Synthesis of Calcium Silicate Hydrate in Highly Alkaline System
Synthesis of calcium silicate hydrate (C‐S‐H) was conducted over the range of 50°C–90°C and C/S ratio of 0.86–2.14 in the highly alkaline Na2O–CaO–SiO2–H2O system for silicon utilization in high alumina fly ash. Structural change in C‐S‐H formed in the highly alkaline system was investigated using X...
Saved in:
Published in | Journal of the American Ceramic Society Vol. 99; no. 8; pp. 2778 - 2785 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Columbus
Blackwell Publishing Ltd
01.08.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Synthesis of calcium silicate hydrate (C‐S‐H) was conducted over the range of 50°C–90°C and C/S ratio of 0.86–2.14 in the highly alkaline Na2O–CaO–SiO2–H2O system for silicon utilization in high alumina fly ash. Structural change in C‐S‐H formed in the highly alkaline system was investigated using XRD and 29Si MAS NMR spectra. X‐ray photoelectron spectroscopy was used to confirm the amount of sodium ions in C‐S‐H. Conversion of Si may reach 99% under optimum conditions. A higher degree of polymerization of silicate was obtained at lower temperature and C/S ratio. Na+ was confirmed to exist as Na–OSi and Na–OH. The amount of Na+ is the least at C/S ratio of 1.43, which conform to the prediction of topological constraint theory. High Ca/Si ratio leads to the increasing in Na+ combined in the interlayer. Increasing in the Na+ concentration in the system also increases the amount of Na+ combined in the interlayer and reduces the polymerization. Ion exchange was proven to be an effective way to remove Na+ combined in the interlayer of C‐S‐H. |
---|---|
AbstractList | Synthesis of calcium silicate hydrate (C‐S‐H) was conducted over the range of 50°C–90°C and C/S ratio of 0.86–2.14 in the highly alkaline Na2O–CaO–SiO2–H2O system for silicon utilization in high alumina fly ash. Structural change in C‐S‐H formed in the highly alkaline system was investigated using XRD and 29Si MAS NMR spectra. X‐ray photoelectron spectroscopy was used to confirm the amount of sodium ions in C‐S‐H. Conversion of Si may reach 99% under optimum conditions. A higher degree of polymerization of silicate was obtained at lower temperature and C/S ratio. Na+ was confirmed to exist as Na–OSi and Na–OH. The amount of Na+ is the least at C/S ratio of 1.43, which conform to the prediction of topological constraint theory. High Ca/Si ratio leads to the increasing in Na+ combined in the interlayer. Increasing in the Na+ concentration in the system also increases the amount of Na+ combined in the interlayer and reduces the polymerization. Ion exchange was proven to be an effective way to remove Na+ combined in the interlayer of C‐S‐H. Synthesis of calcium silicate hydrate (C‐S‐H) was conducted over the range of 50°C–90°C and C/S ratio of 0.86–2.14 in the highly alkaline Na 2 O–CaO–SiO 2 –H 2 O system for silicon utilization in high alumina fly ash. Structural change in C‐S‐H formed in the highly alkaline system was investigated using XRD and 29 Si MAS NMR spectra. X‐ray photoelectron spectroscopy was used to confirm the amount of sodium ions in C‐S‐H. Conversion of Si may reach 99% under optimum conditions. A higher degree of polymerization of silicate was obtained at lower temperature and C/S ratio. Na + was confirmed to exist as Na–OSi and Na–OH. The amount of Na + is the least at C/S ratio of 1.43, which conform to the prediction of topological constraint theory. High Ca/Si ratio leads to the increasing in Na + combined in the interlayer. Increasing in the Na + concentration in the system also increases the amount of Na + combined in the interlayer and reduces the polymerization. Ion exchange was proven to be an effective way to remove Na + combined in the interlayer of C‐S‐H. Synthesis of calcium silicate hydrate (C-S-H) was conducted over the range of 50 degree C-90 degree C and C/S ratio of 0.86-2.14 in the highly alkaline Na sub(2)O-CaO-SiO sub(2)-H sub(2)O system for silicon utilization in high alumina fly ash. Structural change in C-S-H formed in the highly alkaline system was investigated using XRD and super(29)Si MAS NMR spectra. X-ray photoelectron spectroscopy was used to confirm the amount of sodium ions in C-S-H. Conversion of Si may reach 99% under optimum conditions. A higher degree of polymerization of silicate was obtained at lower temperature and C/S ratio. Na super(+) was confirmed to exist as Na-OSi and Na-OH. The amount of Na super(+) is the least at C/S ratio of 1.43, which conform to the prediction of topological constraint theory. High Ca/Si ratio leads to the increasing in Na super(+) combined in the interlayer. Increasing in the Na super(+) concentration in the system also increases the amount of Na super(+) combined in the interlayer and reduces the polymerization. Ion exchange was proven to be an effective way to remove Na super(+) combined in the interlayer of C-S-H. |
Author | Tang, Qing Wang, Xingrui Hou, Xinjuan Li, Shaopeng Li, Huiquan Zhu, Ganyu Wu, Wenfen |
Author_xml | – sequence: 1 givenname: Ganyu surname: Zhu fullname: Zhu, Ganyu organization: Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China – sequence: 2 givenname: Huiquan surname: Li fullname: Li, Huiquan email: hqli@ipe.ac.cn organization: Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China – sequence: 3 givenname: Xingrui surname: Wang fullname: Wang, Xingrui organization: Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China – sequence: 4 givenname: Shaopeng surname: Li fullname: Li, Shaopeng organization: Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China – sequence: 5 givenname: Xinjuan surname: Hou fullname: Hou, Xinjuan organization: Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China – sequence: 6 givenname: Wenfen surname: Wu fullname: Wu, Wenfen organization: Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China – sequence: 7 givenname: Qing surname: Tang fullname: Tang, Qing organization: Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China |
BookMark | eNp90E9LAkEYBvAhDFLr0idY6BLB2vzd2T2FiGkhZlgJXYZxfDdHx13bUWq_fWtWhw7O5WXg97y8PA1Uy_IMEDonuEWqd73QBlqEU06PUJ0IQUKakKiG6hhjGsqY4hPU8H5RfUkS8zq6GZfZZg7e-iBPg452xm5Xwdg6a_QGgn45K3bTZkHfvs1dGbTdUjubQTAu_QZWp-g41c7D2c9soufb7lOnHw4eened9iA0AjMaaiFTrhMGEdezFAyIxDAjOMN0CljQmUl0DNJMcTqNhUgF4xok44bINAE-Y010ud-7LvL3LfiNWllvwDmdQb71isRMiIgIKSp68Y8u8m2RVdcpkuCIRRWLDqoYyziiTLJKXe2VKXLvC0jVurArXZSKYLVrXO0aV9-NV5js8Yd1UB6Q6r7d6f5mwn3GVm1-_mV0sVSRZFKoybCnhqPH15d4gtWIfQEL3ZIK |
CODEN | JACTAW |
CitedBy_id | crossref_primary_10_1016_j_cemconres_2017_09_002 crossref_primary_10_2139_ssrn_4089597 crossref_primary_10_1038_s41598_023_30024_0 crossref_primary_10_1111_jace_15939 crossref_primary_10_1016_j_mtla_2021_101224 crossref_primary_10_1016_j_conbuildmat_2024_134931 crossref_primary_10_1016_j_mtcomm_2024_109728 crossref_primary_10_1061_JMCEE7_MTENG_16358 crossref_primary_10_1007_s00226_021_01290_w crossref_primary_10_1016_j_bsecv_2019_06_003 crossref_primary_10_1016_j_jclepro_2020_124104 crossref_primary_10_1016_j_conbuildmat_2019_117655 crossref_primary_10_1016_j_cemconcomp_2022_104909 crossref_primary_10_3390_nano10071299 crossref_primary_10_1007_s11356_020_08864_4 crossref_primary_10_1016_j_conbuildmat_2018_07_030 crossref_primary_10_1016_j_seppur_2021_120092 crossref_primary_10_1007_s41062_023_01329_w crossref_primary_10_1016_j_conbuildmat_2023_131833 crossref_primary_10_1039_D1NJ02289J crossref_primary_10_1016_j_ceramint_2022_07_332 crossref_primary_10_3390_ma16041416 crossref_primary_10_1016_j_scitotenv_2022_157431 crossref_primary_10_1111_jace_17440 crossref_primary_10_1016_j_jcrysgro_2022_126578 crossref_primary_10_1108_JSFE_05_2021_0021 crossref_primary_10_1016_j_cemconres_2023_107249 crossref_primary_10_1016_j_cscm_2022_e01225 crossref_primary_10_1016_j_cemconres_2021_106636 |
Cites_doi | 10.1016/S1065-7355(96)90046-2 10.1016/j.cemconres.2004.05.034 10.1038/ncomms5960 10.1016/j.coal.2009.03.005 10.1016/j.jhazmat.2012.01.001 10.1016/j.cemconcomp.2012.10.001 10.1111/j.1151-2916.1994.tb05363.x 10.1007/s00269-004-0401-3 10.1021/es0498989 10.1063/1.4878656 10.1111/j.1551-2916.2010.04242.x 10.1103/PhysRevB.8.5545 10.1103/PhysRevLett.114.125502 10.1016/S0008-8846(02)00753-6 10.1111/jace.12024 10.1111/j.1151-2916.1999.tb01826.x 10.1021/cm034227f 10.1111/j.1151-2916.1999.tb01911.x 10.1039/c3ta11064h 10.1107/S2052519213021155 10.4028/www.scientific.net/AMR.652-654.2570 10.1007/978-3-642-80432-8_8 10.1016/S1003-6326(10)60034-9 10.1016/0022-3093(83)90424-6 10.1016/j.cemconres.2012.02.015 10.1021/jp300745g 10.1016/S0022-3093(96)00523-6 10.1016/0022-3093(79)90033-4 10.1016/j.cemconres.2007.11.005 10.1021/jp983757 10.1016/j.cemconres.2013.07.003 10.1016/j.hydromet.2014.05.012 10.1021/jp509292q 10.1016/j.cemconres.2004.04.034 10.1016/0008-8846(89)90051-3 10.1016/S0008-8846(99)00187-8 10.1088/0965-0393/21/5/055010 10.1016/j.cemconres.2011.04.012 10.1007/978-3-642-80432-8_13 10.1016/j.cemconres.2003.12.016 10.1111/j.1151-2916.1989.tb06301.x |
ContentType | Journal Article |
Copyright | 2016 The American Ceramic Society 2016 American Ceramic Society |
Copyright_xml | – notice: 2016 The American Ceramic Society – notice: 2016 American Ceramic Society |
DBID | BSCLL AAYXX CITATION 7QQ 7SR 8FD JG9 |
DOI | 10.1111/jace.14242 |
DatabaseName | Istex CrossRef Ceramic Abstracts Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Ceramic Abstracts Technology Research Database |
DatabaseTitleList | Materials Research Database CrossRef Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts Engineering |
EISSN | 1551-2916 |
Editor | Scherer, G. |
Editor_xml | – sequence: 1 givenname: G. surname: Scherer fullname: Scherer, G. – sequence: 8 givenname: G. surname: Scherer fullname: Scherer, G. |
EndPage | 2785 |
ExternalDocumentID | 4133695791 10_1111_jace_14242 JACE14242 ark_67375_WNG_NPQZV8W0_P |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51304184 – fundername: Coal Based Key Scientific and Technological Project of Shanxi Province funderid: MC2014‐06 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OB 1OC 29L 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABDPE ABEFU ABEML ABJNI ABPVW ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACKIV ACNCT ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBO EBS EDO EJD EMK ESX F00 F01 F04 FEDTE FOJGT FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 I-F IRD ITF ITG ITH IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QF4 QM1 QN7 QO4 R.K RAX RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TAE TH9 TN5 TUS UB1 UPT V8K VH1 W8V W99 WBKPD WFSAM WH7 WIH WIK WOHZO WQJ WRC WTY WXSBR WYISQ XG1 YQT ZCG ZE2 ZY4 ZZTAW ~02 ~IA ~WT G8K AAYXX CITATION 7QQ 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c5032-a57f4a93e64adfece59c3c54302be052dc9a8e7cb0fb855f534ae734c17f9e4d3 |
IEDL.DBID | DR2 |
ISSN | 0002-7820 |
IngestDate | Fri Oct 25 22:41:14 EDT 2024 Thu Oct 10 19:47:54 EDT 2024 Thu Oct 10 16:03:08 EDT 2024 Fri Aug 23 02:33:15 EDT 2024 Sat Aug 24 00:58:35 EDT 2024 Wed Oct 30 09:56:32 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5032-a57f4a93e64adfece59c3c54302be052dc9a8e7cb0fb855f534ae734c17f9e4d3 |
Notes | Fig. S1. Diagram of the desilication before soda-lime sintering process. Fig. S2. Na 1s spectra of C-S-H obtained under different conditions. (a) C/S ratio = 1.43, CNa = 81.28 g/L, (b) T = 70°C, CNa = 81.28 g/L, (a) T = 70°C, C/S ratio = 1.43. Coal Based Key Scientific and Technological Project of Shanxi Province - No. MC2014-06 istex:C3C5A0801A95C3B27735A151EBFDAE53DBF94FD5 ark:/67375/WNG-NPQZV8W0-P National Natural Science Foundation of China - No. 51304184 ArticleID:JACE14242 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1807862373 |
PQPubID | 41752 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1835561575 proquest_journals_1906366156 proquest_journals_1807862373 crossref_primary_10_1111_jace_14242 wiley_primary_10_1111_jace_14242_JACE14242 istex_primary_ark_67375_WNG_NPQZV8W0_P |
PublicationCentury | 2000 |
PublicationDate | August 2016 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: August 2016 |
PublicationDecade | 2010 |
PublicationPlace | Columbus |
PublicationPlace_xml | – name: Columbus |
PublicationTitle | Journal of the American Ceramic Society |
PublicationTitleAlternate | J. Am. Ceram. Soc |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | M. Bauchy, M. J. Abdolhosseini Qomi, C. Bichara, F.-J. Ulm, and R. J.-M. Pellenq, "Rigidity Transition in Materials: Hardness is Driven by Weak Atomic Constraints," Phys. Rev. Lett., 114, 125502, 5pp (2015). D. S. Hou, T. J. Zhao, H. Y. Ma, and Z. J. Li, "Reactive Molecular Simulation on Water Confined in the Nanopores of the Calcium Silicate Hydrate Gel: Structure, Reactivity, and Mechanical Properties," J. Phys. Chem. C, 119 [3] 1346-58 (2015). L. Black, K. Garbev, P. Stemmermann, K. R. Hallam, and G. C. Allen, "X-ray Photoelectron Study of Oxygen Bonding in Crystalline C-S-H Phases," Phys. Chem. Miner., 31 [6] 337-46 (2004). J. J. Chen, J. J. Thomas, H. F. W. Taylor, and H. M. Jennings, "Solubility and Structure of Calcium Silicate Hydrate," Cem. Concr. Res., 34 [9] 1499-519 (2004). M. Bauchy, M. J. Abdolhosseini Qomi, F.-J. Ulm, and R. J.-M. Pellenq, "Order and Disorder in Calcium-Silicate-Hydrate," J. Chem. Phys, 140 [21] 214503, 9pp (2014). J. Skibsted and M. D. Andersen, "The Effect of Alkali Ions on the Incorporation of Aluminum in the Calcium Silicate Hydrate (C-S-H) Phase Resulting From Portland Cement Hydration Studied by 29Si MAS NMR," J. Am. Ceram. Soc., 96 [2] 651-6 (2013). M. L. Schlegel, I. Pointeau, N. Coreau, and P. Reiller, "Mechanism of Europium Retention by Calcium Silicate Hydrates: An EXAFS Study," Environ. Sci. Technol., 38 [16] 4423-31 (2004). M. Q. Chandler, J. F. Peters, and D. Pelessone, "Discrete Element Modeling of Calcium-Silicate-Hydrate," Modell. Simul. Mater. Sci. Eng., 21 [5] 055010, 23pp (2013). F. Matsushita, Y. Aono, and S. Shibata, "Calcium Silicate Structure and Carbonation Shrinkage of a Tobermorite-Based Material," Cem. Concr. Res., 34 [7] 1251-7 (2004). S. Y. Hong and F. P. Glasser, "Alkali Sorption by C-S-H and C-A-S-H Gels Part II. Role of Alumina," Cem. Concr. Res., 32 [7] 1101-11 (2002). I. G. Richardson, "Tobermorite/Jennite- and Tobermorite/Calcium Hydroxide-Based Models for the Structure of C-S-H: Applicability to Hardened Pastes of Tricalcium Silicate, β-Dicalcium Silicate, Portland Cement, and Blends of Portland Cement With Blast-Furnace Slag, Metakaolin, or Silica Fume," Cem. Concr. Res., 34 [9] 1733-77 (2004). A. Fernández-Jiménez, T. Vázquez, and A. Palomo, "Effect of Sodium Silicate on Calcium Aluminate Cement Hydration in Highly Alkaline Media: A Microstructural Characterization," J. Am. Ceram. Soc., 94 [4] 1297-303 (2011). S. Komarneni and M. Tsuji, "Selective Cation-Exchange in Substituted Tobermorites," J. Am. Ceram. Soc., 72 [9] 1668-74 (1989). Y. Okada, "29Si NMR Spectroscopy of Silicate Anions in Hydrothermally Formed C-S-H," J. Am. Ceram. Soc., 77 [3] 765-8 (1994). J. M. Sun and P. Chen, "Resourcing Utilization of High Alumina Fly Ash," Adv. Mater. Res., 652-654, 2570-5 (2013). H. Stade, "On the Reaction of C-S-H(di, Poly) With Alkali Hydroxides," Cem. Concr. Res., 19 [5] 802-10 (1989). M. J. Abdolhosseini Qomi, et al., "Combinatorial Molecular Optimization of Cement Hydrates," Nature Commun., 5, 4960, 10pp (2014). M. F. Thorpe, "Continuous Deformations in Random Networks," J. Non-Cryst. Solids, 57 [3] 355-70 (1983). I. G. Richardson, "The Calcium Silicate Hydrates," Cem. Concr. Res., 38 [2] 137-58 (2008). P. H. Citrin, "High-Resolution X-Ray Photoemission From Sodium Metal and Its Hydroxide," Phys. Rev. B: Condens. Matter., 8 [12-15] 5545-56 (1973). S. Grangeon, F. Claret, Y. Linard, and C. Chiaberge, "X-ray Diffraction: A Powerful Tool to Probe and Understand the Structure of Nanocrystalline Calcium Silicate Hydrates," Acta Crystallogr. Sect. B: Struct. Sci., 69 [5] 465-73 (2013). Y. J. Zhang, L. C. Liu, Y. Xu, Y. C. Wang, and D. L. Xu, "A new Alkali-Activated Steel Slag-Based Cementitious Material for Photocatalytic Degradation of Organic Pollutant From Waste Water," J. Hazard. Mater., 209-210, 146-50 (2012). L. Nicoleau, "Accelerated Growth of Calcium Silicate Hydrates: Experiments and Simulations," Cem. Concr. Res., 41 [12] 1339-48 (2011). S. Y. Hong and F. P. Glasser, "Alkali Binding in Cement Pastes Part I. The C-S-H Phase," Cem. Concr. Res., 29 [12] 1893-903 (1999). S. Bishnoi and K. L. Scrivener, "Discussion of the Paper "Accelerated Growth of Calcium Silicate Hydrates" by Luc Nicoleau," Cem. Concr. Res., 42 [6] 878-80 (2012). Y. Kuwahara, S. Tamagawa, T. Fujitani, and H. Yamashita, "A Novel Conversion Process for Waste Slag: Synthesis of Calcium Silicate Hydrate From Blast Furnace Slag and its Application as a Versatile Adsorbent for Water Purification," J. Mater. Chem. A, 1 [24] 7199-210 (2013). N. Lequeux, A. Morau, S. Philippot, and P. Boch, "Extended X-ray Absorption Fine Structure Investigation of Calcium Silicate Hydrates," J. Am. Ceram. Soc., 82 [5] 1299-306 (1999). K. Kurumisawa, T. Nawa, H. Owada, and M. Shibata, "Deteriorated Hardened Cement Paste Structure Analyzed by XPS and 29Si NMR Techniques," Cem. Concr. Res., 52, 190-5 (2013). H. Q. Li, J. B. Hui, C. Y. Wang, W. J. Bao, and Z. H. Sun, "Extraction of Alumina From Coal fly ash by Mixed-Alkaline Hydrothermal Method," Hydrometallurgy, 147-148, 183-7 (2014). W.-S. Chiang, E. Fratini, P. Baglioni, D. Liu, and S. H. Chen, "Microstructure Determination of Calcium-Silicate-Hydrate Globules by Small-Angle Neutron Scattering," J. Phys. Chem. C, 116 [8] 5055-61 (2012). J. C. Phillips, "Topology of Covalent non-Crystalline Solids I: Short-Range Order in Chalcogenide Alloys," J. Non-Cryst. Solids, 34 [2] 153-81 (1979). Y. J. He, L. N. Lu, L. J. Struble, J. L. Rapp, P. Mondal, and S. G. Hu, "Effect of Calcium-Silicon Ratio on Microstructure and Nanostructure of Calcium Silicate Hydrate Synthesized by Reaction of Fumed Silica and Calcium Oxide at Room Temperature," Mater. Struct., 47 [1-2] 311-22 (2013). P. Yu, R. J. Kirkpatrick, B. Poe, P. F. McMillan, and X. D. Cong, "Structure of Calcium Silicate Hydrate (C-S-H): Near-, Mid-, and Far-Infrared Spectroscopy," J. Am. Ceram. Soc., 82 [3] 742-8 (1999). A. Mekki, D. Holland, C. F. McConville, and M. Salim, "An XPS Study of Iron Sodium Silicate Glass Surfaces," J. Non-Cryst. Solids, 208, 267-76 (1996). J. J. Thomas, J. J. Chen, H. M. Jennings, and D. A. Neumann, "Ca−OH Bonding in the C−S−H Gel Phase of Tricalcium Silicate and White Portland Cement Pastes Measured by Inelastic Neutron Scattering," Chem. Mater., 15 [20] 3813-17 (2003). G. H. Bai, W. Teng, X. G. Wang, J. G. Qin, P. Xu, and P. C. Li, "Alkali Desilicated Coal fly ash as Substitute of Bauxite in Lime-Soda Sintering Process for Aluminum Production," Trans. Nonferrous Met. Soc. China, 20 [Suppl 1] s169-75 (2010). J. J. Kim, E. M. Foley, and M. M. Reda Taha, "Nano-Mechanical Characterization of Synthetic Calcium-Silicate-Hydrate (C-S-H) With Varying CaO/SiO2 Mixture Ratios," Cem. Concr. Compos, 36, 65-70 (2013). X. D. Cong and R. J. Kirkpatrick, "29Si MAS NMR Study of the Structure of Calcium Silicate Hydrate," Advn. Cem. Bas. Mat, 3 [3] 144-56 (1996). S. F. Dai, L. Zhao, S. P. Peng, C. L. Chou, X. B. Wang, et al., "Abundances and Distribution of Minerals and Elements in High-Alumina Coal fly ash From the Jungar Power Plant, Inner Mongolia, China," Int. J. Coal Geol., 81 [4] 320-32 (2010). H. Viallis, P. Faucon, J. C. Petit, and A. Nonat, "Interaction Between Salts (NaCl, CsCl) and Calcium Silicate Hydrates (C−S−H)," J. Phys. Chem. B, 103 [25] 5212-19 (1999). 1996; 208 2013; 69 2013; 47 1979; 34 2013; 1 2013; 21 1999; 29 2008; 38 2002; 32 1998 2003; 15 1999; 103 2010; 81 1999; 82 1983; 57 2013; 652–654 2010; 20 1989; 72 2004; 31 2014; 5 2013; 36 2004; 38 2015; 114 2004; 34 2013; 96 2013; 52 2011; 94 2011; 41 1994; 77 2015; 119 2014; 140 2012; 116 1996; 3 1973; 8 2014; 147–148 1989; 19 2012; 209–210 2012; 42 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 He Y. J. (e_1_2_6_29_1) 2013; 47 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 15 start-page: 3813 issue: 20 year: 2003 end-page: 17 article-title: Ca−OH Bonding in the C−S−H Gel Phase of Tricalcium Silicate and White Portland Cement Pastes Measured by Inelastic Neutron Scattering publication-title: Chem. Mater. – volume: 20 start-page: s169 issue: Suppl 1 year: 2010 end-page: 75 article-title: Alkali Desilicated Coal fly ash as Substitute of Bauxite in Lime‐Soda Sintering Process for Aluminum Production publication-title: Trans. Nonferrous Met. Soc. China – volume: 21 start-page: 055010 issue: 5 year: 2013 article-title: Discrete Element Modeling of Calcium‐Silicate‐Hydrate publication-title: Modell. Simul. Mater. Sci. Eng. – volume: 140 start-page: 214503 issue: 21 year: 2014 article-title: Order and Disorder in Calcium–Silicate–Hydrate publication-title: J. Chem. Phys – volume: 5 start-page: 4960 year: 2014 article-title: Combinatorial Molecular Optimization of Cement Hydrates publication-title: Nature Commun. – volume: 652–654 start-page: 2570 year: 2013 end-page: 5 article-title: Resourcing Utilization of High Alumina Fly Ash publication-title: Adv. Mater. Res. – volume: 34 start-page: 1499 issue: 9 year: 2004 end-page: 519 article-title: Solubility and Structure of Calcium Silicate Hydrate publication-title: Cem. Concr. Res. – volume: 114 start-page: 125502 year: 2015 article-title: Rigidity Transition in Materials: Hardness is Driven by Weak Atomic Constraints publication-title: Phys. Rev. Lett. – volume: 116 start-page: 5055 issue: 8 year: 2012 end-page: 61 article-title: Microstructure Determination of Calcium‐Silicate‐Hydrate Globules by Small‐Angle Neutron Scattering publication-title: J. Phys. Chem. C – volume: 72 start-page: 1668 issue: 9 year: 1989 end-page: 74 article-title: Selective Cation‐Exchange in Substituted Tobermorites publication-title: J. Am. Ceram. Soc. – volume: 29 start-page: 1893 issue: 12 year: 1999 end-page: 903 article-title: Alkali Binding in Cement Pastes Part I. The C‐S‐H Phase publication-title: Cem. Concr. Res. – volume: 52 start-page: 190 year: 2013 end-page: 5 article-title: Deteriorated Hardened Cement Paste Structure Analyzed by XPS and Si NMR Techniques publication-title: Cem. Concr. Res. – volume: 31 start-page: 337 issue: 6 year: 2004 end-page: 46 article-title: X‐ray Photoelectron Study of Oxygen Bonding in Crystalline C‐S‐H Phases publication-title: Phys. Chem. Miner. – volume: 208 start-page: 267 year: 1996 end-page: 76 article-title: An XPS Study of Iron Sodium Silicate Glass Surfaces publication-title: J. Non‐Cryst. Solids – volume: 77 start-page: 765 issue: 3 year: 1994 end-page: 8 article-title: Si NMR Spectroscopy of Silicate Anions in Hydrothermally Formed C‐S‐H publication-title: J. Am. Ceram. Soc. – volume: 96 start-page: 651 issue: 2 year: 2013 end-page: 6 article-title: The Effect of Alkali Ions on the Incorporation of Aluminum in the Calcium Silicate Hydrate (C‐S‐H) Phase Resulting From Portland Cement Hydration Studied by Si MAS NMR publication-title: J. Am. Ceram. Soc. – start-page: 189 year: 1998 end-page: 96 – volume: 38 start-page: 4423 issue: 16 year: 2004 end-page: 31 article-title: Mechanism of Europium Retention by Calcium Silicate Hydrates: An EXAFS Study publication-title: Environ. Sci. Technol. – volume: 82 start-page: 742 issue: 3 year: 1999 end-page: 8 article-title: Structure of Calcium Silicate Hydrate (C‐S‐H): Near‐, Mid‐, and Far‐Infrared Spectroscopy publication-title: J. Am. Ceram. Soc. – volume: 57 start-page: 355 issue: 3 year: 1983 end-page: 70 article-title: Continuous Deformations in Random Networks publication-title: J. Non‐Cryst. Solids – volume: 1 start-page: 7199 issue: 24 year: 2013 end-page: 210 article-title: A Novel Conversion Process for Waste Slag: Synthesis of Calcium Silicate Hydrate From Blast Furnace Slag and its Application as a Versatile Adsorbent for Water Purification publication-title: J. Mater. Chem. A – volume: 36 start-page: 65 year: 2013 end-page: 70 article-title: Nano‐Mechanical Characterization of Synthetic Calcium–Silicate–Hydrate (C–S–H) With Varying CaO/SiO Mixture Ratios publication-title: Cem. Concr. Compos – volume: 41 start-page: 1339 issue: 12 year: 2011 end-page: 48 article-title: Accelerated Growth of Calcium Silicate Hydrates: Experiments and Simulations publication-title: Cem. Concr. Res. – volume: 69 start-page: 465 issue: 5 year: 2013 end-page: 73 article-title: X‐ray Diffraction: A Powerful Tool to Probe and Understand the Structure of Nanocrystalline Calcium Silicate Hydrates publication-title: Acta Crystallogr. Sect. B: Struct. Sci. – volume: 8 start-page: 5545 issue: 12–15 year: 1973 end-page: 56 article-title: High‐Resolution X‐Ray Photoemission From Sodium Metal and Its Hydroxide publication-title: Phys. Rev. B: Condens. Matter. – volume: 81 start-page: 320 issue: 4 year: 2010 end-page: 32 article-title: Abundances and Distribution of Minerals and Elements in High‐Alumina Coal fly ash From the Jungar Power Plant, Inner Mongolia, China publication-title: Int. J. Coal Geol. – volume: 42 start-page: 878 issue: 6 year: 2012 end-page: 80 article-title: Discussion of the Paper “Accelerated Growth of Calcium Silicate Hydrates” by Luc Nicoleau publication-title: Cem. Concr. Res. – volume: 103 start-page: 5212 issue: 25 year: 1999 end-page: 19 article-title: Interaction Between Salts (NaCl, CsCl) and Calcium Silicate Hydrates (C−S−H) publication-title: J. Phys. Chem. B – volume: 47 start-page: 311 issue: 1–2 year: 2013 end-page: 22 article-title: Effect of Calcium–Silicon Ratio on Microstructure and Nanostructure of Calcium Silicate Hydrate Synthesized by Reaction of Fumed Silica and Calcium Oxide at Room Temperature publication-title: Mater. Struct. – volume: 94 start-page: 1297 issue: 4 year: 2011 end-page: 303 article-title: Effect of Sodium Silicate on Calcium Aluminate Cement Hydration in Highly Alkaline Media: A Microstructural Characterization publication-title: J. Am. Ceram. Soc. – volume: 34 start-page: 1733 issue: 9 year: 2004 end-page: 77 article-title: Tobermorite/Jennite‐ and Tobermorite/Calcium Hydroxide‐Based Models for the Structure of C‐S‐H: Applicability to Hardened Pastes of Tricalcium Silicate, β‐Dicalcium Silicate, Portland Cement, and Blends of Portland Cement With Blast‐Furnace Slag, Metakaolin, or Silica Fume publication-title: Cem. Concr. Res. – volume: 209–210 start-page: 146 year: 2012 end-page: 50 article-title: A new Alkali‐Activated Steel Slag‐Based Cementitious Material for Photocatalytic Degradation of Organic Pollutant From Waste Water publication-title: J. Hazard. Mater. – volume: 3 start-page: 144 issue: 3 year: 1996 end-page: 56 article-title: Si MAS NMR Study of the Structure of Calcium Silicate Hydrate publication-title: Advn. Cem. Bas. Mat – volume: 82 start-page: 1299 issue: 5 year: 1999 end-page: 306 article-title: Extended X‐ray Absorption Fine Structure Investigation of Calcium Silicate Hydrates publication-title: J. Am. Ceram. Soc. – volume: 19 start-page: 802 issue: 5 year: 1989 end-page: 10 article-title: On the Reaction of C‐S‐H(di, Poly) With Alkali Hydroxides publication-title: Cem. Concr. Res. – volume: 147–148 start-page: 183 year: 2014 end-page: 7 article-title: Extraction of Alumina From Coal fly ash by Mixed‐Alkaline Hydrothermal Method publication-title: Hydrometallurgy – volume: 38 start-page: 137 issue: 2 year: 2008 end-page: 58 article-title: The Calcium Silicate Hydrates publication-title: Cem. Concr. Res. – volume: 34 start-page: 153 issue: 2 year: 1979 end-page: 81 article-title: Topology of Covalent non‐Crystalline Solids I: Short‐Range Order in Chalcogenide Alloys publication-title: J. Non‐Cryst. Solids – volume: 34 start-page: 1251 issue: 7 year: 2004 end-page: 7 article-title: Calcium Silicate Structure and Carbonation Shrinkage of a Tobermorite‐Based Material publication-title: Cem. Concr. Res. – volume: 32 start-page: 1101 issue: 7 year: 2002 end-page: 11 article-title: Alkali Sorption by C‐S‐H and C‐A‐S‐H Gels Part II. Role of Alumina publication-title: Cem. Concr. Res. – start-page: 119 year: 1998 end-page: 41 – volume: 119 start-page: 1346 issue: 3 year: 2015 end-page: 58 article-title: Reactive Molecular Simulation on Water Confined in the Nanopores of the Calcium Silicate Hydrate Gel: Structure, Reactivity, and Mechanical Properties publication-title: J. Phys. Chem. C – ident: e_1_2_6_16_1 doi: 10.1016/S1065-7355(96)90046-2 – ident: e_1_2_6_36_1 doi: 10.1016/j.cemconres.2004.05.034 – ident: e_1_2_6_21_1 doi: 10.1038/ncomms5960 – ident: e_1_2_6_2_1 doi: 10.1016/j.coal.2009.03.005 – ident: e_1_2_6_8_1 doi: 10.1016/j.jhazmat.2012.01.001 – ident: e_1_2_6_11_1 doi: 10.1016/j.cemconcomp.2012.10.001 – volume: 47 start-page: 311 issue: 1 year: 2013 ident: e_1_2_6_29_1 article-title: Effect of Calcium–Silicon Ratio on Microstructure and Nanostructure of Calcium Silicate Hydrate Synthesized by Reaction of Fumed Silica and Calcium Oxide at Room Temperature publication-title: Mater. Struct. contributor: fullname: He Y. J. – ident: e_1_2_6_30_1 doi: 10.1111/j.1151-2916.1994.tb05363.x – ident: e_1_2_6_39_1 doi: 10.1007/s00269-004-0401-3 – ident: e_1_2_6_9_1 doi: 10.1021/es0498989 – ident: e_1_2_6_23_1 doi: 10.1063/1.4878656 – ident: e_1_2_6_32_1 doi: 10.1111/j.1551-2916.2010.04242.x – ident: e_1_2_6_41_1 doi: 10.1103/PhysRevB.8.5545 – ident: e_1_2_6_22_1 doi: 10.1103/PhysRevLett.114.125502 – ident: e_1_2_6_26_1 doi: 10.1016/S0008-8846(02)00753-6 – ident: e_1_2_6_6_1 doi: 10.1111/jace.12024 – ident: e_1_2_6_37_1 doi: 10.1111/j.1151-2916.1999.tb01826.x – ident: e_1_2_6_17_1 doi: 10.1021/cm034227f – ident: e_1_2_6_38_1 doi: 10.1111/j.1151-2916.1999.tb01911.x – ident: e_1_2_6_7_1 doi: 10.1039/c3ta11064h – ident: e_1_2_6_18_1 doi: 10.1107/S2052519213021155 – ident: e_1_2_6_3_1 doi: 10.4028/www.scientific.net/AMR.652-654.2570 – ident: e_1_2_6_34_1 doi: 10.1007/978-3-642-80432-8_8 – ident: e_1_2_6_4_1 doi: 10.1016/S1003-6326(10)60034-9 – ident: e_1_2_6_43_1 doi: 10.1016/0022-3093(83)90424-6 – ident: e_1_2_6_12_1 doi: 10.1016/j.cemconres.2012.02.015 – ident: e_1_2_6_14_1 doi: 10.1021/jp300745g – ident: e_1_2_6_40_1 doi: 10.1016/S0022-3093(96)00523-6 – ident: e_1_2_6_42_1 doi: 10.1016/0022-3093(79)90033-4 – ident: e_1_2_6_10_1 doi: 10.1016/j.cemconres.2007.11.005 – ident: e_1_2_6_27_1 doi: 10.1021/jp983757 – ident: e_1_2_6_31_1 doi: 10.1016/j.cemconres.2013.07.003 – ident: e_1_2_6_5_1 doi: 10.1016/j.hydromet.2014.05.012 – ident: e_1_2_6_15_1 doi: 10.1021/jp509292q – ident: e_1_2_6_19_1 doi: 10.1016/j.cemconres.2004.04.034 – ident: e_1_2_6_24_1 doi: 10.1016/0008-8846(89)90051-3 – ident: e_1_2_6_25_1 doi: 10.1016/S0008-8846(99)00187-8 – ident: e_1_2_6_20_1 doi: 10.1088/0965-0393/21/5/055010 – ident: e_1_2_6_13_1 doi: 10.1016/j.cemconres.2011.04.012 – ident: e_1_2_6_28_1 doi: 10.1007/978-3-642-80432-8_13 – ident: e_1_2_6_33_1 doi: 10.1016/j.cemconres.2003.12.016 – ident: e_1_2_6_35_1 doi: 10.1111/j.1151-2916.1989.tb06301.x |
SSID | ssj0001984 |
Score | 2.3972812 |
Snippet | Synthesis of calcium silicate hydrate (C‐S‐H) was conducted over the range of 50°C–90°C and C/S ratio of 0.86–2.14 in the highly alkaline Na2O–CaO–SiO2–H2O... Synthesis of calcium silicate hydrate (C‐S‐H) was conducted over the range of 50°C–90°C and C/S ratio of 0.86–2.14 in the highly alkaline Na 2 O–CaO–SiO 2 –H 2... Synthesis of calcium silicate hydrate (C-S-H) was conducted over the range of 50°C-90°C and C/S ratio of 0.86-2.14 in the highly alkaline Na2O-CaO-SiO2-H2O... Synthesis of calcium silicate hydrate (C-S-H) was conducted over the range of 50 degree C-90 degree C and C/S ratio of 0.86-2.14 in the highly alkaline Na... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 2778 |
SubjectTerms | alkaline system Aluminum oxide Calcium silicate hydrate Calcium silicates Ceramics Chemical synthesis Conversion Degree of polymerization Fly ash high alumina fly ash Interlayers Ion exchange NMR spectroscopy Optimization Photoelectron spectroscopy Polymerization Silicon Silicon dioxide Sodium Spectra Spectrum analysis Synthesis Topology X-ray diffraction X-rays |
Title | Synthesis of Calcium Silicate Hydrate in Highly Alkaline System |
URI | https://api.istex.fr/ark:/67375/WNG-NPQZV8W0-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjace.14242 https://www.proquest.com/docview/1807862373 https://www.proquest.com/docview/1906366156 https://search.proquest.com/docview/1835561575 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3ba9swFIdF6V62h93HvLVDZWMPAwc7snyBvYSsbSg0dJdeGAyhK5hkzqhjWPbX9xw59tJSBt2bjWQj6-hIn-xzfibkHctTrSKThUVkYYMSGxUqE7OQ5dwZ5ziTXtTneJpOTpOjC36xRT52uTCtPkT_wg09w8_X6OBS1ZtOLrUdYJ4WTsAxyzCe69OXv9pRsJtOOvZFUbi1NqkP4-kvvbYa3cOO_X0NNTeB1a84B4_Ij66tbaDJbNAs1UD_uSHj-L8P85g8XKMoHbVj5wnZstVT8mBDoBDOzsq6aevUzwDsVxXwYl3WdOHoWM512fykX8s2j45OVgZ1J2hZUYwema_oaD6T2Dba6qI_J6cH-9_Gk3D9A4ZQ84gNQ8kzl8iC2TSRxlnM2NJM84RFQ2UjPjS6kLnNwNhO5ZyDZRNpM5boOHOFTQx7QbarRWVfEpoDxfNYx6lGATDAkDRSKgU2cWYoc2cC8rYzhPjV6myIfn8CnSN85wTkvbdRX0VezjAyLePifHoopiefv5_l55E4CchOZ0SxdspaxKitD7iXsduLC8A1wBWeBmSvLwZvw08osrKLBm_B8H-iwLgB-eAN-o_WiqPReN8fvbpL5dfkPlBZ2kYZ7pDt5WVjd4F8luqNH-FX4yP8Uw |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bb9MwFIcttD0AD9wRGQOMQDwgpUrqOJfHqmyUsVUDdhMvlq9S1JJOSyNR_nrOcdLQIYQEb4nsRI6Pj_3ZOf6ZkNcsT7WKTBYWkYUJSmxUqEzMQpZzZ5zjTHpRn6NpOjlNDi74RRebg3thWn2IfsENPcP31-jguCC96eVS2wFu1IIeeBv8neHJDe8-_1KPgvl0sqZflIXr1El9IE__7LXxaBur9vs12NxEVj_m7N9tD1atvVQhhprMBs1SDfSP34Qc__tz7pE7HY3SUdt87pMbtnpAbm9oFMLdWVk3bZ76IbD9qgJkrMuaLhwdy7kum2_0S9lupaOTlUHpCVpWFANI5is6ms8kFo620uiPyOn-3sl4EnZnMISaR2wYSp65RBbMpok0zuKmLc00T1g0VDbiQ6MLmdsM7O1UzjkYN5E2Y4mOM1fYxLDHZKtaVPYJoTmAPI91nGrUAAMSSSOlUsATZ4YydyYgr9aWEJet1IbopyhQOcJXTkDeeCP1WeTVDIPTMi7Op-_F9PjT17P8PBLHAdldW1F0flmLGOX1gfgy9ufkAogNiIWnAXnZJ4PD4V8UWdlFg69geKQoYG5A3nqL_qW04mA03vNXO_-S-QW5OTk5OhSHH6Yfn5JbAGlpG3S4S7aWV419BiC0VM99c_8Jn6IAeg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bi9QwFIfDsguiD97F6robUXwQOrSTS1vwZZjdcVx1GC97YUFCmguUGTvLdgqOf_2epNM6KyLoW0vSkubkJF_ac35F6CVJucojnYRZZGCDEus8zHVMQpIyq61lRHpRn48TPj6mR2fsbAu9aXNhGn2I7oWb8ww_XzsHv9B208mlMj2XpwUT8A7lgL4OiT7_Eo-C7TRt4depwq3FSX0cT3ftteVox_Xsj2usuUmsfskZ3UHf2sY2kSazXr3Me-rnbzqO__s0d9HtNYviQTN47qEtU95HtzYUCuHspKjqpk71AMh-VQIwVkWFFxYP5VwV9Xf8pWgS6fB4pZ3wBC5K7MJH5is8mM-kaxtuhNEfouPR4dfhOFz_gSFULCL9ULLEUpkRw6nU1riULUUUoyTq5yZifa0ymZoErG3zlDEwLZUmIVTFic0M1eQR2i4XpXmMcAoYz2IVc-UUwIBDeJTnHODE6r5MrQ7Qi9YQ4qIR2hDdBgU6R_jOCdArb6OuirycudC0hInTyVsxmX46P0lPIzEN0G5rRLH2ykrETlwfeC8hfy7OgNeAVxgP0POuGNzNfUORpVnU7hbE_VAUIDdAr71B_9JacTQYHvqjJ_9SeR_dmB6MxId3k_dP0U0gNN5EHO6i7eVlbZ4BBS3zPT_YrwCcXP8a |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+Calcium+Silicate+Hydrate+in+Highly+Alkaline+System&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Zhu%2C+Ganyu&rft.au=Li%2C+Huiquan&rft.au=Wang%2C+Xingrui&rft.au=Li%2C+Shaopeng&rft.date=2016-08-01&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=99&rft.issue=8&rft.spage=2778&rft.epage=2785&rft_id=info:doi/10.1111%2Fjace.14242&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_jace_14242 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon |