Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications
•Preparation of CNCs and CNFs was briefly introduced.•Fabrication of CNCs and CNFs based hydrogels was elaborated.•Emerging methods such as 3D printing were highlighted.•Biomedical applications of CNCs and CNFs based hydrogels were summarized.•Prospects and challenges of CNCs and CNFs based hydrogel...
Saved in:
Published in | Carbohydrate polymers Vol. 209; pp. 130 - 144 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Preparation of CNCs and CNFs was briefly introduced.•Fabrication of CNCs and CNFs based hydrogels was elaborated.•Emerging methods such as 3D printing were highlighted.•Biomedical applications of CNCs and CNFs based hydrogels were summarized.•Prospects and challenges of CNCs and CNFs based hydrogels were discussed.
The production of cellulose nanomaterials from lignocellulosic biomass opens an opportunity for the development and application of new materials in nanotechnology. Over the last decade, cellulose nanomaterials based hydrogels have emerged as promising materials in the field of biomedical applications due to their low toxicity, biocompatibility, biodegradability, as well as excellent mechanical stability. In this review, recent progress on the preparation of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) based hydrogels and their biomedical applications is summarized and discussed based on the analyses of the latest studies (especially for the reports in the past five years). We begin with a brief introduction of the differences in preparation methods and properties of two main types of cellulose nanomaterials: CNCs and CNFs isolated from lignocellulosic biomass. Then, various processes for the fabrication of CNCs based hydrogels and CNFs based hydrogels were elaborated, respectively, with the focus on some new methods (e.g. 3D printing). Furthermore, a number of biomedical applications of CNCs and CNFs based hydrogels, including drug delivery, wound dressings and tissue engineering scaffolds were highlighted. Finally, the prospects and ongoing challenges of CNCs and CNFs based hydrogels for biomedical applications were summarized. This work demonstrated that the CNCs and CNFs based hydrogels have great promise in a wide range of biomedical applications in the future. |
---|---|
AbstractList | The production of cellulose nanomaterials from lignocellulosic biomass opens an opportunity for the development and application of new materials in nanotechnology. Over the last decade, cellulose nanomaterials based hydrogels have emerged as promising materials in the field of biomedical applications due to their low toxicity, biocompatibility, biodegradability, as well as excellent mechanical stability. In this review, recent progress on the preparation of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) based hydrogels and their biomedical applications is summarized and discussed based on the analyses of the latest studies (especially for the reports in the past five years). We begin with a brief introduction of the differences in preparation methods and properties of two main types of cellulose nanomaterials: CNCs and CNFs isolated from lignocellulosic biomass. Then, various processes for the fabrication of CNCs based hydrogels and CNFs based hydrogels were elaborated, respectively, with the focus on some new methods (e.g. 3D printing). Furthermore, a number of biomedical applications of CNCs and CNFs based hydrogels, including drug delivery, wound dressings and tissue engineering scaffolds were highlighted. Finally, the prospects and ongoing challenges of CNCs and CNFs based hydrogels for biomedical applications were summarized. This work demonstrated that the CNCs and CNFs based hydrogels have great promise in a wide range of biomedical applications in the future.The production of cellulose nanomaterials from lignocellulosic biomass opens an opportunity for the development and application of new materials in nanotechnology. Over the last decade, cellulose nanomaterials based hydrogels have emerged as promising materials in the field of biomedical applications due to their low toxicity, biocompatibility, biodegradability, as well as excellent mechanical stability. In this review, recent progress on the preparation of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) based hydrogels and their biomedical applications is summarized and discussed based on the analyses of the latest studies (especially for the reports in the past five years). We begin with a brief introduction of the differences in preparation methods and properties of two main types of cellulose nanomaterials: CNCs and CNFs isolated from lignocellulosic biomass. Then, various processes for the fabrication of CNCs based hydrogels and CNFs based hydrogels were elaborated, respectively, with the focus on some new methods (e.g. 3D printing). Furthermore, a number of biomedical applications of CNCs and CNFs based hydrogels, including drug delivery, wound dressings and tissue engineering scaffolds were highlighted. Finally, the prospects and ongoing challenges of CNCs and CNFs based hydrogels for biomedical applications were summarized. This work demonstrated that the CNCs and CNFs based hydrogels have great promise in a wide range of biomedical applications in the future. •Preparation of CNCs and CNFs was briefly introduced.•Fabrication of CNCs and CNFs based hydrogels was elaborated.•Emerging methods such as 3D printing were highlighted.•Biomedical applications of CNCs and CNFs based hydrogels were summarized.•Prospects and challenges of CNCs and CNFs based hydrogels were discussed. The production of cellulose nanomaterials from lignocellulosic biomass opens an opportunity for the development and application of new materials in nanotechnology. Over the last decade, cellulose nanomaterials based hydrogels have emerged as promising materials in the field of biomedical applications due to their low toxicity, biocompatibility, biodegradability, as well as excellent mechanical stability. In this review, recent progress on the preparation of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) based hydrogels and their biomedical applications is summarized and discussed based on the analyses of the latest studies (especially for the reports in the past five years). We begin with a brief introduction of the differences in preparation methods and properties of two main types of cellulose nanomaterials: CNCs and CNFs isolated from lignocellulosic biomass. Then, various processes for the fabrication of CNCs based hydrogels and CNFs based hydrogels were elaborated, respectively, with the focus on some new methods (e.g. 3D printing). Furthermore, a number of biomedical applications of CNCs and CNFs based hydrogels, including drug delivery, wound dressings and tissue engineering scaffolds were highlighted. Finally, the prospects and ongoing challenges of CNCs and CNFs based hydrogels for biomedical applications were summarized. This work demonstrated that the CNCs and CNFs based hydrogels have great promise in a wide range of biomedical applications in the future. The production of cellulose nanomaterials from lignocellulosic biomass opens an opportunity for the development and application of new materials in nanotechnology. Over the last decade, cellulose nanomaterials based hydrogels have emerged as promising materials in the field of biomedical applications due to their low toxicity, biocompatibility, biodegradability, as well as excellent mechanical stability. In this review, recent progress on the preparation of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) based hydrogels and their biomedical applications is summarized and discussed based on the analyses of the latest studies (especially for the reports in the past five years). We begin with a brief introduction of the differences in preparation methods and properties of two main types of cellulose nanomaterials: CNCs and CNFs isolated from lignocellulosic biomass. Then, various processes for the fabrication of CNCs based hydrogels and CNFs based hydrogels were elaborated, respectively, with the focus on some new methods (e.g. 3D printing). Furthermore, a number of biomedical applications of CNCs and CNFs based hydrogels, including drug delivery, wound dressings and tissue engineering scaffolds were highlighted. Finally, the prospects and ongoing challenges of CNCs and CNFs based hydrogels for biomedical applications were summarized. This work demonstrated that the CNCs and CNFs based hydrogels have great promise in a wide range of biomedical applications in the future. |
Author | Si, Chuanling Zhang, Xinyu Zhang, Miaomiao Du, Haishun Li, Bin Liu, Wei |
Author_xml | – sequence: 1 givenname: Haishun orcidid: 0000-0002-8046-0319 surname: Du fullname: Du, Haishun email: hzd0024@auburn.edu organization: Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China – sequence: 2 givenname: Wei surname: Liu fullname: Liu, Wei email: liuwei_18@mail.tust.edu.cn organization: Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China – sequence: 3 givenname: Miaomiao surname: Zhang fullname: Zhang, Miaomiao email: mzz0039@auburn.edu organization: Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA – sequence: 4 givenname: Chuanling surname: Si fullname: Si, Chuanling email: sichli@tust.edu.cn organization: Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China – sequence: 5 givenname: Xinyu surname: Zhang fullname: Zhang, Xinyu email: xzz0004@auburn.edu organization: Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA – sequence: 6 givenname: Bin orcidid: 0000-0002-8903-3874 surname: Li fullname: Li, Bin email: libin@qibebt.ac.cn organization: CAS Key Laboratory of Biofuels, CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30732792$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUU2P0zAQtdAitrvwE0A5ckmYcRwnFgeEKr6klbjADcly7DG4SuNgp0j997i0e4DL4svYmveeZ967YVdznImx5wgNAspXu8aaNC5xajigagAb4PCIbXDoVY2tEFdsAyhEPUjsr9lNzjsoRyI8Ydct9C3vFd-wb1uapsMUM1WzmaNNx7yaKVdmdpX9q-XDmELpjCaTq34cXYrfqbx9TNUY4p5csGaqzLJM5bKGOOen7LEvYvTsUm_Z1_fvvmw_1nefP3zavr2rbQd8rb23JDuHshUwOCF4x4VHg0g9KOrsgMqbTljJue3BCsUH2XoA6xwhl769ZS_PukuKPw-UV70P-TS9mSkesuacK1Ci7fB_oAhiULIr0BcX6GEs2-klhb1JR31vXgG8PgNsijkn8tqG9c_mazJh0gj6FJXe6UtU-hSVBtQlqsLu_mHff_AQ782ZV8ynX4GSzjbQbIv_ieyqXQwPKPwG7SaxIQ |
CitedBy_id | crossref_primary_10_1016_j_carbpol_2024_122442 crossref_primary_10_1021_acs_chemrev_2c00450 crossref_primary_10_32604_jrm_2022_021030 crossref_primary_10_1002_app_53362 crossref_primary_10_1007_s10570_025_06383_4 crossref_primary_10_1016_j_addlet_2022_100061 crossref_primary_10_1016_j_fbio_2024_103970 crossref_primary_10_1080_00914037_2020_1825086 crossref_primary_10_1007_s10570_020_03103_y crossref_primary_10_1016_j_eurpolymj_2021_110287 crossref_primary_10_1016_j_fbio_2023_103212 crossref_primary_10_1016_j_aca_2024_343157 crossref_primary_10_1016_j_addma_2020_101639 crossref_primary_10_3389_fenrg_2022_820330 crossref_primary_10_1021_acsami_1c19433 crossref_primary_10_3389_fnano_2021_747329 crossref_primary_10_1016_j_ceramint_2021_11_206 crossref_primary_10_1007_s10570_022_04936_5 crossref_primary_10_1021_acs_biomac_3c00152 crossref_primary_10_14258_jcprm_2020016105 crossref_primary_10_3390_polym15183833 crossref_primary_10_1016_j_carbpol_2019_115569 crossref_primary_10_3390_polym13203598 crossref_primary_10_1021_acs_biomac_0c01510 crossref_primary_10_1016_j_cej_2024_154829 crossref_primary_10_1002_adfm_202400431 crossref_primary_10_1016_j_bioactmat_2022_10_013 crossref_primary_10_1016_j_mtla_2020_100881 crossref_primary_10_3390_polym14194098 crossref_primary_10_3390_polym14163335 crossref_primary_10_1007_s10570_021_04370_z crossref_primary_10_1016_j_jiec_2021_02_022 crossref_primary_10_3390_ma15175992 crossref_primary_10_35812_CelluloseChemTechnol_2022_56_80 crossref_primary_10_3389_fbioe_2021_738779 crossref_primary_10_1016_j_carpta_2021_100138 crossref_primary_10_1016_j_ijbiomac_2020_12_066 crossref_primary_10_1039_D1RA03197J crossref_primary_10_1155_2022_1712207 crossref_primary_10_1016_j_carbpol_2023_121173 crossref_primary_10_1016_j_lwt_2022_113884 crossref_primary_10_3390_gels7010030 crossref_primary_10_1016_j_eti_2021_101855 crossref_primary_10_1039_D1EN00816A crossref_primary_10_1016_j_seppur_2025_132590 crossref_primary_10_2174_0929867327666200303102859 crossref_primary_10_1007_s10924_020_01674_2 crossref_primary_10_3390_molecules27228032 crossref_primary_10_3390_coatings13010039 crossref_primary_10_1016_j_ijbiomac_2023_124922 crossref_primary_10_1016_j_ultsonch_2019_104759 crossref_primary_10_1007_s10570_023_05546_5 crossref_primary_10_1016_j_carbpol_2024_122109 crossref_primary_10_1088_2053_1591_ab6373 crossref_primary_10_3390_gels8060383 crossref_primary_10_1016_j_carbpol_2023_121298 crossref_primary_10_1039_D3GC01505J crossref_primary_10_1002_mame_201900092 crossref_primary_10_1016_j_carbpol_2022_119803 crossref_primary_10_1016_j_cdc_2022_100957 crossref_primary_10_1002_anie_202210208 crossref_primary_10_1007_s10924_021_02045_1 crossref_primary_10_1002_star_202100212 crossref_primary_10_1039_D4CC02114B crossref_primary_10_3389_fphar_2020_00573 crossref_primary_10_1002_adma_202005569 crossref_primary_10_1007_s10853_021_06085_9 crossref_primary_10_1177_00405175241266999 crossref_primary_10_3390_molecules28073070 crossref_primary_10_1007_s10544_021_00581_0 crossref_primary_10_1016_j_carbpol_2019_115465 crossref_primary_10_1371_journal_pone_0246794 crossref_primary_10_2139_ssrn_4179200 crossref_primary_10_1007_s10570_020_03015_x crossref_primary_10_1016_j_indcrop_2023_117429 crossref_primary_10_1016_j_jddst_2022_103814 crossref_primary_10_3390_gels9090674 crossref_primary_10_1016_j_scitotenv_2023_164167 crossref_primary_10_1016_j_carres_2023_108899 crossref_primary_10_1016_j_carpta_2021_100111 crossref_primary_10_1016_j_indcrop_2020_112154 crossref_primary_10_1016_j_nanoen_2024_109974 crossref_primary_10_1002_star_202100033 crossref_primary_10_1186_s13068_020_01763_3 crossref_primary_10_1002_adma_202004349 crossref_primary_10_1007_s10570_023_05624_8 crossref_primary_10_1016_j_seppur_2022_122642 crossref_primary_10_1021_acs_langmuir_4c04398 crossref_primary_10_1016_j_ijbiomac_2021_05_119 crossref_primary_10_1111_azo_12543 crossref_primary_10_1016_j_cej_2025_159872 crossref_primary_10_1016_j_foostr_2022_100266 crossref_primary_10_1007_s13399_022_03718_0 crossref_primary_10_3390_gels9040286 crossref_primary_10_1016_j_indcrop_2020_112164 crossref_primary_10_1016_j_ijbiomac_2020_11_076 crossref_primary_10_1002_adhm_202001472 crossref_primary_10_1016_j_carbpol_2020_117164 crossref_primary_10_1016_j_indcrop_2022_115272 crossref_primary_10_1016_j_ijbiomac_2024_129600 crossref_primary_10_1002_adfm_202314079 crossref_primary_10_3390_molecules26123551 crossref_primary_10_1016_j_jmrt_2022_03_089 crossref_primary_10_1016_j_ijbiomac_2021_12_162 crossref_primary_10_1016_j_procir_2022_06_033 crossref_primary_10_1007_s10570_023_05327_0 crossref_primary_10_1016_j_carbpol_2021_118372 crossref_primary_10_1016_j_ijbiomac_2021_06_053 crossref_primary_10_1007_s10570_024_05935_4 crossref_primary_10_1016_j_reactfunctpolym_2022_105286 crossref_primary_10_1016_j_cej_2022_138824 crossref_primary_10_1007_s42114_023_00783_5 crossref_primary_10_1002_cssc_202301233 crossref_primary_10_1007_s10924_022_02543_w crossref_primary_10_1016_j_carbpol_2019_04_033 crossref_primary_10_1021_acsomega_3c00028 crossref_primary_10_3390_mi14071450 crossref_primary_10_1016_j_carbpol_2019_115116 crossref_primary_10_1016_j_carbpol_2022_119753 crossref_primary_10_1021_acs_biomac_4c00823 crossref_primary_10_1016_j_ijbiomac_2020_09_256 crossref_primary_10_1016_j_carbpol_2024_122385 crossref_primary_10_1016_j_carbpol_2023_121097 crossref_primary_10_1016_j_progpolymsci_2021_101472 crossref_primary_10_2139_ssrn_4100135 crossref_primary_10_1016_j_carbpol_2023_121092 crossref_primary_10_1039_D1QM00390A crossref_primary_10_1016_j_carbpol_2025_123518 crossref_primary_10_1016_j_ijbiomac_2023_126903 crossref_primary_10_1016_j_porgcoat_2019_05_015 crossref_primary_10_1021_acssuschemeng_4c00417 crossref_primary_10_1021_acs_biomac_3c00168 crossref_primary_10_1016_j_chemosphere_2020_129277 crossref_primary_10_1016_j_carbpol_2021_118357 crossref_primary_10_1016_j_tifs_2020_05_016 crossref_primary_10_1111_ijfs_15096 crossref_primary_10_1002_cssc_202002008 crossref_primary_10_1016_j_carbpol_2021_118114 crossref_primary_10_1016_j_indcrop_2022_115019 crossref_primary_10_1039_D4NR01794C crossref_primary_10_1016_j_jmbbm_2022_105610 crossref_primary_10_3390_polym14245345 crossref_primary_10_3390_pharmaceutics15020424 crossref_primary_10_1002_pc_27112 crossref_primary_10_1021_acsaem_1c01900 crossref_primary_10_1016_j_pmatsci_2022_100999 crossref_primary_10_1021_acssuschemeng_9b00714 crossref_primary_10_1088_1748_605X_ad9da4 crossref_primary_10_1016_j_cej_2021_130817 crossref_primary_10_1021_acssuschemeng_0c06561 crossref_primary_10_1007_s10570_020_03474_2 crossref_primary_10_3390_gels8060336 crossref_primary_10_1016_j_seppur_2022_122774 crossref_primary_10_1021_acs_jafc_1c00468 crossref_primary_10_1088_1757_899X_670_1_012058 crossref_primary_10_1016_j_carbpol_2019_115144 crossref_primary_10_1016_j_ultsonch_2019_104845 crossref_primary_10_3389_fbioe_2022_1024453 crossref_primary_10_1007_s10570_025_06397_y crossref_primary_10_1007_s10570_022_04796_z crossref_primary_10_1016_j_eurpolymj_2019_109444 crossref_primary_10_1039_D2TA00457G crossref_primary_10_1016_j_ijbiomac_2024_136100 crossref_primary_10_3390_polym14071313 crossref_primary_10_1016_j_carbpol_2021_118220 crossref_primary_10_1002_adhm_202300318 crossref_primary_10_1016_j_ijbiomac_2019_08_160 crossref_primary_10_1080_15583724_2021_2007121 crossref_primary_10_3390_polym14245479 crossref_primary_10_1007_s10570_022_04443_7 crossref_primary_10_1016_j_ijbiomac_2021_07_066 crossref_primary_10_1016_j_carbpol_2021_118107 crossref_primary_10_1016_j_carbpol_2021_118469 crossref_primary_10_1016_j_carbpol_2022_119976 crossref_primary_10_1016_j_mtbio_2023_100772 crossref_primary_10_1039_D0BM00055H crossref_primary_10_1016_j_eurpolymj_2023_112068 crossref_primary_10_1007_s13399_024_05391_x crossref_primary_10_1016_j_aspen_2022_102036 crossref_primary_10_3389_fenrg_2022_860627 crossref_primary_10_1007_s42114_022_00427_0 crossref_primary_10_1016_j_rineng_2022_100842 crossref_primary_10_1016_j_matchemphys_2021_125018 crossref_primary_10_1016_j_tibtech_2024_09_010 crossref_primary_10_1016_j_ijbiomac_2023_129081 crossref_primary_10_1016_j_jcis_2022_02_115 crossref_primary_10_1002_pc_28980 crossref_primary_10_1007_s11696_022_02644_9 crossref_primary_10_1016_j_bprint_2024_e00345 crossref_primary_10_1021_acsami_1c06647 crossref_primary_10_3390_biom9100619 crossref_primary_10_1002_pc_28741 crossref_primary_10_3390_polym15173643 crossref_primary_10_1007_s10600_021_03561_1 crossref_primary_10_1016_j_ijbiomac_2020_10_181 crossref_primary_10_1016_j_indcrop_2023_117378 crossref_primary_10_1039_D3TB02482B crossref_primary_10_3390_polym11050898 crossref_primary_10_3390_polym14112260 crossref_primary_10_1016_j_cej_2019_122937 crossref_primary_10_1016_j_indcrop_2024_118991 crossref_primary_10_1007_s10570_021_04021_3 crossref_primary_10_1039_D0NH00016G crossref_primary_10_3389_fbioe_2020_00986 crossref_primary_10_1016_j_carbpol_2024_121987 crossref_primary_10_3389_fbioe_2022_995238 crossref_primary_10_1021_acssuschemeng_9b05231 crossref_primary_10_1155_2023_1206963 crossref_primary_10_1016_j_carbpol_2020_117136 crossref_primary_10_1246_bcsj_20220042 crossref_primary_10_1007_s12668_020_00763_9 crossref_primary_10_1016_j_carbpol_2020_117010 crossref_primary_10_3390_gels11020144 crossref_primary_10_1016_j_etran_2024_100330 crossref_primary_10_1016_j_trac_2020_115884 crossref_primary_10_1016_j_ceramint_2021_11_179 crossref_primary_10_1016_j_jenvman_2021_112527 crossref_primary_10_1007_s12274_022_5129_1 crossref_primary_10_1016_j_carbpol_2021_117755 crossref_primary_10_1007_s10570_023_05169_w crossref_primary_10_1038_s43246_020_00055_5 crossref_primary_10_1016_j_carbpol_2020_116180 crossref_primary_10_3389_fbioe_2021_713860 crossref_primary_10_1021_acsapm_1c01530 crossref_primary_10_1007_s10570_022_04510_z crossref_primary_10_1042_EBC20200095 crossref_primary_10_1016_j_ijbiomac_2021_10_006 crossref_primary_10_1016_j_carbpol_2021_118710 crossref_primary_10_3389_fenrg_2022_871617 crossref_primary_10_1016_j_jwpe_2021_102546 crossref_primary_10_1016_j_carbpol_2021_117740 crossref_primary_10_1002_adma_202000717 crossref_primary_10_1007_s11356_024_33105_3 crossref_primary_10_1021_acsami_1c06308 crossref_primary_10_1177_08839115241261421 crossref_primary_10_1002_pi_6708 crossref_primary_10_1016_j_foodchem_2021_130329 crossref_primary_10_1021_acssuschemeng_0c00125 crossref_primary_10_1007_s40820_022_00849_x crossref_primary_10_1002_macp_202300211 crossref_primary_10_1016_j_bioadv_2022_212799 crossref_primary_10_1021_acs_iecr_1c01830 crossref_primary_10_1021_acsaenm_4c00149 crossref_primary_10_1002_tcr_202000060 crossref_primary_10_1007_s42114_024_00873_y crossref_primary_10_3390_pharmaceutics13030316 crossref_primary_10_1016_j_bioactmat_2020_04_007 crossref_primary_10_1016_j_heliyon_2023_e18060 crossref_primary_10_3389_fbioe_2022_914253 crossref_primary_10_1016_j_aiepr_2024_05_001 crossref_primary_10_1016_j_carbpol_2020_116187 crossref_primary_10_1016_j_carbpol_2020_117397 crossref_primary_10_1016_j_ijbiomac_2024_136412 crossref_primary_10_1002_adhm_202000872 crossref_primary_10_1002_star_202200159 crossref_primary_10_1007_s00289_023_04759_9 crossref_primary_10_1016_j_carbpol_2024_122738 crossref_primary_10_1016_j_carbpol_2020_117030 crossref_primary_10_1038_s41598_025_91653_1 crossref_primary_10_1016_j_ijbiomac_2020_01_279 crossref_primary_10_1007_s13399_021_01654_z crossref_primary_10_1007_s00396_020_04640_5 crossref_primary_10_1016_j_cej_2025_160254 crossref_primary_10_1016_j_indcrop_2021_113425 crossref_primary_10_1016_j_colsurfa_2021_127270 crossref_primary_10_1016_j_carbpol_2021_118943 crossref_primary_10_1016_j_ijbiomac_2022_11_204 crossref_primary_10_1039_D1NA00730K crossref_primary_10_1007_s42114_022_00425_2 crossref_primary_10_1007_s10570_021_04176_z crossref_primary_10_3390_polym15244689 crossref_primary_10_1016_j_mtcomm_2022_104617 crossref_primary_10_3390_polym14010169 crossref_primary_10_1016_j_ijbiomac_2022_06_044 crossref_primary_10_1039_D2EE04063H crossref_primary_10_1016_j_ijbiomac_2024_137973 crossref_primary_10_1021_acsami_5c00391 crossref_primary_10_1016_j_carbpol_2020_116233 crossref_primary_10_1007_s10973_019_09062_2 crossref_primary_10_1016_j_indcrop_2023_117218 crossref_primary_10_1016_j_chemosphere_2022_137647 crossref_primary_10_1016_j_matpr_2022_03_666 crossref_primary_10_1515_zpch_2023_0308 crossref_primary_10_1021_acsapm_2c00001 crossref_primary_10_1016_j_foodhyd_2024_109799 crossref_primary_10_1021_acs_biomac_0c00345 crossref_primary_10_1002_slct_202202600 crossref_primary_10_3390_molecules25153411 crossref_primary_10_1002_sus2_255 crossref_primary_10_1016_j_ijbiomac_2021_10_013 crossref_primary_10_1002_ange_202210208 crossref_primary_10_1002_app_53693 crossref_primary_10_1002_marc_202100025 crossref_primary_10_1021_acs_biomac_1c00215 crossref_primary_10_1007_s13399_021_01852_9 crossref_primary_10_52676_1729_7885_2024_2_56_64 crossref_primary_10_1016_j_heliyon_2020_e05486 crossref_primary_10_1021_acs_biomac_3c00596 crossref_primary_10_3389_fchem_2020_00655 crossref_primary_10_1016_j_carbpol_2020_117332 crossref_primary_10_1007_s10570_020_03663_z crossref_primary_10_1007_s10853_022_08046_2 crossref_primary_10_1016_j_diamond_2022_109428 crossref_primary_10_1016_j_indcrop_2023_117562 crossref_primary_10_3389_fbioe_2021_701876 crossref_primary_10_1016_j_carbpol_2020_117335 crossref_primary_10_1016_j_ijbiomac_2025_142373 crossref_primary_10_3389_fnut_2022_986639 crossref_primary_10_1016_j_cej_2021_128903 crossref_primary_10_1080_25740881_2024_2303338 crossref_primary_10_3390_pharmaceutics15092270 crossref_primary_10_1080_10934529_2024_2429284 crossref_primary_10_1016_j_ijbiomac_2021_04_179 crossref_primary_10_1007_s10570_020_03104_x crossref_primary_10_3390_molecules25071544 crossref_primary_10_1016_j_ijbiomac_2020_02_285 crossref_primary_10_1016_j_ijbiomac_2024_132385 crossref_primary_10_1016_j_carbpol_2019_04_086 crossref_primary_10_3389_fbioe_2021_673314 crossref_primary_10_1016_j_ijbiomac_2020_01_243 crossref_primary_10_1007_s10570_021_03914_7 crossref_primary_10_3390_gels11030197 crossref_primary_10_1016_j_cis_2023_102961 crossref_primary_10_1016_j_ijbiomac_2020_03_171 crossref_primary_10_1016_j_jddst_2022_103601 crossref_primary_10_1080_15440478_2021_2002763 crossref_primary_10_1016_j_ijbiomac_2023_123143 crossref_primary_10_1016_j_jmbbm_2019_103385 crossref_primary_10_1088_1361_6528_acf93b crossref_primary_10_3389_fbioe_2022_849831 crossref_primary_10_1016_j_carpta_2025_100669 crossref_primary_10_1007_s42114_021_00395_x crossref_primary_10_1016_j_bmt_2022_11_012 crossref_primary_10_3390_nano10040755 crossref_primary_10_1021_acsapm_4c01886 crossref_primary_10_1039_D0RA04581K crossref_primary_10_1021_acs_langmuir_4c00658 crossref_primary_10_3390_polym13020182 crossref_primary_10_1016_j_carbpol_2021_118741 crossref_primary_10_1039_D1GC01936H crossref_primary_10_1016_j_ijbiomac_2021_03_125 crossref_primary_10_1016_j_foodhyd_2022_108079 crossref_primary_10_1021_acsabm_2c00794 crossref_primary_10_1007_s00289_020_03250_z crossref_primary_10_1016_j_indcrop_2023_117342 crossref_primary_10_1016_j_indcrop_2020_112232 crossref_primary_10_1007_s42114_024_01031_0 crossref_primary_10_1016_j_ijbiomac_2023_126882 crossref_primary_10_1016_j_indcrop_2023_117093 crossref_primary_10_1016_j_foodhyd_2022_107689 crossref_primary_10_2174_1385272824999201210191041 crossref_primary_10_1016_j_carbpol_2022_120262 crossref_primary_10_1016_j_ijbiomac_2023_126405 crossref_primary_10_1039_D2RA06036A crossref_primary_10_3390_polym16111527 crossref_primary_10_3390_su132112200 crossref_primary_10_1016_j_cej_2024_157890 crossref_primary_10_3389_fchem_2020_00563 crossref_primary_10_1016_j_jwpe_2022_102654 crossref_primary_10_1134_S1560090422020117 crossref_primary_10_1016_j_ijbiomac_2022_11_156 crossref_primary_10_3390_molecules28207210 crossref_primary_10_1021_acsabm_3c00901 crossref_primary_10_1016_j_eurpolymj_2020_109697 crossref_primary_10_1016_j_ijbiomac_2024_136965 crossref_primary_10_3390_polym13244344 crossref_primary_10_3390_polym15204067 crossref_primary_10_1016_j_carbpol_2020_116791 crossref_primary_10_1007_s10570_019_02581_z crossref_primary_10_2174_2210298102666220609123822 crossref_primary_10_1016_j_ijbiomac_2022_10_235 crossref_primary_10_1007_s10570_019_02834_x crossref_primary_10_1016_j_ijbiomac_2023_128834 crossref_primary_10_1016_j_ijbiomac_2024_132117 crossref_primary_10_1021_acsami_0c10645 crossref_primary_10_3390_polym12102219 crossref_primary_10_1007_s10853_020_05644_w crossref_primary_10_1016_j_rineng_2024_102060 crossref_primary_10_1021_acs_langmuir_4c01528 crossref_primary_10_1039_D5EE00494B crossref_primary_10_1080_00914037_2024_2335172 crossref_primary_10_1007_s40089_022_00369_x crossref_primary_10_1016_j_dyepig_2023_111126 crossref_primary_10_1007_s10570_021_03839_1 crossref_primary_10_1016_j_ijbiomac_2021_01_159 crossref_primary_10_1002_mame_201900673 crossref_primary_10_1007_s42114_022_00483_6 crossref_primary_10_1016_j_bioactmat_2022_05_018 crossref_primary_10_1016_j_cattod_2023_114495 crossref_primary_10_3390_ma16010385 crossref_primary_10_1021_acs_biomac_1c00422 crossref_primary_10_1021_acsomega_9b01811 crossref_primary_10_1016_j_ijbiomac_2023_127997 crossref_primary_10_1016_j_carpta_2024_100575 crossref_primary_10_1016_j_ijbiomac_2024_135617 crossref_primary_10_1155_2023_9630168 crossref_primary_10_3389_fchem_2022_841956 crossref_primary_10_1007_s10570_021_04157_2 crossref_primary_10_1016_j_biopha_2023_115695 crossref_primary_10_1016_j_cej_2022_138356 crossref_primary_10_3390_nano10081523 crossref_primary_10_3389_fbioe_2021_677963 crossref_primary_10_1016_j_biteb_2023_101727 crossref_primary_10_1016_j_cej_2024_155333 crossref_primary_10_3390_ma15217706 crossref_primary_10_1016_j_biopha_2021_111333 crossref_primary_10_1007_s00289_024_05190_4 crossref_primary_10_1021_acs_jafc_4c05903 crossref_primary_10_1007_s00226_022_01443_5 crossref_primary_10_1002_cjce_24603 crossref_primary_10_1007_s10570_020_03427_9 crossref_primary_10_1021_acssuschemeng_9b05766 crossref_primary_10_1016_j_ijbiomac_2023_124439 crossref_primary_10_1002_bmm2_12089 crossref_primary_10_1016_j_fuel_2025_134493 crossref_primary_10_1016_j_ijbiomac_2023_124557 crossref_primary_10_1039_D2GC03003A crossref_primary_10_1016_j_ijbiomac_2024_136949 crossref_primary_10_1016_j_indcrop_2021_114127 crossref_primary_10_1007_s13726_023_01265_7 crossref_primary_10_1002_agt2_486 crossref_primary_10_1016_j_molliq_2023_123645 crossref_primary_10_1016_j_ijbiomac_2023_125227 crossref_primary_10_1039_D0RA07972C crossref_primary_10_1016_j_ijbiomac_2024_130034 crossref_primary_10_3390_gels10040258 crossref_primary_10_1016_j_carbpol_2022_120351 crossref_primary_10_1016_j_carbpol_2021_119084 crossref_primary_10_3390_micro3030046 crossref_primary_10_1007_s10570_021_03760_7 crossref_primary_10_1016_j_foodhyd_2024_110149 crossref_primary_10_1007_s42114_021_00312_2 crossref_primary_10_3390_gels10030212 crossref_primary_10_3390_ijms23084310 crossref_primary_10_1016_j_ijbiomac_2023_127890 crossref_primary_10_1016_j_carbpol_2020_116466 crossref_primary_10_1038_s41598_020_68368_6 crossref_primary_10_1080_07391102_2023_2272755 crossref_primary_10_1016_j_foodhyd_2020_105863 crossref_primary_10_1016_j_ijbiomac_2023_125357 crossref_primary_10_1016_j_indcrop_2023_117174 crossref_primary_10_1016_j_ijbiomac_2022_04_037 crossref_primary_10_1016_j_carbpol_2022_120062 crossref_primary_10_1016_j_ijbiomac_2023_125119 crossref_primary_10_3389_fmats_2023_1058050 crossref_primary_10_3389_fbioe_2022_1110004 crossref_primary_10_3390_jcs7060210 crossref_primary_10_1016_j_ijbiomac_2020_06_201 crossref_primary_10_1016_j_crgsc_2024_100412 crossref_primary_10_1016_j_ijbiomac_2024_134990 crossref_primary_10_1021_acssuschemeng_0c00789 crossref_primary_10_1007_s13399_024_06402_7 crossref_primary_10_1016_j_cej_2024_153014 crossref_primary_10_1016_j_mtbio_2024_101395 crossref_primary_10_1016_j_carbpol_2023_121438 crossref_primary_10_1007_s13399_023_04782_w crossref_primary_10_2139_ssrn_4071672 crossref_primary_10_1021_acs_iecr_0c01208 crossref_primary_10_1002_mba2_62 crossref_primary_10_1016_j_indcrop_2021_114468 crossref_primary_10_1208_s12249_024_03013_3 crossref_primary_10_1007_s42114_022_00602_3 crossref_primary_10_1002_adma_202101368 crossref_primary_10_3390_ma14185390 crossref_primary_10_1002_marc_202100785 crossref_primary_10_1002_cssc_202101359 crossref_primary_10_1007_s10570_022_04649_9 crossref_primary_10_7584_JKTAPPI_2020_10_52_5_5 crossref_primary_10_1016_j_ijbiomac_2024_131228 crossref_primary_10_3390_polym13142345 crossref_primary_10_2174_2210299X01666230829150118 crossref_primary_10_1007_s10853_023_09061_7 crossref_primary_10_1002_cssc_202000783 crossref_primary_10_1021_acssuschemeng_9b02440 crossref_primary_10_1155_2024_6783165 crossref_primary_10_1021_acs_iecr_0c01311 crossref_primary_10_1016_j_apsusc_2022_153749 crossref_primary_10_1016_j_ccr_2021_213846 crossref_primary_10_1021_acsanm_3c02946 crossref_primary_10_1007_s42114_023_00700_w crossref_primary_10_1016_j_compositesb_2020_108208 crossref_primary_10_1016_j_ijbiomac_2025_140232 crossref_primary_10_1007_s10570_019_02725_1 crossref_primary_10_1016_j_carbpol_2021_117952 crossref_primary_10_1007_s10570_021_03982_9 crossref_primary_10_1002_adma_202300220 crossref_primary_10_1007_s42114_021_00400_3 crossref_primary_10_1002_fpf2_12001 crossref_primary_10_3389_fbioe_2021_769667 crossref_primary_10_1016_j_ijbiomac_2024_132668 crossref_primary_10_1016_j_jhazmat_2020_123106 crossref_primary_10_3389_fbioe_2022_1059097 crossref_primary_10_1002_adma_202400436 crossref_primary_10_1016_j_carbpol_2020_116892 crossref_primary_10_1016_j_colsurfa_2019_124270 crossref_primary_10_1007_s10570_023_05443_x crossref_primary_10_1016_j_ijbiomac_2023_124875 crossref_primary_10_1016_j_indcrop_2024_119658 crossref_primary_10_1007_s10853_024_10565_z crossref_primary_10_1016_j_indcrop_2024_118326 crossref_primary_10_1016_j_indcrop_2024_119534 crossref_primary_10_3390_molecules24213978 crossref_primary_10_1016_j_isci_2023_107671 crossref_primary_10_1016_j_indcrop_2024_118573 crossref_primary_10_1039_D2NR00468B crossref_primary_10_1016_j_carpta_2025_100707 crossref_primary_10_1016_j_carbpol_2022_120039 crossref_primary_10_1007_s10570_023_05135_6 crossref_primary_10_1080_10601325_2020_1722691 crossref_primary_10_3390_polym13111841 crossref_primary_10_1016_j_cej_2024_154434 crossref_primary_10_1016_j_ijbiomac_2025_141427 crossref_primary_10_1002_advs_202306152 crossref_primary_10_1002_marc_202000439 crossref_primary_10_1007_s10570_024_05851_7 crossref_primary_10_1007_s10570_021_04299_3 crossref_primary_10_1007_s42114_022_00517_z crossref_primary_10_3389_fchem_2021_781291 crossref_primary_10_1016_j_cej_2021_129736 crossref_primary_10_1016_j_ijbiomac_2022_10_188 crossref_primary_10_1016_j_ijbiomac_2023_126007 crossref_primary_10_1016_j_carbpol_2020_116838 crossref_primary_10_1016_j_ijbiomac_2024_133858 crossref_primary_10_3390_polym16162277 crossref_primary_10_1016_j_carbpol_2022_119670 crossref_primary_10_3390_gels9010039 crossref_primary_10_1016_j_sajce_2024_12_007 crossref_primary_10_3390_polym14101930 crossref_primary_10_1016_j_carbpol_2022_120302 crossref_primary_10_1039_D2RA00304J crossref_primary_10_1016_j_carbpol_2025_123534 crossref_primary_10_1002_btm2_10470 crossref_primary_10_3390_ma13051245 crossref_primary_10_3390_polym13111894 crossref_primary_10_1016_j_ijbiomac_2020_12_116 crossref_primary_10_3390_ijms23105405 crossref_primary_10_1016_j_carbpol_2021_119026 crossref_primary_10_1016_j_ijbiomac_2022_08_006 crossref_primary_10_1016_j_jobab_2022_11_001 crossref_primary_10_1021_acssuschemeng_3c08226 crossref_primary_10_1016_j_biomaterials_2023_122289 crossref_primary_10_1002_admi_202101293 crossref_primary_10_1002_bit_28020 crossref_primary_10_1007_s10570_024_05825_9 crossref_primary_10_1007_s42114_024_00900_y crossref_primary_10_3389_fbioe_2021_708976 crossref_primary_10_3390_polym16213035 crossref_primary_10_1016_j_carbpol_2020_116831 crossref_primary_10_1002_adhm_202201286 crossref_primary_10_1002_aenm_202403593 crossref_primary_10_1080_02773813_2021_1954032 crossref_primary_10_1016_j_ijbiomac_2020_06_193 crossref_primary_10_1007_s13399_023_03745_5 crossref_primary_10_1016_j_fuel_2021_122575 crossref_primary_10_1016_j_ijbiomac_2022_08_142 crossref_primary_10_1016_j_ceramint_2020_08_148 crossref_primary_10_1002_btm2_10364 crossref_primary_10_3390_gels9070574 crossref_primary_10_1016_j_carbpol_2023_120830 crossref_primary_10_1016_j_ijbiomac_2021_06_010 crossref_primary_10_1016_j_indcrop_2024_120397 crossref_primary_10_1016_j_ijbiomac_2021_06_005 crossref_primary_10_1016_j_carbpol_2023_120718 crossref_primary_10_1016_j_carbpol_2020_115997 crossref_primary_10_1016_j_ijbiomac_2022_09_172 crossref_primary_10_1016_j_jclepro_2020_122506 crossref_primary_10_1016_j_indcrop_2022_115123 crossref_primary_10_1007_s10570_020_03011_1 crossref_primary_10_1016_j_carpta_2020_100031 crossref_primary_10_1007_s10068_024_01684_z crossref_primary_10_1016_j_chemosphere_2021_132529 crossref_primary_10_1016_j_ijbiomac_2021_07_026 crossref_primary_10_1007_s11356_022_23058_w crossref_primary_10_1016_j_ijbiomac_2024_133836 crossref_primary_10_1016_j_eurpolymj_2022_111277 crossref_primary_10_1039_D1GC02872C crossref_primary_10_1002_adfm_202113082 crossref_primary_10_3390_polym13071096 crossref_primary_10_1016_j_carbpol_2019_115509 crossref_primary_10_3389_fchem_2020_00392 crossref_primary_10_1016_j_carbpol_2019_115745 crossref_primary_10_1016_j_jcis_2020_09_123 crossref_primary_10_1016_j_carbpol_2019_115743 crossref_primary_10_1016_j_mtbio_2021_100125 crossref_primary_10_1016_j_heliyon_2023_e16436 crossref_primary_10_1080_10934529_2022_2036552 crossref_primary_10_3390_ma13225066 crossref_primary_10_1016_j_carbpol_2020_116975 crossref_primary_10_1016_j_carbpol_2022_119887 crossref_primary_10_1002_cssc_202200352 crossref_primary_10_1016_j_ijbiomac_2024_133708 crossref_primary_10_1021_acs_langmuir_0c02294 crossref_primary_10_1016_j_algal_2024_103731 crossref_primary_10_1039_D2MA00311B crossref_primary_10_1007_s10570_019_02694_5 crossref_primary_10_1039_D3RA06586C crossref_primary_10_2174_0929867327666200127152834 crossref_primary_10_1016_j_ijbiomac_2020_12_206 crossref_primary_10_1016_j_molstruc_2020_129436 crossref_primary_10_1016_j_decarb_2023_100026 crossref_primary_10_1016_j_greenca_2024_01_003 crossref_primary_10_1016_j_carbpol_2022_119651 crossref_primary_10_1155_ijps_8314580 crossref_primary_10_3390_molecules27113598 crossref_primary_10_1016_j_colsurfa_2024_134736 crossref_primary_10_1016_j_ijbiomac_2023_126287 crossref_primary_10_1021_acsabm_4c01169 crossref_primary_10_1080_20550324_2020_1784600 crossref_primary_10_1080_17458080_2023_2199989 crossref_primary_10_1016_j_ijbiomac_2019_12_019 crossref_primary_10_1016_j_carbon_2022_05_053 crossref_primary_10_1016_j_ijbiomac_2024_131633 crossref_primary_10_1016_j_carbpol_2019_115772 crossref_primary_10_1039_D2NR01967A crossref_primary_10_1016_j_eurpolymj_2023_112425 crossref_primary_10_1016_j_cjche_2022_04_026 crossref_primary_10_1007_s10570_021_04269_9 crossref_primary_10_1007_s10570_020_03428_8 crossref_primary_10_3390_biomedicines9111612 crossref_primary_10_1016_j_ijbiomac_2023_123965 crossref_primary_10_1016_j_jclepro_2023_136019 crossref_primary_10_1080_09205063_2020_1817706 crossref_primary_10_1007_s10570_020_03537_4 crossref_primary_10_1016_j_polymdegradstab_2022_109943 crossref_primary_10_1039_D1GC02841C crossref_primary_10_1051_bioconf_20237701003 crossref_primary_10_1002_agt2_428 crossref_primary_10_3390_app10010065 crossref_primary_10_3390_gels10060387 crossref_primary_10_1080_00032719_2020_1826502 crossref_primary_10_1016_j_indcrop_2021_114057 crossref_primary_10_1007_s42114_021_00344_8 crossref_primary_10_1021_acsnano_3c09924 crossref_primary_10_1002_vnl_21849 crossref_primary_10_1016_j_ijbiomac_2020_12_148 crossref_primary_10_1007_s00396_024_05297_0 crossref_primary_10_3390_nano11010222 crossref_primary_10_1016_j_focha_2022_100135 crossref_primary_10_1002_pat_6258 crossref_primary_10_1002_jsfa_14200 crossref_primary_10_1016_j_chemosphere_2021_132589 crossref_primary_10_1016_j_ijbiomac_2024_129673 crossref_primary_10_1016_j_resconrec_2021_105466 crossref_primary_10_1016_j_ijbiomac_2023_128121 crossref_primary_10_1039_D2TB00591C crossref_primary_10_1007_s11157_020_09551_z crossref_primary_10_1021_acsbiomaterials_4c01902 crossref_primary_10_1016_j_eurpolymj_2022_111591 crossref_primary_10_1016_j_ijbiomac_2021_09_075 crossref_primary_10_1007_s13204_023_02926_y crossref_primary_10_1016_j_carbpol_2020_116937 crossref_primary_10_1016_j_pmatsci_2020_100668 crossref_primary_10_7584_JKTAPPI_2020_04_52_2_12 crossref_primary_10_1002_cjce_25184 crossref_primary_10_1039_D2BM00157H crossref_primary_10_3389_fbioe_2021_642138 crossref_primary_10_3389_fbioe_2021_690773 crossref_primary_10_1016_j_ijbiomac_2019_06_049 crossref_primary_10_1016_j_mtadv_2024_100465 crossref_primary_10_1016_j_rinp_2021_103942 crossref_primary_10_1016_j_cej_2024_157318 crossref_primary_10_1016_j_ijbiomac_2020_08_074 crossref_primary_10_1038_s41598_022_08036_z crossref_primary_10_1080_15376494_2022_2106523 crossref_primary_10_1016_j_carpta_2023_100401 crossref_primary_10_1016_j_ijbiomac_2024_129660 crossref_primary_10_1039_D3TB00661A crossref_primary_10_1016_j_apmt_2019_04_010 crossref_primary_10_1002_app_51845 crossref_primary_10_1016_j_indcrop_2022_114686 crossref_primary_10_1002_jobm_202200280 crossref_primary_10_1016_j_ijbiomac_2024_131602 crossref_primary_10_1016_j_cej_2022_139770 crossref_primary_10_1016_j_cej_2023_141905 crossref_primary_10_1016_j_biombioe_2023_106824 crossref_primary_10_1007_s10570_024_06251_7 crossref_primary_10_1007_s10853_021_06228_y crossref_primary_10_1016_j_apmt_2021_101000 crossref_primary_10_1007_s10570_024_06297_7 crossref_primary_10_3390_ijms21239159 crossref_primary_10_3390_polym15051308 crossref_primary_10_1016_j_cej_2021_131994 crossref_primary_10_1021_acssuschemeng_9b00209 crossref_primary_10_1021_acsami_0c07179 crossref_primary_10_1016_j_carbpol_2019_115776 crossref_primary_10_1016_j_cej_2021_133935 crossref_primary_10_1016_j_jddst_2024_105951 crossref_primary_10_2174_0113816128259971230921111755 |
Cites_doi | 10.1016/j.carbon.2015.11.079 10.1002/adma.200601521 10.1016/j.eurpolymj.2014.07.025 10.1007/s10570-015-0624-0 10.2174/0929867323666161014124008 10.1016/j.carbpol.2017.12.014 10.1021/acs.bioconjchem.5b00209 10.1016/j.actbio.2018.01.003 10.1016/j.ejps.2014.09.013 10.1021/bm301955k 10.1039/C8TB01757C 10.1016/j.carbpol.2015.06.003 10.1016/j.carbpol.2013.08.069 10.1007/s10570-017-1499-z 10.1039/c0cs00108b 10.1016/j.carbpol.2010.04.073 10.1007/s10570-018-1888-y 10.1021/sc500153k 10.1021/acs.biomac.6b00910 10.1007/s10570-018-1853-9 10.1016/j.carbpol.2014.07.063 10.1021/acs.macromol.5b01544 10.1021/bm061215p 10.1021/bm401364z 10.1021/acs.biomac.7b00730 10.1016/j.indcrop.2016.02.016 10.1016/j.carbpol.2018.09.027 10.1016/j.carbpol.2018.04.085 10.1016/j.carbpol.2005.05.014 10.1021/cm5004164 10.1021/acs.iecr.7b01804 10.1021/acs.biomac.5b01598 10.1039/C7NR08966J 10.1002/adma.201502284 10.1016/j.carbpol.2016.06.035 10.1039/c0sm01172j 10.1016/j.carbpol.2015.05.063 10.1177/0885328214547091 10.1016/j.cocis.2014.10.003 10.1007/s10570-018-2071-1 10.1002/adma.200800534 10.15376/biores.12.2.2941-2954 10.1007/s10570-016-1038-3 10.1021/acsami.8b14526 10.1016/j.ijbiomac.2018.06.043 10.1016/j.carbpol.2011.06.066 10.1016/j.msec.2013.10.006 10.1016/j.carbpol.2016.04.064 10.3390/polym10111202 10.1038/s41598-017-00690-y 10.1016/j.actbio.2016.03.016 10.1021/acssuschemeng.8b05017 10.1002/adfm.201303699 10.1039/C8NR04273J 10.1021/acs.iecr.5b03926 10.1021/cr900339w 10.1007/s10570-017-1546-9 10.18063/ijb.v4i1.126 10.1021/bm400219u 10.1039/c3nr00520h 10.1016/j.ijpharm.2017.09.002 10.3183/NPPRJ-2014-29-01-p105-118 10.1021/bm400993f 10.1016/j.colsurfa.2006.04.038 10.1016/j.indcrop.2015.11.082 10.1016/j.eurpolymj.2014.11.024 10.1002/anie.201001273 10.1016/j.bprint.2016.08.003 10.1016/j.indcrop.2016.09.059 10.2217/nnm.12.211 10.1039/C6NR09494E 10.1021/acssuschemeng.7b03437 10.1039/C5PY00263J 10.1007/s10570-016-0963-5 10.1021/acs.biomac.8b01325 10.1007/s10570-018-1723-5 10.1007/s10570-016-0864-7 10.1016/j.mtla.2018.09.008 10.1007/s10570-017-1540-2 10.1021/bm500524s 10.1039/C7TB00145B 10.1021/acs.chemmater.7b00531 10.1016/j.carbpol.2014.04.040 10.1002/app.41719 10.1002/cnma.201600347 10.1021/acs.biomac.5b00188 10.1039/C0NR00583E 10.1007/s10570-015-0551-0 10.1016/j.carbpol.2018.10.014 10.1016/j.carbpol.2013.10.054 10.1016/j.copbio.2016.01.002 10.1016/j.carbpol.2016.06.025 10.1021/acs.biomac.5b00701 10.1021/acsnano.7b02305 10.1039/C8GC00205C 10.1021/am506007z 10.1007/s10570-015-0576-4 10.1039/C8TA01986J 10.1002/1097-4636(2000)53:6<617::AID-JBM1>3.0.CO;2-C 10.1021/bm060154s 10.1039/c3ta01150j 10.1115/1.2796042 10.1039/C5GC02396C 10.1016/j.bcdf.2014.12.001 10.1002/anie.201606626 10.1007/s10570-013-0111-4 10.1016/j.actbio.2018.06.013 10.1016/j.biomaterials.2015.12.020 10.1021/acs.nanolett.7b03600 10.1016/j.jconrel.2016.07.053 10.1021/acsami.6b00555 10.1016/j.carbpol.2018.06.114 10.1016/j.carbpol.2018.01.093 10.1021/acssuschemeng.8b02237 10.1557/jmr.2015.94 10.1016/j.progpolymsci.2018.07.008 10.1038/185117a0 10.1016/j.jare.2017.01.005 10.1002/anie.201511512 10.1002/adma.201801934 10.1007/s10853-018-2407-0 10.1021/acs.chemmater.6b00792 10.1007/s10570-017-1339-1 10.1016/j.jare.2013.07.006 10.1039/C6GC00687F 10.1016/j.polymer.2008.01.027 10.1021/ma5026175 10.1016/j.cobme.2017.06.002 10.1007/s10570-017-1461-0 10.2174/0929867325666180927100817 10.1016/j.ijpharm.2017.11.053 10.1016/j.carbpol.2015.09.002 10.1016/j.carbpol.2015.07.079 10.1016/j.carbpol.2017.06.073 10.1016/j.eurpolymj.2017.01.027 10.1021/ma201649f 10.1021/acsami.7b09223 10.1021/bm801065u 10.1016/j.indcrop.2015.11.064 10.1039/C4NR01756K 10.1021/acssuschemeng.7b03924 10.1007/s10570-012-9684-6 10.1002/adma.201405873 10.1021/acssuschemeng.7b00954 10.1007/s10570-017-1585-2 10.1021/mz3003006 10.1021/ma500729q 10.1039/c4nr01214c 10.1016/j.eurpolymj.2011.12.005 10.1016/j.ijbiomac.2016.09.056 10.1016/j.carbpol.2013.03.041 10.1021/nl404101p 10.1007/s10570-017-1256-3 10.1021/acs.chemrev.6b00225 10.1007/s10570-018-1765-8 10.1016/j.carbpol.2017.10.085 10.1007/s10853-011-5696-0 10.1039/C7BM00510E 10.1002/anie.201710951 10.1038/boneres.2017.14 10.1021/acsami.7b13400 10.1039/C7NR04994C 10.3934/matersci.2018.2.201 10.1016/j.compositesa.2015.10.041 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7S9 L.6 7X8 |
DOI | 10.1016/j.carbpol.2019.01.020 |
DatabaseName | CrossRef PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1879-1344 |
EndPage | 144 |
ExternalDocumentID | 30732792 10_1016_j_carbpol_2019_01_020 S0144861719300207 |
Genre | Journal Article Review |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADECG ADEZE ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LW9 M24 M2Y M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SAB SDF SDG SDP SES SPC SPCBC SSA SSK SSU SSZ T5K Y6R ~G- ~KM 53G AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLV HMS HVGLF HZ~ R2- SCB SEW SMS SOC SSH WUQ XPP NPM 7S9 EFKBS L.6 7X8 |
ID | FETCH-LOGICAL-c502t-ffce65d163408d442524f1a11e709e5c819fa54c622c70c492863f00cdde126f3 |
IEDL.DBID | .~1 |
ISSN | 0144-8617 1879-1344 |
IngestDate | Mon Jul 21 11:53:50 EDT 2025 Wed Jul 30 11:23:58 EDT 2025 Wed Feb 19 02:35:35 EST 2025 Tue Jul 01 01:24:30 EDT 2025 Thu Apr 24 23:12:44 EDT 2025 Fri Feb 23 02:33:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | PP APS PLA CNFs POEGMA NFC EPTMAC GMs PDA Cellulose nanocrystals (CNCs) CNW SA BSA Ag-NH2 NPs HIPE HPCS GelMA TEMED hNC TOCNFs PNIPAM Cellulose nanomaterials CAA Nanocellulose Biomedical applications CNCs PEGDA PMVEMA GGM PDMA bFGF NCC XG CCNCs hASCs PEG TH PE ChNFs HAP NIR LbL Cellulose nanofibrils (CNFs) PVA TEMPO Hydrogel PAM UPy |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-ffce65d163408d442524f1a11e709e5c819fa54c622c70c492863f00cdde126f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Review-3 |
ORCID | 0000-0002-8903-3874 0000-0002-8046-0319 |
PMID | 30732792 |
PQID | 2221048965 |
PQPubID | 24069 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2229094351 proquest_miscellaneous_2221048965 pubmed_primary_30732792 crossref_citationtrail_10_1016_j_carbpol_2019_01_020 crossref_primary_10_1016_j_carbpol_2019_01_020 elsevier_sciencedirect_doi_10_1016_j_carbpol_2019_01_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Carbohydrate polymers |
PublicationTitleAlternate | Carbohydr Polym |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Doench, Torres-Ramos, Montembault, Nunes de Oliveira, Halimi, Viguier (bib0160) 2018; 10 Sultan, Mathew (bib0675) 2018; 10 Jang, Jung, Pan, Han, Chen, Song (bib0315) 2018; 4 Liu, Li, Wang, Sui, Wang, Yan (bib0450) 2018; 25 De France, Hoare, Cranston (bib0140) 2017; 29 Fang, Zhu, Yuan, Ha, Zhu, Preston (bib0210) 2014; 14 Liu, Chinga-Carrasco, Cheng, Xu, Willför, Syverud (bib0415) 2016; 23 Trache (bib0700) 2018; 5 Kong, Wang, Jia, Kuang, Pastel, Chen (bib0365) 2018 Xue, Mou, Xiao (bib0775) 2017; 9 Kargarzadeh, Ahmad, Abdullah, Dufresne, Zainudin, Sheltami (bib0340) 2012; 19 Jiang, Zhou, Yang, Liu, Xv, Zhao (bib0320) 2018; 53 Markstedt, Escalante, Toriz, Gatenholm (bib0470) 2017; 9 Masruchin, Park, Causin, Um (bib0485) 2015; 22 Domingues, Gomes, Reis (bib0165) 2014; 15 Chen, Xu, Liu, Zeng (bib0100) 2015; 30 Nguyen, Hagg, Forsman, Ekholm, Nimkingratana, Brantsing (bib0560) 2017; 7 Paulraj, Riazanova, Svagan (bib0590) 2018; 69 Mauricio, da Costa, Haraguchi, Guilherme, Muniz, Rubira (bib0495) 2015; 115 Sethi, Farooq, Sain, Sain, Sirviö, Illikainen (bib0650) 2017; 25 Yang, Bakaic, Hoare, Cranston (bib0790) 2013; 14 Ooi, Ahmad, Amin (bib0570) 2016; 93 Palaganas, Mangadlao, de Leon, Palaganas, Pangilinan, Lee (bib0580) 2017; 9 Amalnath, Wen (bib0040) 2018; 14 García-González, Alnaief, Smirnova (bib0220) 2011; 86 Basu, Heitz, Strømme, Welch, Ferraz (bib0050) 2018; 181 Yang, Xu (bib0785) 2017; 18 Im, Lee, Rajabi Abhari, Youn, Lee (bib0300) 2018; 25 Nascimento, Nunes, Figueirêdo, de Azeredo, Aouada, Feitosa (bib0545) 2018; 20 García-González, López-Iglesias, Concheiro, Alvarez-Lorenzo (bib0225) 2018 Xie, Du, Yang, Si (bib0755) 2018; 2018 Gyles, Castro, Silva, Ribeiro-Costa (bib0245) 2017; 88 Halib, Ahmad (bib0260) 2017 Supramaniam, Adnan, Mohd Kaus, Bushra (bib0685) 2018; 118 Abouzeid, Khiari, Beneventi, Dufresne (bib0020) 2018; 19 Plackett, Letchford, Jackson, Burt (bib0600) 2014; 29 Zhang, Yang, Zhou, Luan, Li, Deng (bib0835) 2018; 6 Paukkonen, Kunnari, Laurén, Hakkarainen, Auvinen, Oksanen (bib0585) 2017; 532 Spagnol, Rodrigues, Neto, Pereira, Fajardo, Radovanovic (bib0670) 2012; 48 Liu, Cheng, Grénman, Spoljaric, Seppälä, Eriksson (bib0410) 2016; 148 Markstedt, Mantas, Tournier, Martinez Avila, Hagg, Gatenholm (bib0475) 2015; 16 Abitbol, Johnstone, Quinn, Gray (bib0010) 2011; 7 Du, Liu, Zhang, Yu, Si, Li (bib0195) 2016; 94 Kargarzadeh, Mariano, Gopakumar, Ahmad, Thomas, Dufresne (bib0350) 2018; 25 Wang, Benitez, Lossada, Merindol, Walther (bib0720) 2016; 55 Saito, Shibata, Isogai, Suguri, Sumikawa (bib0630) 2005; 61 Shin, Park, Park, Jeong, Na, Youn (bib0660) 2017; 12 Yang, Han, Zhang, Xu, Sun (bib0800) 2014; 47 Yang, Zhang, Xu (bib0810) 2015; 48 Ahmed (bib0035) 2015; 6 Klemm, Kramer, Moritz, Lindstrom, Ankerfors, Gray (bib0360) 2011; 50 Isikgor, Becer (bib0305) 2015; 6 Dai, Cheng, Duan, Zhao, Zhang, Zou (bib0130) 2019; 203 Camarero Espinosa, Kuhnt, Foster, Weder (bib0070) 2013; 14 Dong, Snyder, Tran, Leadore (bib0175) 2013; 95 Isogai, Saito, Fukuzumi (bib0310) 2011; 3 Nakasone, Ikematsu, Kobayashi (bib0540) 2015; 55 Chen, Fan, Han, Li, Wang (bib0110) 2017; 24 Lu, Hsieh (bib0465) 2010; 82 De France, Chan, Cranston, Hoare (bib0135) 2016; 17 Du, Liu, Wang, Zhang, Yu, Si (bib0185) 2017; 2 Hoare, Kohane (bib0275) 2008; 49 Chapekar (bib0085) 2000; 53 Cao, Jiang, Song, Cao, Miao, Feng (bib0075) 2015; 131 Jorfi, Foster (bib0330) 2015; 132 Hu, Du, Liu, Zhang, Yu, Zhang (bib0280) 2019; 7 Jonoobi, Oladi, Davoudpour, Oksman, Dufresne, Hamzeh (bib0325) 2015; 22 Yang, Han, Xu, Sun (bib0795) 2014; 6 Trache, Hussin, Haafiz, Thakur (bib0710) 2017; 9 Calvert (bib0065) 2009; 21 Saito, Nishiyama, Putaux, Vignon, Isogai (bib0635) 2006; 7 Abdul Khalil, Davoudpour, Islam, Mustapha, Sudesh, Dungani (bib0005) 2014; 99 Du, Liu, Mu, Gong, Lv, Hong (bib0190) 2016; 23 Yu, Qin, Liang, Liu, Zhou, Chen (bib0820) 2013; 1 Ding, Li, Chen (bib0155) 2017; 24 Liu, Zeng, Ma, Yi, Ali, Mou (bib0460) 2017; 5 Gonzalez, Luduena, Ponce, Alvarez (bib0230) 2014; 34 Liu, Du, Dong, Wang, Zhang, Yu (bib0425) 2017; 56 Abushammala, Krossing, Laborie (bib0025) 2015; 134 Caló, Khutoryanskiy (bib0060) 2015; 65 Chau, Sriskandha, Pichugin, Thérien-Aubin, Nykypanchuk, Chauve (bib0090) 2015; 16 McKee, Appel, Seitsonen, Kontturi, Scherman, Ikkala (bib0505) 2014; 24 Liu, Wang, Yu, Yu, Li, Mu (bib0400) 2014; 110 Chin-Purcell, Lewis (bib0120) 1996; 118 Huang, Hao, Bhagia, Li, Meng, Pu (bib0285) 2018; 4 Rajinipriya, Nagalakshmaiah, Robert, Elkoun (bib0605) 2018; 6 Chen, Zhu, Baez, Kitin, Elder (bib0105) 2016; 18 Zhu, Luo, Ciesielski, Fang, Zhu, Henriksson (bib0850) 2016; 116 Way, Hsu, Shanmuganathan, Weder, Rowan (bib0745) 2012; 1 Yang, Shi, Zhitomirsky, Cranston (bib0805) 2015; 27 Martínez Ávila, Schwarz, Rotter, Gatenholm (bib0480) 2016; 1-2 Piras, Fernandez-Prieto, De Borggraeve (bib0595) 2017; 5 Wichterle, Lím (bib0750) 1960; 185 Trache, Hussin, Chuin, Sabar, Fazita, Taiwo (bib0705) 2016; 93 Seabra, Bernardes, Fávaro, Paula, Durán (bib0645) 2018; 181 Ureña-Benavides, Ao, Davis, Kitchens (bib0715) 2011; 44 Kamoun, Kenawy, Chen (bib0335) 2017; 8 Yanamala, Farcas, Hatfield, Kisin, Kagan, Geraci (bib0780) 2014; 2 Cai, Zhang, Zhou, Qi, Chen, Kondo (bib0055) 2007; 19 Dong, Snyder, Williams, Andzelm (bib0180) 2013; 14 Gumrah Dumanli (bib0240) 2017; 24 Li, Lan, Guo, Zhang, Xue, Zhang (bib0380) 2015; 29 Moon, Martini, Nairn, Simonsen, Youngblood (bib0530) 2011; 40 Saito, Isogai (bib0625) 2006; 289 Habibi, Lucia, Rojas (bib0250) 2010; 110 Naderi, Lindström, Sundström (bib0535) 2015; 22 Gu, Wang, Cai, Xue, Jin, Zhu (bib0235) 2018; 25 Eyley, Thielemans (bib0205) 2014; 6 Liu, Willför, Xu (bib0405) 2015; 5 Mendes, Gómez-Florit, Pires, Domingues, Reis, Gomes (bib0510) 2018; 10 Yang, Zhao, Han, Duan, Xu, Sun (bib0815) 2014; 21 Zu, Shen, Zou, Wang, Wang, Zhang (bib0855) 2016; 99 Mertaniemi, Escobedo-Lucea, Sanz-Garcia, Gandia, Makitie, Partanen (bib0515) 2016; 82 Nechyporchuk, Belgacem, Bras (bib0550) 2016; 93 Oksman, Aitomäki, Mathew, Siqueira, Zhou, Butylina (bib0565) 2016; 83 Xu, Grénman, Liu, Kronlund, Li, Backman (bib0760) 2017; 3 Wang, Sun, Yao, Ji, Liu, Zhu (bib0740) 2018; 25 Liu, Dai, Si, Zeng (bib0420) 2018; 195 Liu, Jiang, Qin, Yang, Song, Wang (bib0435) 2018; 25 Sadeghifar, Filpponen, Clarke, Brougham, Argyropoulos (bib0610) 2011; 46 Wang, Nune, Misra (bib0735) 2016; 36 Xu, Wang, Sandler, Willför, Xu (bib0765) 2018; 6 Shen, Shamshina, Berton, Gurau, Rogers (bib0655) 2016; 18 Paakko, Ankerfors, Kosonen, Nykanen, Ahola, Osterberg (bib0575) 2007; 8 Zheng, Zhang, Shukla, Agnihotri, Clemons, Pilla (bib0840) 2018; 205 Saini, Yücel Falco, Belgacem, Bras (bib0620) 2016; 135 Chau, De France, Kopera, Machado, Rosenfeldt, Reyes (bib0095) 2016; 28 Wang, Du, Zhang, Zhang, Wu, Yu (bib0730) 2018; 6 Lauren, Lou, Raki, Urtti, Bergstrom, Yliperttula (bib0375) 2014; 65 Dugan, Gough, Eichhorn (bib0200) 2013; 8 Sultan, Siqueira, Zimmermann, Mathew (bib0680) 2017; 2 Wang, Chiappone, Roppolo, Shao, Fantino, Lorusso (bib0725) 2018; 57 Xu, Zhang Molino, Wang, Cheng, Xu, Molino (bib0770) 2018; 6 Liu, Sui, Liu, Liu, Wu, Li (bib0455) 2018; 188 Zhang, Sèbe, Rentsch, Zimmermann, Tingaut (bib0830) 2014; 26 Zhu, Parvinian, Preston, Vaaland, Ruan, Hu (bib0845) 2013; 5 Miao, Yu, Jiang, Zhang (bib0520) 2016; 23 Domingues, Silva, Gershovich, Betta, Babo, Caridade (bib0170) 2015; 26 Hujaya, Lorite, Vainio, Liimatainen (bib0295) 2018; 75 Mittal, Jansson, Widhe, Benselfelt, Håkansson, Lundell (bib0525) 2017; 11 Hakkarainen, Koivuniemi, Kosonen, Escobedo-Lucea, Sanz-Garcia, Vuola (bib0255) 2016; 244 Torlopov, Udoratina, Martakov, Sitnikov (bib0690) 2017; 24 Fukuzumi, Saito, Wata, Kumamoto, Isogai (bib0215) 2009; 10 Chirayil, Mathew, Thomas (bib0125) 2014; 37 Khan, An, Dai, Li, Khan, Ni (bib0355) 2018 Salas, Nypeloe, Rodriguez-Abreu, Carrillo, Rojas (bib0640) 2014; 19 Liu, Li, Du, Lv, Zhang, Yu (bib0445) 2016; 151 Zander, Dong, Steele, Grant (bib0825) 2014; 6 Deng, Binauld, Mangiante, Frances, Charlot, Bernard (bib0150) 2016; 151 Nelson, Retsina, Iakovlev, van Heiningen, Deng, Shatkin (bib0555) 2016 Kargarzadeh, Huang, Lin, Ahmad, Mariano, Dufresne (bib0345) 2018; 87 Lin, Dufresne (bib0385) 2013; 14 Cheng, Qin, Chen, Liu, Ren (bib0115) 2017; 24 Torres-Rendon, Femmer, De Laporte, Tigges, Rahimi, Gremse (bib0695) 2015; 27 Hebeish, Farag, Sharaf, Shaheen (bib0270) 2014; 102 Huang, Wang, Huang, Wang, Chen, Zhang (bib0290) 2018; 10 Lin, Geze, Wouessidjewe, Huang, Dufresne (bib0395) 2016; 8 Masruchin, Park, Causin (bib0490) 2018; 25 McAllister, Schmidt, Dorfman, Lodge, Bates (bib0500) 2015; 48 Åhlén, Tummala, Mihranyan (bib0030) 2018; 536 Kontturi, Meriluoto, Penttila, Baccile, Malho, Potthast (bib0370) 2016; 55 Hamedi, Moradi, Hudson, Tonelli (bib0265) 2018; 199 Saelee, Yingkamhaeng, Nimchua, Sukyai (bib0615) 2016; 82 Chaker, Boufi (bib0080) 2015; 131 Basu, Lindh, Ålander, Strømme, Ferraz (bib0045) 2017; 174 Sirvio, Visanko, Liimatainen (bib0665) 2016; 17 Abitbol, Rivkin, Cao, Nevo, Abraham, Ben-Shalom (bib0015) 2016; 39 De France, Yager, Chan, Corbett, Cranston, Hoare (bib0145) 2017; 17 Lin, Dufresne (bib0390) 2014; 59 Liu, Guo, Xia, Meng, Chen, Liu (bib0430) 2017; 5 Liu, Jin, Chen, Gao, Shi, Cheng (bib0440) 2017; 5 Abdul Khalil (10.1016/j.carbpol.2019.01.020_bib0005) 2014; 99 Basu (10.1016/j.carbpol.2019.01.020_bib0045) 2017; 174 Du (10.1016/j.carbpol.2019.01.020_bib0190) 2016; 23 Sadeghifar (10.1016/j.carbpol.2019.01.020_bib0610) 2011; 46 Torlopov (10.1016/j.carbpol.2019.01.020_bib0690) 2017; 24 Yang (10.1016/j.carbpol.2019.01.020_bib0800) 2014; 47 Ureña-Benavides (10.1016/j.carbpol.2019.01.020_bib0715) 2011; 44 McAllister (10.1016/j.carbpol.2019.01.020_bib0500) 2015; 48 Ahmed (10.1016/j.carbpol.2019.01.020_bib0035) 2015; 6 Xu (10.1016/j.carbpol.2019.01.020_bib0765) 2018; 6 Eyley (10.1016/j.carbpol.2019.01.020_bib0205) 2014; 6 Liu (10.1016/j.carbpol.2019.01.020_bib0425) 2017; 56 Seabra (10.1016/j.carbpol.2019.01.020_bib0645) 2018; 181 Wang (10.1016/j.carbpol.2019.01.020_bib0725) 2018; 57 Wang (10.1016/j.carbpol.2019.01.020_bib0730) 2018; 6 Markstedt (10.1016/j.carbpol.2019.01.020_bib0475) 2015; 16 Zu (10.1016/j.carbpol.2019.01.020_bib0855) 2016; 99 Hoare (10.1016/j.carbpol.2019.01.020_bib0275) 2008; 49 Liu (10.1016/j.carbpol.2019.01.020_bib0455) 2018; 188 Liu (10.1016/j.carbpol.2019.01.020_bib0450) 2018; 25 Sirvio (10.1016/j.carbpol.2019.01.020_bib0665) 2016; 17 Yang (10.1016/j.carbpol.2019.01.020_bib0795) 2014; 6 Trache (10.1016/j.carbpol.2019.01.020_bib0705) 2016; 93 Dong (10.1016/j.carbpol.2019.01.020_bib0175) 2013; 95 Masruchin (10.1016/j.carbpol.2019.01.020_bib0485) 2015; 22 Domingues (10.1016/j.carbpol.2019.01.020_bib0170) 2015; 26 Miao (10.1016/j.carbpol.2019.01.020_bib0520) 2016; 23 Domingues (10.1016/j.carbpol.2019.01.020_bib0165) 2014; 15 Li (10.1016/j.carbpol.2019.01.020_bib0380) 2015; 29 Masruchin (10.1016/j.carbpol.2019.01.020_bib0490) 2018; 25 Saelee (10.1016/j.carbpol.2019.01.020_bib0615) 2016; 82 Im (10.1016/j.carbpol.2019.01.020_bib0300) 2018; 25 Kamoun (10.1016/j.carbpol.2019.01.020_bib0335) 2017; 8 Piras (10.1016/j.carbpol.2019.01.020_bib0595) 2017; 5 Sethi (10.1016/j.carbpol.2019.01.020_bib0650) 2017; 25 Åhlén (10.1016/j.carbpol.2019.01.020_bib0030) 2018; 536 Yanamala (10.1016/j.carbpol.2019.01.020_bib0780) 2014; 2 Cai (10.1016/j.carbpol.2019.01.020_bib0055) 2007; 19 Wang (10.1016/j.carbpol.2019.01.020_bib0720) 2016; 55 Zander (10.1016/j.carbpol.2019.01.020_bib0825) 2014; 6 Palaganas (10.1016/j.carbpol.2019.01.020_bib0580) 2017; 9 Lu (10.1016/j.carbpol.2019.01.020_bib0465) 2010; 82 Du (10.1016/j.carbpol.2019.01.020_bib0185) 2017; 2 Liu (10.1016/j.carbpol.2019.01.020_bib0445) 2016; 151 Sultan (10.1016/j.carbpol.2019.01.020_bib0675) 2018; 10 Halib (10.1016/j.carbpol.2019.01.020_bib0260) 2017 Lin (10.1016/j.carbpol.2019.01.020_bib0390) 2014; 59 Markstedt (10.1016/j.carbpol.2019.01.020_bib0470) 2017; 9 McKee (10.1016/j.carbpol.2019.01.020_bib0505) 2014; 24 Hu (10.1016/j.carbpol.2019.01.020_bib0280) 2019; 7 Klemm (10.1016/j.carbpol.2019.01.020_bib0360) 2011; 50 Paukkonen (10.1016/j.carbpol.2019.01.020_bib0585) 2017; 532 Xu (10.1016/j.carbpol.2019.01.020_bib0770) 2018; 6 Gu (10.1016/j.carbpol.2019.01.020_bib0235) 2018; 25 Yang (10.1016/j.carbpol.2019.01.020_bib0790) 2013; 14 Wang (10.1016/j.carbpol.2019.01.020_bib0740) 2018; 25 Zheng (10.1016/j.carbpol.2019.01.020_bib0840) 2018; 205 Shin (10.1016/j.carbpol.2019.01.020_bib0660) 2017; 12 Chen (10.1016/j.carbpol.2019.01.020_bib0100) 2015; 30 Nascimento (10.1016/j.carbpol.2019.01.020_bib0545) 2018; 20 De France (10.1016/j.carbpol.2019.01.020_bib0135) 2016; 17 Oksman (10.1016/j.carbpol.2019.01.020_bib0565) 2016; 83 Chapekar (10.1016/j.carbpol.2019.01.020_bib0085) 2000; 53 Saito (10.1016/j.carbpol.2019.01.020_bib0630) 2005; 61 Abitbol (10.1016/j.carbpol.2019.01.020_bib0015) 2016; 39 Saito (10.1016/j.carbpol.2019.01.020_bib0625) 2006; 289 Martínez Ávila (10.1016/j.carbpol.2019.01.020_bib0480) 2016; 1-2 Moon (10.1016/j.carbpol.2019.01.020_bib0530) 2011; 40 Naderi (10.1016/j.carbpol.2019.01.020_bib0535) 2015; 22 Liu (10.1016/j.carbpol.2019.01.020_bib0420) 2018; 195 Yang (10.1016/j.carbpol.2019.01.020_bib0810) 2015; 48 Nguyen (10.1016/j.carbpol.2019.01.020_bib0560) 2017; 7 Way (10.1016/j.carbpol.2019.01.020_bib0745) 2012; 1 Paakko (10.1016/j.carbpol.2019.01.020_bib0575) 2007; 8 Xue (10.1016/j.carbpol.2019.01.020_bib0775) 2017; 9 Zhang (10.1016/j.carbpol.2019.01.020_bib0830) 2014; 26 Fang (10.1016/j.carbpol.2019.01.020_bib0210) 2014; 14 Kargarzadeh (10.1016/j.carbpol.2019.01.020_bib0345) 2018; 87 Spagnol (10.1016/j.carbpol.2019.01.020_bib0670) 2012; 48 Isogai (10.1016/j.carbpol.2019.01.020_bib0310) 2011; 3 Chirayil (10.1016/j.carbpol.2019.01.020_bib0125) 2014; 37 Paulraj (10.1016/j.carbpol.2019.01.020_bib0590) 2018; 69 Trache (10.1016/j.carbpol.2019.01.020_bib0710) 2017; 9 Kargarzadeh (10.1016/j.carbpol.2019.01.020_bib0350) 2018; 25 Chen (10.1016/j.carbpol.2019.01.020_bib0110) 2017; 24 Nechyporchuk (10.1016/j.carbpol.2019.01.020_bib0550) 2016; 93 Du (10.1016/j.carbpol.2019.01.020_bib0195) 2016; 94 Hujaya (10.1016/j.carbpol.2019.01.020_bib0295) 2018; 75 Ooi (10.1016/j.carbpol.2019.01.020_bib0570) 2016; 93 Xu (10.1016/j.carbpol.2019.01.020_bib0760) 2017; 3 Yang (10.1016/j.carbpol.2019.01.020_bib0805) 2015; 27 Isikgor (10.1016/j.carbpol.2019.01.020_bib0305) 2015; 6 Saito (10.1016/j.carbpol.2019.01.020_bib0635) 2006; 7 Liu (10.1016/j.carbpol.2019.01.020_bib0440) 2017; 5 Zhang (10.1016/j.carbpol.2019.01.020_bib0835) 2018; 6 Zhu (10.1016/j.carbpol.2019.01.020_bib0845) 2013; 5 Liu (10.1016/j.carbpol.2019.01.020_bib0415) 2016; 23 Huang (10.1016/j.carbpol.2019.01.020_bib0285) 2018; 4 Wang (10.1016/j.carbpol.2019.01.020_bib0735) 2016; 36 Liu (10.1016/j.carbpol.2019.01.020_bib0405) 2015; 5 Shen (10.1016/j.carbpol.2019.01.020_bib0655) 2016; 18 Hamedi (10.1016/j.carbpol.2019.01.020_bib0265) 2018; 199 Abitbol (10.1016/j.carbpol.2019.01.020_bib0010) 2011; 7 Supramaniam (10.1016/j.carbpol.2019.01.020_bib0685) 2018; 118 Camarero Espinosa (10.1016/j.carbpol.2019.01.020_bib0070) 2013; 14 Basu (10.1016/j.carbpol.2019.01.020_bib0050) 2018; 181 Lin (10.1016/j.carbpol.2019.01.020_bib0385) 2013; 14 Lauren (10.1016/j.carbpol.2019.01.020_bib0375) 2014; 65 Wichterle (10.1016/j.carbpol.2019.01.020_bib0750) 1960; 185 Xie (10.1016/j.carbpol.2019.01.020_bib0755) 2018; 2018 Liu (10.1016/j.carbpol.2019.01.020_bib0430) 2017; 5 Jonoobi (10.1016/j.carbpol.2019.01.020_bib0325) 2015; 22 Doench (10.1016/j.carbpol.2019.01.020_bib0160) 2018; 10 Liu (10.1016/j.carbpol.2019.01.020_bib0410) 2016; 148 Gyles (10.1016/j.carbpol.2019.01.020_bib0245) 2017; 88 Torres-Rendon (10.1016/j.carbpol.2019.01.020_bib0695) 2015; 27 Khan (10.1016/j.carbpol.2019.01.020_bib0355) 2018 Chin-Purcell (10.1016/j.carbpol.2019.01.020_bib0120) 1996; 118 Deng (10.1016/j.carbpol.2019.01.020_bib0150) 2016; 151 Yu (10.1016/j.carbpol.2019.01.020_bib0820) 2013; 1 Liu (10.1016/j.carbpol.2019.01.020_bib0460) 2017; 5 García-González (10.1016/j.carbpol.2019.01.020_bib0220) 2011; 86 Habibi (10.1016/j.carbpol.2019.01.020_bib0250) 2010; 110 Salas (10.1016/j.carbpol.2019.01.020_bib0640) 2014; 19 Mauricio (10.1016/j.carbpol.2019.01.020_bib0495) 2015; 115 Huang (10.1016/j.carbpol.2019.01.020_bib0290) 2018; 10 Liu (10.1016/j.carbpol.2019.01.020_bib0400) 2014; 110 Nakasone (10.1016/j.carbpol.2019.01.020_bib0540) 2015; 55 Cao (10.1016/j.carbpol.2019.01.020_bib0075) 2015; 131 Dong (10.1016/j.carbpol.2019.01.020_bib0180) 2013; 14 Dai (10.1016/j.carbpol.2019.01.020_bib0130) 2019; 203 García-González (10.1016/j.carbpol.2019.01.020_bib0225) 2018 Yang (10.1016/j.carbpol.2019.01.020_bib0785) 2017; 18 Chaker (10.1016/j.carbpol.2019.01.020_bib0080) 2015; 131 De France (10.1016/j.carbpol.2019.01.020_bib0140) 2017; 29 Sultan (10.1016/j.carbpol.2019.01.020_bib0680) 2017; 2 Yang (10.1016/j.carbpol.2019.01.020_bib0815) 2014; 21 Cheng (10.1016/j.carbpol.2019.01.020_bib0115) 2017; 24 Gumrah Dumanli (10.1016/j.carbpol.2019.01.020_bib0240) 2017; 24 Jiang (10.1016/j.carbpol.2019.01.020_bib0320) 2018; 53 Trache (10.1016/j.carbpol.2019.01.020_bib0700) 2018; 5 Abushammala (10.1016/j.carbpol.2019.01.020_bib0025) 2015; 134 Mittal (10.1016/j.carbpol.2019.01.020_bib0525) 2017; 11 Fukuzumi (10.1016/j.carbpol.2019.01.020_bib0215) 2009; 10 Rajinipriya (10.1016/j.carbpol.2019.01.020_bib0605) 2018; 6 Mertaniemi (10.1016/j.carbpol.2019.01.020_bib0515) 2016; 82 Ding (10.1016/j.carbpol.2019.01.020_bib0155) 2017; 24 Hebeish (10.1016/j.carbpol.2019.01.020_bib0270) 2014; 102 Mendes (10.1016/j.carbpol.2019.01.020_bib0510) 2018; 10 Dugan (10.1016/j.carbpol.2019.01.020_bib0200) 2013; 8 Hakkarainen (10.1016/j.carbpol.2019.01.020_bib0255) 2016; 244 Jorfi (10.1016/j.carbpol.2019.01.020_bib0330) 2015; 132 Zhu (10.1016/j.carbpol.2019.01.020_bib0850) 2016; 116 Nelson (10.1016/j.carbpol.2019.01.020_bib0555) 2016 Amalnath (10.1016/j.carbpol.2019.01.020_bib0040) 2018; 14 Liu (10.1016/j.carbpol.2019.01.020_bib0435) 2018; 25 Chau (10.1016/j.carbpol.2019.01.020_bib0090) 2015; 16 Abouzeid (10.1016/j.carbpol.2019.01.020_bib0020) 2018; 19 Kontturi (10.1016/j.carbpol.2019.01.020_bib0370) 2016; 55 Chau (10.1016/j.carbpol.2019.01.020_bib0095) 2016; 28 Plackett (10.1016/j.carbpol.2019.01.020_bib0600) 2014; 29 Calvert (10.1016/j.carbpol.2019.01.020_bib0065) 2009; 21 Gonzalez (10.1016/j.carbpol.2019.01.020_bib0230) 2014; 34 Caló (10.1016/j.carbpol.2019.01.020_bib0060) 2015; 65 Kargarzadeh (10.1016/j.carbpol.2019.01.020_bib0340) 2012; 19 Lin (10.1016/j.carbpol.2019.01.020_bib0395) 2016; 8 Kong (10.1016/j.carbpol.2019.01.020_bib0365) 2018 De France (10.1016/j.carbpol.2019.01.020_bib0145) 2017; 17 Jang (10.1016/j.carbpol.2019.01.020_bib0315) 2018; 4 Chen (10.1016/j.carbpol.2019.01.020_bib0105) 2016; 18 Saini (10.1016/j.carbpol.2019.01.020_bib0620) 2016; 135 |
References_xml | – volume: 5 start-page: 7623 year: 2017 end-page: 7631 ident: bib0430 article-title: Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields publication-title: ACS Sustainable Chemistry & Engineering – volume: 93 start-page: 2 year: 2016 end-page: 25 ident: bib0550 article-title: Production of cellulose nanofibrils: A review of recent advances publication-title: Industrial Crops and Products – volume: 22 start-page: 1147 year: 2015 end-page: 1157 ident: bib0535 article-title: Repeated homogenization, a route for decreasing the energy consumption in the manufacturing process of carboxymethylated nanofibrillated cellulose? publication-title: Cellulose – volume: 8 start-page: 1934 year: 2007 end-page: 1941 ident: bib0575 article-title: Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels publication-title: Biomacromolecules – volume: 17 start-page: 649 year: 2016 end-page: 660 ident: bib0135 article-title: Enhanced mechanical properties in cellulose nanocrystal-poly(oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking publication-title: Biomacromolecules – volume: 61 start-page: 414 year: 2005 end-page: 419 ident: bib0630 article-title: Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation publication-title: Carbohydrate Polymers – volume: 25 start-page: 259 year: 2017 end-page: 268 ident: bib0650 article-title: Water resistant nanopapers prepared by lactic acid modified cellulose nanofibers publication-title: Cellulose – volume: 83 start-page: 2 year: 2016 end-page: 18 ident: bib0565 article-title: Review of the recent developments in cellulose nanocomposite processing publication-title: Composites Part A: Applied Science and Manufacturing – volume: 17 start-page: 6487 year: 2017 end-page: 6495 ident: bib0145 article-title: Injectable anisotropic nanocomposite hydrogels direct in situ growth and alignment of myotubes publication-title: Nano Letters – volume: 25 start-page: 559 year: 2018 end-page: 571 ident: bib0450 article-title: Self-healing and injectable polysaccharide hydrogels with tunable mechanical properties publication-title: Cellulose – volume: 19 start-page: 821 year: 2007 end-page: 825 ident: bib0055 article-title: Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: Structure and properties publication-title: Advanced Materials – volume: 195 start-page: 63 year: 2018 end-page: 70 ident: bib0420 article-title: Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers publication-title: Carbohydrate Polymers – volume: 181 start-page: 514 year: 2018 end-page: 527 ident: bib0645 article-title: Cellulose nanocrystals as carriers in medicine and their toxicities: A review publication-title: Carbohydrate Polymers – volume: 25 start-page: 7065 year: 2018 end-page: 7078 ident: bib0435 article-title: Enzyme-assisted mechanical grinding for cellulose nanofibers from bagasse: Energy consumption and nanofiber characteristics publication-title: Cellulose – volume: 20 start-page: 2428 year: 2018 end-page: 2448 ident: bib0545 article-title: Nanocellulose nanocomposite hydrogels: Technological and environmental issues publication-title: Green Chemistry – volume: 14 start-page: 765 year: 2014 end-page: 773 ident: bib0210 article-title: Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells publication-title: Nano Letters – volume: 23 start-page: 3129 year: 2016 end-page: 3143 ident: bib0415 article-title: Hemicellulose-reinforced nanocellulose hydrogels for wound healing application publication-title: Cellulose – volume: 59 start-page: 302 year: 2014 end-page: 325 ident: bib0390 article-title: Nanocellulose in biomedicine: Current status and future prospect publication-title: European Polymer Journal – volume: 9 start-page: 40878 year: 2017 end-page: 40886 ident: bib0470 article-title: Biomimetic inks based on cellulose nanofibrils and cross-linkable xylans for 3D Printing publication-title: ACS Applied Materials & Interfaces – volume: 6 start-page: 7066 year: 2018 end-page: 7075 ident: bib0770 article-title: 3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application publication-title: Journal of Materials Chemistry B – volume: 7 start-page: 658 year: 2017 ident: bib0560 article-title: Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink publication-title: Scientific Reports – volume: 30 start-page: 1797 year: 2015 end-page: 1807 ident: bib0100 article-title: Responsiveness, swelling, and mechanical properties of PNIPA nanocomposite hydrogels reinforced by nanocellulose publication-title: Journal of Materials Research – volume: 24 start-page: 512 year: 2017 end-page: 528 ident: bib0240 article-title: Nanocellulose and its composites for biomedical applications publication-title: Current Medicinal Chemistry – volume: 7 start-page: 1687 year: 2006 end-page: 1691 ident: bib0635 article-title: Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose publication-title: Biomacromolecules – volume: 3 start-page: 109 year: 2017 end-page: 119 ident: bib0760 article-title: Mild oxalic-acid-catalyzed hydrolysis as a novel approach to prepare cellulose nanocrystals publication-title: ChemNanoMat – volume: 5 start-page: 2671 year: 2017 end-page: 2678 ident: bib0440 article-title: High internal phase emulsions stabilised by supramolecular cellulose nanocrystals and their application as cell-adhesive macroporous hydrogel monoliths publication-title: Journal of Materials Chemistry B – volume: 1 start-page: 3938 year: 2013 end-page: 3944 ident: bib0820 article-title: Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions publication-title: Journal of Materials Chemistry A – volume: 16 start-page: 2455 year: 2015 end-page: 2462 ident: bib0090 article-title: Ion-mediated gelation of aqueous suspensions of cellulose nanocrystals publication-title: Biomacromolecules – volume: 24 start-page: 3243 year: 2017 end-page: 3254 ident: bib0115 article-title: Facile one-step extraction and oxidative carboxylation of cellulose nanocrystals through hydrothermal reaction by using mixed inorganic acids publication-title: Cellulose – volume: 188 start-page: 27 year: 2018 end-page: 36 ident: bib0455 article-title: A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing publication-title: Carbohydrate Polymers – volume: 16 start-page: 1489 year: 2015 end-page: 1496 ident: bib0475 article-title: 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications publication-title: Biomacromolecules – volume: 203 start-page: 71 year: 2019 end-page: 86 ident: bib0130 article-title: 3D printing using plant-derived cellulose and its derivatives: A review publication-title: Carbohydrate Polymers – volume: 4 start-page: 126 year: 2018 ident: bib0315 article-title: 3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering publication-title: International Journal of Bioprinting – volume: 536 start-page: 73 year: 2018 end-page: 81 ident: bib0030 article-title: Nanoparticle-loaded hydrogels as a pathway for enzyme-triggered drug release in ophthalmic applications publication-title: International Journal of Pharmaceutics – start-page: 267 year: 2016 end-page: 302 ident: bib0555 article-title: American process: Production of low cost nanocellulose for renewable, advanced materials applications publication-title: Materials research for manufacturing: An industrial perspective of turning materials into new products – volume: 9 start-page: 34314 year: 2017 end-page: 34324 ident: bib0580 article-title: 3D printing of photocurable cellulose nanocrystal composite for fabrication of complex architectures via stereolithography publication-title: ACS Applied Materials & Interfaces – volume: 8 start-page: 217 year: 2017 end-page: 233 ident: bib0335 article-title: A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings publication-title: Journal of Advanced Research – volume: 12 start-page: 2941 year: 2017 end-page: 2954 ident: bib0660 article-title: Cellulose nanofibers for the enhancement of printability of low viscosity gelatin derivatives publication-title: BioResources – volume: 22 start-page: 1993 year: 2015 end-page: 2010 ident: bib0485 article-title: Characteristics of TEMPO-oxidized cellulose fibril-based hydrogels induced by cationic ions and their properties publication-title: Cellulose – volume: 151 start-page: 899 year: 2016 end-page: 906 ident: bib0150 article-title: Microcrystalline cellulose as reinforcing agent in silicone elastomers publication-title: Carbohydrate Polymers – volume: 75 start-page: 346 year: 2018 end-page: 357 ident: bib0295 article-title: Polyion complex hydrogels from chemically modified cellulose nanofibrils: Structure-function relationship and potential for controlled and pH-responsive release of doxorubicin publication-title: Acta Biomaterialia – volume: 25 start-page: 3873 year: 2018 end-page: 3883 ident: bib0300 article-title: Optimization of carboxymethylation reaction as a pretreatment for production of cellulose nanofibrils publication-title: Cellulose – volume: 2 start-page: 10 year: 2017 end-page: 15 ident: bib0185 article-title: Sustainable preparation and characterization of thermally stable and functional cellulose nanocrystals and nanofibrils via formic acid hydrolysis publication-title: Journal of Bioresources and Bioproducts – volume: 82 start-page: 329 year: 2010 end-page: 336 ident: bib0465 article-title: Preparation and properties of cellulose nanocrystals: Rods, spheres, and network publication-title: Carbohydrate Polymers – volume: 24 start-page: 5431 year: 2017 end-page: 5442 ident: bib0110 article-title: Length-controlled cellulose nanofibrils produced using enzyme pretreatment and grinding publication-title: Cellulose – volume: 5 start-page: 201 year: 2018 end-page: 205 ident: bib0700 article-title: Nanocellulose as a promising sustainable material for biomedical applications publication-title: AIMS Materials Science – volume: 102 start-page: 159 year: 2014 end-page: 166 ident: bib0270 article-title: Thermal responsive hydrogels based on semi interpenetrating network of poly(NIPAm) and cellulose nanowhiskers publication-title: Carbohydrate Polymers – volume: 14 start-page: 871 year: 2013 end-page: 880 ident: bib0385 article-title: Supramolecular hydrogels from in situ host-guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin publication-title: Biomacromolecules – volume: 93 start-page: 789 year: 2016 end-page: 804 ident: bib0705 article-title: Microcrystalline cellulose: Isolation, characterization and bio-composites application-A review publication-title: International Journal of Biological Macromolecules – volume: 6 start-page: 13021 year: 2018 end-page: 13030 ident: bib0730 article-title: Flexible cellulose nanopaper with high wet tensile strength, high toughness and tunable ultraviolet blocking ability fabricated from tobacco stalk via a sustainable method publication-title: Journal of Materials Chemistry A – volume: 25 start-page: 485 year: 2018 end-page: 502 ident: bib0490 article-title: Dual-responsive composite hydrogels based on TEMPO-oxidized cellulose nanofibril and poly (N-isopropylacrylamide) for model drug release publication-title: Cellulose – volume: 3 start-page: 71 year: 2011 end-page: 85 ident: bib0310 article-title: TEMPO-oxidized cellulose nanofibers publication-title: Nanoscale – volume: 131 start-page: 152 year: 2015 end-page: 158 ident: bib0075 article-title: Combined bleaching and hydrolysis for isolation of cellulose nanofibrils from waste sackcloth publication-title: Carbohydrate Polymers – volume: 7 start-page: 2373 year: 2011 end-page: 2379 ident: bib0010 article-title: Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing publication-title: Soft Matter – volume: 6 start-page: 13924 year: 2018 end-page: 13931 ident: bib0835 article-title: A pH-responsive gel macrosphere based on sodium alginate and cellulose nanofiber for potential intestinal delivery of probiotics publication-title: ACS Sustainable Chemistry & Engineering – volume: 1 start-page: 1001 year: 2012 end-page: 1006 ident: bib0745 article-title: pH-responsive cellulose nanocrystal gels and nanocomposites publication-title: ACS Macro Letters – volume: 14 start-page: 1223 year: 2013 end-page: 1230 ident: bib0070 article-title: Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis publication-title: Biomacromolecules – volume: 99 start-page: 203 year: 2016 end-page: 211 ident: bib0855 article-title: Nanocellulose-derived highly porous carbon aerogels for supercapacitors publication-title: Carbon – volume: 10 start-page: 162 year: 2009 end-page: 165 ident: bib0215 article-title: Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation publication-title: Biomacromolecules – volume: 48 start-page: 1231 year: 2015 end-page: 1239 ident: bib0810 article-title: Design of cellulose nanocrystals template-assisted composite hydrogels: Insights from static to dynamic alignment publication-title: Macromolecules – volume: 27 start-page: 2989 year: 2015 end-page: 2995 ident: bib0695 article-title: Bioactive gyroid scaffolds formed by sacrificial templating of nanocellulose and nanochitin hydrogels as instructive platforms for biomimetic tissue engineering publication-title: Advanced Materials – volume: 6 start-page: 7764 year: 2014 end-page: 7779 ident: bib0205 article-title: Surface modification of cellulose nanocrystals publication-title: Nanoscale – volume: 34 start-page: 54 year: 2014 end-page: 61 ident: bib0230 article-title: Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings publication-title: Materials Science and Engineering C-Materials for Biological Applications – volume: 244 start-page: 292 year: 2016 end-page: 301 ident: bib0255 article-title: Nanofibrillar cellulose wound dressing in skin graft donor site treatment publication-title: Journal of Controlled Release – volume: 44 start-page: 8990 year: 2011 end-page: 8998 ident: bib0715 article-title: Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions publication-title: Macromolecules – volume: 55 start-page: 5966 year: 2016 end-page: 5970 ident: bib0720 article-title: Bioinspired mechanical gradients in cellulose nanofibril/polymer nanopapers publication-title: Angewandte Chemie International Edition – volume: 2018 start-page: 1 year: 2018 end-page: 25 ident: bib0755 article-title: Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials publication-title: International Journal of Polymer Science – volume: 99 start-page: 649 year: 2014 end-page: 665 ident: bib0005 article-title: Production and modification of nanofibrillated cellulose using various mechanical processes: A review publication-title: Carbohydrate Polymers – volume: 134 start-page: 609 year: 2015 end-page: 616 ident: bib0025 article-title: Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood publication-title: Carbohydrate Polymers – volume: 2 start-page: 1691 year: 2014 end-page: 1698 ident: bib0780 article-title: In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: A renewable and sustainable nanomaterial of the future publication-title: ACS Sustainable Chemistry & Engineering – volume: 36 start-page: 143 year: 2016 end-page: 151 ident: bib0735 article-title: The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules publication-title: Acta Biomaterialia – volume: 18 start-page: 53 year: 2016 end-page: 75 ident: bib0655 article-title: Hydrogels based on cellulose and chitin: Fabrication, properties, and applications publication-title: Green Chemistry – volume: 7 start-page: 1327 year: 2019 end-page: 1336 ident: bib0280 article-title: Comparative evaluation of the efficient conversion of corn husk filament and corn husk powder to valuable materials via a sustainable and clean biorefinery process publication-title: ACS Sustainable Chemistry & Engineering – volume: 6 start-page: 5663 year: 2018 end-page: 5680 ident: bib0765 article-title: Three-dimensional printing of wood-derived biopolymers: A review focused on biomedical applications publication-title: ACS Sustainable Chemistry & Engineering – volume: 21 start-page: 541 year: 2014 end-page: 551 ident: bib0815 article-title: Tough nanocomposite hydrogels from cellulose nanocrystals/poly (acrylamide) clusters: Influence of the charge density, aspect ratio and surface coating with PEG publication-title: Cellulose – volume: 6 start-page: 105 year: 2015 end-page: 121 ident: bib0035 article-title: Hydrogel: Preparation, characterization, and applications: A review publication-title: Journal of Advanced Research – volume: 132 start-page: 41719 year: 2015 ident: bib0330 article-title: Recent advances in nanocellulose for biomedical applications publication-title: Journal of Applied Polymer Science – volume: 174 start-page: 299 year: 2017 end-page: 308 ident: bib0045 article-title: On the use of ion-crosslinked nanocellulose hydrogels for wound healing solutions: Physicochemical properties and application-oriented biocompatibility studies publication-title: Carbohydrate Polymers – start-page: e1801934 year: 2018 ident: bib0365 article-title: Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels publication-title: Advanced Materials – volume: 17 start-page: 3025 year: 2016 end-page: 3032 ident: bib0665 article-title: Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production publication-title: Biomacromolecules – volume: 56 start-page: 8264 year: 2017 end-page: 8273 ident: bib0425 article-title: Properties of nanocelluloses and their application as rheology modifier in paper coating publication-title: Industrial & Engineering Chemistry Research – volume: 199 start-page: 445 year: 2018 end-page: 460 ident: bib0265 article-title: Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review publication-title: Carbohydrate Polymers – volume: 25 start-page: 2151 year: 2018 end-page: 2189 ident: bib0350 article-title: Advances in cellulose nanomaterials publication-title: Cellulose – volume: 11 start-page: 5148 year: 2017 end-page: 5159 ident: bib0525 article-title: Ultrastrong and bioactive nanostructured bio-based composites publication-title: ACS Nano – volume: 29 start-page: 882 year: 2015 end-page: 893 ident: bib0380 article-title: In vitro and in vivo evaluation of a novel collagen/cellulose nanocrystals scaffold for achieving the sustained release of basic fibroblast growth factor publication-title: Journal of Biomaterials Applications – volume: 10 start-page: 17388 year: 2018 end-page: 17401 ident: bib0510 article-title: Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior publication-title: Nanoscale – volume: 53 start-page: 617 year: 2000 end-page: 620 ident: bib0085 article-title: Tissue engineering: Challenges and opportunities publication-title: Journal of Biomedical Materials Research – volume: 93 start-page: 227 year: 2016 end-page: 234 ident: bib0570 article-title: Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems publication-title: Industrial Crops and Products – volume: 82 start-page: 208 year: 2016 end-page: 220 ident: bib0515 article-title: Human stem cell decorated nanocellulose threads for biomedical applications publication-title: Biomaterials – volume: 24 start-page: 2153 year: 2017 end-page: 2162 ident: bib0690 article-title: Cellulose nanocrystals prepared in H publication-title: Cellulose – volume: 8 start-page: 287 year: 2013 end-page: 298 ident: bib0200 article-title: Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering publication-title: Nanomedition – volume: 24 start-page: 2706 year: 2014 end-page: 2713 ident: bib0505 article-title: Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods publication-title: Advanced Functional Materials – volume: 69 start-page: 196 year: 2018 end-page: 205 ident: bib0590 article-title: Bioinspired capsules based on nanocellulose, xyloglucan and pectin–The influence of capsule wall composition on permeability properties publication-title: Acta Biomaterialia – volume: 205 start-page: 27 year: 2018 end-page: 34 ident: bib0840 article-title: PHBV-graft-GMA via reactive extrusion and its use in PHBV/nanocellulose crystal composites publication-title: Carbohydrate Polymers – volume: 95 start-page: 760 year: 2013 end-page: 767 ident: bib0175 article-title: Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles publication-title: Carbohydrate Polymers – volume: 50 start-page: 5438 year: 2011 end-page: 5466 ident: bib0360 article-title: Nanocelluloses: A new family of nature-based materials publication-title: Angewandte Chemie International Edition – volume: 14 start-page: 4447 year: 2013 end-page: 4455 ident: bib0790 article-title: Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: Morphology, rheology, degradation, and cytotoxicity publication-title: Biomacromolecules – volume: 53 start-page: 11883 year: 2018 end-page: 11900 ident: bib0320 article-title: Dialdehyde cellulose nanocrystal/gelatin hydrogel optimized for 3D printing applications publication-title: Journal of Materials Science – volume: 9 start-page: 1763 year: 2017 end-page: 1786 ident: bib0710 article-title: Recent progress in cellulose nanocrystals: Sources and production publication-title: Nanoscale – volume: 181 start-page: 345 year: 2018 end-page: 350 ident: bib0050 article-title: Ion-crosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties: Candidate materials for advanced wound care applications publication-title: Carbohydrate Polymers – volume: 48 start-page: 454 year: 2012 end-page: 463 ident: bib0670 article-title: Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers publication-title: European Polymer Journal – volume: 8 start-page: 6880 year: 2016 end-page: 6889 ident: bib0395 article-title: Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs codelivery publication-title: ACS Applied Materials & Interfaces – volume: 532 start-page: 269 year: 2017 end-page: 280 ident: bib0585 article-title: Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release publication-title: International Journal of Pharmaceutics – start-page: 295 year: 2018 end-page: 323 ident: bib0225 article-title: Biomedical applications of polysaccharide and protein based aerogels publication-title: Biobased aerogels: Polysaccharide and protein-based materials – volume: 116 start-page: 9305 year: 2016 end-page: 9374 ident: bib0850 article-title: Wood-derived materials for green electronics, biological devices, and energy applications publication-title: Chemical Reviews – volume: 22 start-page: 935 year: 2015 end-page: 969 ident: bib0325 article-title: Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: A review publication-title: Cellulose – volume: 151 start-page: 716 year: 2016 end-page: 724 ident: bib0445 article-title: Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods publication-title: Carbohydrate Polymers – volume: 47 start-page: 4077 year: 2014 end-page: 4086 ident: bib0800 article-title: Cellulose nanocrystals mechanical reinforcement in composite hydrogels with multiple cross-Links: Correlations between dissipation properties and deformation mechanisms publication-title: Macromolecules – volume: 19 start-page: 855 year: 2012 end-page: 866 ident: bib0340 article-title: Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers publication-title: Cellulose – volume: 135 start-page: 239 year: 2016 end-page: 247 ident: bib0620 article-title: Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces publication-title: Carbohydrate Polymers – volume: 88 start-page: 373 year: 2017 end-page: 392 ident: bib0245 article-title: A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations publication-title: European Polymer Journal – volume: 46 start-page: 7344 year: 2011 end-page: 7355 ident: bib0610 article-title: Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface publication-title: Journal of Materials Science – volume: 5 start-page: 17014 year: 2017 ident: bib0460 article-title: Injectable hydrogels for cartilage and bone tissue engineering publication-title: Bone Research – volume: 10 start-page: 4421 year: 2018 end-page: 4431 ident: bib0675 article-title: 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel publication-title: Nanoscale – volume: 18 start-page: 3835 year: 2016 end-page: 3843 ident: bib0105 article-title: Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids publication-title: Green Chemistry – volume: 19 start-page: 383 year: 2014 end-page: 396 ident: bib0640 article-title: Nanocellulose properties and applications in colloids and interfaces publication-title: Current Opinion in Colloid & Interface Science – volume: 14 start-page: 1 year: 2018 end-page: 11 ident: bib0040 article-title: Nanocellulose-based hydrogels for biomedical applications publication-title: Current Nanoscience – volume: 94 start-page: 736 year: 2016 end-page: 745 ident: bib0195 article-title: Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization publication-title: Industrial Crops and Products – volume: 118 start-page: 640 year: 2018 end-page: 648 ident: bib0685 article-title: Magnetic nanocellulose alginate hydrogel beads as potential drug delivery system publication-title: International Journal of Biological Macromolecules – volume: 26 start-page: 1571 year: 2015 end-page: 1581 ident: bib0170 article-title: Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications publication-title: Bioconjugate Chemistry – volume: 131 start-page: 224 year: 2015 end-page: 232 ident: bib0080 article-title: Cationic nanofibrillar cellulose with high antibacterial properties publication-title: Carbohydrate Polymers – volume: 110 start-page: 415 year: 2014 end-page: 422 ident: bib0400 article-title: A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid publication-title: Carbohydrate Polymers – volume: 39 start-page: 76 year: 2016 end-page: 88 ident: bib0015 article-title: Nanocellulose, a tiny fiber with huge applications publication-title: Current Opinion in Biotechnology – volume: 10 start-page: 41076 year: 2018 end-page: 41088 ident: bib0290 article-title: On-demand dissolvable self-healing hydrogels based on carboxymethyl chitosan and cellulose nanocrystal for deep partial thickness burn wound publication-title: ACS Applied Materials & Interfaces – volume: 10 start-page: 1202 year: 2018 ident: bib0160 article-title: Injectable and gellable chitosan formulations filled with cellulose nanofibers for intervertebral disc tissue engineering publication-title: Polymers – volume: 185 start-page: 117 year: 1960 ident: bib0750 article-title: Hydrophilic gels for biological use publication-title: Nature – volume: 82 start-page: 149 year: 2016 end-page: 160 ident: bib0615 article-title: An environmentally friendly xylanase-assisted pretreatment for cellulose nanofibrils isolation from sugarcane bagasse by high-pressure homogenization publication-title: Industrial Crops and Products – volume: 18 start-page: 2623 year: 2017 end-page: 2632 ident: bib0785 article-title: Synergistic reinforcing mechanisms in cellulose nanofibrils composite hydrogels: Interfacial dynamics, energy dissipation, and damage resistance publication-title: Biomacromolecules – volume: 115 start-page: 715 year: 2015 end-page: 722 ident: bib0495 article-title: Synthesis of a microhydrogel composite from cellulose nanowhiskers and starch for drug delivery publication-title: Carbohydrate Polymers – volume: 14 start-page: 3338 year: 2013 end-page: 3345 ident: bib0180 article-title: Cation-induced hydrogels of cellulose nanofibrils with tunable moduli publication-title: Biomacromolecules – volume: 28 start-page: 3406 year: 2016 end-page: 3415 ident: bib0095 article-title: Composite hydrogels with tunable anisotropic morphologies and mechanical properties publication-title: Chemistry of Materials – volume: 2 start-page: 29 year: 2017 end-page: 34 ident: bib0680 article-title: 3D printing of nano-cellulosic biomaterials for medical applications publication-title: Current Opinion in Biomedical Engineering – volume: 24 start-page: 4785 year: 2017 end-page: 4792 ident: bib0155 article-title: Isolation and characterization of cellulose nanocrystals from cloth hairs and evaluation of their compatibility with PLLA publication-title: Cellulose – volume: 37 start-page: 20 year: 2014 end-page: 28 ident: bib0125 article-title: Review of recent research in nano cellulose preparation from different lignocellulosic fibers publication-title: Reviews on advanced materials science – start-page: 1 year: 2017 end-page: 19 ident: bib0260 article-title: Nanocellulose: Insight into health and medical applications publication-title: Handbook of Ecomaterials – volume: 55 start-page: 30 year: 2015 end-page: 37 ident: bib0540 article-title: Biocompatibility evaluation of cellulose hydrogel film regenerated from sugar cane bagasse waste and its in vivo behavior in mice publication-title: Industrial & Engineering Chemistry Research – volume: 86 start-page: 1425 year: 2011 end-page: 1438 ident: bib0220 article-title: Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems publication-title: Carbohydrate Polymers – volume: 9 start-page: 14758 year: 2017 end-page: 14781 ident: bib0775 article-title: Nanocellulose as a sustainable biomass material: Structure, properties, present status and future prospects in biomedical applications publication-title: Nanoscale – volume: 23 start-page: 2389 year: 2016 end-page: 2407 ident: bib0190 article-title: Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl publication-title: Cellulose – volume: 25 start-page: 4275 year: 2018 end-page: 4301 ident: bib0740 article-title: 3D printing with cellulose materials publication-title: Cellulose – volume: 48 start-page: 7205 year: 2015 end-page: 7215 ident: bib0500 article-title: Thermodynamics of aqueous methylcellulose solutions publication-title: Macromolecules – volume: 26 start-page: 2659 year: 2014 end-page: 2668 ident: bib0830 article-title: Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water publication-title: Chemistry of Materials – volume: 6 start-page: 18502 year: 2014 end-page: 18510 ident: bib0825 article-title: Metal cation cross-linked nanocellulose hydrogels as tissue engineering substrates publication-title: ACS Applied Materials & Interfaces – volume: 25 start-page: 2861 year: 2018 end-page: 2871 ident: bib0235 article-title: Water retention value for characterizing fibrillation degree of cellulosic fibers at micro and nanometer scales publication-title: Cellulose – volume: 6 start-page: 5934 year: 2014 end-page: 5943 ident: bib0795 article-title: Simple approach to reinforce hydrogels with cellulose nanocrystals publication-title: Nanoscale – volume: 19 start-page: 4442 year: 2018 end-page: 4452 ident: bib0020 article-title: Biomimetic mineralization of three-dimensional printed alginate/TEMPO-oxidized cellulose nanofibril scaffolds for bone tissue engineering publication-title: Biomacromolecules – volume: 289 start-page: 219 year: 2006 end-page: 225 ident: bib0625 article-title: Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects – volume: 4 start-page: 237 year: 2018 end-page: 246 ident: bib0285 article-title: Porous artificial bone scaffold synthesized from a facile in situ hydroxyapatite coating and crosslinking reaction of crystalline nanocellulose publication-title: Materialia – volume: 57 start-page: 2353 year: 2018 end-page: 2356 ident: bib0725 article-title: All-in-one cellulose nanocrystals for 3D printing of nanocomposite hydrogels publication-title: Angewandte Chemie International Edition – volume: 29 start-page: 105 year: 2014 end-page: 118 ident: bib0600 article-title: A review of nanocellulose as a novel vehicle for drug delivery publication-title: Nordic Pulp & Paper Research Journal – volume: 148 start-page: 259 year: 2016 end-page: 271 ident: bib0410 article-title: Development of nanocellulose scaffolds with tunable structures to support 3D cell culture publication-title: Carbohydrate Polymers – year: 2018 ident: bib0355 article-title: Chitosan-based polymer matrix for pharmaceutical excipients and drug delivery publication-title: Current Medicinal Chemistry – volume: 65 start-page: 79 year: 2014 end-page: 88 ident: bib0375 article-title: Technetium-99m-labeled nanofibrillar cellulose hydrogel for in vivo drug release publication-title: European Journal of Pharmaceutical Sciences – volume: 6 start-page: 4497 year: 2015 end-page: 4559 ident: bib0305 article-title: Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers publication-title: Polymer Chemistry – volume: 40 start-page: 3941 year: 2011 end-page: 3994 ident: bib0530 article-title: Cellulose nanomaterials review: Structure, properties and nanocomposites publication-title: Chemical Society Reviews – volume: 49 start-page: 1993 year: 2008 end-page: 2007 ident: bib0275 article-title: Hydrogels in drug delivery: Progress and challenges publication-title: Polymer – volume: 87 start-page: 197 year: 2018 end-page: 227 ident: bib0345 article-title: Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites publication-title: Progress in Polymer Science – volume: 29 start-page: 4609 year: 2017 end-page: 4631 ident: bib0140 article-title: Review of hydrogels and aerogels containing nanocellulose publication-title: Chemistry of Materials – volume: 21 start-page: 743 year: 2009 end-page: 756 ident: bib0065 article-title: Hydrogels for soft machines publication-title: Advanced Materials – volume: 5 start-page: 31 year: 2015 end-page: 61 ident: bib0405 article-title: A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications publication-title: Bioactive Carbohydrates and Dietary Fibre – volume: 65 start-page: 252 year: 2015 end-page: 267 ident: bib0060 article-title: Biomedical applications of hydrogels: A review of patents and commercial products publication-title: European Polymer Journal – volume: 118 start-page: 545 year: 1996 end-page: 556 ident: bib0120 article-title: Fracture of articular cartilage publication-title: Journal of Biomechanical Engineering – volume: 6 start-page: 2807 year: 2018 end-page: 2828 ident: bib0605 article-title: Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: A review publication-title: ACS Sustainable Chemistry & Engineering – volume: 55 start-page: 14455 year: 2016 end-page: 14458 ident: bib0370 article-title: Degradation and crystallization of cellulose in hydrogen chloride vapor for high-yield isolation of cellulose nanocrystals publication-title: Angewandte Chemie International Edition – volume: 27 start-page: 6104 year: 2015 end-page: 6109 ident: bib0805 article-title: Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials publication-title: Advanced Materials – volume: 110 start-page: 3479 year: 2010 end-page: 3500 ident: bib0250 article-title: Cellulose nanocrystals: Chemistry, self-Assembly, and applications publication-title: Chemical Reviews – volume: 5 start-page: 3787 year: 2013 end-page: 3792 ident: bib0845 article-title: Transparent nanopaper with tailored optical properties publication-title: Nanoscale – volume: 1-2 start-page: 22 year: 2016 end-page: 35 ident: bib0480 article-title: 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration publication-title: Bioprinting – volume: 5 start-page: 1988 year: 2017 end-page: 1992 ident: bib0595 article-title: Nanocellulosic materials as bioinks for 3D bioprinting publication-title: Biomaterials Science – volume: 23 start-page: 1209 year: 2016 end-page: 1219 ident: bib0520 article-title: One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid publication-title: Cellulose – volume: 15 start-page: 2327 year: 2014 end-page: 2346 ident: bib0165 article-title: The potential of cellulose nanocrystals in tissue engineering strategies publication-title: Biomacromolecules – volume: 99 start-page: 203 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0855 article-title: Nanocellulose-derived highly porous carbon aerogels for supercapacitors publication-title: Carbon doi: 10.1016/j.carbon.2015.11.079 – volume: 19 start-page: 821 issue: 6 year: 2007 ident: 10.1016/j.carbpol.2019.01.020_bib0055 article-title: Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: Structure and properties publication-title: Advanced Materials doi: 10.1002/adma.200601521 – volume: 59 start-page: 302 year: 2014 ident: 10.1016/j.carbpol.2019.01.020_bib0390 article-title: Nanocellulose in biomedicine: Current status and future prospect publication-title: European Polymer Journal doi: 10.1016/j.eurpolymj.2014.07.025 – volume: 22 start-page: 1993 issue: 3 year: 2015 ident: 10.1016/j.carbpol.2019.01.020_bib0485 article-title: Characteristics of TEMPO-oxidized cellulose fibril-based hydrogels induced by cationic ions and their properties publication-title: Cellulose doi: 10.1007/s10570-015-0624-0 – volume: 24 start-page: 512 issue: 5 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0240 article-title: Nanocellulose and its composites for biomedical applications publication-title: Current Medicinal Chemistry doi: 10.2174/0929867323666161014124008 – volume: 181 start-page: 514 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0645 article-title: Cellulose nanocrystals as carriers in medicine and their toxicities: A review publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2017.12.014 – volume: 26 start-page: 1571 issue: 8 year: 2015 ident: 10.1016/j.carbpol.2019.01.020_bib0170 article-title: Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications publication-title: Bioconjugate Chemistry doi: 10.1021/acs.bioconjchem.5b00209 – volume: 69 start-page: 196 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0590 article-title: Bioinspired capsules based on nanocellulose, xyloglucan and pectin–The influence of capsule wall composition on permeability properties publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2018.01.003 – volume: 65 start-page: 79 year: 2014 ident: 10.1016/j.carbpol.2019.01.020_bib0375 article-title: Technetium-99m-labeled nanofibrillar cellulose hydrogel for in vivo drug release publication-title: European Journal of Pharmaceutical Sciences doi: 10.1016/j.ejps.2014.09.013 – volume: 14 start-page: 871 issue: 3 year: 2013 ident: 10.1016/j.carbpol.2019.01.020_bib0385 article-title: Supramolecular hydrogels from in situ host-guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin publication-title: Biomacromolecules doi: 10.1021/bm301955k – start-page: 1 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0260 article-title: Nanocellulose: Insight into health and medical applications publication-title: Handbook of Ecomaterials – volume: 6 start-page: 7066 issue: 43 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0770 article-title: 3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application publication-title: Journal of Materials Chemistry B doi: 10.1039/C8TB01757C – volume: 131 start-page: 224 year: 2015 ident: 10.1016/j.carbpol.2019.01.020_bib0080 article-title: Cationic nanofibrillar cellulose with high antibacterial properties publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2015.06.003 – volume: 99 start-page: 649 year: 2014 ident: 10.1016/j.carbpol.2019.01.020_bib0005 article-title: Production and modification of nanofibrillated cellulose using various mechanical processes: A review publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2013.08.069 – volume: 24 start-page: 5431 issue: 12 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0110 article-title: Length-controlled cellulose nanofibrils produced using enzyme pretreatment and grinding publication-title: Cellulose doi: 10.1007/s10570-017-1499-z – volume: 40 start-page: 3941 issue: 7 year: 2011 ident: 10.1016/j.carbpol.2019.01.020_bib0530 article-title: Cellulose nanomaterials review: Structure, properties and nanocomposites publication-title: Chemical Society Reviews doi: 10.1039/c0cs00108b – volume: 82 start-page: 329 issue: 2 year: 2010 ident: 10.1016/j.carbpol.2019.01.020_bib0465 article-title: Preparation and properties of cellulose nanocrystals: Rods, spheres, and network publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2010.04.073 – volume: 25 start-page: 4275 issue: 8 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0740 article-title: 3D printing with cellulose materials publication-title: Cellulose doi: 10.1007/s10570-018-1888-y – volume: 2 start-page: 1691 issue: 7 year: 2014 ident: 10.1016/j.carbpol.2019.01.020_bib0780 article-title: In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: A renewable and sustainable nanomaterial of the future publication-title: ACS Sustainable Chemistry & Engineering doi: 10.1021/sc500153k – volume: 17 start-page: 3025 issue: 9 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0665 article-title: Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production publication-title: Biomacromolecules doi: 10.1021/acs.biomac.6b00910 – volume: 2018 start-page: 1 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0755 article-title: Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials publication-title: International Journal of Polymer Science – volume: 25 start-page: 3873 issue: 7 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0300 article-title: Optimization of carboxymethylation reaction as a pretreatment for production of cellulose nanofibrils publication-title: Cellulose doi: 10.1007/s10570-018-1853-9 – volume: 115 start-page: 715 year: 2015 ident: 10.1016/j.carbpol.2019.01.020_bib0495 article-title: Synthesis of a microhydrogel composite from cellulose nanowhiskers and starch for drug delivery publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2014.07.063 – volume: 48 start-page: 7205 issue: 19 year: 2015 ident: 10.1016/j.carbpol.2019.01.020_bib0500 article-title: Thermodynamics of aqueous methylcellulose solutions publication-title: Macromolecules doi: 10.1021/acs.macromol.5b01544 – volume: 8 start-page: 1934 issue: 6 year: 2007 ident: 10.1016/j.carbpol.2019.01.020_bib0575 article-title: Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels publication-title: Biomacromolecules doi: 10.1021/bm061215p – volume: 14 start-page: 4447 issue: 12 year: 2013 ident: 10.1016/j.carbpol.2019.01.020_bib0790 article-title: Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: Morphology, rheology, degradation, and cytotoxicity publication-title: Biomacromolecules doi: 10.1021/bm401364z – volume: 18 start-page: 2623 issue: 8 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0785 article-title: Synergistic reinforcing mechanisms in cellulose nanofibrils composite hydrogels: Interfacial dynamics, energy dissipation, and damage resistance publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b00730 – volume: 93 start-page: 2 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0550 article-title: Production of cellulose nanofibrils: A review of recent advances publication-title: Industrial Crops and Products doi: 10.1016/j.indcrop.2016.02.016 – volume: 203 start-page: 71 year: 2019 ident: 10.1016/j.carbpol.2019.01.020_bib0130 article-title: 3D printing using plant-derived cellulose and its derivatives: A review publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2018.09.027 – volume: 195 start-page: 63 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0420 article-title: Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2018.04.085 – volume: 61 start-page: 414 issue: 4 year: 2005 ident: 10.1016/j.carbpol.2019.01.020_bib0630 article-title: Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2005.05.014 – volume: 26 start-page: 2659 issue: 8 year: 2014 ident: 10.1016/j.carbpol.2019.01.020_bib0830 article-title: Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water publication-title: Chemistry of Materials doi: 10.1021/cm5004164 – volume: 56 start-page: 8264 issue: 29 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0425 article-title: Properties of nanocelluloses and their application as rheology modifier in paper coating publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/acs.iecr.7b01804 – volume: 17 start-page: 649 issue: 2 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0135 article-title: Enhanced mechanical properties in cellulose nanocrystal-poly(oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b01598 – volume: 10 start-page: 4421 issue: 9 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0675 article-title: 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel publication-title: Nanoscale doi: 10.1039/C7NR08966J – volume: 27 start-page: 6104 issue: 40 year: 2015 ident: 10.1016/j.carbpol.2019.01.020_bib0805 article-title: Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials publication-title: Advanced Materials doi: 10.1002/adma.201502284 – volume: 151 start-page: 899 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0150 article-title: Microcrystalline cellulose as reinforcing agent in silicone elastomers publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2016.06.035 – volume: 7 start-page: 2373 issue: 6 year: 2011 ident: 10.1016/j.carbpol.2019.01.020_bib0010 article-title: Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing publication-title: Soft Matter doi: 10.1039/c0sm01172j – volume: 131 start-page: 152 year: 2015 ident: 10.1016/j.carbpol.2019.01.020_bib0075 article-title: Combined bleaching and hydrolysis for isolation of cellulose nanofibrils from waste sackcloth publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2015.05.063 – volume: 29 start-page: 882 issue: 6 year: 2015 ident: 10.1016/j.carbpol.2019.01.020_bib0380 article-title: In vitro and in vivo evaluation of a novel collagen/cellulose nanocrystals scaffold for achieving the sustained release of basic fibroblast growth factor publication-title: Journal of Biomaterials Applications doi: 10.1177/0885328214547091 – volume: 19 start-page: 383 issue: 5 year: 2014 ident: 10.1016/j.carbpol.2019.01.020_bib0640 article-title: Nanocellulose properties and applications in colloids and interfaces publication-title: Current Opinion in Colloid & Interface Science doi: 10.1016/j.cocis.2014.10.003 – volume: 25 start-page: 7065 issue: 12 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0435 article-title: Enzyme-assisted mechanical grinding for cellulose nanofibers from bagasse: Energy consumption and nanofiber characteristics publication-title: Cellulose doi: 10.1007/s10570-018-2071-1 – volume: 21 start-page: 743 issue: 7 year: 2009 ident: 10.1016/j.carbpol.2019.01.020_bib0065 article-title: Hydrogels for soft machines publication-title: Advanced Materials doi: 10.1002/adma.200800534 – volume: 12 start-page: 2941 issue: 2 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0660 article-title: Cellulose nanofibers for the enhancement of printability of low viscosity gelatin derivatives publication-title: BioResources doi: 10.15376/biores.12.2.2941-2954 – volume: 23 start-page: 3129 issue: 5 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0415 article-title: Hemicellulose-reinforced nanocellulose hydrogels for wound healing application publication-title: Cellulose doi: 10.1007/s10570-016-1038-3 – volume: 2 start-page: 10 issue: 1 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0185 article-title: Sustainable preparation and characterization of thermally stable and functional cellulose nanocrystals and nanofibrils via formic acid hydrolysis publication-title: Journal of Bioresources and Bioproducts – volume: 10 start-page: 41076 issue: 48 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0290 article-title: On-demand dissolvable self-healing hydrogels based on carboxymethyl chitosan and cellulose nanocrystal for deep partial thickness burn wound publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.8b14526 – volume: 118 start-page: 640 issue: Part A year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0685 article-title: Magnetic nanocellulose alginate hydrogel beads as potential drug delivery system publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2018.06.043 – volume: 86 start-page: 1425 issue: 4 year: 2011 ident: 10.1016/j.carbpol.2019.01.020_bib0220 article-title: Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2011.06.066 – volume: 34 start-page: 54 year: 2014 ident: 10.1016/j.carbpol.2019.01.020_bib0230 article-title: Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings publication-title: Materials Science and Engineering C-Materials for Biological Applications doi: 10.1016/j.msec.2013.10.006 – volume: 148 start-page: 259 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0410 article-title: Development of nanocellulose scaffolds with tunable structures to support 3D cell culture publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2016.04.064 – volume: 10 start-page: 1202 issue: 11 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0160 article-title: Injectable and gellable chitosan formulations filled with cellulose nanofibers for intervertebral disc tissue engineering publication-title: Polymers doi: 10.3390/polym10111202 – start-page: 267 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0555 article-title: American process: Production of low cost nanocellulose for renewable, advanced materials applications – volume: 7 start-page: 658 issue: 1 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0560 article-title: Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink publication-title: Scientific Reports doi: 10.1038/s41598-017-00690-y – volume: 36 start-page: 143 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0735 article-title: The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2016.03.016 – volume: 7 start-page: 1327 issue: 1 year: 2019 ident: 10.1016/j.carbpol.2019.01.020_bib0280 article-title: Comparative evaluation of the efficient conversion of corn husk filament and corn husk powder to valuable materials via a sustainable and clean biorefinery process publication-title: ACS Sustainable Chemistry & Engineering doi: 10.1021/acssuschemeng.8b05017 – volume: 24 start-page: 2706 issue: 18 year: 2014 ident: 10.1016/j.carbpol.2019.01.020_bib0505 article-title: Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods publication-title: Advanced Functional Materials doi: 10.1002/adfm.201303699 – volume: 10 start-page: 17388 issue: 36 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0510 article-title: Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior publication-title: Nanoscale doi: 10.1039/C8NR04273J – volume: 55 start-page: 30 issue: 1 year: 2015 ident: 10.1016/j.carbpol.2019.01.020_bib0540 article-title: Biocompatibility evaluation of cellulose hydrogel film regenerated from sugar cane bagasse waste and its in vivo behavior in mice publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/acs.iecr.5b03926 – volume: 110 start-page: 3479 issue: 6 year: 2010 ident: 10.1016/j.carbpol.2019.01.020_bib0250 article-title: Cellulose nanocrystals: Chemistry, self-Assembly, and applications publication-title: Chemical Reviews doi: 10.1021/cr900339w – volume: 25 start-page: 559 issue: 1 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0450 article-title: Self-healing and injectable polysaccharide hydrogels with tunable mechanical properties publication-title: Cellulose doi: 10.1007/s10570-017-1546-9 – volume: 4 start-page: 126 issue: 1 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0315 article-title: 3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering publication-title: International Journal of Bioprinting doi: 10.18063/ijb.v4i1.126 – volume: 14 start-page: 1223 issue: 4 year: 2013 ident: 10.1016/j.carbpol.2019.01.020_bib0070 article-title: Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis publication-title: Biomacromolecules doi: 10.1021/bm400219u – volume: 5 start-page: 3787 issue: 9 year: 2013 ident: 10.1016/j.carbpol.2019.01.020_bib0845 article-title: Transparent nanopaper with tailored optical properties publication-title: Nanoscale doi: 10.1039/c3nr00520h – volume: 532 start-page: 269 issue: 1 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0585 article-title: Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release publication-title: International Journal of Pharmaceutics doi: 10.1016/j.ijpharm.2017.09.002 – volume: 29 start-page: 105 issue: 1 year: 2014 ident: 10.1016/j.carbpol.2019.01.020_bib0600 article-title: A review of nanocellulose as a novel vehicle for drug delivery publication-title: Nordic Pulp & Paper Research Journal doi: 10.3183/NPPRJ-2014-29-01-p105-118 – volume: 14 start-page: 3338 issue: 9 year: 2013 ident: 10.1016/j.carbpol.2019.01.020_bib0180 article-title: Cation-induced hydrogels of cellulose nanofibrils with tunable moduli publication-title: Biomacromolecules doi: 10.1021/bm400993f – volume: 14 start-page: 1 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0040 article-title: Nanocellulose-based hydrogels for biomedical applications publication-title: Current Nanoscience – volume: 289 start-page: 219 issue: 1-3 year: 2006 ident: 10.1016/j.carbpol.2019.01.020_bib0625 article-title: Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects doi: 10.1016/j.colsurfa.2006.04.038 – volume: 93 start-page: 227 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0570 article-title: Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems publication-title: Industrial Crops and Products doi: 10.1016/j.indcrop.2015.11.082 – volume: 65 start-page: 252 year: 2015 ident: 10.1016/j.carbpol.2019.01.020_bib0060 article-title: Biomedical applications of hydrogels: A review of patents and commercial products publication-title: European Polymer Journal doi: 10.1016/j.eurpolymj.2014.11.024 – volume: 50 start-page: 5438 issue: 24 year: 2011 ident: 10.1016/j.carbpol.2019.01.020_bib0360 article-title: Nanocelluloses: A new family of nature-based materials publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.201001273 – volume: 1-2 start-page: 22 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0480 article-title: 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration publication-title: Bioprinting doi: 10.1016/j.bprint.2016.08.003 – volume: 37 start-page: 20 year: 2014 ident: 10.1016/j.carbpol.2019.01.020_bib0125 article-title: Review of recent research in nano cellulose preparation from different lignocellulosic fibers publication-title: Reviews on advanced materials science – volume: 94 start-page: 736 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0195 article-title: Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization publication-title: Industrial Crops and Products doi: 10.1016/j.indcrop.2016.09.059 – volume: 8 start-page: 287 issue: 2 year: 2013 ident: 10.1016/j.carbpol.2019.01.020_bib0200 article-title: Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering publication-title: Nanomedition doi: 10.2217/nnm.12.211 – volume: 9 start-page: 1763 issue: 5 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0710 article-title: Recent progress in cellulose nanocrystals: Sources and production publication-title: Nanoscale doi: 10.1039/C6NR09494E – volume: 6 start-page: 2807 issue: 3 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0605 article-title: Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: A review publication-title: ACS Sustainable Chemistry & Engineering doi: 10.1021/acssuschemeng.7b03437 – volume: 6 start-page: 4497 issue: 25 year: 2015 ident: 10.1016/j.carbpol.2019.01.020_bib0305 article-title: Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers publication-title: Polymer Chemistry doi: 10.1039/C5PY00263J – volume: 23 start-page: 2389 issue: 4 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0190 article-title: Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis publication-title: Cellulose doi: 10.1007/s10570-016-0963-5 – volume: 19 start-page: 4442 issue: 11 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0020 article-title: Biomimetic mineralization of three-dimensional printed alginate/TEMPO-oxidized cellulose nanofibril scaffolds for bone tissue engineering publication-title: Biomacromolecules doi: 10.1021/acs.biomac.8b01325 – volume: 25 start-page: 2151 issue: 4 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0350 article-title: Advances in cellulose nanomaterials publication-title: Cellulose doi: 10.1007/s10570-018-1723-5 – volume: 23 start-page: 1209 issue: 2 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0520 article-title: One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid publication-title: Cellulose doi: 10.1007/s10570-016-0864-7 – volume: 4 start-page: 237 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0285 article-title: Porous artificial bone scaffold synthesized from a facile in situ hydroxyapatite coating and crosslinking reaction of crystalline nanocellulose publication-title: Materialia doi: 10.1016/j.mtla.2018.09.008 – volume: 25 start-page: 259 issue: 1 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0650 article-title: Water resistant nanopapers prepared by lactic acid modified cellulose nanofibers publication-title: Cellulose doi: 10.1007/s10570-017-1540-2 – volume: 15 start-page: 2327 issue: 7 year: 2014 ident: 10.1016/j.carbpol.2019.01.020_bib0165 article-title: The potential of cellulose nanocrystals in tissue engineering strategies publication-title: Biomacromolecules doi: 10.1021/bm500524s – volume: 5 start-page: 2671 issue: 14 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0440 article-title: High internal phase emulsions stabilised by supramolecular cellulose nanocrystals and their application as cell-adhesive macroporous hydrogel monoliths publication-title: Journal of Materials Chemistry B doi: 10.1039/C7TB00145B – volume: 29 start-page: 4609 issue: 11 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0140 article-title: Review of hydrogels and aerogels containing nanocellulose publication-title: Chemistry of Materials doi: 10.1021/acs.chemmater.7b00531 – volume: 110 start-page: 415 year: 2014 ident: 10.1016/j.carbpol.2019.01.020_bib0400 article-title: A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2014.04.040 – volume: 132 start-page: 41719 issue: 14 year: 2015 ident: 10.1016/j.carbpol.2019.01.020_bib0330 article-title: Recent advances in nanocellulose for biomedical applications publication-title: Journal of Applied Polymer Science doi: 10.1002/app.41719 – volume: 3 start-page: 109 issue: 2 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0760 article-title: Mild oxalic-acid-catalyzed hydrolysis as a novel approach to prepare cellulose nanocrystals publication-title: ChemNanoMat doi: 10.1002/cnma.201600347 – volume: 16 start-page: 1489 issue: 5 year: 2015 ident: 10.1016/j.carbpol.2019.01.020_bib0475 article-title: 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b00188 – volume: 3 start-page: 71 issue: 1 year: 2011 ident: 10.1016/j.carbpol.2019.01.020_bib0310 article-title: TEMPO-oxidized cellulose nanofibers publication-title: Nanoscale doi: 10.1039/C0NR00583E – volume: 22 start-page: 935 issue: 2 year: 2015 ident: 10.1016/j.carbpol.2019.01.020_bib0325 article-title: Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: A review publication-title: Cellulose doi: 10.1007/s10570-015-0551-0 – volume: 205 start-page: 27 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0840 article-title: PHBV-graft-GMA via reactive extrusion and its use in PHBV/nanocellulose crystal composites publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2018.10.014 – volume: 102 start-page: 159 year: 2014 ident: 10.1016/j.carbpol.2019.01.020_bib0270 article-title: Thermal responsive hydrogels based on semi interpenetrating network of poly(NIPAm) and cellulose nanowhiskers publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2013.10.054 – volume: 39 start-page: 76 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0015 article-title: Nanocellulose, a tiny fiber with huge applications publication-title: Current Opinion in Biotechnology doi: 10.1016/j.copbio.2016.01.002 – volume: 151 start-page: 716 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0445 article-title: Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2016.06.025 – volume: 16 start-page: 2455 issue: 8 year: 2015 ident: 10.1016/j.carbpol.2019.01.020_bib0090 article-title: Ion-mediated gelation of aqueous suspensions of cellulose nanocrystals publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b00701 – volume: 11 start-page: 5148 issue: 5 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0525 article-title: Ultrastrong and bioactive nanostructured bio-based composites publication-title: ACS Nano doi: 10.1021/acsnano.7b02305 – volume: 20 start-page: 2428 issue: 11 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0545 article-title: Nanocellulose nanocomposite hydrogels: Technological and environmental issues publication-title: Green Chemistry doi: 10.1039/C8GC00205C – volume: 6 start-page: 18502 issue: 21 year: 2014 ident: 10.1016/j.carbpol.2019.01.020_bib0825 article-title: Metal cation cross-linked nanocellulose hydrogels as tissue engineering substrates publication-title: ACS Applied Materials & Interfaces doi: 10.1021/am506007z – start-page: 295 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0225 article-title: Biomedical applications of polysaccharide and protein based aerogels – volume: 22 start-page: 1147 issue: 2 year: 2015 ident: 10.1016/j.carbpol.2019.01.020_bib0535 article-title: Repeated homogenization, a route for decreasing the energy consumption in the manufacturing process of carboxymethylated nanofibrillated cellulose? publication-title: Cellulose doi: 10.1007/s10570-015-0576-4 – volume: 6 start-page: 13021 issue: 27 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0730 article-title: Flexible cellulose nanopaper with high wet tensile strength, high toughness and tunable ultraviolet blocking ability fabricated from tobacco stalk via a sustainable method publication-title: Journal of Materials Chemistry A doi: 10.1039/C8TA01986J – volume: 53 start-page: 617 issue: 6 year: 2000 ident: 10.1016/j.carbpol.2019.01.020_bib0085 article-title: Tissue engineering: Challenges and opportunities publication-title: Journal of Biomedical Materials Research doi: 10.1002/1097-4636(2000)53:6<617::AID-JBM1>3.0.CO;2-C – volume: 7 start-page: 1687 issue: 6 year: 2006 ident: 10.1016/j.carbpol.2019.01.020_bib0635 article-title: Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose publication-title: Biomacromolecules doi: 10.1021/bm060154s – volume: 1 start-page: 3938 issue: 12 year: 2013 ident: 10.1016/j.carbpol.2019.01.020_bib0820 article-title: Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions publication-title: Journal of Materials Chemistry A doi: 10.1039/c3ta01150j – volume: 118 start-page: 545 issue: 4 year: 1996 ident: 10.1016/j.carbpol.2019.01.020_bib0120 article-title: Fracture of articular cartilage publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.2796042 – volume: 18 start-page: 53 issue: 1 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0655 article-title: Hydrogels based on cellulose and chitin: Fabrication, properties, and applications publication-title: Green Chemistry doi: 10.1039/C5GC02396C – volume: 5 start-page: 31 issue: 1 year: 2015 ident: 10.1016/j.carbpol.2019.01.020_bib0405 article-title: A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications publication-title: Bioactive Carbohydrates and Dietary Fibre doi: 10.1016/j.bcdf.2014.12.001 – volume: 55 start-page: 14455 issue: 46 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0370 article-title: Degradation and crystallization of cellulose in hydrogen chloride vapor for high-yield isolation of cellulose nanocrystals publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.201606626 – volume: 21 start-page: 541 issue: 1 year: 2014 ident: 10.1016/j.carbpol.2019.01.020_bib0815 article-title: Tough nanocomposite hydrogels from cellulose nanocrystals/poly (acrylamide) clusters: Influence of the charge density, aspect ratio and surface coating with PEG publication-title: Cellulose doi: 10.1007/s10570-013-0111-4 – volume: 75 start-page: 346 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0295 article-title: Polyion complex hydrogels from chemically modified cellulose nanofibrils: Structure-function relationship and potential for controlled and pH-responsive release of doxorubicin publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2018.06.013 – volume: 82 start-page: 208 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0515 article-title: Human stem cell decorated nanocellulose threads for biomedical applications publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.12.020 – volume: 17 start-page: 6487 issue: 10 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0145 article-title: Injectable anisotropic nanocomposite hydrogels direct in situ growth and alignment of myotubes publication-title: Nano Letters doi: 10.1021/acs.nanolett.7b03600 – volume: 244 start-page: 292 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0255 article-title: Nanofibrillar cellulose wound dressing in skin graft donor site treatment publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2016.07.053 – volume: 8 start-page: 6880 issue: 11 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0395 article-title: Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs codelivery publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.6b00555 – volume: 199 start-page: 445 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0265 article-title: Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2018.06.114 – volume: 188 start-page: 27 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0455 article-title: A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2018.01.093 – volume: 6 start-page: 13924 issue: 11 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0835 article-title: A pH-responsive gel macrosphere based on sodium alginate and cellulose nanofiber for potential intestinal delivery of probiotics publication-title: ACS Sustainable Chemistry & Engineering doi: 10.1021/acssuschemeng.8b02237 – volume: 30 start-page: 1797 issue: 11 year: 2015 ident: 10.1016/j.carbpol.2019.01.020_bib0100 article-title: Responsiveness, swelling, and mechanical properties of PNIPA nanocomposite hydrogels reinforced by nanocellulose publication-title: Journal of Materials Research doi: 10.1557/jmr.2015.94 – volume: 87 start-page: 197 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0345 article-title: Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites publication-title: Progress in Polymer Science doi: 10.1016/j.progpolymsci.2018.07.008 – volume: 185 start-page: 117 year: 1960 ident: 10.1016/j.carbpol.2019.01.020_bib0750 article-title: Hydrophilic gels for biological use publication-title: Nature doi: 10.1038/185117a0 – volume: 8 start-page: 217 issue: 3 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0335 article-title: A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings publication-title: Journal of Advanced Research doi: 10.1016/j.jare.2017.01.005 – volume: 55 start-page: 5966 issue: 20 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0720 article-title: Bioinspired mechanical gradients in cellulose nanofibril/polymer nanopapers publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.201511512 – start-page: e1801934 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0365 article-title: Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels publication-title: Advanced Materials doi: 10.1002/adma.201801934 – volume: 53 start-page: 11883 issue: 16 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0320 article-title: Dialdehyde cellulose nanocrystal/gelatin hydrogel optimized for 3D printing applications publication-title: Journal of Materials Science doi: 10.1007/s10853-018-2407-0 – volume: 28 start-page: 3406 issue: 10 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0095 article-title: Composite hydrogels with tunable anisotropic morphologies and mechanical properties publication-title: Chemistry of Materials doi: 10.1021/acs.chemmater.6b00792 – volume: 24 start-page: 3243 issue: 8 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0115 article-title: Facile one-step extraction and oxidative carboxylation of cellulose nanocrystals through hydrothermal reaction by using mixed inorganic acids publication-title: Cellulose doi: 10.1007/s10570-017-1339-1 – volume: 6 start-page: 105 issue: 2 year: 2015 ident: 10.1016/j.carbpol.2019.01.020_bib0035 article-title: Hydrogel: Preparation, characterization, and applications: A review publication-title: Journal of Advanced Research doi: 10.1016/j.jare.2013.07.006 – volume: 18 start-page: 3835 issue: 13 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0105 article-title: Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids publication-title: Green Chemistry doi: 10.1039/C6GC00687F – volume: 49 start-page: 1993 issue: 8 year: 2008 ident: 10.1016/j.carbpol.2019.01.020_bib0275 article-title: Hydrogels in drug delivery: Progress and challenges publication-title: Polymer doi: 10.1016/j.polymer.2008.01.027 – volume: 48 start-page: 1231 issue: 4 year: 2015 ident: 10.1016/j.carbpol.2019.01.020_bib0810 article-title: Design of cellulose nanocrystals template-assisted composite hydrogels: Insights from static to dynamic alignment publication-title: Macromolecules doi: 10.1021/ma5026175 – volume: 2 start-page: 29 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0680 article-title: 3D printing of nano-cellulosic biomaterials for medical applications publication-title: Current Opinion in Biomedical Engineering doi: 10.1016/j.cobme.2017.06.002 – volume: 24 start-page: 4785 issue: 11 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0155 article-title: Isolation and characterization of cellulose nanocrystals from cloth hairs and evaluation of their compatibility with PLLA publication-title: Cellulose doi: 10.1007/s10570-017-1461-0 – year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0355 article-title: Chitosan-based polymer matrix for pharmaceutical excipients and drug delivery publication-title: Current Medicinal Chemistry doi: 10.2174/0929867325666180927100817 – volume: 536 start-page: 73 issue: 1 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0030 article-title: Nanoparticle-loaded hydrogels as a pathway for enzyme-triggered drug release in ophthalmic applications publication-title: International Journal of Pharmaceutics doi: 10.1016/j.ijpharm.2017.11.053 – volume: 135 start-page: 239 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0620 article-title: Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2015.09.002 – volume: 134 start-page: 609 year: 2015 ident: 10.1016/j.carbpol.2019.01.020_bib0025 article-title: Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2015.07.079 – volume: 174 start-page: 299 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0045 article-title: On the use of ion-crosslinked nanocellulose hydrogels for wound healing solutions: Physicochemical properties and application-oriented biocompatibility studies publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2017.06.073 – volume: 88 start-page: 373 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0245 article-title: A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations publication-title: European Polymer Journal doi: 10.1016/j.eurpolymj.2017.01.027 – volume: 44 start-page: 8990 issue: 22 year: 2011 ident: 10.1016/j.carbpol.2019.01.020_bib0715 article-title: Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions publication-title: Macromolecules doi: 10.1021/ma201649f – volume: 9 start-page: 34314 issue: 39 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0580 article-title: 3D printing of photocurable cellulose nanocrystal composite for fabrication of complex architectures via stereolithography publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.7b09223 – volume: 10 start-page: 162 issue: 1 year: 2009 ident: 10.1016/j.carbpol.2019.01.020_bib0215 article-title: Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation publication-title: Biomacromolecules doi: 10.1021/bm801065u – volume: 82 start-page: 149 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0615 article-title: An environmentally friendly xylanase-assisted pretreatment for cellulose nanofibrils isolation from sugarcane bagasse by high-pressure homogenization publication-title: Industrial Crops and Products doi: 10.1016/j.indcrop.2015.11.064 – volume: 6 start-page: 7764 issue: 14 year: 2014 ident: 10.1016/j.carbpol.2019.01.020_bib0205 article-title: Surface modification of cellulose nanocrystals publication-title: Nanoscale doi: 10.1039/C4NR01756K – volume: 6 start-page: 5663 issue: 5 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0765 article-title: Three-dimensional printing of wood-derived biopolymers: A review focused on biomedical applications publication-title: ACS Sustainable Chemistry & Engineering doi: 10.1021/acssuschemeng.7b03924 – volume: 19 start-page: 855 issue: 3 year: 2012 ident: 10.1016/j.carbpol.2019.01.020_bib0340 article-title: Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers publication-title: Cellulose doi: 10.1007/s10570-012-9684-6 – volume: 27 start-page: 2989 issue: 19 year: 2015 ident: 10.1016/j.carbpol.2019.01.020_bib0695 article-title: Bioactive gyroid scaffolds formed by sacrificial templating of nanocellulose and nanochitin hydrogels as instructive platforms for biomimetic tissue engineering publication-title: Advanced Materials doi: 10.1002/adma.201405873 – volume: 5 start-page: 7623 issue: 9 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0430 article-title: Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields publication-title: ACS Sustainable Chemistry & Engineering doi: 10.1021/acssuschemeng.7b00954 – volume: 25 start-page: 485 issue: 1 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0490 article-title: Dual-responsive composite hydrogels based on TEMPO-oxidized cellulose nanofibril and poly (N-isopropylacrylamide) for model drug release publication-title: Cellulose doi: 10.1007/s10570-017-1585-2 – volume: 1 start-page: 1001 issue: 8 year: 2012 ident: 10.1016/j.carbpol.2019.01.020_bib0745 article-title: pH-responsive cellulose nanocrystal gels and nanocomposites publication-title: ACS Macro Letters doi: 10.1021/mz3003006 – volume: 47 start-page: 4077 issue: 12 year: 2014 ident: 10.1016/j.carbpol.2019.01.020_bib0800 article-title: Cellulose nanocrystals mechanical reinforcement in composite hydrogels with multiple cross-Links: Correlations between dissipation properties and deformation mechanisms publication-title: Macromolecules doi: 10.1021/ma500729q – volume: 6 start-page: 5934 issue: 11 year: 2014 ident: 10.1016/j.carbpol.2019.01.020_bib0795 article-title: Simple approach to reinforce hydrogels with cellulose nanocrystals publication-title: Nanoscale doi: 10.1039/c4nr01214c – volume: 48 start-page: 454 issue: 3 year: 2012 ident: 10.1016/j.carbpol.2019.01.020_bib0670 article-title: Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers publication-title: European Polymer Journal doi: 10.1016/j.eurpolymj.2011.12.005 – volume: 93 start-page: 789 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0705 article-title: Microcrystalline cellulose: Isolation, characterization and bio-composites application-A review publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2016.09.056 – volume: 95 start-page: 760 issue: 2 year: 2013 ident: 10.1016/j.carbpol.2019.01.020_bib0175 article-title: Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2013.03.041 – volume: 14 start-page: 765 issue: 2 year: 2014 ident: 10.1016/j.carbpol.2019.01.020_bib0210 article-title: Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells publication-title: Nano Letters doi: 10.1021/nl404101p – volume: 24 start-page: 2153 issue: 5 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0690 article-title: Cellulose nanocrystals prepared in H3PW12O40-acetic acid system publication-title: Cellulose doi: 10.1007/s10570-017-1256-3 – volume: 116 start-page: 9305 issue: 16 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0850 article-title: Wood-derived materials for green electronics, biological devices, and energy applications publication-title: Chemical Reviews doi: 10.1021/acs.chemrev.6b00225 – volume: 25 start-page: 2861 issue: 5 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0235 article-title: Water retention value for characterizing fibrillation degree of cellulosic fibers at micro and nanometer scales publication-title: Cellulose doi: 10.1007/s10570-018-1765-8 – volume: 181 start-page: 345 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0050 article-title: Ion-crosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties: Candidate materials for advanced wound care applications publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2017.10.085 – volume: 46 start-page: 7344 issue: 22 year: 2011 ident: 10.1016/j.carbpol.2019.01.020_bib0610 article-title: Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface publication-title: Journal of Materials Science doi: 10.1007/s10853-011-5696-0 – volume: 5 start-page: 1988 issue: 10 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0595 article-title: Nanocellulosic materials as bioinks for 3D bioprinting publication-title: Biomaterials Science doi: 10.1039/C7BM00510E – volume: 57 start-page: 2353 issue: 9 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0725 article-title: All-in-one cellulose nanocrystals for 3D printing of nanocomposite hydrogels publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.201710951 – volume: 5 start-page: 17014 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0460 article-title: Injectable hydrogels for cartilage and bone tissue engineering publication-title: Bone Research doi: 10.1038/boneres.2017.14 – volume: 9 start-page: 40878 issue: 46 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0470 article-title: Biomimetic inks based on cellulose nanofibrils and cross-linkable xylans for 3D Printing publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.7b13400 – volume: 9 start-page: 14758 issue: 39 year: 2017 ident: 10.1016/j.carbpol.2019.01.020_bib0775 article-title: Nanocellulose as a sustainable biomass material: Structure, properties, present status and future prospects in biomedical applications publication-title: Nanoscale doi: 10.1039/C7NR04994C – volume: 5 start-page: 201 issue: 2 year: 2018 ident: 10.1016/j.carbpol.2019.01.020_bib0700 article-title: Nanocellulose as a promising sustainable material for biomedical applications publication-title: AIMS Materials Science doi: 10.3934/matersci.2018.2.201 – volume: 83 start-page: 2 year: 2016 ident: 10.1016/j.carbpol.2019.01.020_bib0565 article-title: Review of the recent developments in cellulose nanocomposite processing publication-title: Composites Part A: Applied Science and Manufacturing doi: 10.1016/j.compositesa.2015.10.041 |
SSID | ssj0000610 |
Score | 2.700781 |
SecondaryResourceType | review_article |
Snippet | •Preparation of CNCs and CNFs was briefly introduced.•Fabrication of CNCs and CNFs based hydrogels was elaborated.•Emerging methods such as 3D printing were... The production of cellulose nanomaterials from lignocellulosic biomass opens an opportunity for the development and application of new materials in... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 130 |
SubjectTerms | biocompatibility biodegradability biomass Biomedical applications cellulose Cellulose nanocrystals (CNCs) cellulose nanofibers Cellulose nanofibrils (CNFs) Cellulose nanomaterials drugs Hydrogel hydrogels lignocellulose Nanocellulose nanocrystals tissue engineering toxicity |
Title | Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications |
URI | https://dx.doi.org/10.1016/j.carbpol.2019.01.020 https://www.ncbi.nlm.nih.gov/pubmed/30732792 https://www.proquest.com/docview/2221048965 https://www.proquest.com/docview/2229094351 |
Volume | 209 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-QwDI4QHOCyWp47y0NB2muZJE3S9ohGoAEEJ5A4rBRl8uChqh3N48CF3449bXkcAIljG1uybNf-0tgOIf-8EE4ocF4heIpDtYskt44nWnLmslgARMVfA5dXengjz2_V7RIZdL0wWFbZxv4mpi-idfum32qzP3546GNZkswhAQMEQdCDHeVSZujlR8_8XTReTCRA4gSp37p4-o-wBZyMxjWeQPCimd7JPstPn-HPRR46_U1-tQCSHjcyrpOlUG2Q1UF3b9sm-T8IZTkv62mgla1qN3kCAFhOqa08dR-WIpb7wwpmMk_vn_ykvgNRKOBY2rTlowXp-zPuLXJzenI9GCbtHQqJU0zMkhhd0MoD6pIs9xK-UCEjt5yHjBVBOQAE0SrpNNgsY04WItdpZMxB2ONCx3SbLFd1Ff4QmjoftM0AYlkvi1yPrNWRe8_DSKeOqx6RneaMaweM4z0XpekqyR5Nq3CDCjeMG1B4jxy9so2bCRvfMeSdWcwHVzGQBb5jPezMaMAqqHRbhXo-NQCTYGOaF1p9SVNgIabiPbLT-MCrxBgqcRbj358Lt0vW8KkpC9ojy7PJPOwD4pmNDhYufUBWjs8uhlcvTvsAeQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5UAvVemLhZa6Uq_p2o7tJEe0KlpeewKJQyXLazstKEpW-zjw7zuzSSgcKBLX2CONZsYzn-PxZ4DvQUovNQavlCIlUu0iyZ0XiVGC-6wsEKLSr4GLqZlcqdNrfb0F4_4uDLVVdrm_zembbN19GXXWHM1vbkbUlqRyLMAIQQj0ZK9gm9ip9AC2j07OJtMHCXlDSkDzExL4d5FndIu7wMVs3tAhhChaAk_-VIl6CoJuStHxW3jTYUh21Kq5C1uxfgc74_7ptvfwaxyral01y8hqVzd-cYcYsFoyVwfmHw2V1PGPI1TMAvtzFxbNb1SFIZRl7c18ciJ7eMz9Aa6Of16OJ0n3jELiNZerpCx9NDog8FI8DwoXqVSlcELEjBdRe8QEpdPKG3Rbxr0qZG7SknOPmU9IU6YfYVA3ddwDlvoQjcsQZbmgitzMnDOlCEHEmUm90ENQveWs7zjG6amLyvbNZLe2M7glg1suLBp8CD_uxeYtycZzAnnvFvsoWiwWgudEv_VutOgVMrqrY7NeWkRKuDfNC6P_O6egXkwthvCpjYF7jSlbEh3j_suV-wo7k8uLc3t-Mj07gNc00nYJfYbBarGOXxAArWaHXYD_BQ74Ayo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cellulose+nanocrystals+and+cellulose+nanofibrils+based+hydrogels+for+biomedical+applications&rft.jtitle=Carbohydrate+polymers&rft.au=Du%2C+Haishun&rft.au=Liu%2C+Wei&rft.au=Zhang%2C+Miaomiao&rft.au=Si%2C+Chuanling&rft.date=2019-04-01&rft.issn=1879-1344&rft.eissn=1879-1344&rft.volume=209&rft.spage=130&rft_id=info:doi/10.1016%2Fj.carbpol.2019.01.020&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8617&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8617&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8617&client=summon |