 crossref_primary_10_1111_nph_18327 crossref_primary_10_1093_jpe_rtaa075 crossref_primary_10_3389_fenvs_2019_00168 crossref_primary_10_1002_ecs2_1996 crossref_primary_10_1038_s41467_019_09284_w crossref_primary_10_1093_jpe_rtaa037 crossref_primary_10_1016_j_ecolind_2022_109766 crossref_primary_10_1007_s00442_021_04956_1 crossref_primary_10_1016_j_baae_2019_08_001 crossref_primary_10_1016_j_scitotenv_2022_160154 crossref_primary_10_1016_j_soilbio_2022_108772 crossref_primary_10_1111_1365_2745_12773 crossref_primary_10_1016_j_soilbio_2023_109107 crossref_primary_10_1016_j_tree_2017_11_005 crossref_primary_10_1007_s11104_019_04137_3 crossref_primary_10_1126_sciadv_aaz1834 crossref_primary_10_1007_s00442_023_05329_6 crossref_primary_10_1007_s13199_024_01009_y crossref_primary_10_1093_ee_nvab047 crossref_primary_10_1007_s00572_018_0866_4 crossref_primary_10_3389_fevo_2023_1224540 crossref_primary_10_1016_j_apsoil_2022_104566 crossref_primary_10_1016_j_flora_2019_151492 crossref_primary_10_1002_ecy_3736 crossref_primary_10_3389_fevo_2019_00300 crossref_primary_10_1111_gcb_70084 crossref_primary_10_1007_s00442_021_04919_6 crossref_primary_10_1111_gcb_15683 crossref_primary_10_3389_fmicb_2021_751794 crossref_primary_10_1111_oik_10061 crossref_primary_10_3390_drones3030054 crossref_primary_10_1093_aob_mcad058 crossref_primary_10_1002_ecs2_2704 crossref_primary_10_1007_s11629_020_6472_x crossref_primary_10_1111_1365_2664_12929 crossref_primary_10_1111_1365_2745_14177 crossref_primary_10_1002_ecy_3142 crossref_primary_10_1111_ele_12805 crossref_primary_10_1016_j_scitotenv_2021_150513 crossref_primary_10_1086_711662 crossref_primary_10_1093_aobpla_plaa050 crossref_primary_10_1111_nph_16982 crossref_primary_10_1002_ece3_5476 crossref_primary_10_1016_j_scitotenv_2022_160616 crossref_primary_10_1016_j_soilbio_2024_109516 crossref_primary_10_1111_jvs_13100 crossref_primary_10_1016_j_scitotenv_2020_143389 crossref_primary_10_1007_s11104_025_07379_6 crossref_primary_10_1016_j_ejsobi_2018_01_006 crossref_primary_10_1016_j_scitotenv_2020_138476 crossref_primary_10_1111_grs_12368 crossref_primary_10_1111_1365_2435_14006 crossref_primary_10_1007_s00442_019_04442_9 crossref_primary_10_1007_s11104_023_05908_9 crossref_primary_10_1111_rec_12989 crossref_primary_10_1071_BT20122 crossref_primary_10_1002_ecs2_2132 crossref_primary_10_1007_s11104_021_04861_9 crossref_primary_10_1007_s11104_023_06380_1 crossref_primary_10_3389_fmicb_2024_1454617 crossref_primary_10_1111_1365_2745_13535 crossref_primary_10_1002_ece3_3755 crossref_primary_10_1002_ecy_3259 crossref_primary_10_1111_pce_14247 crossref_primary_10_1007_s11104_020_04703_0 crossref_primary_10_1111_oik_06812 crossref_primary_10_1007_s11104_024_07049_z crossref_primary_10_3390_agronomy10121860 crossref_primary_10_3389_fmicb_2023_1088532 crossref_primary_10_3389_fmicb_2024_1447999 crossref_primary_10_1080_03650340_2019_1679783 crossref_primary_10_1111_1365_2745_13449 crossref_primary_10_1007_s11104_023_06052_0 crossref_primary_10_1038_s41598_017_18103_5 crossref_primary_10_3390_jof9050588 crossref_primary_10_3389_fpls_2022_839920 crossref_primary_10_1016_j_apsoil_2021_104008 crossref_primary_10_1126_science_aal4549 crossref_primary_10_1016_j_scitotenv_2020_137355 crossref_primary_10_1111_nph_18737 crossref_primary_10_1038_s41477_023_01433_w crossref_primary_10_1111_1365_2745_12907 crossref_primary_10_1007_s11104_018_3837_9 crossref_primary_10_1111_1365_2435_13232 crossref_primary_10_1111_nph_19490 crossref_primary_10_1007_s11104_018_3667_9 crossref_primary_10_1111_1365_2745_13316 crossref_primary_10_1111_1365_2745_13679 crossref_primary_10_1007_s12517_024_12175_0 crossref_primary_10_1016_j_tree_2021_03_011 crossref_primary_10_5194_we_23_1_2023 crossref_primary_10_1007_s10658_018_1573_x crossref_primary_10_1002_ecy_2146 crossref_primary_10_1007_s11104_019_04050_9 crossref_primary_10_1111_nph_17636 crossref_primary_10_1007_s10530_021_02475_x |
Cites_doi | 10.2307/2960528 10.1038/ismej.2015.120 10.1890/10-0773.1 10.1111/1365-2435.12201 10.1111/j.1469-8137.2005.01428.x 10.1038/nature16489 10.1146/annurev.es.03.110172.001531 10.1111/j.1461-0248.2008.01209.x 10.1111/1365-2745.12046 10.1111/j.1469-8137.1990.tb00476.x 10.1111/1365-2745.12054 10.1146/annurev.ecolsys.33.010802.150452 10.1111/j.1461-0248.2006.00953.x 10.1098/rspb.2002.2162 10.2307/2261180 10.1890/02-0284 10.1128/AEM.02951-09 10.1073/pnas.0812607106 10.1111/nph.13215 10.1111/nph.12927 10.1093/aob/mcu169 10.1890/07-2056.1 10.1007/s11104-014-2370-8 10.1111/j.0022-0477.2004.00924.x 10.1007/s11104-011-0963-z 10.1111/j.1461-0248.2010.01547.x 10.1111/j.1365-2311.2004.00572.x 10.1016/j.tree.2014.10.006 10.1016/j.tree.2010.05.004 10.1029/2010GB003869 10.1111/nph.12915 10.1016/j.ppees.2015.03.002 10.1111/nph.14007 10.1111/j.1461-0248.2009.01430.x 10.1111/j.1365-2745.2010.01695.x 10.2307/2389540 10.1007/BF00380050 10.1086/283244 10.1007/978-94-011-1494-3 10.1046/j.1469-8137.1997.00729.x 10.1111/j.1365-2435.2010.01811.x 10.1086/417659 10.1515/9781400830640 10.1111/1365-2745.12489 10.1111/oik.01743 10.1071/BT02124 10.1046/j.1469-8137.2001.00133.x 10.1007/s10530-014-0685-2 10.1111/j.1461-0248.2008.01164.x 10.1111/j.1365-2745.2010.01679.x 10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2 10.1111/j.0030-1299.2007.15559.x 10.1111/j.1365-3040.2007.01665.x 10.1890/14-2208.1 10.1111/j.1365-2486.2011.02451.x 10.1126/science.1094875 10.1046/j.1365-2435.2002.00664.x 10.1890/02-0413 10.1111/j.1365-2745.2011.01914.x 10.1078/1439-1791-00216 10.1111/1365-2745.12211 |
ContentType | Journal Article |
Copyright | 2016 British Ecological Society 2016 The Authors. Journal of Ecology © 2016 British Ecological Society Journal of Ecology © 2016 British Ecological Society Wageningen University & Research |
Copyright_xml | – notice: 2016 British Ecological Society – notice: 2016 The Authors. Journal of Ecology © 2016 British Ecological Society – notice: Journal of Ecology © 2016 British Ecological Society – notice: Wageningen University & Research |
DBID | 24P AAYXX CITATION 7QG 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7S9 L.6 QVL |
DOI | 10.1111/1365-2745.12643 |
DatabaseName | Wiley Online Library CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic NARCIS:Publications |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Ecology Abstracts AGRICOLA CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Botany |
EISSN | 1365-2745 |
EndPage | 1617 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_509163 4216490361 10_1111_1365_2745_12643 JEC12643 26177091 |
Genre | article |
GrantInformation_xml | – fundername: NWO funderid: 832.13.009 – fundername: NWO‐ALW VIDI funderid: 864.11.003 – fundername: Deutsche Forschungsgemeinschaft funderid: FOR 1451 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1OC 29K 2AX 2WC 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABAWQ ABBHK ABCQN ABCUV ABEML ABJNI ABLJU ABPFR ABPLY ABPPZ ABPQH ABPVW ABSQW ABTLG ABXSQ ACAHQ ACCZN ACFBH ACGFO ACGFS ACGOD ACHIC ACHJO ACNCT ACPOU ACPRK ACSCC ACSTJ ACUBG ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADULT ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFXHP AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIAGR AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BKOMP BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CUYZI D-E D-F D-I DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EAU EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JAS JBMMH JBS JBZCM JEB JENOY JHFFW JKQEH JLEZI JLS JLXEF JPL JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ TN5 UB1 UPT V8K W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 Y6R YF5 YQT YZZ ZCA ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 3-9 31~ 42X 8WZ A6W AAHHS ABEFU ABTAH ABYAD ACCFJ ACTWD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX FVMVE GTFYD HF~ HGD HQ2 HTVGU HVGLF JSODD MVM WHG WRC XIH YXE ZCG ZY4 AAYXX CITATION 7QG 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 SOI 7S9 L.6 08R AAJUZ ABCVL ABHUG ABPTK ABWRO ACXME ADAWD ADDAD ADZLD AESBF AFDAS AFVGU AGJLS AIHXQ B4K CWIXF DWIUU IPNFZ PQEST QVL UMP |
ID | FETCH-LOGICAL-c5033-db59c62b828b69739b009a7f5da7ca2deed664c843c438a9b96ff629b93389293 |
IEDL.DBID | DR2 |
ISSN | 0022-0477 |
IngestDate | Thu Oct 13 09:30:22 EDT 2022 Fri Jul 11 18:31:48 EDT 2025 Thu Jul 10 23:44:53 EDT 2025 Fri Jul 25 10:38:40 EDT 2025 Tue Jul 01 03:13:40 EDT 2025 Thu Apr 24 22:59:23 EDT 2025 Wed Jan 22 17:12:02 EST 2025 Thu Jul 03 22:16:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Attribution-NonCommercial-NoDerivs http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5033-db59c62b828b69739b009a7f5da7ca2deed664c843c438a9b96ff629b93389293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.12643 |
PQID | 1829405724 |
PQPubID | 37508 |
PageCount | 10 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_509163 proquest_miscellaneous_2000470671 proquest_miscellaneous_1837325655 proquest_journals_1829405724 crossref_citationtrail_10_1111_1365_2745_12643 crossref_primary_10_1111_1365_2745_12643 wiley_primary_10_1111_1365_2745_12643_JEC12643 jstor_primary_10_2307_26177091 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2016 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: November 2016 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | The Journal of ecology |
PublicationYear | 2016 |
Publisher | John Wiley & Sons Ltd Blackwell Publishing Ltd |
Publisher_xml | – name: John Wiley & Sons Ltd – name: Blackwell Publishing Ltd |
References | 2002; 16 2010; 98 2010; 13 2015; 389 1997; 85 2004; 5 2014; 29 1988; 74 2016; 104 2007; 30 2011; 14 2014; 28 2011; 17 2003; 51 2014; 204 2010; 25 2014; 16 2002; 269 2011; 25 2003; 84 1988 1997; 135 2010; 76 2015; 17 1995; 93 2012; 100 2010 2015; 124 2015; 96 2006; 9 2016; 529 2002; 33 2009 2016; 10 2013; 101 1954 1996 2008; 11 1993 2015; 206 1991 2004; 304 2014; 114 1991; 5 1972; 3 2012; 350 2001; 150 2004; 92 2007; 116 1990; 115 2006; 87 2005; 167 2011; 92 1997; 79 2008; 89 2016 2013 1977; 111 1992; 67 2009; 106 2014; 102 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 R Core Team (e_1_2_7_52_1) 2013 e_1_2_7_50_1 Hudson H.J. (e_1_2_7_27_1) 1991 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 Smith S.E. (e_1_2_7_59_1) 2010 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 Tilman D. (e_1_2_7_60_1) 1988 e_1_2_7_29_1 Olsen S. (e_1_2_7_47_1) 1954 e_1_2_7_51_1 Brundrett M. (e_1_2_7_10_1) 1996 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 102 start-page: 275 year: 2014 end-page: 301 article-title: The world‐wide ‘fast–slow’ plant economics spectrum: a traits manifesto publication-title: Journal of Ecology – year: 2009 – volume: 5 start-page: 773 year: 1991 end-page: 779 article-title: On the relationship between a plant's mycorrhizal dependency and rate of vesicular‐arbuscular mycorrhizal colonization publication-title: Functional Ecology – volume: 29 start-page: 692 year: 2014 end-page: 699 article-title: Going underground: root traits as drivers of ecosystem processes publication-title: Trends in Ecology & Evolution – volume: 17 start-page: 227 year: 2015 end-page: 235 article-title: Negative biotic soil‐effects enhance biodiversity by restricting potentially dominant plant species in grasslands publication-title: Perspectives in Plant Ecology, Evolution and Systematics – volume: 96 start-page: 1768 year: 2015 end-page: 1774 article-title: Mycorrhizal response trades off with plant growth rate publication-title: Ecology – volume: 206 start-page: 329 year: 2015 end-page: 341 article-title: The soil microbial community predicts the importance of plant traits in plant–soil feedback publication-title: New Phytologist – volume: 5 start-page: 107 year: 2004 end-page: 121 article-title: The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community publication-title: Basic and Applied Ecology – volume: 13 start-page: 394 year: 2010 end-page: 407 article-title: A meta‐analysis of context‐dependency in plant response to inoculation with mycorrhizal fungi publication-title: Ecology Letters – volume: 84 start-page: 2269 year: 2003 end-page: 2280 article-title: Plant defense belowground and spatiotemporal processes in natural vegetation publication-title: Ecology – volume: 98 start-page: 1063 year: 2010 end-page: 1073 article-title: Plant–soil feedback: experimental approaches, statistical analyses and ecological interpretations publication-title: Journal of Ecology – volume: 14 start-page: 36 year: 2011 end-page: 41 article-title: Soil fungal pathogens and the relationship between plant diversity and productivity publication-title: Ecology Letters – volume: 85 start-page: 561 year: 1997 end-page: 573 article-title: Incorporating the soil community into plant population dynamics: the utility of the feedback approach publication-title: Journal of Ecology – volume: 204 start-page: 408 year: 2014 end-page: 423 article-title: Are plant–soil feedback responses explained by plant traits? publication-title: New Phytologist – volume: 529 start-page: 167 year: 2016 end-page: 171 article-title: The global spectrum of plant form and function publication-title: Nature – volume: 116 start-page: 882 year: 2007 end-page: 892 article-title: Let the concept of trait be functional! publication-title: Oikos – volume: 101 start-page: 309 year: 2013 end-page: 315 article-title: A hierarchical framework for investigating plant‐soil feedbacks in time and space publication-title: Journal of Ecology – volume: 16 start-page: 2551 year: 2014 end-page: 2561 article-title: Plant–soil feedbacks of exotic plant species across life forms: a meta‐analysis publication-title: Biological Invasions – volume: 92 start-page: 296 year: 2011 end-page: 303 article-title: Soil microbes drive the classic plant diversity‐productivity pattern publication-title: Ecology – volume: 269 start-page: 2595 year: 2002 end-page: 2601 article-title: Negative feedback within a mutualism: host‐specific growth of mycorrhizal fungi reduces plant benefit publication-title: Proceedings of the Royal Society B‐Biological Sciences – volume: 115 start-page: 495 year: 1990 end-page: 501 article-title: A new method which gives an objective measure of colonization of roots by vesicular‐arbuscular mycorrhizal fungi publication-title: New Phytologist – volume: 10 start-page: 389 year: 2016 end-page: 399 article-title: A widespread plant‐fungal‐bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment publication-title: ISME Journal – volume: 25 start-page: 368 year: 2011 end-page: 379 article-title: Predicting root defence against herbivores during succession publication-title: Functional Ecology – volume: 3 start-page: 315 year: 1972 end-page: 346 article-title: The carbon balance of plants publication-title: Annual Review of Ecology and Systematics – volume: 389 start-page: 361 year: 2015 end-page: 374 article-title: Effects of arbuscular mycorrhizal fungi on plant growth depend on root system: a meta‐analysis publication-title: Plant and Soil – volume: 114 start-page: 1011 year: 2014 end-page: 1021 article-title: Contribution of above‐and below‐ground plant traits to the structure and function of grassland soil microbial communities publication-title: Annals of Botany – volume: 30 start-page: 786 year: 2007 end-page: 795 article-title: Consequences of insect herbivory on grape fine root systems with different growth rates publication-title: Plant, Cell & Environment – volume: 89 start-page: 2399 year: 2008 end-page: 2406 article-title: Janzen‐Connell effects are widespread and strong enough to maintain diversity in grasslands publication-title: Ecology – volume: 16 start-page: 545 year: 2002 end-page: 556 article-title: Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail publication-title: Functional Ecology – volume: 28 start-page: 55 year: 2014 end-page: 64 article-title: Are there evolutionary consequences of plant‐soil feedbacks along soil gradients? publication-title: Functional Ecology – year: 1993 – volume: 87 start-page: S150 year: 2006 end-page: S162 article-title: The growth‐defense trade‐off and habitat specialization by plants in Amazonian forests publication-title: Ecology – volume: 350 start-page: 27 year: 2012 end-page: 33 article-title: The curse of the black box publication-title: Plant and Soil – volume: 51 start-page: 335 year: 2003 end-page: 380 article-title: A handbook of protocols for standardised and easy measurement of plant functional traits worldwide publication-title: Australian Journal of Botany – volume: 101 start-page: 265 year: 2013 end-page: 276 article-title: Plant‐soil feedbacks: the past, the present and future challenges publication-title: Journal of Ecology – volume: 104 start-page: 206 year: 2016 end-page: 218 article-title: From pots to plots: hierarchical trait‐based prediction of plant performance in a mesic grassland publication-title: Journal of Ecology – volume: 106 start-page: 7899 year: 2009 end-page: 7904 article-title: Synergy between pathogen release and resource availability in plant invasion publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 135 start-page: 575 year: 1997 end-page: 585 article-title: Functioning of mycorrhizal associations along the mutualism–parasitism continuum publication-title: New Phytologist – volume: 67 start-page: 283 year: 1992 end-page: 335 article-title: The dilemma of plants: to grow or defend publication-title: The Quarterly Review of Biology – volume: 11 start-page: 980 year: 2008 end-page: 992 article-title: Plant–soil feedbacks: a meta‐analytical review publication-title: Ecology Letters – year: 2016 article-title: Effects of root decomposition on plant–soil feedback of early‐ and mid‐successional plant species publication-title: New Phytologist – volume: 9 start-page: 1080 year: 2006 end-page: 1088 article-title: Temporal variation in plant–soil feedback controls succession publication-title: Ecology Letters – volume: 17 start-page: 2905 year: 2011 end-page: 2935 article-title: TRY – a global database of plant traits publication-title: Global Change Biology – volume: 84 start-page: 2292 year: 2003 end-page: 2301 article-title: Variation in plant response to native and exotic arbuscular mycorrhizal fungi publication-title: Ecology – year: 1996 – volume: 74 start-page: 531 year: 1988 end-page: 536 article-title: Effects of plant growth rate and leaf lifetime on the amount and type of anti‐herbivore defense publication-title: Oecologia – volume: 33 start-page: 125 year: 2002 end-page: 159 article-title: Plant ecological strategies: some leading dimensions of variation between species publication-title: Annual Review of Ecology and Systematics – volume: 11 start-page: 516 year: 2008 end-page: 531 article-title: Plant functional traits and soil carbon sequestration in contrasting biomes publication-title: Ecology Letters – year: 1954 – volume: 93 start-page: 991 year: 1995 end-page: 1000 article-title: Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field publication-title: Journal of Ecology – volume: 98 start-page: 1074 year: 2010 end-page: 1083 article-title: Linkages of plant traits to soil properties and the functioning of temperate grassland publication-title: Journal of Ecology – volume: 25 start-page: 468 year: 2010 end-page: 478 article-title: Rooting theories of plant community ecology in microbial interactions publication-title: Trends in Ecology & Evolution – year: 2010 – volume: 25 start-page: GB2014 year: 2011 article-title: Plant diversity effects on aboveground and belowground N pools in temperate grassland ecosystems: development in the first 5 years after establishment publication-title: Global Biogeochemical Cycles – volume: 100 start-page: 128 year: 2012 end-page: 140 article-title: How fundamental plant functional trait relationships scale‐up to trade‐offs and synergies in ecosystem services publication-title: Journal of Ecology – volume: 204 start-page: 192 year: 2014 end-page: 200 article-title: Is there an association between root architecture and mycorrhizal growth response? publication-title: New Phytologist – volume: 79 start-page: 259 year: 1997 end-page: 281 article-title: Integrated screening validates primary axes of specialisation in plants publication-title: Oikos – volume: 304 start-page: 1629 year: 2004 end-page: 1633 article-title: Ecological linkages between aboveground and belowground biota publication-title: Science – volume: 111 start-page: 1169 year: 1977 end-page: 1194 article-title: Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory publication-title: The American Naturalist – year: 1988 – volume: 150 start-page: 697 year: 2001 end-page: 706 article-title: Interpretation of bioassays in the study of interactions between soil organisms and plants: involvement of nutrient factors publication-title: New Phytologist – volume: 124 start-page: 994 year: 2015 end-page: 1004 article-title: Intraspecific and intergenerational differences in plant‐soil feedbacks publication-title: Oikos – volume: 92 start-page: 824 year: 2004 end-page: 834 article-title: Plant community development is affected by nutrients and soil biota publication-title: Journal of Ecology – volume: 167 start-page: 493 year: 2005 end-page: 508 article-title: Linking leaf and root trait syndromes among 39 grassland and savannah species publication-title: New Phytologist – year: 1991 – volume: 76 start-page: 3765 year: 2010 end-page: 3775 article-title: TaqMan Real‐Time PCR Assays To assess arbuscular mycorrhizal responses to field manipulation of grassland biodiversity: effects of soil characteristics, plant species richness, and functional traits publication-title: Applied and Environmental Microbiology – year: 2013 – ident: e_1_2_7_6_1 doi: 10.2307/2960528 – ident: e_1_2_7_22_1 doi: 10.1038/ismej.2015.120 – ident: e_1_2_7_56_1 doi: 10.1890/10-0773.1 – ident: e_1_2_7_58_1 doi: 10.1111/1365-2435.12201 – ident: e_1_2_7_61_1 doi: 10.1111/j.1469-8137.2005.01428.x – ident: e_1_2_7_17_1 doi: 10.1038/nature16489 – ident: e_1_2_7_44_1 doi: 10.1146/annurev.es.03.110172.001531 – volume-title: Plant Strategies and the Dynamics and Structure of Plant Communities year: 1988 ident: e_1_2_7_60_1 – ident: e_1_2_7_36_1 doi: 10.1111/j.1461-0248.2008.01209.x – ident: e_1_2_7_30_1 doi: 10.1111/1365-2745.12046 – ident: e_1_2_7_42_1 doi: 10.1111/j.1469-8137.1990.tb00476.x – ident: e_1_2_7_51_1 doi: 10.1111/1365-2745.12054 – volume-title: Fungal Biology year: 1991 ident: e_1_2_7_27_1 – ident: e_1_2_7_66_1 doi: 10.1146/annurev.ecolsys.33.010802.150452 – ident: e_1_2_7_29_1 doi: 10.1111/j.1461-0248.2006.00953.x – ident: e_1_2_7_5_1 doi: 10.1098/rspb.2002.2162 – ident: e_1_2_7_45_1 doi: 10.2307/2261180 – ident: e_1_2_7_50_1 doi: 10.1890/02-0284 – ident: e_1_2_7_34_1 doi: 10.1128/AEM.02951-09 – ident: e_1_2_7_8_1 doi: 10.1073/pnas.0812607106 – ident: e_1_2_7_32_1 doi: 10.1111/nph.13215 – ident: e_1_2_7_40_1 doi: 10.1111/nph.12927 – ident: e_1_2_7_39_1 doi: 10.1093/aob/mcu169 – ident: e_1_2_7_49_1 doi: 10.1890/07-2056.1 – ident: e_1_2_7_67_1 doi: 10.1007/s11104-014-2370-8 – ident: e_1_2_7_16_1 doi: 10.1111/j.0022-0477.2004.00924.x – ident: e_1_2_7_13_1 doi: 10.1007/s11104-011-0963-z – ident: e_1_2_7_41_1 doi: 10.1111/j.1461-0248.2010.01547.x – ident: e_1_2_7_21_1 doi: 10.1111/j.1365-2311.2004.00572.x – ident: e_1_2_7_2_1 doi: 10.1016/j.tree.2014.10.006 – ident: e_1_2_7_7_1 doi: 10.1016/j.tree.2010.05.004 – ident: e_1_2_7_46_1 doi: 10.1029/2010GB003869 – ident: e_1_2_7_4_1 doi: 10.1111/nph.12915 – ident: e_1_2_7_23_1 doi: 10.1016/j.ppees.2015.03.002 – ident: e_1_2_7_68_1 doi: 10.1111/nph.14007 – ident: e_1_2_7_26_1 doi: 10.1111/j.1461-0248.2009.01430.x – ident: e_1_2_7_9_1 doi: 10.1111/j.1365-2745.2010.01695.x – ident: e_1_2_7_19_1 doi: 10.2307/2389540 – volume-title: R: A Language and Environment for Statistical Computing year: 2013 ident: e_1_2_7_52_1 – ident: e_1_2_7_11_1 doi: 10.1007/BF00380050 – ident: e_1_2_7_20_1 doi: 10.1086/283244 – ident: e_1_2_7_24_1 doi: 10.1007/978-94-011-1494-3 – ident: e_1_2_7_28_1 doi: 10.1046/j.1469-8137.1997.00729.x – ident: e_1_2_7_53_1 doi: 10.1111/j.1365-2435.2010.01811.x – ident: e_1_2_7_25_1 doi: 10.1086/417659 – ident: e_1_2_7_14_1 doi: 10.1515/9781400830640 – volume-title: Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. USDA Circular Nr 939 year: 1954 ident: e_1_2_7_47_1 – volume-title: Mycorrhizal Symbiosis year: 2010 ident: e_1_2_7_59_1 – ident: e_1_2_7_57_1 doi: 10.1111/1365-2745.12489 – ident: e_1_2_7_64_1 doi: 10.1111/oik.01743 – ident: e_1_2_7_12_1 doi: 10.1071/BT02124 – ident: e_1_2_7_62_1 doi: 10.1046/j.1469-8137.2001.00133.x – ident: e_1_2_7_43_1 doi: 10.1007/s10530-014-0685-2 – ident: e_1_2_7_15_1 doi: 10.1111/j.1461-0248.2008.01164.x – ident: e_1_2_7_48_1 doi: 10.1111/j.1365-2745.2010.01679.x – ident: e_1_2_7_18_1 doi: 10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2 – ident: e_1_2_7_63_1 doi: 10.1111/j.0030-1299.2007.15559.x – ident: e_1_2_7_3_1 doi: 10.1111/j.1365-3040.2007.01665.x – volume-title: Working With Mycorrhizas in Forestry and Agriculture year: 1996 ident: e_1_2_7_10_1 – ident: e_1_2_7_35_1 doi: 10.1890/14-2208.1 – ident: e_1_2_7_31_1 doi: 10.1111/j.1365-2486.2011.02451.x – ident: e_1_2_7_65_1 doi: 10.1126/science.1094875 – ident: e_1_2_7_37_1 doi: 10.1046/j.1365-2435.2002.00664.x – ident: e_1_2_7_33_1 doi: 10.1890/02-0413 – ident: e_1_2_7_38_1 doi: 10.1111/j.1365-2745.2011.01914.x – ident: e_1_2_7_55_1 doi: 10.1078/1439-1791-00216 – ident: e_1_2_7_54_1 doi: 10.1111/1365-2745.12211 |
SSID | ssj0006750 |
Score | 2.5972683 |
Snippet | 1. Plant–soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is... Summary Plant–soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are... Plant–soil feedback ( PSF ), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is... Summary Plant-soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are... 1. Plant-soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is... Plant–soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is... |
SourceID | wageningen proquest crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1608 |
SubjectTerms | above-ground–below-ground interactions below-ground traits biodiversity–ecosystem functioning Biota Colonization functional traits graminoids Grasslands Herbs inoculum leaf area Legumes mycorrhizal fungi pathogens Plant communities Plant ecology Plant growth Plant species Plant–soil (below-ground) interactions plant–soil feedback plant–soil interactions soil soil biota soil legacy effects soil microbes soil sterilization soil-plant interactions Soils trait-based ecology |
Title | Plant–soil feedbacks: role of plant functional group and plant traits |
URI | https://www.jstor.org/stable/26177091 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.12643 https://www.proquest.com/docview/1829405724 https://www.proquest.com/docview/1837325655 https://www.proquest.com/docview/2000470671 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F509163 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB-0WOiLf6rSq_VYwQdfctxl_11803K1FBQRC74tu5ssiEdSmhylPvU7-A39JM7sJtdeoYj4lCU7S7KbmexvkpnfALz2IUytnHl0U-U8E0qGbF4EbLlZVWougg6U7_zxkzo-FSff5BBNSLkwiR9i_cGNLCO-r8nArWtvGHmfTSXkZIabOvF90hmCRV-uCaQQDk8HvvCp0Lon96FYnlvjN_alFJq4ATp3LtC-65jwtIlj40Z09AjcMIUUf_JjsurcxP-8xe74X3N8DA97mMreJb16Aveqehe2U-HKy1148L5BUImN7UVkvb58Ch-o_FH3--pX23xfsoCboqP0_beM4hdZE9gZ9TPaR9PnRxYTSpity76LqlV07TM4PVp8PTzO-ioNmadfoFnpZOFV7tB1c6rQnEgWC6uDLK32Ni_xekoJPxfcCz63hStUCCrHI3rHCM74c9iqm7raA1Y49J5kNbXeOlGF0ua8JICKQhU5ZiOYDM_I-J7CnO5taQZXhhbM0IKZuGAjeLMecJbYO-4WHceHflOOguQNUdZrRFUjOBi0wfR23hr0zgqCvLkYwat1N1oo_XaxddWsSIZrjshSyrtlKGFKaFRXvAy_1jRTU0Gp1hAHeK8v5mJ1buolHdBgW0OAT-HdJz362yzNyeIwNvb_dcAL2EGsqFIa5gFsdeer6iXisc6N4X4uPo-j4f0BNAwoMQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9RAEJ8oSuQFFTWcINbEB196uev-u_oG5PBE4MFAwttmd9tNiJeW0F4IPPkd_IZ-Eme27XFHQozxqZvs9s9uZzq_2c78BuCj835gxNChmypGMZfCx6PUY8sO80wx7pWnfOfjEzk544fn4nwhF6bhh5hvuJFmhO81KThtSC9oeZtOxUV_iFadPYYnVNc7uFXf7yikEBAPOsbwAVeqpfehaJ57F1iyTE1w4hLsXLtGDS9CytMykg2m6OA5uG4STQTKj_6stn13e4_f8f9m-QLWW6Qa7Tai9RIe5cUGrDa1K2824OleibgSG6vjQHx98wq-UAWk-vfPX1V5MY082kVLGfyfIwphjEofXVJ_RKa02YGMQk5JZIqs7aKCFXX1Gs4Oxqf7k7gt1BA7-gsaZ1akTiYWvTcrU8WIZzE1yovMKGeSDO8nJXcjzhxnI5PaVHovEzyig4z4jL2BlaIs8k2IUosOlMgHxhnLc5-ZhGWEUXFQTr5ZD_rdS9KuZTGnZ5vqzpuhBdO0YDosWA8-zU-4bAg8Hh66E9764jiKk9fEWq8QWPVguxMH3ap6pdFBSwn1JrwHH-bdqKT058UUeTmjMUwxBJdCPDyGcqa4QnnF27A7UdMF1ZSqNNGAtwKjr2dXupjSAXW20oT5JD59I0h_m6U-HO-Hxtt_PeE9PJucHh_po68n37ZgDaGjbLIyt2Glvprl7xCe1XYn6N8fuzordQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB5BoagXfgqIQClG4sDFkeP9s7lBm1AKVAhRidtqd-2VEJEd1Y6qcuIdeEOehJm1nTaVKoQ4eaUdx971TOYbe-YbgBfO-8SIicMwVWQxl8LHWe5xZCdloRj3ylO988cjeXDMD7-KIZuQamE6fojVCzeyjPB_TQa-KPwFI--rqbgYT9Cps-twg8skI8Xe_3zOIIV4OBkIwxOuVM_uQ8k8l35gzTF1uYlrqHPrFA28ChVP60A2eKLZHbDDGroElO_jZWvH7sclesf_WuRduN3j1Oh1p1j34FpZbcNm17nybBtuvqkRVeJgcxpor8_uw1vqf9T-_vmrqb_NI49e0VL9_quIEhij2kcLmo_IkXbvH6NQURKZquinqF1F2zyA49n0y95B3LdpiB19A40LK3InU4uxm5W5YsSymBvlRWGUM2mB15OSu4wzx1lmcptL72WKRwyPEZ2xh7BR1VX5CKLcYvgkysQ4Y3npC5OyghAqCpUUmY1gPDwj7XoOc7q3uR5iGdowTRumw4aN4OXqhEVH33G16G546BflKEteE2e9Qlg1gp1BG3Rv6I3G8CwnzJvyETxfTaOJ0ncXU5X1kmSYYggthbhahiqmuEJ1xcuwc03TFXWUajSRgPf6ok-XJ7qa0wEtttGE-CTefadHf1ulPpzuhcHjfz3hGdz6tD_TH94dvX8CW4gbZVeSuQMb7cmyfIrYrLW7wfr-ACMoKi0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant%E2%80%93soil+feedbacks%3A+role+of+plant+functional+group+and+plant+traits&rft.jtitle=The+Journal+of+ecology&rft.au=Cortois%2C+Roeland&rft.au=Schr%C3%B6der%E2%80%90Georgi%2C+Thomas&rft.au=Weigelt%2C+Alexandra&rft.au=van+der+Putten%2C+Wim+H.&rft.date=2016-11-01&rft.issn=0022-0477&rft.volume=104&rft.issue=6+p.1608-1617&rft.spage=1608&rft.epage=1617&rft_id=info:doi/10.1111%2F1365-2745.12643&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon |