Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications

•Preparation of CNCs and CNFs was briefly introduced.•Fabrication of CNCs and CNFs based hydrogels was elaborated.•Emerging methods such as 3D printing were highlighted.•Biomedical applications of CNCs and CNFs based hydrogels were summarized.•Prospects and challenges of CNCs and CNFs based hydrogel...

Full description

Saved in:
Bibliographic Details
Published inCarbohydrate polymers Vol. 209; pp. 130 - 144
Main Authors Du, Haishun, Liu, Wei, Zhang, Miaomiao, Si, Chuanling, Zhang, Xinyu, Li, Bin
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Preparation of CNCs and CNFs was briefly introduced.•Fabrication of CNCs and CNFs based hydrogels was elaborated.•Emerging methods such as 3D printing were highlighted.•Biomedical applications of CNCs and CNFs based hydrogels were summarized.•Prospects and challenges of CNCs and CNFs based hydrogels were discussed. The production of cellulose nanomaterials from lignocellulosic biomass opens an opportunity for the development and application of new materials in nanotechnology. Over the last decade, cellulose nanomaterials based hydrogels have emerged as promising materials in the field of biomedical applications due to their low toxicity, biocompatibility, biodegradability, as well as excellent mechanical stability. In this review, recent progress on the preparation of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) based hydrogels and their biomedical applications is summarized and discussed based on the analyses of the latest studies (especially for the reports in the past five years). We begin with a brief introduction of the differences in preparation methods and properties of two main types of cellulose nanomaterials: CNCs and CNFs isolated from lignocellulosic biomass. Then, various processes for the fabrication of CNCs based hydrogels and CNFs based hydrogels were elaborated, respectively, with the focus on some new methods (e.g. 3D printing). Furthermore, a number of biomedical applications of CNCs and CNFs based hydrogels, including drug delivery, wound dressings and tissue engineering scaffolds were highlighted. Finally, the prospects and ongoing challenges of CNCs and CNFs based hydrogels for biomedical applications were summarized. This work demonstrated that the CNCs and CNFs based hydrogels have great promise in a wide range of biomedical applications in the future.
AbstractList The production of cellulose nanomaterials from lignocellulosic biomass opens an opportunity for the development and application of new materials in nanotechnology. Over the last decade, cellulose nanomaterials based hydrogels have emerged as promising materials in the field of biomedical applications due to their low toxicity, biocompatibility, biodegradability, as well as excellent mechanical stability. In this review, recent progress on the preparation of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) based hydrogels and their biomedical applications is summarized and discussed based on the analyses of the latest studies (especially for the reports in the past five years). We begin with a brief introduction of the differences in preparation methods and properties of two main types of cellulose nanomaterials: CNCs and CNFs isolated from lignocellulosic biomass. Then, various processes for the fabrication of CNCs based hydrogels and CNFs based hydrogels were elaborated, respectively, with the focus on some new methods (e.g. 3D printing). Furthermore, a number of biomedical applications of CNCs and CNFs based hydrogels, including drug delivery, wound dressings and tissue engineering scaffolds were highlighted. Finally, the prospects and ongoing challenges of CNCs and CNFs based hydrogels for biomedical applications were summarized. This work demonstrated that the CNCs and CNFs based hydrogels have great promise in a wide range of biomedical applications in the future.The production of cellulose nanomaterials from lignocellulosic biomass opens an opportunity for the development and application of new materials in nanotechnology. Over the last decade, cellulose nanomaterials based hydrogels have emerged as promising materials in the field of biomedical applications due to their low toxicity, biocompatibility, biodegradability, as well as excellent mechanical stability. In this review, recent progress on the preparation of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) based hydrogels and their biomedical applications is summarized and discussed based on the analyses of the latest studies (especially for the reports in the past five years). We begin with a brief introduction of the differences in preparation methods and properties of two main types of cellulose nanomaterials: CNCs and CNFs isolated from lignocellulosic biomass. Then, various processes for the fabrication of CNCs based hydrogels and CNFs based hydrogels were elaborated, respectively, with the focus on some new methods (e.g. 3D printing). Furthermore, a number of biomedical applications of CNCs and CNFs based hydrogels, including drug delivery, wound dressings and tissue engineering scaffolds were highlighted. Finally, the prospects and ongoing challenges of CNCs and CNFs based hydrogels for biomedical applications were summarized. This work demonstrated that the CNCs and CNFs based hydrogels have great promise in a wide range of biomedical applications in the future.
•Preparation of CNCs and CNFs was briefly introduced.•Fabrication of CNCs and CNFs based hydrogels was elaborated.•Emerging methods such as 3D printing were highlighted.•Biomedical applications of CNCs and CNFs based hydrogels were summarized.•Prospects and challenges of CNCs and CNFs based hydrogels were discussed. The production of cellulose nanomaterials from lignocellulosic biomass opens an opportunity for the development and application of new materials in nanotechnology. Over the last decade, cellulose nanomaterials based hydrogels have emerged as promising materials in the field of biomedical applications due to their low toxicity, biocompatibility, biodegradability, as well as excellent mechanical stability. In this review, recent progress on the preparation of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) based hydrogels and their biomedical applications is summarized and discussed based on the analyses of the latest studies (especially for the reports in the past five years). We begin with a brief introduction of the differences in preparation methods and properties of two main types of cellulose nanomaterials: CNCs and CNFs isolated from lignocellulosic biomass. Then, various processes for the fabrication of CNCs based hydrogels and CNFs based hydrogels were elaborated, respectively, with the focus on some new methods (e.g. 3D printing). Furthermore, a number of biomedical applications of CNCs and CNFs based hydrogels, including drug delivery, wound dressings and tissue engineering scaffolds were highlighted. Finally, the prospects and ongoing challenges of CNCs and CNFs based hydrogels for biomedical applications were summarized. This work demonstrated that the CNCs and CNFs based hydrogels have great promise in a wide range of biomedical applications in the future.
The production of cellulose nanomaterials from lignocellulosic biomass opens an opportunity for the development and application of new materials in nanotechnology. Over the last decade, cellulose nanomaterials based hydrogels have emerged as promising materials in the field of biomedical applications due to their low toxicity, biocompatibility, biodegradability, as well as excellent mechanical stability. In this review, recent progress on the preparation of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) based hydrogels and their biomedical applications is summarized and discussed based on the analyses of the latest studies (especially for the reports in the past five years). We begin with a brief introduction of the differences in preparation methods and properties of two main types of cellulose nanomaterials: CNCs and CNFs isolated from lignocellulosic biomass. Then, various processes for the fabrication of CNCs based hydrogels and CNFs based hydrogels were elaborated, respectively, with the focus on some new methods (e.g. 3D printing). Furthermore, a number of biomedical applications of CNCs and CNFs based hydrogels, including drug delivery, wound dressings and tissue engineering scaffolds were highlighted. Finally, the prospects and ongoing challenges of CNCs and CNFs based hydrogels for biomedical applications were summarized. This work demonstrated that the CNCs and CNFs based hydrogels have great promise in a wide range of biomedical applications in the future.
Author Si, Chuanling
Zhang, Xinyu
Zhang, Miaomiao
Du, Haishun
Li, Bin
Liu, Wei
Author_xml – sequence: 1
  givenname: Haishun
  orcidid: 0000-0002-8046-0319
  surname: Du
  fullname: Du, Haishun
  email: hzd0024@auburn.edu
  organization: Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
– sequence: 2
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  email: liuwei_18@mail.tust.edu.cn
  organization: Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
– sequence: 3
  givenname: Miaomiao
  surname: Zhang
  fullname: Zhang, Miaomiao
  email: mzz0039@auburn.edu
  organization: Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
– sequence: 4
  givenname: Chuanling
  surname: Si
  fullname: Si, Chuanling
  email: sichli@tust.edu.cn
  organization: Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
– sequence: 5
  givenname: Xinyu
  surname: Zhang
  fullname: Zhang, Xinyu
  email: xzz0004@auburn.edu
  organization: Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
– sequence: 6
  givenname: Bin
  orcidid: 0000-0002-8903-3874
  surname: Li
  fullname: Li, Bin
  email: libin@qibebt.ac.cn
  organization: CAS Key Laboratory of Biofuels, CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30732792$$D View this record in MEDLINE/PubMed
BookMark eNqNUU2P0zAQtdAitrvwE0A5ckmYcRwnFgeEKr6klbjADcly7DG4SuNgp0j997i0e4DL4svYmveeZ967YVdznImx5wgNAspXu8aaNC5xajigagAb4PCIbXDoVY2tEFdsAyhEPUjsr9lNzjsoRyI8Ydct9C3vFd-wb1uapsMUM1WzmaNNx7yaKVdmdpX9q-XDmELpjCaTq34cXYrfqbx9TNUY4p5csGaqzLJM5bKGOOen7LEvYvTsUm_Z1_fvvmw_1nefP3zavr2rbQd8rb23JDuHshUwOCF4x4VHg0g9KOrsgMqbTljJue3BCsUH2XoA6xwhl769ZS_PukuKPw-UV70P-TS9mSkesuacK1Ci7fB_oAhiULIr0BcX6GEs2-klhb1JR31vXgG8PgNsijkn8tqG9c_mazJh0gj6FJXe6UtU-hSVBtQlqsLu_mHff_AQ782ZV8ynX4GSzjbQbIv_ieyqXQwPKPwG7SaxIQ
CitedBy_id crossref_primary_10_1016_j_carbpol_2024_122442
crossref_primary_10_1021_acs_chemrev_2c00450
crossref_primary_10_32604_jrm_2022_021030
crossref_primary_10_1002_app_53362
crossref_primary_10_1007_s10570_025_06383_4
crossref_primary_10_1016_j_addlet_2022_100061
crossref_primary_10_1016_j_fbio_2024_103970
crossref_primary_10_1080_00914037_2020_1825086
crossref_primary_10_1007_s10570_020_03103_y
crossref_primary_10_1016_j_eurpolymj_2021_110287
crossref_primary_10_1016_j_fbio_2023_103212
crossref_primary_10_1016_j_aca_2024_343157
crossref_primary_10_1016_j_addma_2020_101639
crossref_primary_10_3389_fenrg_2022_820330
crossref_primary_10_1021_acsami_1c19433
crossref_primary_10_3389_fnano_2021_747329
crossref_primary_10_1016_j_ceramint_2021_11_206
crossref_primary_10_1007_s10570_022_04936_5
crossref_primary_10_1021_acs_biomac_3c00152
crossref_primary_10_14258_jcprm_2020016105
crossref_primary_10_3390_polym15183833
crossref_primary_10_1016_j_carbpol_2019_115569
crossref_primary_10_3390_polym13203598
crossref_primary_10_1021_acs_biomac_0c01510
crossref_primary_10_1016_j_cej_2024_154829
crossref_primary_10_1002_adfm_202400431
crossref_primary_10_1016_j_bioactmat_2022_10_013
crossref_primary_10_1016_j_mtla_2020_100881
crossref_primary_10_3390_polym14194098
crossref_primary_10_3390_polym14163335
crossref_primary_10_1007_s10570_021_04370_z
crossref_primary_10_1016_j_jiec_2021_02_022
crossref_primary_10_3390_ma15175992
crossref_primary_10_35812_CelluloseChemTechnol_2022_56_80
crossref_primary_10_3389_fbioe_2021_738779
crossref_primary_10_1016_j_carpta_2021_100138
crossref_primary_10_1016_j_ijbiomac_2020_12_066
crossref_primary_10_1039_D1RA03197J
crossref_primary_10_1155_2022_1712207
crossref_primary_10_1016_j_carbpol_2023_121173
crossref_primary_10_1016_j_lwt_2022_113884
crossref_primary_10_3390_gels7010030
crossref_primary_10_1016_j_eti_2021_101855
crossref_primary_10_1039_D1EN00816A
crossref_primary_10_1016_j_seppur_2025_132590
crossref_primary_10_2174_0929867327666200303102859
crossref_primary_10_1007_s10924_020_01674_2
crossref_primary_10_3390_molecules27228032
crossref_primary_10_3390_coatings13010039
crossref_primary_10_1016_j_ijbiomac_2023_124922
crossref_primary_10_1016_j_ultsonch_2019_104759
crossref_primary_10_1007_s10570_023_05546_5
crossref_primary_10_1016_j_carbpol_2024_122109
crossref_primary_10_1088_2053_1591_ab6373
crossref_primary_10_3390_gels8060383
crossref_primary_10_1016_j_carbpol_2023_121298
crossref_primary_10_1039_D3GC01505J
crossref_primary_10_1002_mame_201900092
crossref_primary_10_1016_j_carbpol_2022_119803
crossref_primary_10_1016_j_cdc_2022_100957
crossref_primary_10_1002_anie_202210208
crossref_primary_10_1007_s10924_021_02045_1
crossref_primary_10_1002_star_202100212
crossref_primary_10_1039_D4CC02114B
crossref_primary_10_3389_fphar_2020_00573
crossref_primary_10_1002_adma_202005569
crossref_primary_10_1007_s10853_021_06085_9
crossref_primary_10_1177_00405175241266999
crossref_primary_10_3390_molecules28073070
crossref_primary_10_1007_s10544_021_00581_0
crossref_primary_10_1016_j_carbpol_2019_115465
crossref_primary_10_1371_journal_pone_0246794
crossref_primary_10_2139_ssrn_4179200
crossref_primary_10_1007_s10570_020_03015_x
crossref_primary_10_1016_j_indcrop_2023_117429
crossref_primary_10_1016_j_jddst_2022_103814
crossref_primary_10_3390_gels9090674
crossref_primary_10_1016_j_scitotenv_2023_164167
crossref_primary_10_1016_j_carres_2023_108899
crossref_primary_10_1016_j_carpta_2021_100111
crossref_primary_10_1016_j_indcrop_2020_112154
crossref_primary_10_1016_j_nanoen_2024_109974
crossref_primary_10_1002_star_202100033
crossref_primary_10_1186_s13068_020_01763_3
crossref_primary_10_1002_adma_202004349
crossref_primary_10_1007_s10570_023_05624_8
crossref_primary_10_1016_j_seppur_2022_122642
crossref_primary_10_1021_acs_langmuir_4c04398
crossref_primary_10_1016_j_ijbiomac_2021_05_119
crossref_primary_10_1111_azo_12543
crossref_primary_10_1016_j_cej_2025_159872
crossref_primary_10_1016_j_foostr_2022_100266
crossref_primary_10_1007_s13399_022_03718_0
crossref_primary_10_3390_gels9040286
crossref_primary_10_1016_j_indcrop_2020_112164
crossref_primary_10_1016_j_ijbiomac_2020_11_076
crossref_primary_10_1002_adhm_202001472
crossref_primary_10_1016_j_carbpol_2020_117164
crossref_primary_10_1016_j_indcrop_2022_115272
crossref_primary_10_1016_j_ijbiomac_2024_129600
crossref_primary_10_1002_adfm_202314079
crossref_primary_10_3390_molecules26123551
crossref_primary_10_1016_j_jmrt_2022_03_089
crossref_primary_10_1016_j_ijbiomac_2021_12_162
crossref_primary_10_1016_j_procir_2022_06_033
crossref_primary_10_1007_s10570_023_05327_0
crossref_primary_10_1016_j_carbpol_2021_118372
crossref_primary_10_1016_j_ijbiomac_2021_06_053
crossref_primary_10_1007_s10570_024_05935_4
crossref_primary_10_1016_j_reactfunctpolym_2022_105286
crossref_primary_10_1016_j_cej_2022_138824
crossref_primary_10_1007_s42114_023_00783_5
crossref_primary_10_1002_cssc_202301233
crossref_primary_10_1007_s10924_022_02543_w
crossref_primary_10_1016_j_carbpol_2019_04_033
crossref_primary_10_1021_acsomega_3c00028
crossref_primary_10_3390_mi14071450
crossref_primary_10_1016_j_carbpol_2019_115116
crossref_primary_10_1016_j_carbpol_2022_119753
crossref_primary_10_1021_acs_biomac_4c00823
crossref_primary_10_1016_j_ijbiomac_2020_09_256
crossref_primary_10_1016_j_carbpol_2024_122385
crossref_primary_10_1016_j_carbpol_2023_121097
crossref_primary_10_1016_j_progpolymsci_2021_101472
crossref_primary_10_2139_ssrn_4100135
crossref_primary_10_1016_j_carbpol_2023_121092
crossref_primary_10_1039_D1QM00390A
crossref_primary_10_1016_j_carbpol_2025_123518
crossref_primary_10_1016_j_ijbiomac_2023_126903
crossref_primary_10_1016_j_porgcoat_2019_05_015
crossref_primary_10_1021_acssuschemeng_4c00417
crossref_primary_10_1021_acs_biomac_3c00168
crossref_primary_10_1016_j_chemosphere_2020_129277
crossref_primary_10_1016_j_carbpol_2021_118357
crossref_primary_10_1016_j_tifs_2020_05_016
crossref_primary_10_1111_ijfs_15096
crossref_primary_10_1002_cssc_202002008
crossref_primary_10_1016_j_carbpol_2021_118114
crossref_primary_10_1016_j_indcrop_2022_115019
crossref_primary_10_1039_D4NR01794C
crossref_primary_10_1016_j_jmbbm_2022_105610
crossref_primary_10_3390_polym14245345
crossref_primary_10_3390_pharmaceutics15020424
crossref_primary_10_1002_pc_27112
crossref_primary_10_1021_acsaem_1c01900
crossref_primary_10_1016_j_pmatsci_2022_100999
crossref_primary_10_1021_acssuschemeng_9b00714
crossref_primary_10_1088_1748_605X_ad9da4
crossref_primary_10_1016_j_cej_2021_130817
crossref_primary_10_1021_acssuschemeng_0c06561
crossref_primary_10_1007_s10570_020_03474_2
crossref_primary_10_3390_gels8060336
crossref_primary_10_1016_j_seppur_2022_122774
crossref_primary_10_1021_acs_jafc_1c00468
crossref_primary_10_1088_1757_899X_670_1_012058
crossref_primary_10_1016_j_carbpol_2019_115144
crossref_primary_10_1016_j_ultsonch_2019_104845
crossref_primary_10_3389_fbioe_2022_1024453
crossref_primary_10_1007_s10570_025_06397_y
crossref_primary_10_1007_s10570_022_04796_z
crossref_primary_10_1016_j_eurpolymj_2019_109444
crossref_primary_10_1039_D2TA00457G
crossref_primary_10_1016_j_ijbiomac_2024_136100
crossref_primary_10_3390_polym14071313
crossref_primary_10_1016_j_carbpol_2021_118220
crossref_primary_10_1002_adhm_202300318
crossref_primary_10_1016_j_ijbiomac_2019_08_160
crossref_primary_10_1080_15583724_2021_2007121
crossref_primary_10_3390_polym14245479
crossref_primary_10_1007_s10570_022_04443_7
crossref_primary_10_1016_j_ijbiomac_2021_07_066
crossref_primary_10_1016_j_carbpol_2021_118107
crossref_primary_10_1016_j_carbpol_2021_118469
crossref_primary_10_1016_j_carbpol_2022_119976
crossref_primary_10_1016_j_mtbio_2023_100772
crossref_primary_10_1039_D0BM00055H
crossref_primary_10_1016_j_eurpolymj_2023_112068
crossref_primary_10_1007_s13399_024_05391_x
crossref_primary_10_1016_j_aspen_2022_102036
crossref_primary_10_3389_fenrg_2022_860627
crossref_primary_10_1007_s42114_022_00427_0
crossref_primary_10_1016_j_rineng_2022_100842
crossref_primary_10_1016_j_matchemphys_2021_125018
crossref_primary_10_1016_j_tibtech_2024_09_010
crossref_primary_10_1016_j_ijbiomac_2023_129081
crossref_primary_10_1016_j_jcis_2022_02_115
crossref_primary_10_1002_pc_28980
crossref_primary_10_1007_s11696_022_02644_9
crossref_primary_10_1016_j_bprint_2024_e00345
crossref_primary_10_1021_acsami_1c06647
crossref_primary_10_3390_biom9100619
crossref_primary_10_1002_pc_28741
crossref_primary_10_3390_polym15173643
crossref_primary_10_1007_s10600_021_03561_1
crossref_primary_10_1016_j_ijbiomac_2020_10_181
crossref_primary_10_1016_j_indcrop_2023_117378
crossref_primary_10_1039_D3TB02482B
crossref_primary_10_3390_polym11050898
crossref_primary_10_3390_polym14112260
crossref_primary_10_1016_j_cej_2019_122937
crossref_primary_10_1016_j_indcrop_2024_118991
crossref_primary_10_1007_s10570_021_04021_3
crossref_primary_10_1039_D0NH00016G
crossref_primary_10_3389_fbioe_2020_00986
crossref_primary_10_1016_j_carbpol_2024_121987
crossref_primary_10_3389_fbioe_2022_995238
crossref_primary_10_1021_acssuschemeng_9b05231
crossref_primary_10_1155_2023_1206963
crossref_primary_10_1016_j_carbpol_2020_117136
crossref_primary_10_1246_bcsj_20220042
crossref_primary_10_1007_s12668_020_00763_9
crossref_primary_10_1016_j_carbpol_2020_117010
crossref_primary_10_3390_gels11020144
crossref_primary_10_1016_j_etran_2024_100330
crossref_primary_10_1016_j_trac_2020_115884
crossref_primary_10_1016_j_ceramint_2021_11_179
crossref_primary_10_1016_j_jenvman_2021_112527
crossref_primary_10_1007_s12274_022_5129_1
crossref_primary_10_1016_j_carbpol_2021_117755
crossref_primary_10_1007_s10570_023_05169_w
crossref_primary_10_1038_s43246_020_00055_5
crossref_primary_10_1016_j_carbpol_2020_116180
crossref_primary_10_3389_fbioe_2021_713860
crossref_primary_10_1021_acsapm_1c01530
crossref_primary_10_1007_s10570_022_04510_z
crossref_primary_10_1042_EBC20200095
crossref_primary_10_1016_j_ijbiomac_2021_10_006
crossref_primary_10_1016_j_carbpol_2021_118710
crossref_primary_10_3389_fenrg_2022_871617
crossref_primary_10_1016_j_jwpe_2021_102546
crossref_primary_10_1016_j_carbpol_2021_117740
crossref_primary_10_1002_adma_202000717
crossref_primary_10_1007_s11356_024_33105_3
crossref_primary_10_1021_acsami_1c06308
crossref_primary_10_1177_08839115241261421
crossref_primary_10_1002_pi_6708
crossref_primary_10_1016_j_foodchem_2021_130329
crossref_primary_10_1021_acssuschemeng_0c00125
crossref_primary_10_1007_s40820_022_00849_x
crossref_primary_10_1002_macp_202300211
crossref_primary_10_1016_j_bioadv_2022_212799
crossref_primary_10_1021_acs_iecr_1c01830
crossref_primary_10_1021_acsaenm_4c00149
crossref_primary_10_1002_tcr_202000060
crossref_primary_10_1007_s42114_024_00873_y
crossref_primary_10_3390_pharmaceutics13030316
crossref_primary_10_1016_j_bioactmat_2020_04_007
crossref_primary_10_1016_j_heliyon_2023_e18060
crossref_primary_10_3389_fbioe_2022_914253
crossref_primary_10_1016_j_aiepr_2024_05_001
crossref_primary_10_1016_j_carbpol_2020_116187
crossref_primary_10_1016_j_carbpol_2020_117397
crossref_primary_10_1016_j_ijbiomac_2024_136412
crossref_primary_10_1002_adhm_202000872
crossref_primary_10_1002_star_202200159
crossref_primary_10_1007_s00289_023_04759_9
crossref_primary_10_1016_j_carbpol_2024_122738
crossref_primary_10_1016_j_carbpol_2020_117030
crossref_primary_10_1038_s41598_025_91653_1
crossref_primary_10_1016_j_ijbiomac_2020_01_279
crossref_primary_10_1007_s13399_021_01654_z
crossref_primary_10_1007_s00396_020_04640_5
crossref_primary_10_1016_j_cej_2025_160254
crossref_primary_10_1016_j_indcrop_2021_113425
crossref_primary_10_1016_j_colsurfa_2021_127270
crossref_primary_10_1016_j_carbpol_2021_118943
crossref_primary_10_1016_j_ijbiomac_2022_11_204
crossref_primary_10_1039_D1NA00730K
crossref_primary_10_1007_s42114_022_00425_2
crossref_primary_10_1007_s10570_021_04176_z
crossref_primary_10_3390_polym15244689
crossref_primary_10_1016_j_mtcomm_2022_104617
crossref_primary_10_3390_polym14010169
crossref_primary_10_1016_j_ijbiomac_2022_06_044
crossref_primary_10_1039_D2EE04063H
crossref_primary_10_1016_j_ijbiomac_2024_137973
crossref_primary_10_1021_acsami_5c00391
crossref_primary_10_1016_j_carbpol_2020_116233
crossref_primary_10_1007_s10973_019_09062_2
crossref_primary_10_1016_j_indcrop_2023_117218
crossref_primary_10_1016_j_chemosphere_2022_137647
crossref_primary_10_1016_j_matpr_2022_03_666
crossref_primary_10_1515_zpch_2023_0308
crossref_primary_10_1021_acsapm_2c00001
crossref_primary_10_1016_j_foodhyd_2024_109799
crossref_primary_10_1021_acs_biomac_0c00345
crossref_primary_10_1002_slct_202202600
crossref_primary_10_3390_molecules25153411
crossref_primary_10_1002_sus2_255
crossref_primary_10_1016_j_ijbiomac_2021_10_013
crossref_primary_10_1002_ange_202210208
crossref_primary_10_1002_app_53693
crossref_primary_10_1002_marc_202100025
crossref_primary_10_1021_acs_biomac_1c00215
crossref_primary_10_1007_s13399_021_01852_9
crossref_primary_10_52676_1729_7885_2024_2_56_64
crossref_primary_10_1016_j_heliyon_2020_e05486
crossref_primary_10_1021_acs_biomac_3c00596
crossref_primary_10_3389_fchem_2020_00655
crossref_primary_10_1016_j_carbpol_2020_117332
crossref_primary_10_1007_s10570_020_03663_z
crossref_primary_10_1007_s10853_022_08046_2
crossref_primary_10_1016_j_diamond_2022_109428
crossref_primary_10_1016_j_indcrop_2023_117562
crossref_primary_10_3389_fbioe_2021_701876
crossref_primary_10_1016_j_carbpol_2020_117335
crossref_primary_10_1016_j_ijbiomac_2025_142373
crossref_primary_10_3389_fnut_2022_986639
crossref_primary_10_1016_j_cej_2021_128903
crossref_primary_10_1080_25740881_2024_2303338
crossref_primary_10_3390_pharmaceutics15092270
crossref_primary_10_1080_10934529_2024_2429284
crossref_primary_10_1016_j_ijbiomac_2021_04_179
crossref_primary_10_1007_s10570_020_03104_x
crossref_primary_10_3390_molecules25071544
crossref_primary_10_1016_j_ijbiomac_2020_02_285
crossref_primary_10_1016_j_ijbiomac_2024_132385
crossref_primary_10_1016_j_carbpol_2019_04_086
crossref_primary_10_3389_fbioe_2021_673314
crossref_primary_10_1016_j_ijbiomac_2020_01_243
crossref_primary_10_1007_s10570_021_03914_7
crossref_primary_10_3390_gels11030197
crossref_primary_10_1016_j_cis_2023_102961
crossref_primary_10_1016_j_ijbiomac_2020_03_171
crossref_primary_10_1016_j_jddst_2022_103601
crossref_primary_10_1080_15440478_2021_2002763
crossref_primary_10_1016_j_ijbiomac_2023_123143
crossref_primary_10_1016_j_jmbbm_2019_103385
crossref_primary_10_1088_1361_6528_acf93b
crossref_primary_10_3389_fbioe_2022_849831
crossref_primary_10_1016_j_carpta_2025_100669
crossref_primary_10_1007_s42114_021_00395_x
crossref_primary_10_1016_j_bmt_2022_11_012
crossref_primary_10_3390_nano10040755
crossref_primary_10_1021_acsapm_4c01886
crossref_primary_10_1039_D0RA04581K
crossref_primary_10_1021_acs_langmuir_4c00658
crossref_primary_10_3390_polym13020182
crossref_primary_10_1016_j_carbpol_2021_118741
crossref_primary_10_1039_D1GC01936H
crossref_primary_10_1016_j_ijbiomac_2021_03_125
crossref_primary_10_1016_j_foodhyd_2022_108079
crossref_primary_10_1021_acsabm_2c00794
crossref_primary_10_1007_s00289_020_03250_z
crossref_primary_10_1016_j_indcrop_2023_117342
crossref_primary_10_1016_j_indcrop_2020_112232
crossref_primary_10_1007_s42114_024_01031_0
crossref_primary_10_1016_j_ijbiomac_2023_126882
crossref_primary_10_1016_j_indcrop_2023_117093
crossref_primary_10_1016_j_foodhyd_2022_107689
crossref_primary_10_2174_1385272824999201210191041
crossref_primary_10_1016_j_carbpol_2022_120262
crossref_primary_10_1016_j_ijbiomac_2023_126405
crossref_primary_10_1039_D2RA06036A
crossref_primary_10_3390_polym16111527
crossref_primary_10_3390_su132112200
crossref_primary_10_1016_j_cej_2024_157890
crossref_primary_10_3389_fchem_2020_00563
crossref_primary_10_1016_j_jwpe_2022_102654
crossref_primary_10_1134_S1560090422020117
crossref_primary_10_1016_j_ijbiomac_2022_11_156
crossref_primary_10_3390_molecules28207210
crossref_primary_10_1021_acsabm_3c00901
crossref_primary_10_1016_j_eurpolymj_2020_109697
crossref_primary_10_1016_j_ijbiomac_2024_136965
crossref_primary_10_3390_polym13244344
crossref_primary_10_3390_polym15204067
crossref_primary_10_1016_j_carbpol_2020_116791
crossref_primary_10_1007_s10570_019_02581_z
crossref_primary_10_2174_2210298102666220609123822
crossref_primary_10_1016_j_ijbiomac_2022_10_235
crossref_primary_10_1007_s10570_019_02834_x
crossref_primary_10_1016_j_ijbiomac_2023_128834
crossref_primary_10_1016_j_ijbiomac_2024_132117
crossref_primary_10_1021_acsami_0c10645
crossref_primary_10_3390_polym12102219
crossref_primary_10_1007_s10853_020_05644_w
crossref_primary_10_1016_j_rineng_2024_102060
crossref_primary_10_1021_acs_langmuir_4c01528
crossref_primary_10_1039_D5EE00494B
crossref_primary_10_1080_00914037_2024_2335172
crossref_primary_10_1007_s40089_022_00369_x
crossref_primary_10_1016_j_dyepig_2023_111126
crossref_primary_10_1007_s10570_021_03839_1
crossref_primary_10_1016_j_ijbiomac_2021_01_159
crossref_primary_10_1002_mame_201900673
crossref_primary_10_1007_s42114_022_00483_6
crossref_primary_10_1016_j_bioactmat_2022_05_018
crossref_primary_10_1016_j_cattod_2023_114495
crossref_primary_10_3390_ma16010385
crossref_primary_10_1021_acs_biomac_1c00422
crossref_primary_10_1021_acsomega_9b01811
crossref_primary_10_1016_j_ijbiomac_2023_127997
crossref_primary_10_1016_j_carpta_2024_100575
crossref_primary_10_1016_j_ijbiomac_2024_135617
crossref_primary_10_1155_2023_9630168
crossref_primary_10_3389_fchem_2022_841956
crossref_primary_10_1007_s10570_021_04157_2
crossref_primary_10_1016_j_biopha_2023_115695
crossref_primary_10_1016_j_cej_2022_138356
crossref_primary_10_3390_nano10081523
crossref_primary_10_3389_fbioe_2021_677963
crossref_primary_10_1016_j_biteb_2023_101727
crossref_primary_10_1016_j_cej_2024_155333
crossref_primary_10_3390_ma15217706
crossref_primary_10_1016_j_biopha_2021_111333
crossref_primary_10_1007_s00289_024_05190_4
crossref_primary_10_1021_acs_jafc_4c05903
crossref_primary_10_1007_s00226_022_01443_5
crossref_primary_10_1002_cjce_24603
crossref_primary_10_1007_s10570_020_03427_9
crossref_primary_10_1021_acssuschemeng_9b05766
crossref_primary_10_1016_j_ijbiomac_2023_124439
crossref_primary_10_1002_bmm2_12089
crossref_primary_10_1016_j_fuel_2025_134493
crossref_primary_10_1016_j_ijbiomac_2023_124557
crossref_primary_10_1039_D2GC03003A
crossref_primary_10_1016_j_ijbiomac_2024_136949
crossref_primary_10_1016_j_indcrop_2021_114127
crossref_primary_10_1007_s13726_023_01265_7
crossref_primary_10_1002_agt2_486
crossref_primary_10_1016_j_molliq_2023_123645
crossref_primary_10_1016_j_ijbiomac_2023_125227
crossref_primary_10_1039_D0RA07972C
crossref_primary_10_1016_j_ijbiomac_2024_130034
crossref_primary_10_3390_gels10040258
crossref_primary_10_1016_j_carbpol_2022_120351
crossref_primary_10_1016_j_carbpol_2021_119084
crossref_primary_10_3390_micro3030046
crossref_primary_10_1007_s10570_021_03760_7
crossref_primary_10_1016_j_foodhyd_2024_110149
crossref_primary_10_1007_s42114_021_00312_2
crossref_primary_10_3390_gels10030212
crossref_primary_10_3390_ijms23084310
crossref_primary_10_1016_j_ijbiomac_2023_127890
crossref_primary_10_1016_j_carbpol_2020_116466
crossref_primary_10_1038_s41598_020_68368_6
crossref_primary_10_1080_07391102_2023_2272755
crossref_primary_10_1016_j_foodhyd_2020_105863
crossref_primary_10_1016_j_ijbiomac_2023_125357
crossref_primary_10_1016_j_indcrop_2023_117174
crossref_primary_10_1016_j_ijbiomac_2022_04_037
crossref_primary_10_1016_j_carbpol_2022_120062
crossref_primary_10_1016_j_ijbiomac_2023_125119
crossref_primary_10_3389_fmats_2023_1058050
crossref_primary_10_3389_fbioe_2022_1110004
crossref_primary_10_3390_jcs7060210
crossref_primary_10_1016_j_ijbiomac_2020_06_201
crossref_primary_10_1016_j_crgsc_2024_100412
crossref_primary_10_1016_j_ijbiomac_2024_134990
crossref_primary_10_1021_acssuschemeng_0c00789
crossref_primary_10_1007_s13399_024_06402_7
crossref_primary_10_1016_j_cej_2024_153014
crossref_primary_10_1016_j_mtbio_2024_101395
crossref_primary_10_1016_j_carbpol_2023_121438
crossref_primary_10_1007_s13399_023_04782_w
crossref_primary_10_2139_ssrn_4071672
crossref_primary_10_1021_acs_iecr_0c01208
crossref_primary_10_1002_mba2_62
crossref_primary_10_1016_j_indcrop_2021_114468
crossref_primary_10_1208_s12249_024_03013_3
crossref_primary_10_1007_s42114_022_00602_3
crossref_primary_10_1002_adma_202101368
crossref_primary_10_3390_ma14185390
crossref_primary_10_1002_marc_202100785
crossref_primary_10_1002_cssc_202101359
crossref_primary_10_1007_s10570_022_04649_9
crossref_primary_10_7584_JKTAPPI_2020_10_52_5_5
crossref_primary_10_1016_j_ijbiomac_2024_131228
crossref_primary_10_3390_polym13142345
crossref_primary_10_2174_2210299X01666230829150118
crossref_primary_10_1007_s10853_023_09061_7
crossref_primary_10_1002_cssc_202000783
crossref_primary_10_1021_acssuschemeng_9b02440
crossref_primary_10_1155_2024_6783165
crossref_primary_10_1021_acs_iecr_0c01311
crossref_primary_10_1016_j_apsusc_2022_153749
crossref_primary_10_1016_j_ccr_2021_213846
crossref_primary_10_1021_acsanm_3c02946
crossref_primary_10_1007_s42114_023_00700_w
crossref_primary_10_1016_j_compositesb_2020_108208
crossref_primary_10_1016_j_ijbiomac_2025_140232
crossref_primary_10_1007_s10570_019_02725_1
crossref_primary_10_1016_j_carbpol_2021_117952
crossref_primary_10_1007_s10570_021_03982_9
crossref_primary_10_1002_adma_202300220
crossref_primary_10_1007_s42114_021_00400_3
crossref_primary_10_1002_fpf2_12001
crossref_primary_10_3389_fbioe_2021_769667
crossref_primary_10_1016_j_ijbiomac_2024_132668
crossref_primary_10_1016_j_jhazmat_2020_123106
crossref_primary_10_3389_fbioe_2022_1059097
crossref_primary_10_1002_adma_202400436
crossref_primary_10_1016_j_carbpol_2020_116892
crossref_primary_10_1016_j_colsurfa_2019_124270
crossref_primary_10_1007_s10570_023_05443_x
crossref_primary_10_1016_j_ijbiomac_2023_124875
crossref_primary_10_1016_j_indcrop_2024_119658
crossref_primary_10_1007_s10853_024_10565_z
crossref_primary_10_1016_j_indcrop_2024_118326
crossref_primary_10_1016_j_indcrop_2024_119534
crossref_primary_10_3390_molecules24213978
crossref_primary_10_1016_j_isci_2023_107671
crossref_primary_10_1016_j_indcrop_2024_118573
crossref_primary_10_1039_D2NR00468B
crossref_primary_10_1016_j_carpta_2025_100707
crossref_primary_10_1016_j_carbpol_2022_120039
crossref_primary_10_1007_s10570_023_05135_6
crossref_primary_10_1080_10601325_2020_1722691
crossref_primary_10_3390_polym13111841
crossref_primary_10_1016_j_cej_2024_154434
crossref_primary_10_1016_j_ijbiomac_2025_141427
crossref_primary_10_1002_advs_202306152
crossref_primary_10_1002_marc_202000439
crossref_primary_10_1007_s10570_024_05851_7
crossref_primary_10_1007_s10570_021_04299_3
crossref_primary_10_1007_s42114_022_00517_z
crossref_primary_10_3389_fchem_2021_781291
crossref_primary_10_1016_j_cej_2021_129736
crossref_primary_10_1016_j_ijbiomac_2022_10_188
crossref_primary_10_1016_j_ijbiomac_2023_126007
crossref_primary_10_1016_j_carbpol_2020_116838
crossref_primary_10_1016_j_ijbiomac_2024_133858
crossref_primary_10_3390_polym16162277
crossref_primary_10_1016_j_carbpol_2022_119670
crossref_primary_10_3390_gels9010039
crossref_primary_10_1016_j_sajce_2024_12_007
crossref_primary_10_3390_polym14101930
crossref_primary_10_1016_j_carbpol_2022_120302
crossref_primary_10_1039_D2RA00304J
crossref_primary_10_1016_j_carbpol_2025_123534
crossref_primary_10_1002_btm2_10470
crossref_primary_10_3390_ma13051245
crossref_primary_10_3390_polym13111894
crossref_primary_10_1016_j_ijbiomac_2020_12_116
crossref_primary_10_3390_ijms23105405
crossref_primary_10_1016_j_carbpol_2021_119026
crossref_primary_10_1016_j_ijbiomac_2022_08_006
crossref_primary_10_1016_j_jobab_2022_11_001
crossref_primary_10_1021_acssuschemeng_3c08226
crossref_primary_10_1016_j_biomaterials_2023_122289
crossref_primary_10_1002_admi_202101293
crossref_primary_10_1002_bit_28020
crossref_primary_10_1007_s10570_024_05825_9
crossref_primary_10_1007_s42114_024_00900_y
crossref_primary_10_3389_fbioe_2021_708976
crossref_primary_10_3390_polym16213035
crossref_primary_10_1016_j_carbpol_2020_116831
crossref_primary_10_1002_adhm_202201286
crossref_primary_10_1002_aenm_202403593
crossref_primary_10_1080_02773813_2021_1954032
crossref_primary_10_1016_j_ijbiomac_2020_06_193
crossref_primary_10_1007_s13399_023_03745_5
crossref_primary_10_1016_j_fuel_2021_122575
crossref_primary_10_1016_j_ijbiomac_2022_08_142
crossref_primary_10_1016_j_ceramint_2020_08_148
crossref_primary_10_1002_btm2_10364
crossref_primary_10_3390_gels9070574
crossref_primary_10_1016_j_carbpol_2023_120830
crossref_primary_10_1016_j_ijbiomac_2021_06_010
crossref_primary_10_1016_j_indcrop_2024_120397
crossref_primary_10_1016_j_ijbiomac_2021_06_005
crossref_primary_10_1016_j_carbpol_2023_120718
crossref_primary_10_1016_j_carbpol_2020_115997
crossref_primary_10_1016_j_ijbiomac_2022_09_172
crossref_primary_10_1016_j_jclepro_2020_122506
crossref_primary_10_1016_j_indcrop_2022_115123
crossref_primary_10_1007_s10570_020_03011_1
crossref_primary_10_1016_j_carpta_2020_100031
crossref_primary_10_1007_s10068_024_01684_z
crossref_primary_10_1016_j_chemosphere_2021_132529
crossref_primary_10_1016_j_ijbiomac_2021_07_026
crossref_primary_10_1007_s11356_022_23058_w
crossref_primary_10_1016_j_ijbiomac_2024_133836
crossref_primary_10_1016_j_eurpolymj_2022_111277
crossref_primary_10_1039_D1GC02872C
crossref_primary_10_1002_adfm_202113082
crossref_primary_10_3390_polym13071096
crossref_primary_10_1016_j_carbpol_2019_115509
crossref_primary_10_3389_fchem_2020_00392
crossref_primary_10_1016_j_carbpol_2019_115745
crossref_primary_10_1016_j_jcis_2020_09_123
crossref_primary_10_1016_j_carbpol_2019_115743
crossref_primary_10_1016_j_mtbio_2021_100125
crossref_primary_10_1016_j_heliyon_2023_e16436
crossref_primary_10_1080_10934529_2022_2036552
crossref_primary_10_3390_ma13225066
crossref_primary_10_1016_j_carbpol_2020_116975
crossref_primary_10_1016_j_carbpol_2022_119887
crossref_primary_10_1002_cssc_202200352
crossref_primary_10_1016_j_ijbiomac_2024_133708
crossref_primary_10_1021_acs_langmuir_0c02294
crossref_primary_10_1016_j_algal_2024_103731
crossref_primary_10_1039_D2MA00311B
crossref_primary_10_1007_s10570_019_02694_5
crossref_primary_10_1039_D3RA06586C
crossref_primary_10_2174_0929867327666200127152834
crossref_primary_10_1016_j_ijbiomac_2020_12_206
crossref_primary_10_1016_j_molstruc_2020_129436
crossref_primary_10_1016_j_decarb_2023_100026
crossref_primary_10_1016_j_greenca_2024_01_003
crossref_primary_10_1016_j_carbpol_2022_119651
crossref_primary_10_1155_ijps_8314580
crossref_primary_10_3390_molecules27113598
crossref_primary_10_1016_j_colsurfa_2024_134736
crossref_primary_10_1016_j_ijbiomac_2023_126287
crossref_primary_10_1021_acsabm_4c01169
crossref_primary_10_1080_20550324_2020_1784600
crossref_primary_10_1080_17458080_2023_2199989
crossref_primary_10_1016_j_ijbiomac_2019_12_019
crossref_primary_10_1016_j_carbon_2022_05_053
crossref_primary_10_1016_j_ijbiomac_2024_131633
crossref_primary_10_1016_j_carbpol_2019_115772
crossref_primary_10_1039_D2NR01967A
crossref_primary_10_1016_j_eurpolymj_2023_112425
crossref_primary_10_1016_j_cjche_2022_04_026
crossref_primary_10_1007_s10570_021_04269_9
crossref_primary_10_1007_s10570_020_03428_8
crossref_primary_10_3390_biomedicines9111612
crossref_primary_10_1016_j_ijbiomac_2023_123965
crossref_primary_10_1016_j_jclepro_2023_136019
crossref_primary_10_1080_09205063_2020_1817706
crossref_primary_10_1007_s10570_020_03537_4
crossref_primary_10_1016_j_polymdegradstab_2022_109943
crossref_primary_10_1039_D1GC02841C
crossref_primary_10_1051_bioconf_20237701003
crossref_primary_10_1002_agt2_428
crossref_primary_10_3390_app10010065
crossref_primary_10_3390_gels10060387
crossref_primary_10_1080_00032719_2020_1826502
crossref_primary_10_1016_j_indcrop_2021_114057
crossref_primary_10_1007_s42114_021_00344_8
crossref_primary_10_1021_acsnano_3c09924
crossref_primary_10_1002_vnl_21849
crossref_primary_10_1016_j_ijbiomac_2020_12_148
crossref_primary_10_1007_s00396_024_05297_0
crossref_primary_10_3390_nano11010222
crossref_primary_10_1016_j_focha_2022_100135
crossref_primary_10_1002_pat_6258
crossref_primary_10_1002_jsfa_14200
crossref_primary_10_1016_j_chemosphere_2021_132589
crossref_primary_10_1016_j_ijbiomac_2024_129673
crossref_primary_10_1016_j_resconrec_2021_105466
crossref_primary_10_1016_j_ijbiomac_2023_128121
crossref_primary_10_1039_D2TB00591C
crossref_primary_10_1007_s11157_020_09551_z
crossref_primary_10_1021_acsbiomaterials_4c01902
crossref_primary_10_1016_j_eurpolymj_2022_111591
crossref_primary_10_1016_j_ijbiomac_2021_09_075
crossref_primary_10_1007_s13204_023_02926_y
crossref_primary_10_1016_j_carbpol_2020_116937
crossref_primary_10_1016_j_pmatsci_2020_100668
crossref_primary_10_7584_JKTAPPI_2020_04_52_2_12
crossref_primary_10_1002_cjce_25184
crossref_primary_10_1039_D2BM00157H
crossref_primary_10_3389_fbioe_2021_642138
crossref_primary_10_3389_fbioe_2021_690773
crossref_primary_10_1016_j_ijbiomac_2019_06_049
crossref_primary_10_1016_j_mtadv_2024_100465
crossref_primary_10_1016_j_rinp_2021_103942
crossref_primary_10_1016_j_cej_2024_157318
crossref_primary_10_1016_j_ijbiomac_2020_08_074
crossref_primary_10_1038_s41598_022_08036_z
crossref_primary_10_1080_15376494_2022_2106523
crossref_primary_10_1016_j_carpta_2023_100401
crossref_primary_10_1016_j_ijbiomac_2024_129660
crossref_primary_10_1039_D3TB00661A
crossref_primary_10_1016_j_apmt_2019_04_010
crossref_primary_10_1002_app_51845
crossref_primary_10_1016_j_indcrop_2022_114686
crossref_primary_10_1002_jobm_202200280
crossref_primary_10_1016_j_ijbiomac_2024_131602
crossref_primary_10_1016_j_cej_2022_139770
crossref_primary_10_1016_j_cej_2023_141905
crossref_primary_10_1016_j_biombioe_2023_106824
crossref_primary_10_1007_s10570_024_06251_7
crossref_primary_10_1007_s10853_021_06228_y
crossref_primary_10_1016_j_apmt_2021_101000
crossref_primary_10_1007_s10570_024_06297_7
crossref_primary_10_3390_ijms21239159
crossref_primary_10_3390_polym15051308
crossref_primary_10_1016_j_cej_2021_131994
crossref_primary_10_1021_acssuschemeng_9b00209
crossref_primary_10_1021_acsami_0c07179
crossref_primary_10_1016_j_carbpol_2019_115776
crossref_primary_10_1016_j_cej_2021_133935
crossref_primary_10_1016_j_jddst_2024_105951
crossref_primary_10_2174_0113816128259971230921111755
Cites_doi 10.1016/j.carbon.2015.11.079
10.1002/adma.200601521
10.1016/j.eurpolymj.2014.07.025
10.1007/s10570-015-0624-0
10.2174/0929867323666161014124008
10.1016/j.carbpol.2017.12.014
10.1021/acs.bioconjchem.5b00209
10.1016/j.actbio.2018.01.003
10.1016/j.ejps.2014.09.013
10.1021/bm301955k
10.1039/C8TB01757C
10.1016/j.carbpol.2015.06.003
10.1016/j.carbpol.2013.08.069
10.1007/s10570-017-1499-z
10.1039/c0cs00108b
10.1016/j.carbpol.2010.04.073
10.1007/s10570-018-1888-y
10.1021/sc500153k
10.1021/acs.biomac.6b00910
10.1007/s10570-018-1853-9
10.1016/j.carbpol.2014.07.063
10.1021/acs.macromol.5b01544
10.1021/bm061215p
10.1021/bm401364z
10.1021/acs.biomac.7b00730
10.1016/j.indcrop.2016.02.016
10.1016/j.carbpol.2018.09.027
10.1016/j.carbpol.2018.04.085
10.1016/j.carbpol.2005.05.014
10.1021/cm5004164
10.1021/acs.iecr.7b01804
10.1021/acs.biomac.5b01598
10.1039/C7NR08966J
10.1002/adma.201502284
10.1016/j.carbpol.2016.06.035
10.1039/c0sm01172j
10.1016/j.carbpol.2015.05.063
10.1177/0885328214547091
10.1016/j.cocis.2014.10.003
10.1007/s10570-018-2071-1
10.1002/adma.200800534
10.15376/biores.12.2.2941-2954
10.1007/s10570-016-1038-3
10.1021/acsami.8b14526
10.1016/j.ijbiomac.2018.06.043
10.1016/j.carbpol.2011.06.066
10.1016/j.msec.2013.10.006
10.1016/j.carbpol.2016.04.064
10.3390/polym10111202
10.1038/s41598-017-00690-y
10.1016/j.actbio.2016.03.016
10.1021/acssuschemeng.8b05017
10.1002/adfm.201303699
10.1039/C8NR04273J
10.1021/acs.iecr.5b03926
10.1021/cr900339w
10.1007/s10570-017-1546-9
10.18063/ijb.v4i1.126
10.1021/bm400219u
10.1039/c3nr00520h
10.1016/j.ijpharm.2017.09.002
10.3183/NPPRJ-2014-29-01-p105-118
10.1021/bm400993f
10.1016/j.colsurfa.2006.04.038
10.1016/j.indcrop.2015.11.082
10.1016/j.eurpolymj.2014.11.024
10.1002/anie.201001273
10.1016/j.bprint.2016.08.003
10.1016/j.indcrop.2016.09.059
10.2217/nnm.12.211
10.1039/C6NR09494E
10.1021/acssuschemeng.7b03437
10.1039/C5PY00263J
10.1007/s10570-016-0963-5
10.1021/acs.biomac.8b01325
10.1007/s10570-018-1723-5
10.1007/s10570-016-0864-7
10.1016/j.mtla.2018.09.008
10.1007/s10570-017-1540-2
10.1021/bm500524s
10.1039/C7TB00145B
10.1021/acs.chemmater.7b00531
10.1016/j.carbpol.2014.04.040
10.1002/app.41719
10.1002/cnma.201600347
10.1021/acs.biomac.5b00188
10.1039/C0NR00583E
10.1007/s10570-015-0551-0
10.1016/j.carbpol.2018.10.014
10.1016/j.carbpol.2013.10.054
10.1016/j.copbio.2016.01.002
10.1016/j.carbpol.2016.06.025
10.1021/acs.biomac.5b00701
10.1021/acsnano.7b02305
10.1039/C8GC00205C
10.1021/am506007z
10.1007/s10570-015-0576-4
10.1039/C8TA01986J
10.1002/1097-4636(2000)53:6<617::AID-JBM1>3.0.CO;2-C
10.1021/bm060154s
10.1039/c3ta01150j
10.1115/1.2796042
10.1039/C5GC02396C
10.1016/j.bcdf.2014.12.001
10.1002/anie.201606626
10.1007/s10570-013-0111-4
10.1016/j.actbio.2018.06.013
10.1016/j.biomaterials.2015.12.020
10.1021/acs.nanolett.7b03600
10.1016/j.jconrel.2016.07.053
10.1021/acsami.6b00555
10.1016/j.carbpol.2018.06.114
10.1016/j.carbpol.2018.01.093
10.1021/acssuschemeng.8b02237
10.1557/jmr.2015.94
10.1016/j.progpolymsci.2018.07.008
10.1038/185117a0
10.1016/j.jare.2017.01.005
10.1002/anie.201511512
10.1002/adma.201801934
10.1007/s10853-018-2407-0
10.1021/acs.chemmater.6b00792
10.1007/s10570-017-1339-1
10.1016/j.jare.2013.07.006
10.1039/C6GC00687F
10.1016/j.polymer.2008.01.027
10.1021/ma5026175
10.1016/j.cobme.2017.06.002
10.1007/s10570-017-1461-0
10.2174/0929867325666180927100817
10.1016/j.ijpharm.2017.11.053
10.1016/j.carbpol.2015.09.002
10.1016/j.carbpol.2015.07.079
10.1016/j.carbpol.2017.06.073
10.1016/j.eurpolymj.2017.01.027
10.1021/ma201649f
10.1021/acsami.7b09223
10.1021/bm801065u
10.1016/j.indcrop.2015.11.064
10.1039/C4NR01756K
10.1021/acssuschemeng.7b03924
10.1007/s10570-012-9684-6
10.1002/adma.201405873
10.1021/acssuschemeng.7b00954
10.1007/s10570-017-1585-2
10.1021/mz3003006
10.1021/ma500729q
10.1039/c4nr01214c
10.1016/j.eurpolymj.2011.12.005
10.1016/j.ijbiomac.2016.09.056
10.1016/j.carbpol.2013.03.041
10.1021/nl404101p
10.1007/s10570-017-1256-3
10.1021/acs.chemrev.6b00225
10.1007/s10570-018-1765-8
10.1016/j.carbpol.2017.10.085
10.1007/s10853-011-5696-0
10.1039/C7BM00510E
10.1002/anie.201710951
10.1038/boneres.2017.14
10.1021/acsami.7b13400
10.1039/C7NR04994C
10.3934/matersci.2018.2.201
10.1016/j.compositesa.2015.10.041
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7S9
L.6
7X8
DOI 10.1016/j.carbpol.2019.01.020
DatabaseName CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1879-1344
EndPage 144
ExternalDocumentID 30732792
10_1016_j_carbpol_2019_01_020
S0144861719300207
Genre Journal Article
Review
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LW9
M24
M2Y
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
Y6R
~G-
~KM
53G
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLV
HMS
HVGLF
HZ~
R2-
SCB
SEW
SMS
SOC
SSH
WUQ
XPP
NPM
7S9
EFKBS
L.6
7X8
ID FETCH-LOGICAL-c502t-ffce65d163408d442524f1a11e709e5c819fa54c622c70c492863f00cdde126f3
IEDL.DBID .~1
ISSN 0144-8617
1879-1344
IngestDate Mon Jul 21 11:53:50 EDT 2025
Wed Jul 30 11:23:58 EDT 2025
Wed Feb 19 02:35:35 EST 2025
Tue Jul 01 01:24:30 EDT 2025
Thu Apr 24 23:12:44 EDT 2025
Fri Feb 23 02:33:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords PP
APS
PLA
CNFs
POEGMA
NFC
EPTMAC
GMs
PDA
Cellulose nanocrystals (CNCs)
CNW
SA
BSA
Ag-NH2 NPs
HIPE
HPCS
GelMA
TEMED
hNC
TOCNFs
PNIPAM
Cellulose nanomaterials
CAA
Nanocellulose
Biomedical applications
CNCs
PEGDA
PMVEMA
GGM
PDMA
bFGF
NCC
XG
CCNCs
hASCs
PEG
TH
PE
ChNFs
HAP
NIR
LbL
Cellulose nanofibrils (CNFs)
PVA
TEMPO
Hydrogel
PAM
UPy
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-ffce65d163408d442524f1a11e709e5c819fa54c622c70c492863f00cdde126f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Review-3
ORCID 0000-0002-8903-3874
0000-0002-8046-0319
PMID 30732792
PQID 2221048965
PQPubID 24069
PageCount 15
ParticipantIDs proquest_miscellaneous_2229094351
proquest_miscellaneous_2221048965
pubmed_primary_30732792
crossref_citationtrail_10_1016_j_carbpol_2019_01_020
crossref_primary_10_1016_j_carbpol_2019_01_020
elsevier_sciencedirect_doi_10_1016_j_carbpol_2019_01_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Carbohydrate polymers
PublicationTitleAlternate Carbohydr Polym
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Doench, Torres-Ramos, Montembault, Nunes de Oliveira, Halimi, Viguier (bib0160) 2018; 10
Sultan, Mathew (bib0675) 2018; 10
Jang, Jung, Pan, Han, Chen, Song (bib0315) 2018; 4
Liu, Li, Wang, Sui, Wang, Yan (bib0450) 2018; 25
De France, Hoare, Cranston (bib0140) 2017; 29
Fang, Zhu, Yuan, Ha, Zhu, Preston (bib0210) 2014; 14
Liu, Chinga-Carrasco, Cheng, Xu, Willför, Syverud (bib0415) 2016; 23
Trache (bib0700) 2018; 5
Kong, Wang, Jia, Kuang, Pastel, Chen (bib0365) 2018
Xue, Mou, Xiao (bib0775) 2017; 9
Kargarzadeh, Ahmad, Abdullah, Dufresne, Zainudin, Sheltami (bib0340) 2012; 19
Jiang, Zhou, Yang, Liu, Xv, Zhao (bib0320) 2018; 53
Markstedt, Escalante, Toriz, Gatenholm (bib0470) 2017; 9
Masruchin, Park, Causin, Um (bib0485) 2015; 22
Domingues, Gomes, Reis (bib0165) 2014; 15
Chen, Xu, Liu, Zeng (bib0100) 2015; 30
Nguyen, Hagg, Forsman, Ekholm, Nimkingratana, Brantsing (bib0560) 2017; 7
Paulraj, Riazanova, Svagan (bib0590) 2018; 69
Mauricio, da Costa, Haraguchi, Guilherme, Muniz, Rubira (bib0495) 2015; 115
Sethi, Farooq, Sain, Sain, Sirviö, Illikainen (bib0650) 2017; 25
Yang, Bakaic, Hoare, Cranston (bib0790) 2013; 14
Ooi, Ahmad, Amin (bib0570) 2016; 93
Palaganas, Mangadlao, de Leon, Palaganas, Pangilinan, Lee (bib0580) 2017; 9
Amalnath, Wen (bib0040) 2018; 14
García-González, Alnaief, Smirnova (bib0220) 2011; 86
Basu, Heitz, Strømme, Welch, Ferraz (bib0050) 2018; 181
Yang, Xu (bib0785) 2017; 18
Im, Lee, Rajabi Abhari, Youn, Lee (bib0300) 2018; 25
Nascimento, Nunes, Figueirêdo, de Azeredo, Aouada, Feitosa (bib0545) 2018; 20
García-González, López-Iglesias, Concheiro, Alvarez-Lorenzo (bib0225) 2018
Xie, Du, Yang, Si (bib0755) 2018; 2018
Gyles, Castro, Silva, Ribeiro-Costa (bib0245) 2017; 88
Halib, Ahmad (bib0260) 2017
Supramaniam, Adnan, Mohd Kaus, Bushra (bib0685) 2018; 118
Abouzeid, Khiari, Beneventi, Dufresne (bib0020) 2018; 19
Plackett, Letchford, Jackson, Burt (bib0600) 2014; 29
Zhang, Yang, Zhou, Luan, Li, Deng (bib0835) 2018; 6
Paukkonen, Kunnari, Laurén, Hakkarainen, Auvinen, Oksanen (bib0585) 2017; 532
Spagnol, Rodrigues, Neto, Pereira, Fajardo, Radovanovic (bib0670) 2012; 48
Liu, Cheng, Grénman, Spoljaric, Seppälä, Eriksson (bib0410) 2016; 148
Markstedt, Mantas, Tournier, Martinez Avila, Hagg, Gatenholm (bib0475) 2015; 16
Abitbol, Johnstone, Quinn, Gray (bib0010) 2011; 7
Du, Liu, Zhang, Yu, Si, Li (bib0195) 2016; 94
Kargarzadeh, Mariano, Gopakumar, Ahmad, Thomas, Dufresne (bib0350) 2018; 25
Wang, Benitez, Lossada, Merindol, Walther (bib0720) 2016; 55
Saito, Shibata, Isogai, Suguri, Sumikawa (bib0630) 2005; 61
Shin, Park, Park, Jeong, Na, Youn (bib0660) 2017; 12
Yang, Han, Zhang, Xu, Sun (bib0800) 2014; 47
Yang, Zhang, Xu (bib0810) 2015; 48
Ahmed (bib0035) 2015; 6
Klemm, Kramer, Moritz, Lindstrom, Ankerfors, Gray (bib0360) 2011; 50
Isikgor, Becer (bib0305) 2015; 6
Dai, Cheng, Duan, Zhao, Zhang, Zou (bib0130) 2019; 203
Camarero Espinosa, Kuhnt, Foster, Weder (bib0070) 2013; 14
Dong, Snyder, Tran, Leadore (bib0175) 2013; 95
Isogai, Saito, Fukuzumi (bib0310) 2011; 3
Nakasone, Ikematsu, Kobayashi (bib0540) 2015; 55
Chen, Fan, Han, Li, Wang (bib0110) 2017; 24
Lu, Hsieh (bib0465) 2010; 82
De France, Chan, Cranston, Hoare (bib0135) 2016; 17
Du, Liu, Wang, Zhang, Yu, Si (bib0185) 2017; 2
Hoare, Kohane (bib0275) 2008; 49
Chapekar (bib0085) 2000; 53
Cao, Jiang, Song, Cao, Miao, Feng (bib0075) 2015; 131
Jorfi, Foster (bib0330) 2015; 132
Hu, Du, Liu, Zhang, Yu, Zhang (bib0280) 2019; 7
Jonoobi, Oladi, Davoudpour, Oksman, Dufresne, Hamzeh (bib0325) 2015; 22
Yang, Han, Xu, Sun (bib0795) 2014; 6
Trache, Hussin, Haafiz, Thakur (bib0710) 2017; 9
Calvert (bib0065) 2009; 21
Saito, Nishiyama, Putaux, Vignon, Isogai (bib0635) 2006; 7
Abdul Khalil, Davoudpour, Islam, Mustapha, Sudesh, Dungani (bib0005) 2014; 99
Du, Liu, Mu, Gong, Lv, Hong (bib0190) 2016; 23
Yu, Qin, Liang, Liu, Zhou, Chen (bib0820) 2013; 1
Ding, Li, Chen (bib0155) 2017; 24
Liu, Zeng, Ma, Yi, Ali, Mou (bib0460) 2017; 5
Gonzalez, Luduena, Ponce, Alvarez (bib0230) 2014; 34
Liu, Du, Dong, Wang, Zhang, Yu (bib0425) 2017; 56
Abushammala, Krossing, Laborie (bib0025) 2015; 134
Caló, Khutoryanskiy (bib0060) 2015; 65
Chau, Sriskandha, Pichugin, Thérien-Aubin, Nykypanchuk, Chauve (bib0090) 2015; 16
McKee, Appel, Seitsonen, Kontturi, Scherman, Ikkala (bib0505) 2014; 24
Liu, Wang, Yu, Yu, Li, Mu (bib0400) 2014; 110
Chin-Purcell, Lewis (bib0120) 1996; 118
Huang, Hao, Bhagia, Li, Meng, Pu (bib0285) 2018; 4
Rajinipriya, Nagalakshmaiah, Robert, Elkoun (bib0605) 2018; 6
Chen, Zhu, Baez, Kitin, Elder (bib0105) 2016; 18
Zhu, Luo, Ciesielski, Fang, Zhu, Henriksson (bib0850) 2016; 116
Way, Hsu, Shanmuganathan, Weder, Rowan (bib0745) 2012; 1
Yang, Shi, Zhitomirsky, Cranston (bib0805) 2015; 27
Martínez Ávila, Schwarz, Rotter, Gatenholm (bib0480) 2016; 1-2
Piras, Fernandez-Prieto, De Borggraeve (bib0595) 2017; 5
Wichterle, Lím (bib0750) 1960; 185
Trache, Hussin, Chuin, Sabar, Fazita, Taiwo (bib0705) 2016; 93
Seabra, Bernardes, Fávaro, Paula, Durán (bib0645) 2018; 181
Ureña-Benavides, Ao, Davis, Kitchens (bib0715) 2011; 44
Kamoun, Kenawy, Chen (bib0335) 2017; 8
Yanamala, Farcas, Hatfield, Kisin, Kagan, Geraci (bib0780) 2014; 2
Cai, Zhang, Zhou, Qi, Chen, Kondo (bib0055) 2007; 19
Dong, Snyder, Williams, Andzelm (bib0180) 2013; 14
Gumrah Dumanli (bib0240) 2017; 24
Li, Lan, Guo, Zhang, Xue, Zhang (bib0380) 2015; 29
Moon, Martini, Nairn, Simonsen, Youngblood (bib0530) 2011; 40
Saito, Isogai (bib0625) 2006; 289
Habibi, Lucia, Rojas (bib0250) 2010; 110
Naderi, Lindström, Sundström (bib0535) 2015; 22
Gu, Wang, Cai, Xue, Jin, Zhu (bib0235) 2018; 25
Eyley, Thielemans (bib0205) 2014; 6
Liu, Willför, Xu (bib0405) 2015; 5
Mendes, Gómez-Florit, Pires, Domingues, Reis, Gomes (bib0510) 2018; 10
Yang, Zhao, Han, Duan, Xu, Sun (bib0815) 2014; 21
Zu, Shen, Zou, Wang, Wang, Zhang (bib0855) 2016; 99
Mertaniemi, Escobedo-Lucea, Sanz-Garcia, Gandia, Makitie, Partanen (bib0515) 2016; 82
Nechyporchuk, Belgacem, Bras (bib0550) 2016; 93
Oksman, Aitomäki, Mathew, Siqueira, Zhou, Butylina (bib0565) 2016; 83
Xu, Grénman, Liu, Kronlund, Li, Backman (bib0760) 2017; 3
Wang, Sun, Yao, Ji, Liu, Zhu (bib0740) 2018; 25
Liu, Dai, Si, Zeng (bib0420) 2018; 195
Liu, Jiang, Qin, Yang, Song, Wang (bib0435) 2018; 25
Sadeghifar, Filpponen, Clarke, Brougham, Argyropoulos (bib0610) 2011; 46
Wang, Nune, Misra (bib0735) 2016; 36
Xu, Wang, Sandler, Willför, Xu (bib0765) 2018; 6
Shen, Shamshina, Berton, Gurau, Rogers (bib0655) 2016; 18
Paakko, Ankerfors, Kosonen, Nykanen, Ahola, Osterberg (bib0575) 2007; 8
Zheng, Zhang, Shukla, Agnihotri, Clemons, Pilla (bib0840) 2018; 205
Saini, Yücel Falco, Belgacem, Bras (bib0620) 2016; 135
Chau, De France, Kopera, Machado, Rosenfeldt, Reyes (bib0095) 2016; 28
Wang, Du, Zhang, Zhang, Wu, Yu (bib0730) 2018; 6
Lauren, Lou, Raki, Urtti, Bergstrom, Yliperttula (bib0375) 2014; 65
Dugan, Gough, Eichhorn (bib0200) 2013; 8
Sultan, Siqueira, Zimmermann, Mathew (bib0680) 2017; 2
Wang, Chiappone, Roppolo, Shao, Fantino, Lorusso (bib0725) 2018; 57
Xu, Zhang Molino, Wang, Cheng, Xu, Molino (bib0770) 2018; 6
Liu, Sui, Liu, Liu, Wu, Li (bib0455) 2018; 188
Zhang, Sèbe, Rentsch, Zimmermann, Tingaut (bib0830) 2014; 26
Zhu, Parvinian, Preston, Vaaland, Ruan, Hu (bib0845) 2013; 5
Miao, Yu, Jiang, Zhang (bib0520) 2016; 23
Domingues, Silva, Gershovich, Betta, Babo, Caridade (bib0170) 2015; 26
Hujaya, Lorite, Vainio, Liimatainen (bib0295) 2018; 75
Mittal, Jansson, Widhe, Benselfelt, Håkansson, Lundell (bib0525) 2017; 11
Hakkarainen, Koivuniemi, Kosonen, Escobedo-Lucea, Sanz-Garcia, Vuola (bib0255) 2016; 244
Torlopov, Udoratina, Martakov, Sitnikov (bib0690) 2017; 24
Fukuzumi, Saito, Wata, Kumamoto, Isogai (bib0215) 2009; 10
Chirayil, Mathew, Thomas (bib0125) 2014; 37
Khan, An, Dai, Li, Khan, Ni (bib0355) 2018
Salas, Nypeloe, Rodriguez-Abreu, Carrillo, Rojas (bib0640) 2014; 19
Liu, Li, Du, Lv, Zhang, Yu (bib0445) 2016; 151
Zander, Dong, Steele, Grant (bib0825) 2014; 6
Deng, Binauld, Mangiante, Frances, Charlot, Bernard (bib0150) 2016; 151
Nelson, Retsina, Iakovlev, van Heiningen, Deng, Shatkin (bib0555) 2016
Kargarzadeh, Huang, Lin, Ahmad, Mariano, Dufresne (bib0345) 2018; 87
Lin, Dufresne (bib0385) 2013; 14
Cheng, Qin, Chen, Liu, Ren (bib0115) 2017; 24
Torres-Rendon, Femmer, De Laporte, Tigges, Rahimi, Gremse (bib0695) 2015; 27
Hebeish, Farag, Sharaf, Shaheen (bib0270) 2014; 102
Huang, Wang, Huang, Wang, Chen, Zhang (bib0290) 2018; 10
Lin, Geze, Wouessidjewe, Huang, Dufresne (bib0395) 2016; 8
Masruchin, Park, Causin (bib0490) 2018; 25
McAllister, Schmidt, Dorfman, Lodge, Bates (bib0500) 2015; 48
Åhlén, Tummala, Mihranyan (bib0030) 2018; 536
Kontturi, Meriluoto, Penttila, Baccile, Malho, Potthast (bib0370) 2016; 55
Hamedi, Moradi, Hudson, Tonelli (bib0265) 2018; 199
Saelee, Yingkamhaeng, Nimchua, Sukyai (bib0615) 2016; 82
Chaker, Boufi (bib0080) 2015; 131
Basu, Lindh, Ålander, Strømme, Ferraz (bib0045) 2017; 174
Sirvio, Visanko, Liimatainen (bib0665) 2016; 17
Abitbol, Rivkin, Cao, Nevo, Abraham, Ben-Shalom (bib0015) 2016; 39
De France, Yager, Chan, Corbett, Cranston, Hoare (bib0145) 2017; 17
Lin, Dufresne (bib0390) 2014; 59
Liu, Guo, Xia, Meng, Chen, Liu (bib0430) 2017; 5
Liu, Jin, Chen, Gao, Shi, Cheng (bib0440) 2017; 5
Abdul Khalil (10.1016/j.carbpol.2019.01.020_bib0005) 2014; 99
Basu (10.1016/j.carbpol.2019.01.020_bib0045) 2017; 174
Du (10.1016/j.carbpol.2019.01.020_bib0190) 2016; 23
Sadeghifar (10.1016/j.carbpol.2019.01.020_bib0610) 2011; 46
Torlopov (10.1016/j.carbpol.2019.01.020_bib0690) 2017; 24
Yang (10.1016/j.carbpol.2019.01.020_bib0800) 2014; 47
Ureña-Benavides (10.1016/j.carbpol.2019.01.020_bib0715) 2011; 44
McAllister (10.1016/j.carbpol.2019.01.020_bib0500) 2015; 48
Ahmed (10.1016/j.carbpol.2019.01.020_bib0035) 2015; 6
Xu (10.1016/j.carbpol.2019.01.020_bib0765) 2018; 6
Eyley (10.1016/j.carbpol.2019.01.020_bib0205) 2014; 6
Liu (10.1016/j.carbpol.2019.01.020_bib0425) 2017; 56
Seabra (10.1016/j.carbpol.2019.01.020_bib0645) 2018; 181
Wang (10.1016/j.carbpol.2019.01.020_bib0725) 2018; 57
Wang (10.1016/j.carbpol.2019.01.020_bib0730) 2018; 6
Markstedt (10.1016/j.carbpol.2019.01.020_bib0475) 2015; 16
Zu (10.1016/j.carbpol.2019.01.020_bib0855) 2016; 99
Hoare (10.1016/j.carbpol.2019.01.020_bib0275) 2008; 49
Liu (10.1016/j.carbpol.2019.01.020_bib0455) 2018; 188
Liu (10.1016/j.carbpol.2019.01.020_bib0450) 2018; 25
Sirvio (10.1016/j.carbpol.2019.01.020_bib0665) 2016; 17
Yang (10.1016/j.carbpol.2019.01.020_bib0795) 2014; 6
Trache (10.1016/j.carbpol.2019.01.020_bib0705) 2016; 93
Dong (10.1016/j.carbpol.2019.01.020_bib0175) 2013; 95
Masruchin (10.1016/j.carbpol.2019.01.020_bib0485) 2015; 22
Domingues (10.1016/j.carbpol.2019.01.020_bib0170) 2015; 26
Miao (10.1016/j.carbpol.2019.01.020_bib0520) 2016; 23
Domingues (10.1016/j.carbpol.2019.01.020_bib0165) 2014; 15
Li (10.1016/j.carbpol.2019.01.020_bib0380) 2015; 29
Masruchin (10.1016/j.carbpol.2019.01.020_bib0490) 2018; 25
Saelee (10.1016/j.carbpol.2019.01.020_bib0615) 2016; 82
Im (10.1016/j.carbpol.2019.01.020_bib0300) 2018; 25
Kamoun (10.1016/j.carbpol.2019.01.020_bib0335) 2017; 8
Piras (10.1016/j.carbpol.2019.01.020_bib0595) 2017; 5
Sethi (10.1016/j.carbpol.2019.01.020_bib0650) 2017; 25
Åhlén (10.1016/j.carbpol.2019.01.020_bib0030) 2018; 536
Yanamala (10.1016/j.carbpol.2019.01.020_bib0780) 2014; 2
Cai (10.1016/j.carbpol.2019.01.020_bib0055) 2007; 19
Wang (10.1016/j.carbpol.2019.01.020_bib0720) 2016; 55
Zander (10.1016/j.carbpol.2019.01.020_bib0825) 2014; 6
Palaganas (10.1016/j.carbpol.2019.01.020_bib0580) 2017; 9
Lu (10.1016/j.carbpol.2019.01.020_bib0465) 2010; 82
Du (10.1016/j.carbpol.2019.01.020_bib0185) 2017; 2
Liu (10.1016/j.carbpol.2019.01.020_bib0445) 2016; 151
Sultan (10.1016/j.carbpol.2019.01.020_bib0675) 2018; 10
Halib (10.1016/j.carbpol.2019.01.020_bib0260) 2017
Lin (10.1016/j.carbpol.2019.01.020_bib0390) 2014; 59
Markstedt (10.1016/j.carbpol.2019.01.020_bib0470) 2017; 9
McKee (10.1016/j.carbpol.2019.01.020_bib0505) 2014; 24
Hu (10.1016/j.carbpol.2019.01.020_bib0280) 2019; 7
Klemm (10.1016/j.carbpol.2019.01.020_bib0360) 2011; 50
Paukkonen (10.1016/j.carbpol.2019.01.020_bib0585) 2017; 532
Xu (10.1016/j.carbpol.2019.01.020_bib0770) 2018; 6
Gu (10.1016/j.carbpol.2019.01.020_bib0235) 2018; 25
Yang (10.1016/j.carbpol.2019.01.020_bib0790) 2013; 14
Wang (10.1016/j.carbpol.2019.01.020_bib0740) 2018; 25
Zheng (10.1016/j.carbpol.2019.01.020_bib0840) 2018; 205
Shin (10.1016/j.carbpol.2019.01.020_bib0660) 2017; 12
Chen (10.1016/j.carbpol.2019.01.020_bib0100) 2015; 30
Nascimento (10.1016/j.carbpol.2019.01.020_bib0545) 2018; 20
De France (10.1016/j.carbpol.2019.01.020_bib0135) 2016; 17
Oksman (10.1016/j.carbpol.2019.01.020_bib0565) 2016; 83
Chapekar (10.1016/j.carbpol.2019.01.020_bib0085) 2000; 53
Saito (10.1016/j.carbpol.2019.01.020_bib0630) 2005; 61
Abitbol (10.1016/j.carbpol.2019.01.020_bib0015) 2016; 39
Saito (10.1016/j.carbpol.2019.01.020_bib0625) 2006; 289
Martínez Ávila (10.1016/j.carbpol.2019.01.020_bib0480) 2016; 1-2
Moon (10.1016/j.carbpol.2019.01.020_bib0530) 2011; 40
Naderi (10.1016/j.carbpol.2019.01.020_bib0535) 2015; 22
Liu (10.1016/j.carbpol.2019.01.020_bib0420) 2018; 195
Yang (10.1016/j.carbpol.2019.01.020_bib0810) 2015; 48
Nguyen (10.1016/j.carbpol.2019.01.020_bib0560) 2017; 7
Way (10.1016/j.carbpol.2019.01.020_bib0745) 2012; 1
Paakko (10.1016/j.carbpol.2019.01.020_bib0575) 2007; 8
Xue (10.1016/j.carbpol.2019.01.020_bib0775) 2017; 9
Zhang (10.1016/j.carbpol.2019.01.020_bib0830) 2014; 26
Fang (10.1016/j.carbpol.2019.01.020_bib0210) 2014; 14
Kargarzadeh (10.1016/j.carbpol.2019.01.020_bib0345) 2018; 87
Spagnol (10.1016/j.carbpol.2019.01.020_bib0670) 2012; 48
Isogai (10.1016/j.carbpol.2019.01.020_bib0310) 2011; 3
Chirayil (10.1016/j.carbpol.2019.01.020_bib0125) 2014; 37
Paulraj (10.1016/j.carbpol.2019.01.020_bib0590) 2018; 69
Trache (10.1016/j.carbpol.2019.01.020_bib0710) 2017; 9
Kargarzadeh (10.1016/j.carbpol.2019.01.020_bib0350) 2018; 25
Chen (10.1016/j.carbpol.2019.01.020_bib0110) 2017; 24
Nechyporchuk (10.1016/j.carbpol.2019.01.020_bib0550) 2016; 93
Du (10.1016/j.carbpol.2019.01.020_bib0195) 2016; 94
Hujaya (10.1016/j.carbpol.2019.01.020_bib0295) 2018; 75
Ooi (10.1016/j.carbpol.2019.01.020_bib0570) 2016; 93
Xu (10.1016/j.carbpol.2019.01.020_bib0760) 2017; 3
Yang (10.1016/j.carbpol.2019.01.020_bib0805) 2015; 27
Isikgor (10.1016/j.carbpol.2019.01.020_bib0305) 2015; 6
Saito (10.1016/j.carbpol.2019.01.020_bib0635) 2006; 7
Liu (10.1016/j.carbpol.2019.01.020_bib0440) 2017; 5
Zhang (10.1016/j.carbpol.2019.01.020_bib0835) 2018; 6
Zhu (10.1016/j.carbpol.2019.01.020_bib0845) 2013; 5
Liu (10.1016/j.carbpol.2019.01.020_bib0415) 2016; 23
Huang (10.1016/j.carbpol.2019.01.020_bib0285) 2018; 4
Wang (10.1016/j.carbpol.2019.01.020_bib0735) 2016; 36
Liu (10.1016/j.carbpol.2019.01.020_bib0405) 2015; 5
Shen (10.1016/j.carbpol.2019.01.020_bib0655) 2016; 18
Hamedi (10.1016/j.carbpol.2019.01.020_bib0265) 2018; 199
Abitbol (10.1016/j.carbpol.2019.01.020_bib0010) 2011; 7
Supramaniam (10.1016/j.carbpol.2019.01.020_bib0685) 2018; 118
Camarero Espinosa (10.1016/j.carbpol.2019.01.020_bib0070) 2013; 14
Basu (10.1016/j.carbpol.2019.01.020_bib0050) 2018; 181
Lin (10.1016/j.carbpol.2019.01.020_bib0385) 2013; 14
Lauren (10.1016/j.carbpol.2019.01.020_bib0375) 2014; 65
Wichterle (10.1016/j.carbpol.2019.01.020_bib0750) 1960; 185
Xie (10.1016/j.carbpol.2019.01.020_bib0755) 2018; 2018
Liu (10.1016/j.carbpol.2019.01.020_bib0430) 2017; 5
Jonoobi (10.1016/j.carbpol.2019.01.020_bib0325) 2015; 22
Doench (10.1016/j.carbpol.2019.01.020_bib0160) 2018; 10
Liu (10.1016/j.carbpol.2019.01.020_bib0410) 2016; 148
Gyles (10.1016/j.carbpol.2019.01.020_bib0245) 2017; 88
Torres-Rendon (10.1016/j.carbpol.2019.01.020_bib0695) 2015; 27
Khan (10.1016/j.carbpol.2019.01.020_bib0355) 2018
Chin-Purcell (10.1016/j.carbpol.2019.01.020_bib0120) 1996; 118
Deng (10.1016/j.carbpol.2019.01.020_bib0150) 2016; 151
Yu (10.1016/j.carbpol.2019.01.020_bib0820) 2013; 1
Liu (10.1016/j.carbpol.2019.01.020_bib0460) 2017; 5
García-González (10.1016/j.carbpol.2019.01.020_bib0220) 2011; 86
Habibi (10.1016/j.carbpol.2019.01.020_bib0250) 2010; 110
Salas (10.1016/j.carbpol.2019.01.020_bib0640) 2014; 19
Mauricio (10.1016/j.carbpol.2019.01.020_bib0495) 2015; 115
Huang (10.1016/j.carbpol.2019.01.020_bib0290) 2018; 10
Liu (10.1016/j.carbpol.2019.01.020_bib0400) 2014; 110
Nakasone (10.1016/j.carbpol.2019.01.020_bib0540) 2015; 55
Cao (10.1016/j.carbpol.2019.01.020_bib0075) 2015; 131
Dong (10.1016/j.carbpol.2019.01.020_bib0180) 2013; 14
Dai (10.1016/j.carbpol.2019.01.020_bib0130) 2019; 203
García-González (10.1016/j.carbpol.2019.01.020_bib0225) 2018
Yang (10.1016/j.carbpol.2019.01.020_bib0785) 2017; 18
Chaker (10.1016/j.carbpol.2019.01.020_bib0080) 2015; 131
De France (10.1016/j.carbpol.2019.01.020_bib0140) 2017; 29
Sultan (10.1016/j.carbpol.2019.01.020_bib0680) 2017; 2
Yang (10.1016/j.carbpol.2019.01.020_bib0815) 2014; 21
Cheng (10.1016/j.carbpol.2019.01.020_bib0115) 2017; 24
Gumrah Dumanli (10.1016/j.carbpol.2019.01.020_bib0240) 2017; 24
Jiang (10.1016/j.carbpol.2019.01.020_bib0320) 2018; 53
Trache (10.1016/j.carbpol.2019.01.020_bib0700) 2018; 5
Abushammala (10.1016/j.carbpol.2019.01.020_bib0025) 2015; 134
Mittal (10.1016/j.carbpol.2019.01.020_bib0525) 2017; 11
Fukuzumi (10.1016/j.carbpol.2019.01.020_bib0215) 2009; 10
Rajinipriya (10.1016/j.carbpol.2019.01.020_bib0605) 2018; 6
Mertaniemi (10.1016/j.carbpol.2019.01.020_bib0515) 2016; 82
Ding (10.1016/j.carbpol.2019.01.020_bib0155) 2017; 24
Hebeish (10.1016/j.carbpol.2019.01.020_bib0270) 2014; 102
Mendes (10.1016/j.carbpol.2019.01.020_bib0510) 2018; 10
Dugan (10.1016/j.carbpol.2019.01.020_bib0200) 2013; 8
Hakkarainen (10.1016/j.carbpol.2019.01.020_bib0255) 2016; 244
Jorfi (10.1016/j.carbpol.2019.01.020_bib0330) 2015; 132
Zhu (10.1016/j.carbpol.2019.01.020_bib0850) 2016; 116
Nelson (10.1016/j.carbpol.2019.01.020_bib0555) 2016
Amalnath (10.1016/j.carbpol.2019.01.020_bib0040) 2018; 14
Liu (10.1016/j.carbpol.2019.01.020_bib0435) 2018; 25
Chau (10.1016/j.carbpol.2019.01.020_bib0090) 2015; 16
Abouzeid (10.1016/j.carbpol.2019.01.020_bib0020) 2018; 19
Kontturi (10.1016/j.carbpol.2019.01.020_bib0370) 2016; 55
Chau (10.1016/j.carbpol.2019.01.020_bib0095) 2016; 28
Plackett (10.1016/j.carbpol.2019.01.020_bib0600) 2014; 29
Calvert (10.1016/j.carbpol.2019.01.020_bib0065) 2009; 21
Gonzalez (10.1016/j.carbpol.2019.01.020_bib0230) 2014; 34
Caló (10.1016/j.carbpol.2019.01.020_bib0060) 2015; 65
Kargarzadeh (10.1016/j.carbpol.2019.01.020_bib0340) 2012; 19
Lin (10.1016/j.carbpol.2019.01.020_bib0395) 2016; 8
Kong (10.1016/j.carbpol.2019.01.020_bib0365) 2018
De France (10.1016/j.carbpol.2019.01.020_bib0145) 2017; 17
Jang (10.1016/j.carbpol.2019.01.020_bib0315) 2018; 4
Chen (10.1016/j.carbpol.2019.01.020_bib0105) 2016; 18
Saini (10.1016/j.carbpol.2019.01.020_bib0620) 2016; 135
References_xml – volume: 5
  start-page: 7623
  year: 2017
  end-page: 7631
  ident: bib0430
  article-title: Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields
  publication-title: ACS Sustainable Chemistry & Engineering
– volume: 93
  start-page: 2
  year: 2016
  end-page: 25
  ident: bib0550
  article-title: Production of cellulose nanofibrils: A review of recent advances
  publication-title: Industrial Crops and Products
– volume: 22
  start-page: 1147
  year: 2015
  end-page: 1157
  ident: bib0535
  article-title: Repeated homogenization, a route for decreasing the energy consumption in the manufacturing process of carboxymethylated nanofibrillated cellulose?
  publication-title: Cellulose
– volume: 8
  start-page: 1934
  year: 2007
  end-page: 1941
  ident: bib0575
  article-title: Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels
  publication-title: Biomacromolecules
– volume: 17
  start-page: 649
  year: 2016
  end-page: 660
  ident: bib0135
  article-title: Enhanced mechanical properties in cellulose nanocrystal-poly(oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking
  publication-title: Biomacromolecules
– volume: 61
  start-page: 414
  year: 2005
  end-page: 419
  ident: bib0630
  article-title: Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation
  publication-title: Carbohydrate Polymers
– volume: 25
  start-page: 259
  year: 2017
  end-page: 268
  ident: bib0650
  article-title: Water resistant nanopapers prepared by lactic acid modified cellulose nanofibers
  publication-title: Cellulose
– volume: 83
  start-page: 2
  year: 2016
  end-page: 18
  ident: bib0565
  article-title: Review of the recent developments in cellulose nanocomposite processing
  publication-title: Composites Part A: Applied Science and Manufacturing
– volume: 17
  start-page: 6487
  year: 2017
  end-page: 6495
  ident: bib0145
  article-title: Injectable anisotropic nanocomposite hydrogels direct in situ growth and alignment of myotubes
  publication-title: Nano Letters
– volume: 25
  start-page: 559
  year: 2018
  end-page: 571
  ident: bib0450
  article-title: Self-healing and injectable polysaccharide hydrogels with tunable mechanical properties
  publication-title: Cellulose
– volume: 19
  start-page: 821
  year: 2007
  end-page: 825
  ident: bib0055
  article-title: Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: Structure and properties
  publication-title: Advanced Materials
– volume: 195
  start-page: 63
  year: 2018
  end-page: 70
  ident: bib0420
  article-title: Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers
  publication-title: Carbohydrate Polymers
– volume: 181
  start-page: 514
  year: 2018
  end-page: 527
  ident: bib0645
  article-title: Cellulose nanocrystals as carriers in medicine and their toxicities: A review
  publication-title: Carbohydrate Polymers
– volume: 25
  start-page: 7065
  year: 2018
  end-page: 7078
  ident: bib0435
  article-title: Enzyme-assisted mechanical grinding for cellulose nanofibers from bagasse: Energy consumption and nanofiber characteristics
  publication-title: Cellulose
– volume: 20
  start-page: 2428
  year: 2018
  end-page: 2448
  ident: bib0545
  article-title: Nanocellulose nanocomposite hydrogels: Technological and environmental issues
  publication-title: Green Chemistry
– volume: 14
  start-page: 765
  year: 2014
  end-page: 773
  ident: bib0210
  article-title: Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells
  publication-title: Nano Letters
– volume: 23
  start-page: 3129
  year: 2016
  end-page: 3143
  ident: bib0415
  article-title: Hemicellulose-reinforced nanocellulose hydrogels for wound healing application
  publication-title: Cellulose
– volume: 59
  start-page: 302
  year: 2014
  end-page: 325
  ident: bib0390
  article-title: Nanocellulose in biomedicine: Current status and future prospect
  publication-title: European Polymer Journal
– volume: 9
  start-page: 40878
  year: 2017
  end-page: 40886
  ident: bib0470
  article-title: Biomimetic inks based on cellulose nanofibrils and cross-linkable xylans for 3D Printing
  publication-title: ACS Applied Materials & Interfaces
– volume: 6
  start-page: 7066
  year: 2018
  end-page: 7075
  ident: bib0770
  article-title: 3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application
  publication-title: Journal of Materials Chemistry B
– volume: 7
  start-page: 658
  year: 2017
  ident: bib0560
  article-title: Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink
  publication-title: Scientific Reports
– volume: 30
  start-page: 1797
  year: 2015
  end-page: 1807
  ident: bib0100
  article-title: Responsiveness, swelling, and mechanical properties of PNIPA nanocomposite hydrogels reinforced by nanocellulose
  publication-title: Journal of Materials Research
– volume: 24
  start-page: 512
  year: 2017
  end-page: 528
  ident: bib0240
  article-title: Nanocellulose and its composites for biomedical applications
  publication-title: Current Medicinal Chemistry
– volume: 7
  start-page: 1687
  year: 2006
  end-page: 1691
  ident: bib0635
  article-title: Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose
  publication-title: Biomacromolecules
– volume: 3
  start-page: 109
  year: 2017
  end-page: 119
  ident: bib0760
  article-title: Mild oxalic-acid-catalyzed hydrolysis as a novel approach to prepare cellulose nanocrystals
  publication-title: ChemNanoMat
– volume: 5
  start-page: 2671
  year: 2017
  end-page: 2678
  ident: bib0440
  article-title: High internal phase emulsions stabilised by supramolecular cellulose nanocrystals and their application as cell-adhesive macroporous hydrogel monoliths
  publication-title: Journal of Materials Chemistry B
– volume: 1
  start-page: 3938
  year: 2013
  end-page: 3944
  ident: bib0820
  article-title: Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions
  publication-title: Journal of Materials Chemistry A
– volume: 16
  start-page: 2455
  year: 2015
  end-page: 2462
  ident: bib0090
  article-title: Ion-mediated gelation of aqueous suspensions of cellulose nanocrystals
  publication-title: Biomacromolecules
– volume: 24
  start-page: 3243
  year: 2017
  end-page: 3254
  ident: bib0115
  article-title: Facile one-step extraction and oxidative carboxylation of cellulose nanocrystals through hydrothermal reaction by using mixed inorganic acids
  publication-title: Cellulose
– volume: 188
  start-page: 27
  year: 2018
  end-page: 36
  ident: bib0455
  article-title: A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing
  publication-title: Carbohydrate Polymers
– volume: 16
  start-page: 1489
  year: 2015
  end-page: 1496
  ident: bib0475
  article-title: 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications
  publication-title: Biomacromolecules
– volume: 203
  start-page: 71
  year: 2019
  end-page: 86
  ident: bib0130
  article-title: 3D printing using plant-derived cellulose and its derivatives: A review
  publication-title: Carbohydrate Polymers
– volume: 4
  start-page: 126
  year: 2018
  ident: bib0315
  article-title: 3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering
  publication-title: International Journal of Bioprinting
– volume: 536
  start-page: 73
  year: 2018
  end-page: 81
  ident: bib0030
  article-title: Nanoparticle-loaded hydrogels as a pathway for enzyme-triggered drug release in ophthalmic applications
  publication-title: International Journal of Pharmaceutics
– start-page: 267
  year: 2016
  end-page: 302
  ident: bib0555
  article-title: American process: Production of low cost nanocellulose for renewable, advanced materials applications
  publication-title: Materials research for manufacturing: An industrial perspective of turning materials into new products
– volume: 9
  start-page: 34314
  year: 2017
  end-page: 34324
  ident: bib0580
  article-title: 3D printing of photocurable cellulose nanocrystal composite for fabrication of complex architectures via stereolithography
  publication-title: ACS Applied Materials & Interfaces
– volume: 8
  start-page: 217
  year: 2017
  end-page: 233
  ident: bib0335
  article-title: A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings
  publication-title: Journal of Advanced Research
– volume: 12
  start-page: 2941
  year: 2017
  end-page: 2954
  ident: bib0660
  article-title: Cellulose nanofibers for the enhancement of printability of low viscosity gelatin derivatives
  publication-title: BioResources
– volume: 22
  start-page: 1993
  year: 2015
  end-page: 2010
  ident: bib0485
  article-title: Characteristics of TEMPO-oxidized cellulose fibril-based hydrogels induced by cationic ions and their properties
  publication-title: Cellulose
– volume: 151
  start-page: 899
  year: 2016
  end-page: 906
  ident: bib0150
  article-title: Microcrystalline cellulose as reinforcing agent in silicone elastomers
  publication-title: Carbohydrate Polymers
– volume: 75
  start-page: 346
  year: 2018
  end-page: 357
  ident: bib0295
  article-title: Polyion complex hydrogels from chemically modified cellulose nanofibrils: Structure-function relationship and potential for controlled and pH-responsive release of doxorubicin
  publication-title: Acta Biomaterialia
– volume: 25
  start-page: 3873
  year: 2018
  end-page: 3883
  ident: bib0300
  article-title: Optimization of carboxymethylation reaction as a pretreatment for production of cellulose nanofibrils
  publication-title: Cellulose
– volume: 2
  start-page: 10
  year: 2017
  end-page: 15
  ident: bib0185
  article-title: Sustainable preparation and characterization of thermally stable and functional cellulose nanocrystals and nanofibrils via formic acid hydrolysis
  publication-title: Journal of Bioresources and Bioproducts
– volume: 82
  start-page: 329
  year: 2010
  end-page: 336
  ident: bib0465
  article-title: Preparation and properties of cellulose nanocrystals: Rods, spheres, and network
  publication-title: Carbohydrate Polymers
– volume: 24
  start-page: 5431
  year: 2017
  end-page: 5442
  ident: bib0110
  article-title: Length-controlled cellulose nanofibrils produced using enzyme pretreatment and grinding
  publication-title: Cellulose
– volume: 5
  start-page: 201
  year: 2018
  end-page: 205
  ident: bib0700
  article-title: Nanocellulose as a promising sustainable material for biomedical applications
  publication-title: AIMS Materials Science
– volume: 102
  start-page: 159
  year: 2014
  end-page: 166
  ident: bib0270
  article-title: Thermal responsive hydrogels based on semi interpenetrating network of poly(NIPAm) and cellulose nanowhiskers
  publication-title: Carbohydrate Polymers
– volume: 14
  start-page: 871
  year: 2013
  end-page: 880
  ident: bib0385
  article-title: Supramolecular hydrogels from in situ host-guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin
  publication-title: Biomacromolecules
– volume: 93
  start-page: 789
  year: 2016
  end-page: 804
  ident: bib0705
  article-title: Microcrystalline cellulose: Isolation, characterization and bio-composites application-A review
  publication-title: International Journal of Biological Macromolecules
– volume: 6
  start-page: 13021
  year: 2018
  end-page: 13030
  ident: bib0730
  article-title: Flexible cellulose nanopaper with high wet tensile strength, high toughness and tunable ultraviolet blocking ability fabricated from tobacco stalk via a sustainable method
  publication-title: Journal of Materials Chemistry A
– volume: 25
  start-page: 485
  year: 2018
  end-page: 502
  ident: bib0490
  article-title: Dual-responsive composite hydrogels based on TEMPO-oxidized cellulose nanofibril and poly (N-isopropylacrylamide) for model drug release
  publication-title: Cellulose
– volume: 3
  start-page: 71
  year: 2011
  end-page: 85
  ident: bib0310
  article-title: TEMPO-oxidized cellulose nanofibers
  publication-title: Nanoscale
– volume: 131
  start-page: 152
  year: 2015
  end-page: 158
  ident: bib0075
  article-title: Combined bleaching and hydrolysis for isolation of cellulose nanofibrils from waste sackcloth
  publication-title: Carbohydrate Polymers
– volume: 7
  start-page: 2373
  year: 2011
  end-page: 2379
  ident: bib0010
  article-title: Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing
  publication-title: Soft Matter
– volume: 6
  start-page: 13924
  year: 2018
  end-page: 13931
  ident: bib0835
  article-title: A pH-responsive gel macrosphere based on sodium alginate and cellulose nanofiber for potential intestinal delivery of probiotics
  publication-title: ACS Sustainable Chemistry & Engineering
– volume: 1
  start-page: 1001
  year: 2012
  end-page: 1006
  ident: bib0745
  article-title: pH-responsive cellulose nanocrystal gels and nanocomposites
  publication-title: ACS Macro Letters
– volume: 14
  start-page: 1223
  year: 2013
  end-page: 1230
  ident: bib0070
  article-title: Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis
  publication-title: Biomacromolecules
– volume: 99
  start-page: 203
  year: 2016
  end-page: 211
  ident: bib0855
  article-title: Nanocellulose-derived highly porous carbon aerogels for supercapacitors
  publication-title: Carbon
– volume: 10
  start-page: 162
  year: 2009
  end-page: 165
  ident: bib0215
  article-title: Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation
  publication-title: Biomacromolecules
– volume: 48
  start-page: 1231
  year: 2015
  end-page: 1239
  ident: bib0810
  article-title: Design of cellulose nanocrystals template-assisted composite hydrogels: Insights from static to dynamic alignment
  publication-title: Macromolecules
– volume: 27
  start-page: 2989
  year: 2015
  end-page: 2995
  ident: bib0695
  article-title: Bioactive gyroid scaffolds formed by sacrificial templating of nanocellulose and nanochitin hydrogels as instructive platforms for biomimetic tissue engineering
  publication-title: Advanced Materials
– volume: 6
  start-page: 7764
  year: 2014
  end-page: 7779
  ident: bib0205
  article-title: Surface modification of cellulose nanocrystals
  publication-title: Nanoscale
– volume: 34
  start-page: 54
  year: 2014
  end-page: 61
  ident: bib0230
  article-title: Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings
  publication-title: Materials Science and Engineering C-Materials for Biological Applications
– volume: 244
  start-page: 292
  year: 2016
  end-page: 301
  ident: bib0255
  article-title: Nanofibrillar cellulose wound dressing in skin graft donor site treatment
  publication-title: Journal of Controlled Release
– volume: 44
  start-page: 8990
  year: 2011
  end-page: 8998
  ident: bib0715
  article-title: Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions
  publication-title: Macromolecules
– volume: 55
  start-page: 5966
  year: 2016
  end-page: 5970
  ident: bib0720
  article-title: Bioinspired mechanical gradients in cellulose nanofibril/polymer nanopapers
  publication-title: Angewandte Chemie International Edition
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 25
  ident: bib0755
  article-title: Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials
  publication-title: International Journal of Polymer Science
– volume: 99
  start-page: 649
  year: 2014
  end-page: 665
  ident: bib0005
  article-title: Production and modification of nanofibrillated cellulose using various mechanical processes: A review
  publication-title: Carbohydrate Polymers
– volume: 134
  start-page: 609
  year: 2015
  end-page: 616
  ident: bib0025
  article-title: Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood
  publication-title: Carbohydrate Polymers
– volume: 2
  start-page: 1691
  year: 2014
  end-page: 1698
  ident: bib0780
  article-title: In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: A renewable and sustainable nanomaterial of the future
  publication-title: ACS Sustainable Chemistry & Engineering
– volume: 36
  start-page: 143
  year: 2016
  end-page: 151
  ident: bib0735
  article-title: The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules
  publication-title: Acta Biomaterialia
– volume: 18
  start-page: 53
  year: 2016
  end-page: 75
  ident: bib0655
  article-title: Hydrogels based on cellulose and chitin: Fabrication, properties, and applications
  publication-title: Green Chemistry
– volume: 7
  start-page: 1327
  year: 2019
  end-page: 1336
  ident: bib0280
  article-title: Comparative evaluation of the efficient conversion of corn husk filament and corn husk powder to valuable materials via a sustainable and clean biorefinery process
  publication-title: ACS Sustainable Chemistry & Engineering
– volume: 6
  start-page: 5663
  year: 2018
  end-page: 5680
  ident: bib0765
  article-title: Three-dimensional printing of wood-derived biopolymers: A review focused on biomedical applications
  publication-title: ACS Sustainable Chemistry & Engineering
– volume: 21
  start-page: 541
  year: 2014
  end-page: 551
  ident: bib0815
  article-title: Tough nanocomposite hydrogels from cellulose nanocrystals/poly (acrylamide) clusters: Influence of the charge density, aspect ratio and surface coating with PEG
  publication-title: Cellulose
– volume: 6
  start-page: 105
  year: 2015
  end-page: 121
  ident: bib0035
  article-title: Hydrogel: Preparation, characterization, and applications: A review
  publication-title: Journal of Advanced Research
– volume: 132
  start-page: 41719
  year: 2015
  ident: bib0330
  article-title: Recent advances in nanocellulose for biomedical applications
  publication-title: Journal of Applied Polymer Science
– volume: 174
  start-page: 299
  year: 2017
  end-page: 308
  ident: bib0045
  article-title: On the use of ion-crosslinked nanocellulose hydrogels for wound healing solutions: Physicochemical properties and application-oriented biocompatibility studies
  publication-title: Carbohydrate Polymers
– start-page: e1801934
  year: 2018
  ident: bib0365
  article-title: Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels
  publication-title: Advanced Materials
– volume: 17
  start-page: 3025
  year: 2016
  end-page: 3032
  ident: bib0665
  article-title: Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production
  publication-title: Biomacromolecules
– volume: 56
  start-page: 8264
  year: 2017
  end-page: 8273
  ident: bib0425
  article-title: Properties of nanocelluloses and their application as rheology modifier in paper coating
  publication-title: Industrial & Engineering Chemistry Research
– volume: 199
  start-page: 445
  year: 2018
  end-page: 460
  ident: bib0265
  article-title: Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review
  publication-title: Carbohydrate Polymers
– volume: 25
  start-page: 2151
  year: 2018
  end-page: 2189
  ident: bib0350
  article-title: Advances in cellulose nanomaterials
  publication-title: Cellulose
– volume: 11
  start-page: 5148
  year: 2017
  end-page: 5159
  ident: bib0525
  article-title: Ultrastrong and bioactive nanostructured bio-based composites
  publication-title: ACS Nano
– volume: 29
  start-page: 882
  year: 2015
  end-page: 893
  ident: bib0380
  article-title: In vitro and in vivo evaluation of a novel collagen/cellulose nanocrystals scaffold for achieving the sustained release of basic fibroblast growth factor
  publication-title: Journal of Biomaterials Applications
– volume: 10
  start-page: 17388
  year: 2018
  end-page: 17401
  ident: bib0510
  article-title: Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior
  publication-title: Nanoscale
– volume: 53
  start-page: 617
  year: 2000
  end-page: 620
  ident: bib0085
  article-title: Tissue engineering: Challenges and opportunities
  publication-title: Journal of Biomedical Materials Research
– volume: 93
  start-page: 227
  year: 2016
  end-page: 234
  ident: bib0570
  article-title: Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems
  publication-title: Industrial Crops and Products
– volume: 82
  start-page: 208
  year: 2016
  end-page: 220
  ident: bib0515
  article-title: Human stem cell decorated nanocellulose threads for biomedical applications
  publication-title: Biomaterials
– volume: 24
  start-page: 2153
  year: 2017
  end-page: 2162
  ident: bib0690
  article-title: Cellulose nanocrystals prepared in H
  publication-title: Cellulose
– volume: 8
  start-page: 287
  year: 2013
  end-page: 298
  ident: bib0200
  article-title: Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering
  publication-title: Nanomedition
– volume: 24
  start-page: 2706
  year: 2014
  end-page: 2713
  ident: bib0505
  article-title: Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods
  publication-title: Advanced Functional Materials
– volume: 69
  start-page: 196
  year: 2018
  end-page: 205
  ident: bib0590
  article-title: Bioinspired capsules based on nanocellulose, xyloglucan and pectin–The influence of capsule wall composition on permeability properties
  publication-title: Acta Biomaterialia
– volume: 205
  start-page: 27
  year: 2018
  end-page: 34
  ident: bib0840
  article-title: PHBV-graft-GMA via reactive extrusion and its use in PHBV/nanocellulose crystal composites
  publication-title: Carbohydrate Polymers
– volume: 95
  start-page: 760
  year: 2013
  end-page: 767
  ident: bib0175
  article-title: Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles
  publication-title: Carbohydrate Polymers
– volume: 50
  start-page: 5438
  year: 2011
  end-page: 5466
  ident: bib0360
  article-title: Nanocelluloses: A new family of nature-based materials
  publication-title: Angewandte Chemie International Edition
– volume: 14
  start-page: 4447
  year: 2013
  end-page: 4455
  ident: bib0790
  article-title: Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: Morphology, rheology, degradation, and cytotoxicity
  publication-title: Biomacromolecules
– volume: 53
  start-page: 11883
  year: 2018
  end-page: 11900
  ident: bib0320
  article-title: Dialdehyde cellulose nanocrystal/gelatin hydrogel optimized for 3D printing applications
  publication-title: Journal of Materials Science
– volume: 9
  start-page: 1763
  year: 2017
  end-page: 1786
  ident: bib0710
  article-title: Recent progress in cellulose nanocrystals: Sources and production
  publication-title: Nanoscale
– volume: 181
  start-page: 345
  year: 2018
  end-page: 350
  ident: bib0050
  article-title: Ion-crosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties: Candidate materials for advanced wound care applications
  publication-title: Carbohydrate Polymers
– volume: 48
  start-page: 454
  year: 2012
  end-page: 463
  ident: bib0670
  article-title: Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers
  publication-title: European Polymer Journal
– volume: 8
  start-page: 6880
  year: 2016
  end-page: 6889
  ident: bib0395
  article-title: Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs codelivery
  publication-title: ACS Applied Materials & Interfaces
– volume: 532
  start-page: 269
  year: 2017
  end-page: 280
  ident: bib0585
  article-title: Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release
  publication-title: International Journal of Pharmaceutics
– start-page: 295
  year: 2018
  end-page: 323
  ident: bib0225
  article-title: Biomedical applications of polysaccharide and protein based aerogels
  publication-title: Biobased aerogels: Polysaccharide and protein-based materials
– volume: 116
  start-page: 9305
  year: 2016
  end-page: 9374
  ident: bib0850
  article-title: Wood-derived materials for green electronics, biological devices, and energy applications
  publication-title: Chemical Reviews
– volume: 22
  start-page: 935
  year: 2015
  end-page: 969
  ident: bib0325
  article-title: Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: A review
  publication-title: Cellulose
– volume: 151
  start-page: 716
  year: 2016
  end-page: 724
  ident: bib0445
  article-title: Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods
  publication-title: Carbohydrate Polymers
– volume: 47
  start-page: 4077
  year: 2014
  end-page: 4086
  ident: bib0800
  article-title: Cellulose nanocrystals mechanical reinforcement in composite hydrogels with multiple cross-Links: Correlations between dissipation properties and deformation mechanisms
  publication-title: Macromolecules
– volume: 19
  start-page: 855
  year: 2012
  end-page: 866
  ident: bib0340
  article-title: Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers
  publication-title: Cellulose
– volume: 135
  start-page: 239
  year: 2016
  end-page: 247
  ident: bib0620
  article-title: Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces
  publication-title: Carbohydrate Polymers
– volume: 88
  start-page: 373
  year: 2017
  end-page: 392
  ident: bib0245
  article-title: A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations
  publication-title: European Polymer Journal
– volume: 46
  start-page: 7344
  year: 2011
  end-page: 7355
  ident: bib0610
  article-title: Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface
  publication-title: Journal of Materials Science
– volume: 5
  start-page: 17014
  year: 2017
  ident: bib0460
  article-title: Injectable hydrogels for cartilage and bone tissue engineering
  publication-title: Bone Research
– volume: 10
  start-page: 4421
  year: 2018
  end-page: 4431
  ident: bib0675
  article-title: 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel
  publication-title: Nanoscale
– volume: 18
  start-page: 3835
  year: 2016
  end-page: 3843
  ident: bib0105
  article-title: Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids
  publication-title: Green Chemistry
– volume: 19
  start-page: 383
  year: 2014
  end-page: 396
  ident: bib0640
  article-title: Nanocellulose properties and applications in colloids and interfaces
  publication-title: Current Opinion in Colloid & Interface Science
– volume: 14
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib0040
  article-title: Nanocellulose-based hydrogels for biomedical applications
  publication-title: Current Nanoscience
– volume: 94
  start-page: 736
  year: 2016
  end-page: 745
  ident: bib0195
  article-title: Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization
  publication-title: Industrial Crops and Products
– volume: 118
  start-page: 640
  year: 2018
  end-page: 648
  ident: bib0685
  article-title: Magnetic nanocellulose alginate hydrogel beads as potential drug delivery system
  publication-title: International Journal of Biological Macromolecules
– volume: 26
  start-page: 1571
  year: 2015
  end-page: 1581
  ident: bib0170
  article-title: Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications
  publication-title: Bioconjugate Chemistry
– volume: 131
  start-page: 224
  year: 2015
  end-page: 232
  ident: bib0080
  article-title: Cationic nanofibrillar cellulose with high antibacterial properties
  publication-title: Carbohydrate Polymers
– volume: 110
  start-page: 415
  year: 2014
  end-page: 422
  ident: bib0400
  article-title: A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid
  publication-title: Carbohydrate Polymers
– volume: 39
  start-page: 76
  year: 2016
  end-page: 88
  ident: bib0015
  article-title: Nanocellulose, a tiny fiber with huge applications
  publication-title: Current Opinion in Biotechnology
– volume: 10
  start-page: 41076
  year: 2018
  end-page: 41088
  ident: bib0290
  article-title: On-demand dissolvable self-healing hydrogels based on carboxymethyl chitosan and cellulose nanocrystal for deep partial thickness burn wound
  publication-title: ACS Applied Materials & Interfaces
– volume: 10
  start-page: 1202
  year: 2018
  ident: bib0160
  article-title: Injectable and gellable chitosan formulations filled with cellulose nanofibers for intervertebral disc tissue engineering
  publication-title: Polymers
– volume: 185
  start-page: 117
  year: 1960
  ident: bib0750
  article-title: Hydrophilic gels for biological use
  publication-title: Nature
– volume: 82
  start-page: 149
  year: 2016
  end-page: 160
  ident: bib0615
  article-title: An environmentally friendly xylanase-assisted pretreatment for cellulose nanofibrils isolation from sugarcane bagasse by high-pressure homogenization
  publication-title: Industrial Crops and Products
– volume: 18
  start-page: 2623
  year: 2017
  end-page: 2632
  ident: bib0785
  article-title: Synergistic reinforcing mechanisms in cellulose nanofibrils composite hydrogels: Interfacial dynamics, energy dissipation, and damage resistance
  publication-title: Biomacromolecules
– volume: 115
  start-page: 715
  year: 2015
  end-page: 722
  ident: bib0495
  article-title: Synthesis of a microhydrogel composite from cellulose nanowhiskers and starch for drug delivery
  publication-title: Carbohydrate Polymers
– volume: 14
  start-page: 3338
  year: 2013
  end-page: 3345
  ident: bib0180
  article-title: Cation-induced hydrogels of cellulose nanofibrils with tunable moduli
  publication-title: Biomacromolecules
– volume: 28
  start-page: 3406
  year: 2016
  end-page: 3415
  ident: bib0095
  article-title: Composite hydrogels with tunable anisotropic morphologies and mechanical properties
  publication-title: Chemistry of Materials
– volume: 2
  start-page: 29
  year: 2017
  end-page: 34
  ident: bib0680
  article-title: 3D printing of nano-cellulosic biomaterials for medical applications
  publication-title: Current Opinion in Biomedical Engineering
– volume: 24
  start-page: 4785
  year: 2017
  end-page: 4792
  ident: bib0155
  article-title: Isolation and characterization of cellulose nanocrystals from cloth hairs and evaluation of their compatibility with PLLA
  publication-title: Cellulose
– volume: 37
  start-page: 20
  year: 2014
  end-page: 28
  ident: bib0125
  article-title: Review of recent research in nano cellulose preparation from different lignocellulosic fibers
  publication-title: Reviews on advanced materials science
– start-page: 1
  year: 2017
  end-page: 19
  ident: bib0260
  article-title: Nanocellulose: Insight into health and medical applications
  publication-title: Handbook of Ecomaterials
– volume: 55
  start-page: 30
  year: 2015
  end-page: 37
  ident: bib0540
  article-title: Biocompatibility evaluation of cellulose hydrogel film regenerated from sugar cane bagasse waste and its in vivo behavior in mice
  publication-title: Industrial & Engineering Chemistry Research
– volume: 86
  start-page: 1425
  year: 2011
  end-page: 1438
  ident: bib0220
  article-title: Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems
  publication-title: Carbohydrate Polymers
– volume: 9
  start-page: 14758
  year: 2017
  end-page: 14781
  ident: bib0775
  article-title: Nanocellulose as a sustainable biomass material: Structure, properties, present status and future prospects in biomedical applications
  publication-title: Nanoscale
– volume: 23
  start-page: 2389
  year: 2016
  end-page: 2407
  ident: bib0190
  article-title: Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl
  publication-title: Cellulose
– volume: 25
  start-page: 4275
  year: 2018
  end-page: 4301
  ident: bib0740
  article-title: 3D printing with cellulose materials
  publication-title: Cellulose
– volume: 48
  start-page: 7205
  year: 2015
  end-page: 7215
  ident: bib0500
  article-title: Thermodynamics of aqueous methylcellulose solutions
  publication-title: Macromolecules
– volume: 26
  start-page: 2659
  year: 2014
  end-page: 2668
  ident: bib0830
  article-title: Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water
  publication-title: Chemistry of Materials
– volume: 6
  start-page: 18502
  year: 2014
  end-page: 18510
  ident: bib0825
  article-title: Metal cation cross-linked nanocellulose hydrogels as tissue engineering substrates
  publication-title: ACS Applied Materials & Interfaces
– volume: 25
  start-page: 2861
  year: 2018
  end-page: 2871
  ident: bib0235
  article-title: Water retention value for characterizing fibrillation degree of cellulosic fibers at micro and nanometer scales
  publication-title: Cellulose
– volume: 6
  start-page: 5934
  year: 2014
  end-page: 5943
  ident: bib0795
  article-title: Simple approach to reinforce hydrogels with cellulose nanocrystals
  publication-title: Nanoscale
– volume: 19
  start-page: 4442
  year: 2018
  end-page: 4452
  ident: bib0020
  article-title: Biomimetic mineralization of three-dimensional printed alginate/TEMPO-oxidized cellulose nanofibril scaffolds for bone tissue engineering
  publication-title: Biomacromolecules
– volume: 289
  start-page: 219
  year: 2006
  end-page: 225
  ident: bib0625
  article-title: Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation
  publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
– volume: 4
  start-page: 237
  year: 2018
  end-page: 246
  ident: bib0285
  article-title: Porous artificial bone scaffold synthesized from a facile in situ hydroxyapatite coating and crosslinking reaction of crystalline nanocellulose
  publication-title: Materialia
– volume: 57
  start-page: 2353
  year: 2018
  end-page: 2356
  ident: bib0725
  article-title: All-in-one cellulose nanocrystals for 3D printing of nanocomposite hydrogels
  publication-title: Angewandte Chemie International Edition
– volume: 29
  start-page: 105
  year: 2014
  end-page: 118
  ident: bib0600
  article-title: A review of nanocellulose as a novel vehicle for drug delivery
  publication-title: Nordic Pulp & Paper Research Journal
– volume: 148
  start-page: 259
  year: 2016
  end-page: 271
  ident: bib0410
  article-title: Development of nanocellulose scaffolds with tunable structures to support 3D cell culture
  publication-title: Carbohydrate Polymers
– year: 2018
  ident: bib0355
  article-title: Chitosan-based polymer matrix for pharmaceutical excipients and drug delivery
  publication-title: Current Medicinal Chemistry
– volume: 65
  start-page: 79
  year: 2014
  end-page: 88
  ident: bib0375
  article-title: Technetium-99m-labeled nanofibrillar cellulose hydrogel for in vivo drug release
  publication-title: European Journal of Pharmaceutical Sciences
– volume: 6
  start-page: 4497
  year: 2015
  end-page: 4559
  ident: bib0305
  article-title: Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers
  publication-title: Polymer Chemistry
– volume: 40
  start-page: 3941
  year: 2011
  end-page: 3994
  ident: bib0530
  article-title: Cellulose nanomaterials review: Structure, properties and nanocomposites
  publication-title: Chemical Society Reviews
– volume: 49
  start-page: 1993
  year: 2008
  end-page: 2007
  ident: bib0275
  article-title: Hydrogels in drug delivery: Progress and challenges
  publication-title: Polymer
– volume: 87
  start-page: 197
  year: 2018
  end-page: 227
  ident: bib0345
  article-title: Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites
  publication-title: Progress in Polymer Science
– volume: 29
  start-page: 4609
  year: 2017
  end-page: 4631
  ident: bib0140
  article-title: Review of hydrogels and aerogels containing nanocellulose
  publication-title: Chemistry of Materials
– volume: 21
  start-page: 743
  year: 2009
  end-page: 756
  ident: bib0065
  article-title: Hydrogels for soft machines
  publication-title: Advanced Materials
– volume: 5
  start-page: 31
  year: 2015
  end-page: 61
  ident: bib0405
  article-title: A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications
  publication-title: Bioactive Carbohydrates and Dietary Fibre
– volume: 65
  start-page: 252
  year: 2015
  end-page: 267
  ident: bib0060
  article-title: Biomedical applications of hydrogels: A review of patents and commercial products
  publication-title: European Polymer Journal
– volume: 118
  start-page: 545
  year: 1996
  end-page: 556
  ident: bib0120
  article-title: Fracture of articular cartilage
  publication-title: Journal of Biomechanical Engineering
– volume: 6
  start-page: 2807
  year: 2018
  end-page: 2828
  ident: bib0605
  article-title: Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: A review
  publication-title: ACS Sustainable Chemistry & Engineering
– volume: 55
  start-page: 14455
  year: 2016
  end-page: 14458
  ident: bib0370
  article-title: Degradation and crystallization of cellulose in hydrogen chloride vapor for high-yield isolation of cellulose nanocrystals
  publication-title: Angewandte Chemie International Edition
– volume: 27
  start-page: 6104
  year: 2015
  end-page: 6109
  ident: bib0805
  article-title: Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials
  publication-title: Advanced Materials
– volume: 110
  start-page: 3479
  year: 2010
  end-page: 3500
  ident: bib0250
  article-title: Cellulose nanocrystals: Chemistry, self-Assembly, and applications
  publication-title: Chemical Reviews
– volume: 5
  start-page: 3787
  year: 2013
  end-page: 3792
  ident: bib0845
  article-title: Transparent nanopaper with tailored optical properties
  publication-title: Nanoscale
– volume: 1-2
  start-page: 22
  year: 2016
  end-page: 35
  ident: bib0480
  article-title: 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration
  publication-title: Bioprinting
– volume: 5
  start-page: 1988
  year: 2017
  end-page: 1992
  ident: bib0595
  article-title: Nanocellulosic materials as bioinks for 3D bioprinting
  publication-title: Biomaterials Science
– volume: 23
  start-page: 1209
  year: 2016
  end-page: 1219
  ident: bib0520
  article-title: One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid
  publication-title: Cellulose
– volume: 15
  start-page: 2327
  year: 2014
  end-page: 2346
  ident: bib0165
  article-title: The potential of cellulose nanocrystals in tissue engineering strategies
  publication-title: Biomacromolecules
– volume: 99
  start-page: 203
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0855
  article-title: Nanocellulose-derived highly porous carbon aerogels for supercapacitors
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.11.079
– volume: 19
  start-page: 821
  issue: 6
  year: 2007
  ident: 10.1016/j.carbpol.2019.01.020_bib0055
  article-title: Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: Structure and properties
  publication-title: Advanced Materials
  doi: 10.1002/adma.200601521
– volume: 59
  start-page: 302
  year: 2014
  ident: 10.1016/j.carbpol.2019.01.020_bib0390
  article-title: Nanocellulose in biomedicine: Current status and future prospect
  publication-title: European Polymer Journal
  doi: 10.1016/j.eurpolymj.2014.07.025
– volume: 22
  start-page: 1993
  issue: 3
  year: 2015
  ident: 10.1016/j.carbpol.2019.01.020_bib0485
  article-title: Characteristics of TEMPO-oxidized cellulose fibril-based hydrogels induced by cationic ions and their properties
  publication-title: Cellulose
  doi: 10.1007/s10570-015-0624-0
– volume: 24
  start-page: 512
  issue: 5
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0240
  article-title: Nanocellulose and its composites for biomedical applications
  publication-title: Current Medicinal Chemistry
  doi: 10.2174/0929867323666161014124008
– volume: 181
  start-page: 514
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0645
  article-title: Cellulose nanocrystals as carriers in medicine and their toxicities: A review
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2017.12.014
– volume: 26
  start-page: 1571
  issue: 8
  year: 2015
  ident: 10.1016/j.carbpol.2019.01.020_bib0170
  article-title: Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications
  publication-title: Bioconjugate Chemistry
  doi: 10.1021/acs.bioconjchem.5b00209
– volume: 69
  start-page: 196
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0590
  article-title: Bioinspired capsules based on nanocellulose, xyloglucan and pectin–The influence of capsule wall composition on permeability properties
  publication-title: Acta Biomaterialia
  doi: 10.1016/j.actbio.2018.01.003
– volume: 65
  start-page: 79
  year: 2014
  ident: 10.1016/j.carbpol.2019.01.020_bib0375
  article-title: Technetium-99m-labeled nanofibrillar cellulose hydrogel for in vivo drug release
  publication-title: European Journal of Pharmaceutical Sciences
  doi: 10.1016/j.ejps.2014.09.013
– volume: 14
  start-page: 871
  issue: 3
  year: 2013
  ident: 10.1016/j.carbpol.2019.01.020_bib0385
  article-title: Supramolecular hydrogels from in situ host-guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin
  publication-title: Biomacromolecules
  doi: 10.1021/bm301955k
– start-page: 1
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0260
  article-title: Nanocellulose: Insight into health and medical applications
  publication-title: Handbook of Ecomaterials
– volume: 6
  start-page: 7066
  issue: 43
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0770
  article-title: 3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application
  publication-title: Journal of Materials Chemistry B
  doi: 10.1039/C8TB01757C
– volume: 131
  start-page: 224
  year: 2015
  ident: 10.1016/j.carbpol.2019.01.020_bib0080
  article-title: Cationic nanofibrillar cellulose with high antibacterial properties
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2015.06.003
– volume: 99
  start-page: 649
  year: 2014
  ident: 10.1016/j.carbpol.2019.01.020_bib0005
  article-title: Production and modification of nanofibrillated cellulose using various mechanical processes: A review
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2013.08.069
– volume: 24
  start-page: 5431
  issue: 12
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0110
  article-title: Length-controlled cellulose nanofibrils produced using enzyme pretreatment and grinding
  publication-title: Cellulose
  doi: 10.1007/s10570-017-1499-z
– volume: 40
  start-page: 3941
  issue: 7
  year: 2011
  ident: 10.1016/j.carbpol.2019.01.020_bib0530
  article-title: Cellulose nanomaterials review: Structure, properties and nanocomposites
  publication-title: Chemical Society Reviews
  doi: 10.1039/c0cs00108b
– volume: 82
  start-page: 329
  issue: 2
  year: 2010
  ident: 10.1016/j.carbpol.2019.01.020_bib0465
  article-title: Preparation and properties of cellulose nanocrystals: Rods, spheres, and network
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2010.04.073
– volume: 25
  start-page: 4275
  issue: 8
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0740
  article-title: 3D printing with cellulose materials
  publication-title: Cellulose
  doi: 10.1007/s10570-018-1888-y
– volume: 2
  start-page: 1691
  issue: 7
  year: 2014
  ident: 10.1016/j.carbpol.2019.01.020_bib0780
  article-title: In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: A renewable and sustainable nanomaterial of the future
  publication-title: ACS Sustainable Chemistry & Engineering
  doi: 10.1021/sc500153k
– volume: 17
  start-page: 3025
  issue: 9
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0665
  article-title: Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.6b00910
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0755
  article-title: Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials
  publication-title: International Journal of Polymer Science
– volume: 25
  start-page: 3873
  issue: 7
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0300
  article-title: Optimization of carboxymethylation reaction as a pretreatment for production of cellulose nanofibrils
  publication-title: Cellulose
  doi: 10.1007/s10570-018-1853-9
– volume: 115
  start-page: 715
  year: 2015
  ident: 10.1016/j.carbpol.2019.01.020_bib0495
  article-title: Synthesis of a microhydrogel composite from cellulose nanowhiskers and starch for drug delivery
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2014.07.063
– volume: 48
  start-page: 7205
  issue: 19
  year: 2015
  ident: 10.1016/j.carbpol.2019.01.020_bib0500
  article-title: Thermodynamics of aqueous methylcellulose solutions
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.5b01544
– volume: 8
  start-page: 1934
  issue: 6
  year: 2007
  ident: 10.1016/j.carbpol.2019.01.020_bib0575
  article-title: Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels
  publication-title: Biomacromolecules
  doi: 10.1021/bm061215p
– volume: 14
  start-page: 4447
  issue: 12
  year: 2013
  ident: 10.1016/j.carbpol.2019.01.020_bib0790
  article-title: Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: Morphology, rheology, degradation, and cytotoxicity
  publication-title: Biomacromolecules
  doi: 10.1021/bm401364z
– volume: 18
  start-page: 2623
  issue: 8
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0785
  article-title: Synergistic reinforcing mechanisms in cellulose nanofibrils composite hydrogels: Interfacial dynamics, energy dissipation, and damage resistance
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b00730
– volume: 93
  start-page: 2
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0550
  article-title: Production of cellulose nanofibrils: A review of recent advances
  publication-title: Industrial Crops and Products
  doi: 10.1016/j.indcrop.2016.02.016
– volume: 203
  start-page: 71
  year: 2019
  ident: 10.1016/j.carbpol.2019.01.020_bib0130
  article-title: 3D printing using plant-derived cellulose and its derivatives: A review
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2018.09.027
– volume: 195
  start-page: 63
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0420
  article-title: Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2018.04.085
– volume: 61
  start-page: 414
  issue: 4
  year: 2005
  ident: 10.1016/j.carbpol.2019.01.020_bib0630
  article-title: Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2005.05.014
– volume: 26
  start-page: 2659
  issue: 8
  year: 2014
  ident: 10.1016/j.carbpol.2019.01.020_bib0830
  article-title: Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water
  publication-title: Chemistry of Materials
  doi: 10.1021/cm5004164
– volume: 56
  start-page: 8264
  issue: 29
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0425
  article-title: Properties of nanocelluloses and their application as rheology modifier in paper coating
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/acs.iecr.7b01804
– volume: 17
  start-page: 649
  issue: 2
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0135
  article-title: Enhanced mechanical properties in cellulose nanocrystal-poly(oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.5b01598
– volume: 10
  start-page: 4421
  issue: 9
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0675
  article-title: 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel
  publication-title: Nanoscale
  doi: 10.1039/C7NR08966J
– volume: 27
  start-page: 6104
  issue: 40
  year: 2015
  ident: 10.1016/j.carbpol.2019.01.020_bib0805
  article-title: Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials
  publication-title: Advanced Materials
  doi: 10.1002/adma.201502284
– volume: 151
  start-page: 899
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0150
  article-title: Microcrystalline cellulose as reinforcing agent in silicone elastomers
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2016.06.035
– volume: 7
  start-page: 2373
  issue: 6
  year: 2011
  ident: 10.1016/j.carbpol.2019.01.020_bib0010
  article-title: Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing
  publication-title: Soft Matter
  doi: 10.1039/c0sm01172j
– volume: 131
  start-page: 152
  year: 2015
  ident: 10.1016/j.carbpol.2019.01.020_bib0075
  article-title: Combined bleaching and hydrolysis for isolation of cellulose nanofibrils from waste sackcloth
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2015.05.063
– volume: 29
  start-page: 882
  issue: 6
  year: 2015
  ident: 10.1016/j.carbpol.2019.01.020_bib0380
  article-title: In vitro and in vivo evaluation of a novel collagen/cellulose nanocrystals scaffold for achieving the sustained release of basic fibroblast growth factor
  publication-title: Journal of Biomaterials Applications
  doi: 10.1177/0885328214547091
– volume: 19
  start-page: 383
  issue: 5
  year: 2014
  ident: 10.1016/j.carbpol.2019.01.020_bib0640
  article-title: Nanocellulose properties and applications in colloids and interfaces
  publication-title: Current Opinion in Colloid & Interface Science
  doi: 10.1016/j.cocis.2014.10.003
– volume: 25
  start-page: 7065
  issue: 12
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0435
  article-title: Enzyme-assisted mechanical grinding for cellulose nanofibers from bagasse: Energy consumption and nanofiber characteristics
  publication-title: Cellulose
  doi: 10.1007/s10570-018-2071-1
– volume: 21
  start-page: 743
  issue: 7
  year: 2009
  ident: 10.1016/j.carbpol.2019.01.020_bib0065
  article-title: Hydrogels for soft machines
  publication-title: Advanced Materials
  doi: 10.1002/adma.200800534
– volume: 12
  start-page: 2941
  issue: 2
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0660
  article-title: Cellulose nanofibers for the enhancement of printability of low viscosity gelatin derivatives
  publication-title: BioResources
  doi: 10.15376/biores.12.2.2941-2954
– volume: 23
  start-page: 3129
  issue: 5
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0415
  article-title: Hemicellulose-reinforced nanocellulose hydrogels for wound healing application
  publication-title: Cellulose
  doi: 10.1007/s10570-016-1038-3
– volume: 2
  start-page: 10
  issue: 1
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0185
  article-title: Sustainable preparation and characterization of thermally stable and functional cellulose nanocrystals and nanofibrils via formic acid hydrolysis
  publication-title: Journal of Bioresources and Bioproducts
– volume: 10
  start-page: 41076
  issue: 48
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0290
  article-title: On-demand dissolvable self-healing hydrogels based on carboxymethyl chitosan and cellulose nanocrystal for deep partial thickness burn wound
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.8b14526
– volume: 118
  start-page: 640
  issue: Part A
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0685
  article-title: Magnetic nanocellulose alginate hydrogel beads as potential drug delivery system
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/j.ijbiomac.2018.06.043
– volume: 86
  start-page: 1425
  issue: 4
  year: 2011
  ident: 10.1016/j.carbpol.2019.01.020_bib0220
  article-title: Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2011.06.066
– volume: 34
  start-page: 54
  year: 2014
  ident: 10.1016/j.carbpol.2019.01.020_bib0230
  article-title: Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings
  publication-title: Materials Science and Engineering C-Materials for Biological Applications
  doi: 10.1016/j.msec.2013.10.006
– volume: 148
  start-page: 259
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0410
  article-title: Development of nanocellulose scaffolds with tunable structures to support 3D cell culture
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2016.04.064
– volume: 10
  start-page: 1202
  issue: 11
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0160
  article-title: Injectable and gellable chitosan formulations filled with cellulose nanofibers for intervertebral disc tissue engineering
  publication-title: Polymers
  doi: 10.3390/polym10111202
– start-page: 267
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0555
  article-title: American process: Production of low cost nanocellulose for renewable, advanced materials applications
– volume: 7
  start-page: 658
  issue: 1
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0560
  article-title: Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-00690-y
– volume: 36
  start-page: 143
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0735
  article-title: The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules
  publication-title: Acta Biomaterialia
  doi: 10.1016/j.actbio.2016.03.016
– volume: 7
  start-page: 1327
  issue: 1
  year: 2019
  ident: 10.1016/j.carbpol.2019.01.020_bib0280
  article-title: Comparative evaluation of the efficient conversion of corn husk filament and corn husk powder to valuable materials via a sustainable and clean biorefinery process
  publication-title: ACS Sustainable Chemistry & Engineering
  doi: 10.1021/acssuschemeng.8b05017
– volume: 24
  start-page: 2706
  issue: 18
  year: 2014
  ident: 10.1016/j.carbpol.2019.01.020_bib0505
  article-title: Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201303699
– volume: 10
  start-page: 17388
  issue: 36
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0510
  article-title: Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior
  publication-title: Nanoscale
  doi: 10.1039/C8NR04273J
– volume: 55
  start-page: 30
  issue: 1
  year: 2015
  ident: 10.1016/j.carbpol.2019.01.020_bib0540
  article-title: Biocompatibility evaluation of cellulose hydrogel film regenerated from sugar cane bagasse waste and its in vivo behavior in mice
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/acs.iecr.5b03926
– volume: 110
  start-page: 3479
  issue: 6
  year: 2010
  ident: 10.1016/j.carbpol.2019.01.020_bib0250
  article-title: Cellulose nanocrystals: Chemistry, self-Assembly, and applications
  publication-title: Chemical Reviews
  doi: 10.1021/cr900339w
– volume: 25
  start-page: 559
  issue: 1
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0450
  article-title: Self-healing and injectable polysaccharide hydrogels with tunable mechanical properties
  publication-title: Cellulose
  doi: 10.1007/s10570-017-1546-9
– volume: 4
  start-page: 126
  issue: 1
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0315
  article-title: 3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering
  publication-title: International Journal of Bioprinting
  doi: 10.18063/ijb.v4i1.126
– volume: 14
  start-page: 1223
  issue: 4
  year: 2013
  ident: 10.1016/j.carbpol.2019.01.020_bib0070
  article-title: Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis
  publication-title: Biomacromolecules
  doi: 10.1021/bm400219u
– volume: 5
  start-page: 3787
  issue: 9
  year: 2013
  ident: 10.1016/j.carbpol.2019.01.020_bib0845
  article-title: Transparent nanopaper with tailored optical properties
  publication-title: Nanoscale
  doi: 10.1039/c3nr00520h
– volume: 532
  start-page: 269
  issue: 1
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0585
  article-title: Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release
  publication-title: International Journal of Pharmaceutics
  doi: 10.1016/j.ijpharm.2017.09.002
– volume: 29
  start-page: 105
  issue: 1
  year: 2014
  ident: 10.1016/j.carbpol.2019.01.020_bib0600
  article-title: A review of nanocellulose as a novel vehicle for drug delivery
  publication-title: Nordic Pulp & Paper Research Journal
  doi: 10.3183/NPPRJ-2014-29-01-p105-118
– volume: 14
  start-page: 3338
  issue: 9
  year: 2013
  ident: 10.1016/j.carbpol.2019.01.020_bib0180
  article-title: Cation-induced hydrogels of cellulose nanofibrils with tunable moduli
  publication-title: Biomacromolecules
  doi: 10.1021/bm400993f
– volume: 14
  start-page: 1
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0040
  article-title: Nanocellulose-based hydrogels for biomedical applications
  publication-title: Current Nanoscience
– volume: 289
  start-page: 219
  issue: 1-3
  year: 2006
  ident: 10.1016/j.carbpol.2019.01.020_bib0625
  article-title: Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation
  publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
  doi: 10.1016/j.colsurfa.2006.04.038
– volume: 93
  start-page: 227
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0570
  article-title: Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems
  publication-title: Industrial Crops and Products
  doi: 10.1016/j.indcrop.2015.11.082
– volume: 65
  start-page: 252
  year: 2015
  ident: 10.1016/j.carbpol.2019.01.020_bib0060
  article-title: Biomedical applications of hydrogels: A review of patents and commercial products
  publication-title: European Polymer Journal
  doi: 10.1016/j.eurpolymj.2014.11.024
– volume: 50
  start-page: 5438
  issue: 24
  year: 2011
  ident: 10.1016/j.carbpol.2019.01.020_bib0360
  article-title: Nanocelluloses: A new family of nature-based materials
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.201001273
– volume: 1-2
  start-page: 22
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0480
  article-title: 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration
  publication-title: Bioprinting
  doi: 10.1016/j.bprint.2016.08.003
– volume: 37
  start-page: 20
  year: 2014
  ident: 10.1016/j.carbpol.2019.01.020_bib0125
  article-title: Review of recent research in nano cellulose preparation from different lignocellulosic fibers
  publication-title: Reviews on advanced materials science
– volume: 94
  start-page: 736
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0195
  article-title: Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization
  publication-title: Industrial Crops and Products
  doi: 10.1016/j.indcrop.2016.09.059
– volume: 8
  start-page: 287
  issue: 2
  year: 2013
  ident: 10.1016/j.carbpol.2019.01.020_bib0200
  article-title: Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering
  publication-title: Nanomedition
  doi: 10.2217/nnm.12.211
– volume: 9
  start-page: 1763
  issue: 5
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0710
  article-title: Recent progress in cellulose nanocrystals: Sources and production
  publication-title: Nanoscale
  doi: 10.1039/C6NR09494E
– volume: 6
  start-page: 2807
  issue: 3
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0605
  article-title: Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: A review
  publication-title: ACS Sustainable Chemistry & Engineering
  doi: 10.1021/acssuschemeng.7b03437
– volume: 6
  start-page: 4497
  issue: 25
  year: 2015
  ident: 10.1016/j.carbpol.2019.01.020_bib0305
  article-title: Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers
  publication-title: Polymer Chemistry
  doi: 10.1039/C5PY00263J
– volume: 23
  start-page: 2389
  issue: 4
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0190
  article-title: Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis
  publication-title: Cellulose
  doi: 10.1007/s10570-016-0963-5
– volume: 19
  start-page: 4442
  issue: 11
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0020
  article-title: Biomimetic mineralization of three-dimensional printed alginate/TEMPO-oxidized cellulose nanofibril scaffolds for bone tissue engineering
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.8b01325
– volume: 25
  start-page: 2151
  issue: 4
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0350
  article-title: Advances in cellulose nanomaterials
  publication-title: Cellulose
  doi: 10.1007/s10570-018-1723-5
– volume: 23
  start-page: 1209
  issue: 2
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0520
  article-title: One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid
  publication-title: Cellulose
  doi: 10.1007/s10570-016-0864-7
– volume: 4
  start-page: 237
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0285
  article-title: Porous artificial bone scaffold synthesized from a facile in situ hydroxyapatite coating and crosslinking reaction of crystalline nanocellulose
  publication-title: Materialia
  doi: 10.1016/j.mtla.2018.09.008
– volume: 25
  start-page: 259
  issue: 1
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0650
  article-title: Water resistant nanopapers prepared by lactic acid modified cellulose nanofibers
  publication-title: Cellulose
  doi: 10.1007/s10570-017-1540-2
– volume: 15
  start-page: 2327
  issue: 7
  year: 2014
  ident: 10.1016/j.carbpol.2019.01.020_bib0165
  article-title: The potential of cellulose nanocrystals in tissue engineering strategies
  publication-title: Biomacromolecules
  doi: 10.1021/bm500524s
– volume: 5
  start-page: 2671
  issue: 14
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0440
  article-title: High internal phase emulsions stabilised by supramolecular cellulose nanocrystals and their application as cell-adhesive macroporous hydrogel monoliths
  publication-title: Journal of Materials Chemistry B
  doi: 10.1039/C7TB00145B
– volume: 29
  start-page: 4609
  issue: 11
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0140
  article-title: Review of hydrogels and aerogels containing nanocellulose
  publication-title: Chemistry of Materials
  doi: 10.1021/acs.chemmater.7b00531
– volume: 110
  start-page: 415
  year: 2014
  ident: 10.1016/j.carbpol.2019.01.020_bib0400
  article-title: A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2014.04.040
– volume: 132
  start-page: 41719
  issue: 14
  year: 2015
  ident: 10.1016/j.carbpol.2019.01.020_bib0330
  article-title: Recent advances in nanocellulose for biomedical applications
  publication-title: Journal of Applied Polymer Science
  doi: 10.1002/app.41719
– volume: 3
  start-page: 109
  issue: 2
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0760
  article-title: Mild oxalic-acid-catalyzed hydrolysis as a novel approach to prepare cellulose nanocrystals
  publication-title: ChemNanoMat
  doi: 10.1002/cnma.201600347
– volume: 16
  start-page: 1489
  issue: 5
  year: 2015
  ident: 10.1016/j.carbpol.2019.01.020_bib0475
  article-title: 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.5b00188
– volume: 3
  start-page: 71
  issue: 1
  year: 2011
  ident: 10.1016/j.carbpol.2019.01.020_bib0310
  article-title: TEMPO-oxidized cellulose nanofibers
  publication-title: Nanoscale
  doi: 10.1039/C0NR00583E
– volume: 22
  start-page: 935
  issue: 2
  year: 2015
  ident: 10.1016/j.carbpol.2019.01.020_bib0325
  article-title: Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: A review
  publication-title: Cellulose
  doi: 10.1007/s10570-015-0551-0
– volume: 205
  start-page: 27
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0840
  article-title: PHBV-graft-GMA via reactive extrusion and its use in PHBV/nanocellulose crystal composites
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2018.10.014
– volume: 102
  start-page: 159
  year: 2014
  ident: 10.1016/j.carbpol.2019.01.020_bib0270
  article-title: Thermal responsive hydrogels based on semi interpenetrating network of poly(NIPAm) and cellulose nanowhiskers
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2013.10.054
– volume: 39
  start-page: 76
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0015
  article-title: Nanocellulose, a tiny fiber with huge applications
  publication-title: Current Opinion in Biotechnology
  doi: 10.1016/j.copbio.2016.01.002
– volume: 151
  start-page: 716
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0445
  article-title: Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2016.06.025
– volume: 16
  start-page: 2455
  issue: 8
  year: 2015
  ident: 10.1016/j.carbpol.2019.01.020_bib0090
  article-title: Ion-mediated gelation of aqueous suspensions of cellulose nanocrystals
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.5b00701
– volume: 11
  start-page: 5148
  issue: 5
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0525
  article-title: Ultrastrong and bioactive nanostructured bio-based composites
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02305
– volume: 20
  start-page: 2428
  issue: 11
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0545
  article-title: Nanocellulose nanocomposite hydrogels: Technological and environmental issues
  publication-title: Green Chemistry
  doi: 10.1039/C8GC00205C
– volume: 6
  start-page: 18502
  issue: 21
  year: 2014
  ident: 10.1016/j.carbpol.2019.01.020_bib0825
  article-title: Metal cation cross-linked nanocellulose hydrogels as tissue engineering substrates
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/am506007z
– start-page: 295
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0225
  article-title: Biomedical applications of polysaccharide and protein based aerogels
– volume: 22
  start-page: 1147
  issue: 2
  year: 2015
  ident: 10.1016/j.carbpol.2019.01.020_bib0535
  article-title: Repeated homogenization, a route for decreasing the energy consumption in the manufacturing process of carboxymethylated nanofibrillated cellulose?
  publication-title: Cellulose
  doi: 10.1007/s10570-015-0576-4
– volume: 6
  start-page: 13021
  issue: 27
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0730
  article-title: Flexible cellulose nanopaper with high wet tensile strength, high toughness and tunable ultraviolet blocking ability fabricated from tobacco stalk via a sustainable method
  publication-title: Journal of Materials Chemistry A
  doi: 10.1039/C8TA01986J
– volume: 53
  start-page: 617
  issue: 6
  year: 2000
  ident: 10.1016/j.carbpol.2019.01.020_bib0085
  article-title: Tissue engineering: Challenges and opportunities
  publication-title: Journal of Biomedical Materials Research
  doi: 10.1002/1097-4636(2000)53:6<617::AID-JBM1>3.0.CO;2-C
– volume: 7
  start-page: 1687
  issue: 6
  year: 2006
  ident: 10.1016/j.carbpol.2019.01.020_bib0635
  article-title: Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose
  publication-title: Biomacromolecules
  doi: 10.1021/bm060154s
– volume: 1
  start-page: 3938
  issue: 12
  year: 2013
  ident: 10.1016/j.carbpol.2019.01.020_bib0820
  article-title: Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions
  publication-title: Journal of Materials Chemistry A
  doi: 10.1039/c3ta01150j
– volume: 118
  start-page: 545
  issue: 4
  year: 1996
  ident: 10.1016/j.carbpol.2019.01.020_bib0120
  article-title: Fracture of articular cartilage
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.2796042
– volume: 18
  start-page: 53
  issue: 1
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0655
  article-title: Hydrogels based on cellulose and chitin: Fabrication, properties, and applications
  publication-title: Green Chemistry
  doi: 10.1039/C5GC02396C
– volume: 5
  start-page: 31
  issue: 1
  year: 2015
  ident: 10.1016/j.carbpol.2019.01.020_bib0405
  article-title: A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications
  publication-title: Bioactive Carbohydrates and Dietary Fibre
  doi: 10.1016/j.bcdf.2014.12.001
– volume: 55
  start-page: 14455
  issue: 46
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0370
  article-title: Degradation and crystallization of cellulose in hydrogen chloride vapor for high-yield isolation of cellulose nanocrystals
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.201606626
– volume: 21
  start-page: 541
  issue: 1
  year: 2014
  ident: 10.1016/j.carbpol.2019.01.020_bib0815
  article-title: Tough nanocomposite hydrogels from cellulose nanocrystals/poly (acrylamide) clusters: Influence of the charge density, aspect ratio and surface coating with PEG
  publication-title: Cellulose
  doi: 10.1007/s10570-013-0111-4
– volume: 75
  start-page: 346
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0295
  article-title: Polyion complex hydrogels from chemically modified cellulose nanofibrils: Structure-function relationship and potential for controlled and pH-responsive release of doxorubicin
  publication-title: Acta Biomaterialia
  doi: 10.1016/j.actbio.2018.06.013
– volume: 82
  start-page: 208
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0515
  article-title: Human stem cell decorated nanocellulose threads for biomedical applications
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.12.020
– volume: 17
  start-page: 6487
  issue: 10
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0145
  article-title: Injectable anisotropic nanocomposite hydrogels direct in situ growth and alignment of myotubes
  publication-title: Nano Letters
  doi: 10.1021/acs.nanolett.7b03600
– volume: 244
  start-page: 292
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0255
  article-title: Nanofibrillar cellulose wound dressing in skin graft donor site treatment
  publication-title: Journal of Controlled Release
  doi: 10.1016/j.jconrel.2016.07.053
– volume: 8
  start-page: 6880
  issue: 11
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0395
  article-title: Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs codelivery
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.6b00555
– volume: 199
  start-page: 445
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0265
  article-title: Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2018.06.114
– volume: 188
  start-page: 27
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0455
  article-title: A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2018.01.093
– volume: 6
  start-page: 13924
  issue: 11
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0835
  article-title: A pH-responsive gel macrosphere based on sodium alginate and cellulose nanofiber for potential intestinal delivery of probiotics
  publication-title: ACS Sustainable Chemistry & Engineering
  doi: 10.1021/acssuschemeng.8b02237
– volume: 30
  start-page: 1797
  issue: 11
  year: 2015
  ident: 10.1016/j.carbpol.2019.01.020_bib0100
  article-title: Responsiveness, swelling, and mechanical properties of PNIPA nanocomposite hydrogels reinforced by nanocellulose
  publication-title: Journal of Materials Research
  doi: 10.1557/jmr.2015.94
– volume: 87
  start-page: 197
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0345
  article-title: Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites
  publication-title: Progress in Polymer Science
  doi: 10.1016/j.progpolymsci.2018.07.008
– volume: 185
  start-page: 117
  year: 1960
  ident: 10.1016/j.carbpol.2019.01.020_bib0750
  article-title: Hydrophilic gels for biological use
  publication-title: Nature
  doi: 10.1038/185117a0
– volume: 8
  start-page: 217
  issue: 3
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0335
  article-title: A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings
  publication-title: Journal of Advanced Research
  doi: 10.1016/j.jare.2017.01.005
– volume: 55
  start-page: 5966
  issue: 20
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0720
  article-title: Bioinspired mechanical gradients in cellulose nanofibril/polymer nanopapers
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.201511512
– start-page: e1801934
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0365
  article-title: Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels
  publication-title: Advanced Materials
  doi: 10.1002/adma.201801934
– volume: 53
  start-page: 11883
  issue: 16
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0320
  article-title: Dialdehyde cellulose nanocrystal/gelatin hydrogel optimized for 3D printing applications
  publication-title: Journal of Materials Science
  doi: 10.1007/s10853-018-2407-0
– volume: 28
  start-page: 3406
  issue: 10
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0095
  article-title: Composite hydrogels with tunable anisotropic morphologies and mechanical properties
  publication-title: Chemistry of Materials
  doi: 10.1021/acs.chemmater.6b00792
– volume: 24
  start-page: 3243
  issue: 8
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0115
  article-title: Facile one-step extraction and oxidative carboxylation of cellulose nanocrystals through hydrothermal reaction by using mixed inorganic acids
  publication-title: Cellulose
  doi: 10.1007/s10570-017-1339-1
– volume: 6
  start-page: 105
  issue: 2
  year: 2015
  ident: 10.1016/j.carbpol.2019.01.020_bib0035
  article-title: Hydrogel: Preparation, characterization, and applications: A review
  publication-title: Journal of Advanced Research
  doi: 10.1016/j.jare.2013.07.006
– volume: 18
  start-page: 3835
  issue: 13
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0105
  article-title: Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids
  publication-title: Green Chemistry
  doi: 10.1039/C6GC00687F
– volume: 49
  start-page: 1993
  issue: 8
  year: 2008
  ident: 10.1016/j.carbpol.2019.01.020_bib0275
  article-title: Hydrogels in drug delivery: Progress and challenges
  publication-title: Polymer
  doi: 10.1016/j.polymer.2008.01.027
– volume: 48
  start-page: 1231
  issue: 4
  year: 2015
  ident: 10.1016/j.carbpol.2019.01.020_bib0810
  article-title: Design of cellulose nanocrystals template-assisted composite hydrogels: Insights from static to dynamic alignment
  publication-title: Macromolecules
  doi: 10.1021/ma5026175
– volume: 2
  start-page: 29
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0680
  article-title: 3D printing of nano-cellulosic biomaterials for medical applications
  publication-title: Current Opinion in Biomedical Engineering
  doi: 10.1016/j.cobme.2017.06.002
– volume: 24
  start-page: 4785
  issue: 11
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0155
  article-title: Isolation and characterization of cellulose nanocrystals from cloth hairs and evaluation of their compatibility with PLLA
  publication-title: Cellulose
  doi: 10.1007/s10570-017-1461-0
– year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0355
  article-title: Chitosan-based polymer matrix for pharmaceutical excipients and drug delivery
  publication-title: Current Medicinal Chemistry
  doi: 10.2174/0929867325666180927100817
– volume: 536
  start-page: 73
  issue: 1
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0030
  article-title: Nanoparticle-loaded hydrogels as a pathway for enzyme-triggered drug release in ophthalmic applications
  publication-title: International Journal of Pharmaceutics
  doi: 10.1016/j.ijpharm.2017.11.053
– volume: 135
  start-page: 239
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0620
  article-title: Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2015.09.002
– volume: 134
  start-page: 609
  year: 2015
  ident: 10.1016/j.carbpol.2019.01.020_bib0025
  article-title: Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2015.07.079
– volume: 174
  start-page: 299
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0045
  article-title: On the use of ion-crosslinked nanocellulose hydrogels for wound healing solutions: Physicochemical properties and application-oriented biocompatibility studies
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2017.06.073
– volume: 88
  start-page: 373
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0245
  article-title: A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations
  publication-title: European Polymer Journal
  doi: 10.1016/j.eurpolymj.2017.01.027
– volume: 44
  start-page: 8990
  issue: 22
  year: 2011
  ident: 10.1016/j.carbpol.2019.01.020_bib0715
  article-title: Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions
  publication-title: Macromolecules
  doi: 10.1021/ma201649f
– volume: 9
  start-page: 34314
  issue: 39
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0580
  article-title: 3D printing of photocurable cellulose nanocrystal composite for fabrication of complex architectures via stereolithography
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.7b09223
– volume: 10
  start-page: 162
  issue: 1
  year: 2009
  ident: 10.1016/j.carbpol.2019.01.020_bib0215
  article-title: Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation
  publication-title: Biomacromolecules
  doi: 10.1021/bm801065u
– volume: 82
  start-page: 149
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0615
  article-title: An environmentally friendly xylanase-assisted pretreatment for cellulose nanofibrils isolation from sugarcane bagasse by high-pressure homogenization
  publication-title: Industrial Crops and Products
  doi: 10.1016/j.indcrop.2015.11.064
– volume: 6
  start-page: 7764
  issue: 14
  year: 2014
  ident: 10.1016/j.carbpol.2019.01.020_bib0205
  article-title: Surface modification of cellulose nanocrystals
  publication-title: Nanoscale
  doi: 10.1039/C4NR01756K
– volume: 6
  start-page: 5663
  issue: 5
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0765
  article-title: Three-dimensional printing of wood-derived biopolymers: A review focused on biomedical applications
  publication-title: ACS Sustainable Chemistry & Engineering
  doi: 10.1021/acssuschemeng.7b03924
– volume: 19
  start-page: 855
  issue: 3
  year: 2012
  ident: 10.1016/j.carbpol.2019.01.020_bib0340
  article-title: Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers
  publication-title: Cellulose
  doi: 10.1007/s10570-012-9684-6
– volume: 27
  start-page: 2989
  issue: 19
  year: 2015
  ident: 10.1016/j.carbpol.2019.01.020_bib0695
  article-title: Bioactive gyroid scaffolds formed by sacrificial templating of nanocellulose and nanochitin hydrogels as instructive platforms for biomimetic tissue engineering
  publication-title: Advanced Materials
  doi: 10.1002/adma.201405873
– volume: 5
  start-page: 7623
  issue: 9
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0430
  article-title: Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields
  publication-title: ACS Sustainable Chemistry & Engineering
  doi: 10.1021/acssuschemeng.7b00954
– volume: 25
  start-page: 485
  issue: 1
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0490
  article-title: Dual-responsive composite hydrogels based on TEMPO-oxidized cellulose nanofibril and poly (N-isopropylacrylamide) for model drug release
  publication-title: Cellulose
  doi: 10.1007/s10570-017-1585-2
– volume: 1
  start-page: 1001
  issue: 8
  year: 2012
  ident: 10.1016/j.carbpol.2019.01.020_bib0745
  article-title: pH-responsive cellulose nanocrystal gels and nanocomposites
  publication-title: ACS Macro Letters
  doi: 10.1021/mz3003006
– volume: 47
  start-page: 4077
  issue: 12
  year: 2014
  ident: 10.1016/j.carbpol.2019.01.020_bib0800
  article-title: Cellulose nanocrystals mechanical reinforcement in composite hydrogels with multiple cross-Links: Correlations between dissipation properties and deformation mechanisms
  publication-title: Macromolecules
  doi: 10.1021/ma500729q
– volume: 6
  start-page: 5934
  issue: 11
  year: 2014
  ident: 10.1016/j.carbpol.2019.01.020_bib0795
  article-title: Simple approach to reinforce hydrogels with cellulose nanocrystals
  publication-title: Nanoscale
  doi: 10.1039/c4nr01214c
– volume: 48
  start-page: 454
  issue: 3
  year: 2012
  ident: 10.1016/j.carbpol.2019.01.020_bib0670
  article-title: Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers
  publication-title: European Polymer Journal
  doi: 10.1016/j.eurpolymj.2011.12.005
– volume: 93
  start-page: 789
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0705
  article-title: Microcrystalline cellulose: Isolation, characterization and bio-composites application-A review
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/j.ijbiomac.2016.09.056
– volume: 95
  start-page: 760
  issue: 2
  year: 2013
  ident: 10.1016/j.carbpol.2019.01.020_bib0175
  article-title: Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2013.03.041
– volume: 14
  start-page: 765
  issue: 2
  year: 2014
  ident: 10.1016/j.carbpol.2019.01.020_bib0210
  article-title: Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells
  publication-title: Nano Letters
  doi: 10.1021/nl404101p
– volume: 24
  start-page: 2153
  issue: 5
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0690
  article-title: Cellulose nanocrystals prepared in H3PW12O40-acetic acid system
  publication-title: Cellulose
  doi: 10.1007/s10570-017-1256-3
– volume: 116
  start-page: 9305
  issue: 16
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0850
  article-title: Wood-derived materials for green electronics, biological devices, and energy applications
  publication-title: Chemical Reviews
  doi: 10.1021/acs.chemrev.6b00225
– volume: 25
  start-page: 2861
  issue: 5
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0235
  article-title: Water retention value for characterizing fibrillation degree of cellulosic fibers at micro and nanometer scales
  publication-title: Cellulose
  doi: 10.1007/s10570-018-1765-8
– volume: 181
  start-page: 345
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0050
  article-title: Ion-crosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties: Candidate materials for advanced wound care applications
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2017.10.085
– volume: 46
  start-page: 7344
  issue: 22
  year: 2011
  ident: 10.1016/j.carbpol.2019.01.020_bib0610
  article-title: Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface
  publication-title: Journal of Materials Science
  doi: 10.1007/s10853-011-5696-0
– volume: 5
  start-page: 1988
  issue: 10
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0595
  article-title: Nanocellulosic materials as bioinks for 3D bioprinting
  publication-title: Biomaterials Science
  doi: 10.1039/C7BM00510E
– volume: 57
  start-page: 2353
  issue: 9
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0725
  article-title: All-in-one cellulose nanocrystals for 3D printing of nanocomposite hydrogels
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.201710951
– volume: 5
  start-page: 17014
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0460
  article-title: Injectable hydrogels for cartilage and bone tissue engineering
  publication-title: Bone Research
  doi: 10.1038/boneres.2017.14
– volume: 9
  start-page: 40878
  issue: 46
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0470
  article-title: Biomimetic inks based on cellulose nanofibrils and cross-linkable xylans for 3D Printing
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.7b13400
– volume: 9
  start-page: 14758
  issue: 39
  year: 2017
  ident: 10.1016/j.carbpol.2019.01.020_bib0775
  article-title: Nanocellulose as a sustainable biomass material: Structure, properties, present status and future prospects in biomedical applications
  publication-title: Nanoscale
  doi: 10.1039/C7NR04994C
– volume: 5
  start-page: 201
  issue: 2
  year: 2018
  ident: 10.1016/j.carbpol.2019.01.020_bib0700
  article-title: Nanocellulose as a promising sustainable material for biomedical applications
  publication-title: AIMS Materials Science
  doi: 10.3934/matersci.2018.2.201
– volume: 83
  start-page: 2
  year: 2016
  ident: 10.1016/j.carbpol.2019.01.020_bib0565
  article-title: Review of the recent developments in cellulose nanocomposite processing
  publication-title: Composites Part A: Applied Science and Manufacturing
  doi: 10.1016/j.compositesa.2015.10.041
SSID ssj0000610
Score 2.700781
SecondaryResourceType review_article
Snippet •Preparation of CNCs and CNFs was briefly introduced.•Fabrication of CNCs and CNFs based hydrogels was elaborated.•Emerging methods such as 3D printing were...
The production of cellulose nanomaterials from lignocellulosic biomass opens an opportunity for the development and application of new materials in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 130
SubjectTerms biocompatibility
biodegradability
biomass
Biomedical applications
cellulose
Cellulose nanocrystals (CNCs)
cellulose nanofibers
Cellulose nanofibrils (CNFs)
Cellulose nanomaterials
drugs
Hydrogel
hydrogels
lignocellulose
Nanocellulose
nanocrystals
tissue engineering
toxicity
Title Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications
URI https://dx.doi.org/10.1016/j.carbpol.2019.01.020
https://www.ncbi.nlm.nih.gov/pubmed/30732792
https://www.proquest.com/docview/2221048965
https://www.proquest.com/docview/2229094351
Volume 209
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-QwDI4QHOCyWp47y0NB2muZJE3S9ohGoAEEJ5A4rBRl8uChqh3N48CF3449bXkcAIljG1uybNf-0tgOIf-8EE4ocF4heIpDtYskt44nWnLmslgARMVfA5dXengjz2_V7RIZdL0wWFbZxv4mpi-idfum32qzP3546GNZkswhAQMEQdCDHeVSZujlR8_8XTReTCRA4gSp37p4-o-wBZyMxjWeQPCimd7JPstPn-HPRR46_U1-tQCSHjcyrpOlUG2Q1UF3b9sm-T8IZTkv62mgla1qN3kCAFhOqa08dR-WIpb7wwpmMk_vn_ykvgNRKOBY2rTlowXp-zPuLXJzenI9GCbtHQqJU0zMkhhd0MoD6pIs9xK-UCEjt5yHjBVBOQAE0SrpNNgsY04WItdpZMxB2ONCx3SbLFd1Ff4QmjoftM0AYlkvi1yPrNWRe8_DSKeOqx6RneaMaweM4z0XpekqyR5Nq3CDCjeMG1B4jxy9so2bCRvfMeSdWcwHVzGQBb5jPezMaMAqqHRbhXo-NQCTYGOaF1p9SVNgIabiPbLT-MCrxBgqcRbj358Lt0vW8KkpC9ojy7PJPOwD4pmNDhYufUBWjs8uhlcvTvsAeQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5UAvVemLhZa6Uq_p2o7tJEe0KlpeewKJQyXLazstKEpW-zjw7zuzSSgcKBLX2CONZsYzn-PxZ4DvQUovNQavlCIlUu0iyZ0XiVGC-6wsEKLSr4GLqZlcqdNrfb0F4_4uDLVVdrm_zembbN19GXXWHM1vbkbUlqRyLMAIQQj0ZK9gm9ip9AC2j07OJtMHCXlDSkDzExL4d5FndIu7wMVs3tAhhChaAk_-VIl6CoJuStHxW3jTYUh21Kq5C1uxfgc74_7ptvfwaxyral01y8hqVzd-cYcYsFoyVwfmHw2V1PGPI1TMAvtzFxbNb1SFIZRl7c18ciJ7eMz9Aa6Of16OJ0n3jELiNZerpCx9NDog8FI8DwoXqVSlcELEjBdRe8QEpdPKG3Rbxr0qZG7SknOPmU9IU6YfYVA3ddwDlvoQjcsQZbmgitzMnDOlCEHEmUm90ENQveWs7zjG6amLyvbNZLe2M7glg1suLBp8CD_uxeYtycZzAnnvFvsoWiwWgudEv_VutOgVMrqrY7NeWkRKuDfNC6P_O6egXkwthvCpjYF7jSlbEh3j_suV-wo7k8uLc3t-Mj07gNc00nYJfYbBarGOXxAArWaHXYD_BQ74Ayo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cellulose+nanocrystals+and+cellulose+nanofibrils+based+hydrogels+for+biomedical+applications&rft.jtitle=Carbohydrate+polymers&rft.au=Du%2C+Haishun&rft.au=Liu%2C+Wei&rft.au=Zhang%2C+Miaomiao&rft.au=Si%2C+Chuanling&rft.date=2019-04-01&rft.issn=1879-1344&rft.eissn=1879-1344&rft.volume=209&rft.spage=130&rft_id=info:doi/10.1016%2Fj.carbpol.2019.01.020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8617&client=summon