Synthesis of Calcium Silicate Hydrate in Highly Alkaline System

Synthesis of calcium silicate hydrate (C‐S‐H) was conducted over the range of 50°C–90°C and C/S ratio of 0.86–2.14 in the highly alkaline Na2O–CaO–SiO2–H2O system for silicon utilization in high alumina fly ash. Structural change in C‐S‐H formed in the highly alkaline system was investigated using X...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Ceramic Society Vol. 99; no. 8; pp. 2778 - 2785
Main Authors Zhu, Ganyu, Li, Huiquan, Wang, Xingrui, Li, Shaopeng, Hou, Xinjuan, Wu, Wenfen, Tang, Qing
Format Journal Article
LanguageEnglish
Published Columbus Blackwell Publishing Ltd 01.08.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Synthesis of calcium silicate hydrate (C‐S‐H) was conducted over the range of 50°C–90°C and C/S ratio of 0.86–2.14 in the highly alkaline Na2O–CaO–SiO2–H2O system for silicon utilization in high alumina fly ash. Structural change in C‐S‐H formed in the highly alkaline system was investigated using XRD and 29Si MAS NMR spectra. X‐ray photoelectron spectroscopy was used to confirm the amount of sodium ions in C‐S‐H. Conversion of Si may reach 99% under optimum conditions. A higher degree of polymerization of silicate was obtained at lower temperature and C/S ratio. Na+ was confirmed to exist as Na–OSi and Na–OH. The amount of Na+ is the least at C/S ratio of 1.43, which conform to the prediction of topological constraint theory. High Ca/Si ratio leads to the increasing in Na+ combined in the interlayer. Increasing in the Na+ concentration in the system also increases the amount of Na+ combined in the interlayer and reduces the polymerization. Ion exchange was proven to be an effective way to remove Na+ combined in the interlayer of C‐S‐H.
AbstractList Synthesis of calcium silicate hydrate (C‐S‐H) was conducted over the range of 50°C–90°C and C/S ratio of 0.86–2.14 in the highly alkaline Na2O–CaO–SiO2–H2O system for silicon utilization in high alumina fly ash. Structural change in C‐S‐H formed in the highly alkaline system was investigated using XRD and 29Si MAS NMR spectra. X‐ray photoelectron spectroscopy was used to confirm the amount of sodium ions in C‐S‐H. Conversion of Si may reach 99% under optimum conditions. A higher degree of polymerization of silicate was obtained at lower temperature and C/S ratio. Na+ was confirmed to exist as Na–OSi and Na–OH. The amount of Na+ is the least at C/S ratio of 1.43, which conform to the prediction of topological constraint theory. High Ca/Si ratio leads to the increasing in Na+ combined in the interlayer. Increasing in the Na+ concentration in the system also increases the amount of Na+ combined in the interlayer and reduces the polymerization. Ion exchange was proven to be an effective way to remove Na+ combined in the interlayer of C‐S‐H.
Synthesis of calcium silicate hydrate (C‐S‐H) was conducted over the range of 50°C–90°C and C/S ratio of 0.86–2.14 in the highly alkaline Na 2 O–CaO–SiO 2 –H 2 O system for silicon utilization in high alumina fly ash. Structural change in C‐S‐H formed in the highly alkaline system was investigated using XRD and 29 Si MAS NMR spectra. X‐ray photoelectron spectroscopy was used to confirm the amount of sodium ions in C‐S‐H. Conversion of Si may reach 99% under optimum conditions. A higher degree of polymerization of silicate was obtained at lower temperature and C/S ratio. Na + was confirmed to exist as Na–OSi and Na–OH. The amount of Na + is the least at C/S ratio of 1.43, which conform to the prediction of topological constraint theory. High Ca/Si ratio leads to the increasing in Na + combined in the interlayer. Increasing in the Na + concentration in the system also increases the amount of Na + combined in the interlayer and reduces the polymerization. Ion exchange was proven to be an effective way to remove Na + combined in the interlayer of C‐S‐H.
Synthesis of calcium silicate hydrate (C-S-H) was conducted over the range of 50 degree C-90 degree C and C/S ratio of 0.86-2.14 in the highly alkaline Na sub(2)O-CaO-SiO sub(2)-H sub(2)O system for silicon utilization in high alumina fly ash. Structural change in C-S-H formed in the highly alkaline system was investigated using XRD and super(29)Si MAS NMR spectra. X-ray photoelectron spectroscopy was used to confirm the amount of sodium ions in C-S-H. Conversion of Si may reach 99% under optimum conditions. A higher degree of polymerization of silicate was obtained at lower temperature and C/S ratio. Na super(+) was confirmed to exist as Na-OSi and Na-OH. The amount of Na super(+) is the least at C/S ratio of 1.43, which conform to the prediction of topological constraint theory. High Ca/Si ratio leads to the increasing in Na super(+) combined in the interlayer. Increasing in the Na super(+) concentration in the system also increases the amount of Na super(+) combined in the interlayer and reduces the polymerization. Ion exchange was proven to be an effective way to remove Na super(+) combined in the interlayer of C-S-H.
Author Tang, Qing
Wang, Xingrui
Hou, Xinjuan
Li, Shaopeng
Li, Huiquan
Zhu, Ganyu
Wu, Wenfen
Author_xml – sequence: 1
  givenname: Ganyu
  surname: Zhu
  fullname: Zhu, Ganyu
  organization: Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
– sequence: 2
  givenname: Huiquan
  surname: Li
  fullname: Li, Huiquan
  email: hqli@ipe.ac.cn
  organization: Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
– sequence: 3
  givenname: Xingrui
  surname: Wang
  fullname: Wang, Xingrui
  organization: Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
– sequence: 4
  givenname: Shaopeng
  surname: Li
  fullname: Li, Shaopeng
  organization: Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
– sequence: 5
  givenname: Xinjuan
  surname: Hou
  fullname: Hou, Xinjuan
  organization: Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
– sequence: 6
  givenname: Wenfen
  surname: Wu
  fullname: Wu, Wenfen
  organization: Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
– sequence: 7
  givenname: Qing
  surname: Tang
  fullname: Tang, Qing
  organization: Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
BookMark eNp90E9LAkEYBvAhDFLr0idY6BLB2vzd2T2FiGkhZlgJXYZxfDdHx13bUWq_fWtWhw7O5WXg97y8PA1Uy_IMEDonuEWqd73QBlqEU06PUJ0IQUKakKiG6hhjGsqY4hPU8H5RfUkS8zq6GZfZZg7e-iBPg452xm5Xwdg6a_QGgn45K3bTZkHfvs1dGbTdUjubQTAu_QZWp-g41c7D2c9soufb7lOnHw4eened9iA0AjMaaiFTrhMGEdezFAyIxDAjOMN0CljQmUl0DNJMcTqNhUgF4xok44bINAE-Y010ud-7LvL3LfiNWllvwDmdQb71isRMiIgIKSp68Y8u8m2RVdcpkuCIRRWLDqoYyziiTLJKXe2VKXLvC0jVurArXZSKYLVrXO0aV9-NV5js8Yd1UB6Q6r7d6f5mwn3GVm1-_mV0sVSRZFKoybCnhqPH15d4gtWIfQEL3ZIK
CODEN JACTAW
CitedBy_id crossref_primary_10_1016_j_cemconres_2017_09_002
crossref_primary_10_2139_ssrn_4089597
crossref_primary_10_1038_s41598_023_30024_0
crossref_primary_10_1111_jace_15939
crossref_primary_10_1016_j_mtla_2021_101224
crossref_primary_10_1016_j_conbuildmat_2024_134931
crossref_primary_10_1016_j_mtcomm_2024_109728
crossref_primary_10_1061_JMCEE7_MTENG_16358
crossref_primary_10_1007_s00226_021_01290_w
crossref_primary_10_1016_j_bsecv_2019_06_003
crossref_primary_10_1016_j_jclepro_2020_124104
crossref_primary_10_1016_j_conbuildmat_2019_117655
crossref_primary_10_1016_j_cemconcomp_2022_104909
crossref_primary_10_3390_nano10071299
crossref_primary_10_1007_s11356_020_08864_4
crossref_primary_10_1016_j_conbuildmat_2018_07_030
crossref_primary_10_1016_j_seppur_2021_120092
crossref_primary_10_1007_s41062_023_01329_w
crossref_primary_10_1016_j_conbuildmat_2023_131833
crossref_primary_10_1039_D1NJ02289J
crossref_primary_10_1016_j_ceramint_2022_07_332
crossref_primary_10_3390_ma16041416
crossref_primary_10_1016_j_scitotenv_2022_157431
crossref_primary_10_1111_jace_17440
crossref_primary_10_1016_j_jcrysgro_2022_126578
crossref_primary_10_1108_JSFE_05_2021_0021
crossref_primary_10_1016_j_cemconres_2023_107249
crossref_primary_10_1016_j_cscm_2022_e01225
crossref_primary_10_1016_j_cemconres_2021_106636
Cites_doi 10.1016/S1065-7355(96)90046-2
10.1016/j.cemconres.2004.05.034
10.1038/ncomms5960
10.1016/j.coal.2009.03.005
10.1016/j.jhazmat.2012.01.001
10.1016/j.cemconcomp.2012.10.001
10.1111/j.1151-2916.1994.tb05363.x
10.1007/s00269-004-0401-3
10.1021/es0498989
10.1063/1.4878656
10.1111/j.1551-2916.2010.04242.x
10.1103/PhysRevB.8.5545
10.1103/PhysRevLett.114.125502
10.1016/S0008-8846(02)00753-6
10.1111/jace.12024
10.1111/j.1151-2916.1999.tb01826.x
10.1021/cm034227f
10.1111/j.1151-2916.1999.tb01911.x
10.1039/c3ta11064h
10.1107/S2052519213021155
10.4028/www.scientific.net/AMR.652-654.2570
10.1007/978-3-642-80432-8_8
10.1016/S1003-6326(10)60034-9
10.1016/0022-3093(83)90424-6
10.1016/j.cemconres.2012.02.015
10.1021/jp300745g
10.1016/S0022-3093(96)00523-6
10.1016/0022-3093(79)90033-4
10.1016/j.cemconres.2007.11.005
10.1021/jp983757
10.1016/j.cemconres.2013.07.003
10.1016/j.hydromet.2014.05.012
10.1021/jp509292q
10.1016/j.cemconres.2004.04.034
10.1016/0008-8846(89)90051-3
10.1016/S0008-8846(99)00187-8
10.1088/0965-0393/21/5/055010
10.1016/j.cemconres.2011.04.012
10.1007/978-3-642-80432-8_13
10.1016/j.cemconres.2003.12.016
10.1111/j.1151-2916.1989.tb06301.x
ContentType Journal Article
Copyright 2016 The American Ceramic Society
2016 American Ceramic Society
Copyright_xml – notice: 2016 The American Ceramic Society
– notice: 2016 American Ceramic Society
DBID BSCLL
AAYXX
CITATION
7QQ
7SR
8FD
JG9
DOI 10.1111/jace.14242
DatabaseName Istex
CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
DatabaseTitleList
Materials Research Database
CrossRef
Materials Research Database
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
EISSN 1551-2916
Editor Scherer, G.
Editor_xml – sequence: 1
  givenname: G.
  surname: Scherer
  fullname: Scherer, G.
– sequence: 8
  givenname: G.
  surname: Scherer
  fullname: Scherer, G.
EndPage 2785
ExternalDocumentID 4133695791
10_1111_jace_14242
JACE14242
ark_67375_WNG_NPQZV8W0_P
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51304184
– fundername: Coal Based Key Scientific and Technological Project of Shanxi Province
  funderid: MC2014‐06
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEFU
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBO
EBS
EDO
EJD
EMK
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
I-F
IRD
ITF
ITG
ITH
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QF4
QM1
QN7
QO4
R.K
RAX
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TAE
TH9
TN5
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WFSAM
WH7
WIH
WIK
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
YQT
ZCG
ZE2
ZY4
ZZTAW
~02
~IA
~WT
G8K
AAYXX
CITATION
7QQ
7SR
8FD
JG9
ID FETCH-LOGICAL-c5032-a57f4a93e64adfece59c3c54302be052dc9a8e7cb0fb855f534ae734c17f9e4d3
IEDL.DBID DR2
ISSN 0002-7820
IngestDate Fri Oct 25 22:41:14 EDT 2024
Thu Oct 10 19:47:54 EDT 2024
Thu Oct 10 16:03:08 EDT 2024
Fri Aug 23 02:33:15 EDT 2024
Sat Aug 24 00:58:35 EDT 2024
Wed Oct 30 09:56:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5032-a57f4a93e64adfece59c3c54302be052dc9a8e7cb0fb855f534ae734c17f9e4d3
Notes Fig. S1. Diagram of the desilication before soda-lime sintering process. Fig. S2. Na 1s spectra of C-S-H obtained under different conditions. (a) C/S ratio = 1.43, CNa = 81.28 g/L, (b) T = 70°C, CNa = 81.28 g/L, (a) T = 70°C, C/S ratio = 1.43.
Coal Based Key Scientific and Technological Project of Shanxi Province - No. MC2014-06
istex:C3C5A0801A95C3B27735A151EBFDAE53DBF94FD5
ark:/67375/WNG-NPQZV8W0-P
National Natural Science Foundation of China - No. 51304184
ArticleID:JACE14242
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1807862373
PQPubID 41752
PageCount 8
ParticipantIDs proquest_miscellaneous_1835561575
proquest_journals_1906366156
proquest_journals_1807862373
crossref_primary_10_1111_jace_14242
wiley_primary_10_1111_jace_14242_JACE14242
istex_primary_ark_67375_WNG_NPQZV8W0_P
PublicationCentury 2000
PublicationDate August 2016
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: August 2016
PublicationDecade 2010
PublicationPlace Columbus
PublicationPlace_xml – name: Columbus
PublicationTitle Journal of the American Ceramic Society
PublicationTitleAlternate J. Am. Ceram. Soc
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References M. Bauchy, M. J. Abdolhosseini Qomi, C. Bichara, F.-J. Ulm, and R. J.-M. Pellenq, "Rigidity Transition in Materials: Hardness is Driven by Weak Atomic Constraints," Phys. Rev. Lett., 114, 125502, 5pp (2015).
D. S. Hou, T. J. Zhao, H. Y. Ma, and Z. J. Li, "Reactive Molecular Simulation on Water Confined in the Nanopores of the Calcium Silicate Hydrate Gel: Structure, Reactivity, and Mechanical Properties," J. Phys. Chem. C, 119 [3] 1346-58 (2015).
L. Black, K. Garbev, P. Stemmermann, K. R. Hallam, and G. C. Allen, "X-ray Photoelectron Study of Oxygen Bonding in Crystalline C-S-H Phases," Phys. Chem. Miner., 31 [6] 337-46 (2004).
J. J. Chen, J. J. Thomas, H. F. W. Taylor, and H. M. Jennings, "Solubility and Structure of Calcium Silicate Hydrate," Cem. Concr. Res., 34 [9] 1499-519 (2004).
M. Bauchy, M. J. Abdolhosseini Qomi, F.-J. Ulm, and R. J.-M. Pellenq, "Order and Disorder in Calcium-Silicate-Hydrate," J. Chem. Phys, 140 [21] 214503, 9pp (2014).
J. Skibsted and M. D. Andersen, "The Effect of Alkali Ions on the Incorporation of Aluminum in the Calcium Silicate Hydrate (C-S-H) Phase Resulting From Portland Cement Hydration Studied by 29Si MAS NMR," J. Am. Ceram. Soc., 96 [2] 651-6 (2013).
M. L. Schlegel, I. Pointeau, N. Coreau, and P. Reiller, "Mechanism of Europium Retention by Calcium Silicate Hydrates: An EXAFS Study," Environ. Sci. Technol., 38 [16] 4423-31 (2004).
M. Q. Chandler, J. F. Peters, and D. Pelessone, "Discrete Element Modeling of Calcium-Silicate-Hydrate," Modell. Simul. Mater. Sci. Eng., 21 [5] 055010, 23pp (2013).
F. Matsushita, Y. Aono, and S. Shibata, "Calcium Silicate Structure and Carbonation Shrinkage of a Tobermorite-Based Material," Cem. Concr. Res., 34 [7] 1251-7 (2004).
S. Y. Hong and F. P. Glasser, "Alkali Sorption by C-S-H and C-A-S-H Gels Part II. Role of Alumina," Cem. Concr. Res., 32 [7] 1101-11 (2002).
I. G. Richardson, "Tobermorite/Jennite- and Tobermorite/Calcium Hydroxide-Based Models for the Structure of C-S-H: Applicability to Hardened Pastes of Tricalcium Silicate, β-Dicalcium Silicate, Portland Cement, and Blends of Portland Cement With Blast-Furnace Slag, Metakaolin, or Silica Fume," Cem. Concr. Res., 34 [9] 1733-77 (2004).
A. Fernández-Jiménez, T. Vázquez, and A. Palomo, "Effect of Sodium Silicate on Calcium Aluminate Cement Hydration in Highly Alkaline Media: A Microstructural Characterization," J. Am. Ceram. Soc., 94 [4] 1297-303 (2011).
S. Komarneni and M. Tsuji, "Selective Cation-Exchange in Substituted Tobermorites," J. Am. Ceram. Soc., 72 [9] 1668-74 (1989).
Y. Okada, "29Si NMR Spectroscopy of Silicate Anions in Hydrothermally Formed C-S-H," J. Am. Ceram. Soc., 77 [3] 765-8 (1994).
J. M. Sun and P. Chen, "Resourcing Utilization of High Alumina Fly Ash," Adv. Mater. Res., 652-654, 2570-5 (2013).
H. Stade, "On the Reaction of C-S-H(di, Poly) With Alkali Hydroxides," Cem. Concr. Res., 19 [5] 802-10 (1989).
M. J. Abdolhosseini Qomi, et al., "Combinatorial Molecular Optimization of Cement Hydrates," Nature Commun., 5, 4960, 10pp (2014).
M. F. Thorpe, "Continuous Deformations in Random Networks," J. Non-Cryst. Solids, 57 [3] 355-70 (1983).
I. G. Richardson, "The Calcium Silicate Hydrates," Cem. Concr. Res., 38 [2] 137-58 (2008).
P. H. Citrin, "High-Resolution X-Ray Photoemission From Sodium Metal and Its Hydroxide," Phys. Rev. B: Condens. Matter., 8 [12-15] 5545-56 (1973).
S. Grangeon, F. Claret, Y. Linard, and C. Chiaberge, "X-ray Diffraction: A Powerful Tool to Probe and Understand the Structure of Nanocrystalline Calcium Silicate Hydrates," Acta Crystallogr. Sect. B: Struct. Sci., 69 [5] 465-73 (2013).
Y. J. Zhang, L. C. Liu, Y. Xu, Y. C. Wang, and D. L. Xu, "A new Alkali-Activated Steel Slag-Based Cementitious Material for Photocatalytic Degradation of Organic Pollutant From Waste Water," J. Hazard. Mater., 209-210, 146-50 (2012).
L. Nicoleau, "Accelerated Growth of Calcium Silicate Hydrates: Experiments and Simulations," Cem. Concr. Res., 41 [12] 1339-48 (2011).
S. Y. Hong and F. P. Glasser, "Alkali Binding in Cement Pastes Part I. The C-S-H Phase," Cem. Concr. Res., 29 [12] 1893-903 (1999).
S. Bishnoi and K. L. Scrivener, "Discussion of the Paper "Accelerated Growth of Calcium Silicate Hydrates" by Luc Nicoleau," Cem. Concr. Res., 42 [6] 878-80 (2012).
Y. Kuwahara, S. Tamagawa, T. Fujitani, and H. Yamashita, "A Novel Conversion Process for Waste Slag: Synthesis of Calcium Silicate Hydrate From Blast Furnace Slag and its Application as a Versatile Adsorbent for Water Purification," J. Mater. Chem. A, 1 [24] 7199-210 (2013).
N. Lequeux, A. Morau, S. Philippot, and P. Boch, "Extended X-ray Absorption Fine Structure Investigation of Calcium Silicate Hydrates," J. Am. Ceram. Soc., 82 [5] 1299-306 (1999).
K. Kurumisawa, T. Nawa, H. Owada, and M. Shibata, "Deteriorated Hardened Cement Paste Structure Analyzed by XPS and 29Si NMR Techniques," Cem. Concr. Res., 52, 190-5 (2013).
H. Q. Li, J. B. Hui, C. Y. Wang, W. J. Bao, and Z. H. Sun, "Extraction of Alumina From Coal fly ash by Mixed-Alkaline Hydrothermal Method," Hydrometallurgy, 147-148, 183-7 (2014).
W.-S. Chiang, E. Fratini, P. Baglioni, D. Liu, and S. H. Chen, "Microstructure Determination of Calcium-Silicate-Hydrate Globules by Small-Angle Neutron Scattering," J. Phys. Chem. C, 116 [8] 5055-61 (2012).
J. C. Phillips, "Topology of Covalent non-Crystalline Solids I: Short-Range Order in Chalcogenide Alloys," J. Non-Cryst. Solids, 34 [2] 153-81 (1979).
Y. J. He, L. N. Lu, L. J. Struble, J. L. Rapp, P. Mondal, and S. G. Hu, "Effect of Calcium-Silicon Ratio on Microstructure and Nanostructure of Calcium Silicate Hydrate Synthesized by Reaction of Fumed Silica and Calcium Oxide at Room Temperature," Mater. Struct., 47 [1-2] 311-22 (2013).
P. Yu, R. J. Kirkpatrick, B. Poe, P. F. McMillan, and X. D. Cong, "Structure of Calcium Silicate Hydrate (C-S-H): Near-, Mid-, and Far-Infrared Spectroscopy," J. Am. Ceram. Soc., 82 [3] 742-8 (1999).
A. Mekki, D. Holland, C. F. McConville, and M. Salim, "An XPS Study of Iron Sodium Silicate Glass Surfaces," J. Non-Cryst. Solids, 208, 267-76 (1996).
J. J. Thomas, J. J. Chen, H. M. Jennings, and D. A. Neumann, "Ca−OH Bonding in the C−S−H Gel Phase of Tricalcium Silicate and White Portland Cement Pastes Measured by Inelastic Neutron Scattering," Chem. Mater., 15 [20] 3813-17 (2003).
G. H. Bai, W. Teng, X. G. Wang, J. G. Qin, P. Xu, and P. C. Li, "Alkali Desilicated Coal fly ash as Substitute of Bauxite in Lime-Soda Sintering Process for Aluminum Production," Trans. Nonferrous Met. Soc. China, 20 [Suppl 1] s169-75 (2010).
J. J. Kim, E. M. Foley, and M. M. Reda Taha, "Nano-Mechanical Characterization of Synthetic Calcium-Silicate-Hydrate (C-S-H) With Varying CaO/SiO2 Mixture Ratios," Cem. Concr. Compos, 36, 65-70 (2013).
X. D. Cong and R. J. Kirkpatrick, "29Si MAS NMR Study of the Structure of Calcium Silicate Hydrate," Advn. Cem. Bas. Mat, 3 [3] 144-56 (1996).
S. F. Dai, L. Zhao, S. P. Peng, C. L. Chou, X. B. Wang, et al., "Abundances and Distribution of Minerals and Elements in High-Alumina Coal fly ash From the Jungar Power Plant, Inner Mongolia, China," Int. J. Coal Geol., 81 [4] 320-32 (2010).
H. Viallis, P. Faucon, J. C. Petit, and A. Nonat, "Interaction Between Salts (NaCl, CsCl) and Calcium Silicate Hydrates (C−S−H)," J. Phys. Chem. B, 103 [25] 5212-19 (1999).
1996; 208
2013; 69
2013; 47
1979; 34
2013; 1
2013; 21
1999; 29
2008; 38
2002; 32
1998
2003; 15
1999; 103
2010; 81
1999; 82
1983; 57
2013; 652–654
2010; 20
1989; 72
2004; 31
2014; 5
2013; 36
2004; 38
2015; 114
2004; 34
2013; 96
2013; 52
2011; 94
2011; 41
1994; 77
2015; 119
2014; 140
2012; 116
1996; 3
1973; 8
2014; 147–148
1989; 19
2012; 209–210
2012; 42
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
He Y. J. (e_1_2_6_29_1) 2013; 47
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 15
  start-page: 3813
  issue: 20
  year: 2003
  end-page: 17
  article-title: Ca−OH Bonding in the C−S−H Gel Phase of Tricalcium Silicate and White Portland Cement Pastes Measured by Inelastic Neutron Scattering
  publication-title: Chem. Mater.
– volume: 20
  start-page: s169
  issue: Suppl 1
  year: 2010
  end-page: 75
  article-title: Alkali Desilicated Coal fly ash as Substitute of Bauxite in Lime‐Soda Sintering Process for Aluminum Production
  publication-title: Trans. Nonferrous Met. Soc. China
– volume: 21
  start-page: 055010
  issue: 5
  year: 2013
  article-title: Discrete Element Modeling of Calcium‐Silicate‐Hydrate
  publication-title: Modell. Simul. Mater. Sci. Eng.
– volume: 140
  start-page: 214503
  issue: 21
  year: 2014
  article-title: Order and Disorder in Calcium–Silicate–Hydrate
  publication-title: J. Chem. Phys
– volume: 5
  start-page: 4960
  year: 2014
  article-title: Combinatorial Molecular Optimization of Cement Hydrates
  publication-title: Nature Commun.
– volume: 652–654
  start-page: 2570
  year: 2013
  end-page: 5
  article-title: Resourcing Utilization of High Alumina Fly Ash
  publication-title: Adv. Mater. Res.
– volume: 34
  start-page: 1499
  issue: 9
  year: 2004
  end-page: 519
  article-title: Solubility and Structure of Calcium Silicate Hydrate
  publication-title: Cem. Concr. Res.
– volume: 114
  start-page: 125502
  year: 2015
  article-title: Rigidity Transition in Materials: Hardness is Driven by Weak Atomic Constraints
  publication-title: Phys. Rev. Lett.
– volume: 116
  start-page: 5055
  issue: 8
  year: 2012
  end-page: 61
  article-title: Microstructure Determination of Calcium‐Silicate‐Hydrate Globules by Small‐Angle Neutron Scattering
  publication-title: J. Phys. Chem. C
– volume: 72
  start-page: 1668
  issue: 9
  year: 1989
  end-page: 74
  article-title: Selective Cation‐Exchange in Substituted Tobermorites
  publication-title: J. Am. Ceram. Soc.
– volume: 29
  start-page: 1893
  issue: 12
  year: 1999
  end-page: 903
  article-title: Alkali Binding in Cement Pastes Part I. The C‐S‐H Phase
  publication-title: Cem. Concr. Res.
– volume: 52
  start-page: 190
  year: 2013
  end-page: 5
  article-title: Deteriorated Hardened Cement Paste Structure Analyzed by XPS and Si NMR Techniques
  publication-title: Cem. Concr. Res.
– volume: 31
  start-page: 337
  issue: 6
  year: 2004
  end-page: 46
  article-title: X‐ray Photoelectron Study of Oxygen Bonding in Crystalline C‐S‐H Phases
  publication-title: Phys. Chem. Miner.
– volume: 208
  start-page: 267
  year: 1996
  end-page: 76
  article-title: An XPS Study of Iron Sodium Silicate Glass Surfaces
  publication-title: J. Non‐Cryst. Solids
– volume: 77
  start-page: 765
  issue: 3
  year: 1994
  end-page: 8
  article-title: Si NMR Spectroscopy of Silicate Anions in Hydrothermally Formed C‐S‐H
  publication-title: J. Am. Ceram. Soc.
– volume: 96
  start-page: 651
  issue: 2
  year: 2013
  end-page: 6
  article-title: The Effect of Alkali Ions on the Incorporation of Aluminum in the Calcium Silicate Hydrate (C‐S‐H) Phase Resulting From Portland Cement Hydration Studied by Si MAS NMR
  publication-title: J. Am. Ceram. Soc.
– start-page: 189
  year: 1998
  end-page: 96
– volume: 38
  start-page: 4423
  issue: 16
  year: 2004
  end-page: 31
  article-title: Mechanism of Europium Retention by Calcium Silicate Hydrates: An EXAFS Study
  publication-title: Environ. Sci. Technol.
– volume: 82
  start-page: 742
  issue: 3
  year: 1999
  end-page: 8
  article-title: Structure of Calcium Silicate Hydrate (C‐S‐H): Near‐, Mid‐, and Far‐Infrared Spectroscopy
  publication-title: J. Am. Ceram. Soc.
– volume: 57
  start-page: 355
  issue: 3
  year: 1983
  end-page: 70
  article-title: Continuous Deformations in Random Networks
  publication-title: J. Non‐Cryst. Solids
– volume: 1
  start-page: 7199
  issue: 24
  year: 2013
  end-page: 210
  article-title: A Novel Conversion Process for Waste Slag: Synthesis of Calcium Silicate Hydrate From Blast Furnace Slag and its Application as a Versatile Adsorbent for Water Purification
  publication-title: J. Mater. Chem. A
– volume: 36
  start-page: 65
  year: 2013
  end-page: 70
  article-title: Nano‐Mechanical Characterization of Synthetic Calcium–Silicate–Hydrate (C–S–H) With Varying CaO/SiO Mixture Ratios
  publication-title: Cem. Concr. Compos
– volume: 41
  start-page: 1339
  issue: 12
  year: 2011
  end-page: 48
  article-title: Accelerated Growth of Calcium Silicate Hydrates: Experiments and Simulations
  publication-title: Cem. Concr. Res.
– volume: 69
  start-page: 465
  issue: 5
  year: 2013
  end-page: 73
  article-title: X‐ray Diffraction: A Powerful Tool to Probe and Understand the Structure of Nanocrystalline Calcium Silicate Hydrates
  publication-title: Acta Crystallogr. Sect. B: Struct. Sci.
– volume: 8
  start-page: 5545
  issue: 12–15
  year: 1973
  end-page: 56
  article-title: High‐Resolution X‐Ray Photoemission From Sodium Metal and Its Hydroxide
  publication-title: Phys. Rev. B: Condens. Matter.
– volume: 81
  start-page: 320
  issue: 4
  year: 2010
  end-page: 32
  article-title: Abundances and Distribution of Minerals and Elements in High‐Alumina Coal fly ash From the Jungar Power Plant, Inner Mongolia, China
  publication-title: Int. J. Coal Geol.
– volume: 42
  start-page: 878
  issue: 6
  year: 2012
  end-page: 80
  article-title: Discussion of the Paper “Accelerated Growth of Calcium Silicate Hydrates” by Luc Nicoleau
  publication-title: Cem. Concr. Res.
– volume: 103
  start-page: 5212
  issue: 25
  year: 1999
  end-page: 19
  article-title: Interaction Between Salts (NaCl, CsCl) and Calcium Silicate Hydrates (C−S−H)
  publication-title: J. Phys. Chem. B
– volume: 47
  start-page: 311
  issue: 1–2
  year: 2013
  end-page: 22
  article-title: Effect of Calcium–Silicon Ratio on Microstructure and Nanostructure of Calcium Silicate Hydrate Synthesized by Reaction of Fumed Silica and Calcium Oxide at Room Temperature
  publication-title: Mater. Struct.
– volume: 94
  start-page: 1297
  issue: 4
  year: 2011
  end-page: 303
  article-title: Effect of Sodium Silicate on Calcium Aluminate Cement Hydration in Highly Alkaline Media: A Microstructural Characterization
  publication-title: J. Am. Ceram. Soc.
– volume: 34
  start-page: 1733
  issue: 9
  year: 2004
  end-page: 77
  article-title: Tobermorite/Jennite‐ and Tobermorite/Calcium Hydroxide‐Based Models for the Structure of C‐S‐H: Applicability to Hardened Pastes of Tricalcium Silicate, β‐Dicalcium Silicate, Portland Cement, and Blends of Portland Cement With Blast‐Furnace Slag, Metakaolin, or Silica Fume
  publication-title: Cem. Concr. Res.
– volume: 209–210
  start-page: 146
  year: 2012
  end-page: 50
  article-title: A new Alkali‐Activated Steel Slag‐Based Cementitious Material for Photocatalytic Degradation of Organic Pollutant From Waste Water
  publication-title: J. Hazard. Mater.
– volume: 3
  start-page: 144
  issue: 3
  year: 1996
  end-page: 56
  article-title: Si MAS NMR Study of the Structure of Calcium Silicate Hydrate
  publication-title: Advn. Cem. Bas. Mat
– volume: 82
  start-page: 1299
  issue: 5
  year: 1999
  end-page: 306
  article-title: Extended X‐ray Absorption Fine Structure Investigation of Calcium Silicate Hydrates
  publication-title: J. Am. Ceram. Soc.
– volume: 19
  start-page: 802
  issue: 5
  year: 1989
  end-page: 10
  article-title: On the Reaction of C‐S‐H(di, Poly) With Alkali Hydroxides
  publication-title: Cem. Concr. Res.
– volume: 147–148
  start-page: 183
  year: 2014
  end-page: 7
  article-title: Extraction of Alumina From Coal fly ash by Mixed‐Alkaline Hydrothermal Method
  publication-title: Hydrometallurgy
– volume: 38
  start-page: 137
  issue: 2
  year: 2008
  end-page: 58
  article-title: The Calcium Silicate Hydrates
  publication-title: Cem. Concr. Res.
– volume: 34
  start-page: 153
  issue: 2
  year: 1979
  end-page: 81
  article-title: Topology of Covalent non‐Crystalline Solids I: Short‐Range Order in Chalcogenide Alloys
  publication-title: J. Non‐Cryst. Solids
– volume: 34
  start-page: 1251
  issue: 7
  year: 2004
  end-page: 7
  article-title: Calcium Silicate Structure and Carbonation Shrinkage of a Tobermorite‐Based Material
  publication-title: Cem. Concr. Res.
– volume: 32
  start-page: 1101
  issue: 7
  year: 2002
  end-page: 11
  article-title: Alkali Sorption by C‐S‐H and C‐A‐S‐H Gels Part II. Role of Alumina
  publication-title: Cem. Concr. Res.
– start-page: 119
  year: 1998
  end-page: 41
– volume: 119
  start-page: 1346
  issue: 3
  year: 2015
  end-page: 58
  article-title: Reactive Molecular Simulation on Water Confined in the Nanopores of the Calcium Silicate Hydrate Gel: Structure, Reactivity, and Mechanical Properties
  publication-title: J. Phys. Chem. C
– ident: e_1_2_6_16_1
  doi: 10.1016/S1065-7355(96)90046-2
– ident: e_1_2_6_36_1
  doi: 10.1016/j.cemconres.2004.05.034
– ident: e_1_2_6_21_1
  doi: 10.1038/ncomms5960
– ident: e_1_2_6_2_1
  doi: 10.1016/j.coal.2009.03.005
– ident: e_1_2_6_8_1
  doi: 10.1016/j.jhazmat.2012.01.001
– ident: e_1_2_6_11_1
  doi: 10.1016/j.cemconcomp.2012.10.001
– volume: 47
  start-page: 311
  issue: 1
  year: 2013
  ident: e_1_2_6_29_1
  article-title: Effect of Calcium–Silicon Ratio on Microstructure and Nanostructure of Calcium Silicate Hydrate Synthesized by Reaction of Fumed Silica and Calcium Oxide at Room Temperature
  publication-title: Mater. Struct.
  contributor:
    fullname: He Y. J.
– ident: e_1_2_6_30_1
  doi: 10.1111/j.1151-2916.1994.tb05363.x
– ident: e_1_2_6_39_1
  doi: 10.1007/s00269-004-0401-3
– ident: e_1_2_6_9_1
  doi: 10.1021/es0498989
– ident: e_1_2_6_23_1
  doi: 10.1063/1.4878656
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1551-2916.2010.04242.x
– ident: e_1_2_6_41_1
  doi: 10.1103/PhysRevB.8.5545
– ident: e_1_2_6_22_1
  doi: 10.1103/PhysRevLett.114.125502
– ident: e_1_2_6_26_1
  doi: 10.1016/S0008-8846(02)00753-6
– ident: e_1_2_6_6_1
  doi: 10.1111/jace.12024
– ident: e_1_2_6_37_1
  doi: 10.1111/j.1151-2916.1999.tb01826.x
– ident: e_1_2_6_17_1
  doi: 10.1021/cm034227f
– ident: e_1_2_6_38_1
  doi: 10.1111/j.1151-2916.1999.tb01911.x
– ident: e_1_2_6_7_1
  doi: 10.1039/c3ta11064h
– ident: e_1_2_6_18_1
  doi: 10.1107/S2052519213021155
– ident: e_1_2_6_3_1
  doi: 10.4028/www.scientific.net/AMR.652-654.2570
– ident: e_1_2_6_34_1
  doi: 10.1007/978-3-642-80432-8_8
– ident: e_1_2_6_4_1
  doi: 10.1016/S1003-6326(10)60034-9
– ident: e_1_2_6_43_1
  doi: 10.1016/0022-3093(83)90424-6
– ident: e_1_2_6_12_1
  doi: 10.1016/j.cemconres.2012.02.015
– ident: e_1_2_6_14_1
  doi: 10.1021/jp300745g
– ident: e_1_2_6_40_1
  doi: 10.1016/S0022-3093(96)00523-6
– ident: e_1_2_6_42_1
  doi: 10.1016/0022-3093(79)90033-4
– ident: e_1_2_6_10_1
  doi: 10.1016/j.cemconres.2007.11.005
– ident: e_1_2_6_27_1
  doi: 10.1021/jp983757
– ident: e_1_2_6_31_1
  doi: 10.1016/j.cemconres.2013.07.003
– ident: e_1_2_6_5_1
  doi: 10.1016/j.hydromet.2014.05.012
– ident: e_1_2_6_15_1
  doi: 10.1021/jp509292q
– ident: e_1_2_6_19_1
  doi: 10.1016/j.cemconres.2004.04.034
– ident: e_1_2_6_24_1
  doi: 10.1016/0008-8846(89)90051-3
– ident: e_1_2_6_25_1
  doi: 10.1016/S0008-8846(99)00187-8
– ident: e_1_2_6_20_1
  doi: 10.1088/0965-0393/21/5/055010
– ident: e_1_2_6_13_1
  doi: 10.1016/j.cemconres.2011.04.012
– ident: e_1_2_6_28_1
  doi: 10.1007/978-3-642-80432-8_13
– ident: e_1_2_6_33_1
  doi: 10.1016/j.cemconres.2003.12.016
– ident: e_1_2_6_35_1
  doi: 10.1111/j.1151-2916.1989.tb06301.x
SSID ssj0001984
Score 2.3972812
Snippet Synthesis of calcium silicate hydrate (C‐S‐H) was conducted over the range of 50°C–90°C and C/S ratio of 0.86–2.14 in the highly alkaline Na2O–CaO–SiO2–H2O...
Synthesis of calcium silicate hydrate (C‐S‐H) was conducted over the range of 50°C–90°C and C/S ratio of 0.86–2.14 in the highly alkaline Na 2 O–CaO–SiO 2 –H 2...
Synthesis of calcium silicate hydrate (C-S-H) was conducted over the range of 50°C-90°C and C/S ratio of 0.86-2.14 in the highly alkaline Na2O-CaO-SiO2-H2O...
Synthesis of calcium silicate hydrate (C-S-H) was conducted over the range of 50 degree C-90 degree C and C/S ratio of 0.86-2.14 in the highly alkaline Na...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 2778
SubjectTerms alkaline system
Aluminum oxide
Calcium silicate hydrate
Calcium silicates
Ceramics
Chemical synthesis
Conversion
Degree of polymerization
Fly ash
high alumina fly ash
Interlayers
Ion exchange
NMR spectroscopy
Optimization
Photoelectron spectroscopy
Polymerization
Silicon
Silicon dioxide
Sodium
Spectra
Spectrum analysis
Synthesis
Topology
X-ray diffraction
X-rays
Title Synthesis of Calcium Silicate Hydrate in Highly Alkaline System
URI https://api.istex.fr/ark:/67375/WNG-NPQZV8W0-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjace.14242
https://www.proquest.com/docview/1807862373
https://www.proquest.com/docview/1906366156
https://search.proquest.com/docview/1835561575
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3ba9swFIdF6V62h93HvLVDZWMPAwc7snyBvYSsbSg0dJdeGAyhK5hkzqhjWPbX9xw59tJSBt2bjWQj6-hIn-xzfibkHctTrSKThUVkYYMSGxUqE7OQ5dwZ5ziTXtTneJpOTpOjC36xRT52uTCtPkT_wg09w8_X6OBS1ZtOLrUdYJ4WTsAxyzCe69OXv9pRsJtOOvZFUbi1NqkP4-kvvbYa3cOO_X0NNTeB1a84B4_Ij66tbaDJbNAs1UD_uSHj-L8P85g8XKMoHbVj5wnZstVT8mBDoBDOzsq6aevUzwDsVxXwYl3WdOHoWM512fykX8s2j45OVgZ1J2hZUYwema_oaD6T2Dba6qI_J6cH-9_Gk3D9A4ZQ84gNQ8kzl8iC2TSRxlnM2NJM84RFQ2UjPjS6kLnNwNhO5ZyDZRNpM5boOHOFTQx7QbarRWVfEpoDxfNYx6lGATDAkDRSKgU2cWYoc2cC8rYzhPjV6myIfn8CnSN85wTkvbdRX0VezjAyLePifHoopiefv5_l55E4CchOZ0SxdspaxKitD7iXsduLC8A1wBWeBmSvLwZvw08osrKLBm_B8H-iwLgB-eAN-o_WiqPReN8fvbpL5dfkPlBZ2kYZ7pDt5WVjd4F8luqNH-FX4yP8Uw
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bb9MwFIcttD0AD9wRGQOMQDwgpUrqOJfHqmyUsVUDdhMvlq9S1JJOSyNR_nrOcdLQIYQEb4nsRI6Pj_3ZOf6ZkNcsT7WKTBYWkYUJSmxUqEzMQpZzZ5zjTHpRn6NpOjlNDi74RRebg3thWn2IfsENPcP31-jguCC96eVS2wFu1IIeeBv8neHJDe8-_1KPgvl0sqZflIXr1El9IE__7LXxaBur9vs12NxEVj_m7N9tD1atvVQhhprMBs1SDfSP34Qc__tz7pE7HY3SUdt87pMbtnpAbm9oFMLdWVk3bZ76IbD9qgJkrMuaLhwdy7kum2_0S9lupaOTlUHpCVpWFANI5is6ms8kFo620uiPyOn-3sl4EnZnMISaR2wYSp65RBbMpok0zuKmLc00T1g0VDbiQ6MLmdsM7O1UzjkYN5E2Y4mOM1fYxLDHZKtaVPYJoTmAPI91nGrUAAMSSSOlUsATZ4YydyYgr9aWEJet1IbopyhQOcJXTkDeeCP1WeTVDIPTMi7Op-_F9PjT17P8PBLHAdldW1F0flmLGOX1gfgy9ufkAogNiIWnAXnZJ4PD4V8UWdlFg69geKQoYG5A3nqL_qW04mA03vNXO_-S-QW5OTk5OhSHH6Yfn5JbAGlpG3S4S7aWV419BiC0VM99c_8Jn6IAeg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bi9QwFIfDsguiD97F6robUXwQOrSTS1vwZZjdcVx1GC97YUFCmguUGTvLdgqOf_2epNM6KyLoW0vSkubkJF_ac35F6CVJucojnYRZZGCDEus8zHVMQpIyq61lRHpRn48TPj6mR2fsbAu9aXNhGn2I7oWb8ww_XzsHv9B208mlMj2XpwUT8A7lgL4OiT7_Eo-C7TRt4depwq3FSX0cT3ftteVox_Xsj2usuUmsfskZ3UHf2sY2kSazXr3Me-rnbzqO__s0d9HtNYviQTN47qEtU95HtzYUCuHspKjqpk71AMh-VQIwVkWFFxYP5VwV9Xf8pWgS6fB4pZ3wBC5K7MJH5is8mM-kaxtuhNEfouPR4dfhOFz_gSFULCL9ULLEUpkRw6nU1riULUUUoyTq5yZifa0ymZoErG3zlDEwLZUmIVTFic0M1eQR2i4XpXmMcAoYz2IVc-UUwIBDeJTnHODE6r5MrQ7Qi9YQ4qIR2hDdBgU6R_jOCdArb6OuirycudC0hInTyVsxmX46P0lPIzEN0G5rRLH2ykrETlwfeC8hfy7OgNeAVxgP0POuGNzNfUORpVnU7hbE_VAUIDdAr71B_9JacTQYHvqjJ_9SeR_dmB6MxId3k_dP0U0gNN5EHO6i7eVlbZ4BBS3zPT_YrwCcXP8a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+Calcium+Silicate+Hydrate+in+Highly+Alkaline+System&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Zhu%2C+Ganyu&rft.au=Li%2C+Huiquan&rft.au=Wang%2C+Xingrui&rft.au=Li%2C+Shaopeng&rft.date=2016-08-01&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=99&rft.issue=8&rft.spage=2778&rft.epage=2785&rft_id=info:doi/10.1111%2Fjace.14242&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_jace_14242
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon