Transformer fusion-based scale-aware attention network for multispectral victim detection

The aftermath of a natural disaster leaves victims trapped in rubble which is challenging to detect by smart drones due to the victims in low visibility under the adverse disaster environments and victims in various sizes. To overcome the above challenges, a transformer fusion-based scale-aware atte...

Full description

Saved in:
Bibliographic Details
Published inComplex & intelligent systems Vol. 10; no. 5; pp. 6619 - 6632
Main Authors Chen, Yunfan, Li, Yuting, Zheng, Wenqi, Wan, Xiangkui
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2024
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The aftermath of a natural disaster leaves victims trapped in rubble which is challenging to detect by smart drones due to the victims in low visibility under the adverse disaster environments and victims in various sizes. To overcome the above challenges, a transformer fusion-based scale-aware attention network (TFSANet) is proposed to overcome adverse environmental impacts in disaster areas by robustly integrating the latent interactions between RGB and thermal images and to address the problem of various-sized victim detection. Firstly, a transformer fusion model is developed to incorporate a two-stream backbone network to effectively fuse the complementary characteristics between RGB and thermal images. This aims to solve the problem that the victims cannot be seen clearly due to the adverse disaster area, such as smog and heavy rain. In addition, a scale-aware attention mechanism is designed to be embedded into the head network to adaptively adjust the size of receptive fields aiming to capture victims with different scales. Extensive experiments on two challenging datasets indicate that our TFSANet achieves superior results. The proposed method achieves 86.56% average precision (AP) on the National Institute of Informatics—Chiba University (NII-CU) multispectral aerial person detection dataset, outperforming the state-of-the-art approach by 4.38%. On the drone-captured RGBT person detection (RGBTDronePerson) dataset, the proposed method significantly improves the AP of the state-of-the-art approach by 4.33%.
AbstractList The aftermath of a natural disaster leaves victims trapped in rubble which is challenging to detect by smart drones due to the victims in low visibility under the adverse disaster environments and victims in various sizes. To overcome the above challenges, a transformer fusion-based scale-aware attention network (TFSANet) is proposed to overcome adverse environmental impacts in disaster areas by robustly integrating the latent interactions between RGB and thermal images and to address the problem of various-sized victim detection. Firstly, a transformer fusion model is developed to incorporate a two-stream backbone network to effectively fuse the complementary characteristics between RGB and thermal images. This aims to solve the problem that the victims cannot be seen clearly due to the adverse disaster area, such as smog and heavy rain. In addition, a scale-aware attention mechanism is designed to be embedded into the head network to adaptively adjust the size of receptive fields aiming to capture victims with different scales. Extensive experiments on two challenging datasets indicate that our TFSANet achieves superior results. The proposed method achieves 86.56% average precision (AP) on the National Institute of Informatics—Chiba University (NII-CU) multispectral aerial person detection dataset, outperforming the state-of-the-art approach by 4.38%. On the drone-captured RGBT person detection (RGBTDronePerson) dataset, the proposed method significantly improves the AP of the state-of-the-art approach by 4.33%.
Abstract The aftermath of a natural disaster leaves victims trapped in rubble which is challenging to detect by smart drones due to the victims in low visibility under the adverse disaster environments and victims in various sizes. To overcome the above challenges, a transformer fusion-based scale-aware attention network (TFSANet) is proposed to overcome adverse environmental impacts in disaster areas by robustly integrating the latent interactions between RGB and thermal images and to address the problem of various-sized victim detection. Firstly, a transformer fusion model is developed to incorporate a two-stream backbone network to effectively fuse the complementary characteristics between RGB and thermal images. This aims to solve the problem that the victims cannot be seen clearly due to the adverse disaster area, such as smog and heavy rain. In addition, a scale-aware attention mechanism is designed to be embedded into the head network to adaptively adjust the size of receptive fields aiming to capture victims with different scales. Extensive experiments on two challenging datasets indicate that our TFSANet achieves superior results. The proposed method achieves 86.56% average precision (AP) on the National Institute of Informatics—Chiba University (NII-CU) multispectral aerial person detection dataset, outperforming the state-of-the-art approach by 4.38%. On the drone-captured RGBT person detection (RGBTDronePerson) dataset, the proposed method significantly improves the AP of the state-of-the-art approach by 4.33%.
Author Zheng, Wenqi
Li, Yuting
Chen, Yunfan
Wan, Xiangkui
Author_xml – sequence: 1
  givenname: Yunfan
  surname: Chen
  fullname: Chen, Yunfan
  organization: Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology
– sequence: 2
  givenname: Yuting
  surname: Li
  fullname: Li, Yuting
  organization: School of Computer Science, Hubei University of Technology
– sequence: 3
  givenname: Wenqi
  surname: Zheng
  fullname: Zheng, Wenqi
  organization: College of Computer Science and Technology, Harbin Engineering University, Modeling and Emulation in E-Government National Engineering Laboratory, Harbin Engineering University
– sequence: 4
  givenname: Xiangkui
  surname: Wan
  fullname: Wan, Xiangkui
  email: xkwan@hbut.edu.cn
  organization: Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology
BookMark eNp9kU9rHSEUxSWkkDTNF-hqoGsb_47OsoS2CQSySRZdyR3nGnydN76qr-F9-5o3DYUuslG5nt_h6HlPTpe0ICEfOfvMGTNXRTGjDGVCUcY11_RwQs4FHyztmZanx_NAlZb9GbksZcMY48ZYycQ5-fGQYSkh5S3mLuxLTAsdoeDUFQ8zUniGjB3Uikttd92C9Tnln10juu1-rrHs0NcMc_c7-hq33YS1DZr0A3kXYC54-Xe_II_fvj5c39C7---311_uqNdMVBqCZhAG1dvJcj1KK6YJLIAVownejJxPstfK6l6YXo0-DEx4qbQ1oBRaIy_I7eo7Jdi4XY5byAeXILrjIOUnB7lGP6Pj2lrLDPJBByX70cogA-Kkoa2jYM3r0-q1y-nXHkt1m7TPS4vvJGeq12IQtqnsqvI5lZIxOB8rvLy5fUScHWfupRe39uJaL-7Yizs0VPyHvgZ-E5IrVJp4ecL8L9Ub1B9ASaOX
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3550895
crossref_primary_10_3390_s25030772
crossref_primary_10_3390_biomimetics9090563
crossref_primary_10_3390_s25041027
Cites_doi 10.1016/j.compeleceng.2020.106697
10.1016/j.isprsjprs.2019.02.005
10.1038/s42256-020-00261-3
10.1007/s11063-022-10991-7
10.3390/s18072244
10.1002/rob.22082
10.1049/iet-cvi.2018.5315
10.1016/j.isprsjprs.2023.08.016
10.1016/j.epsr.2022.108975
10.1007/s10614-017-9716-2
10.1364/JOSAA.386410
10.3390/su13010090
10.1007/s42452-018-0049-0
10.1016/j.asoc.2023.110768
10.1016/j.patcog.2018.08.005
10.1049/stg2.12095
10.5244/C.30.73
10.1007/978-3-030-58523-5_46
10.1007/978-3-319-10602-1_48
10.1109/CVPR.2015.7298706
10.1109/WACV48630.2021.00012
10.23919/MVA51890.2021.9511366
10.1109/CVPR.2019.00075
10.1109/ICCV.2019.00523
10.1109/CVPR.2019.00060
10.1109/CVPR52688.2022.00098
10.1109/WACV51458.2022.00339
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/s40747-024-01515-y
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 2198-6053
EndPage 6632
ExternalDocumentID oai_doaj_org_article_1588807e195f436b83f3feed5afeeb20
10_1007_s40747_024_01515_y
GrantInformation_xml – fundername: Natural Science Foundation of Hubei Province
  grantid: 2023AFB424
  funderid: http://dx.doi.org/10.13039/501100003819
– fundername: Wuhan Knowledge Innovation Project
  grantid: 2022020801010258
GroupedDBID 0R~
8FE
8FG
AAJSJ
AAKKN
ABEEZ
ABFTD
ACACY
ACGFS
ACULB
ADINQ
ADMLS
AFGXO
AFKRA
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
BAPOH
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
M~E
OK1
P62
PIMPY
PROAC
RSV
SOJ
AASML
AAYXX
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c502t-ff50af9468d815b382dda8aa82b7fc7b11d36548562764bcf902c34587a44e873
IEDL.DBID DOA
ISSN 2199-4536
IngestDate Wed Aug 27 01:29:24 EDT 2025
Sat Jul 26 02:04:45 EDT 2025
Thu Apr 24 23:11:43 EDT 2025
Tue Jul 01 03:42:42 EDT 2025
Fri Feb 21 02:38:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Deep learning
Victim detection
Convolutional neural network
Smart drones
Multispectral images
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-ff50af9468d815b382dda8aa82b7fc7b11d36548562764bcf902c34587a44e873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/1588807e195f436b83f3feed5afeeb20
PQID 3104652928
PQPubID 2044308
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_1588807e195f436b83f3feed5afeeb20
proquest_journals_3104652928
crossref_citationtrail_10_1007_s40747_024_01515_y
crossref_primary_10_1007_s40747_024_01515_y
springer_journals_10_1007_s40747_024_01515_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Complex & intelligent systems
PublicationTitleAbbrev Complex Intell. Syst
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References Ghiasi, Niknam, Wang (CR18) 2023; 215
Cao, Guan, Wu (CR11) 2019; 150
Ghiasi, Wang, Mehrandezh (CR21) 2023; 6
Hu, Fu, Cao (CR16) 2023; 147
Ulloa, Garrido, Del Cerro (CR30) 2023; 4
CR38
CR15
CR37
CR14
CR36
CR35
CR12
CR34
CR33
CR10
CR32
CR31
Arnold, Yamaguchi, Tanaka (CR1) 2018; 3
Zuo, Wang, Liu (CR13) 2023; 55
Chen, Xie, Shin (CR5) 2018; 12
Dawdi, Abdalla, Elkalyoubi (CR27) 2020; 85
Wagner, Fischer, Herman (CR3) 2016; 587
Akbary, Ghiasi, Pourkheranjani (CR19) 2019; 53
CR2
Li, Song, Tong (CR6) 2019; 85
CR4
Chen, Shin (CR8) 2020; 37
CR7
CR29
CR9
CR25
De Oliveira, Wehrmeister (CR26) 2018; 18
CR22
Speth, Goncalves, Rigault (CR23) 2022; 39
Dehghani, Ghiasi, Niknam (CR17) 2020; 13
Schedl, Kurmi, Bimber (CR28) 2020; 2
Ghiasi, Ghadimi, Ahmadinia (CR20) 2019; 1
Zhang, Xu, Yang (CR24) 2023; 204
S Speth (1515_CR23) 2022; 39
W Hu (1515_CR16) 2023; 147
M Ghiasi (1515_CR18) 2023; 215
1515_CR7
1515_CR9
Y Zhang (1515_CR24) 2023; 204
DC Schedl (1515_CR28) 2020; 2
RD Arnold (1515_CR1) 2018; 3
1515_CR22
1515_CR2
1515_CR4
Y Cao (1515_CR11) 2019; 150
1515_CR29
1515_CR25
M Dehghani (1515_CR17) 2020; 13
P Akbary (1515_CR19) 2019; 53
Y Chen (1515_CR5) 2018; 12
J Wagner (1515_CR3) 2016; 587
DC De Oliveira (1515_CR26) 2018; 18
TM Dawdi (1515_CR27) 2020; 85
Y Chen (1515_CR8) 2020; 37
1515_CR31
1515_CR10
1515_CR32
M Ghiasi (1515_CR20) 2019; 1
1515_CR33
1515_CR12
1515_CR34
C Li (1515_CR6) 2019; 85
X Zuo (1515_CR13) 2023; 55
M Ghiasi (1515_CR21) 2023; 6
1515_CR35
1515_CR14
CC Ulloa (1515_CR30) 2023; 4
1515_CR36
1515_CR15
1515_CR37
1515_CR38
References_xml – volume: 85
  year: 2020
  ident: CR27
  article-title: Locating victims in hot environments using combined thermal and optical imaging
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2020.106697
– ident: CR22
– volume: 4
  issue: 1
  year: 2023
  ident: CR30
  article-title: Autonomous victim detection system based on deep learning and multispectral imagery
  publication-title: Mach Learn: Sci Technol
– ident: CR4
– volume: 150
  start-page: 70
  year: 2019
  end-page: 79
  ident: CR11
  article-title: Box-level segmentation supervised deep neural networks for accurate and real-time multispectral pedestrian detection
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2019.02.005
– ident: CR14
– ident: CR2
– ident: CR37
– ident: CR12
– volume: 2
  start-page: 783
  issue: 12
  year: 2020
  end-page: 790
  ident: CR28
  article-title: Search and rescue with airborne optical sectioning
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-020-00261-3
– ident: CR10
– ident: CR33
– ident: CR35
– ident: CR29
– volume: 55
  start-page: 2935
  issue: 3
  year: 2023
  end-page: 2952
  ident: CR13
  article-title: LGADet: light-weight anchor-free multispectral pedestrian detection with mixed local and global attention
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-022-10991-7
– ident: CR25
– volume: 18
  start-page: 2244
  issue: 7
  year: 2018
  ident: CR26
  article-title: Using deep learning and low-cost RGB and thermal cameras to detect pedestrians in aerial images captured by multirotor UAV
  publication-title: Sensors
  doi: 10.3390/s18072244
– volume: 39
  start-page: 840
  issue: 6
  year: 2022
  end-page: 868
  ident: CR23
  article-title: Deep learning with RGB and thermal images onboard a drone for monitoring operations
  publication-title: J Field Robot
  doi: 10.1002/rob.22082
– volume: 12
  start-page: 1179
  issue: 8
  year: 2018
  end-page: 1187
  ident: CR5
  article-title: Multi-layer fusion techniques using a CNN for multispectral pedestrian detection
  publication-title: IET Comput Vision
  doi: 10.1049/iet-cvi.2018.5315
– volume: 204
  start-page: 61
  year: 2023
  end-page: 76
  ident: CR24
  article-title: Drone-based RGBT tiny person detection
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2023.08.016
– ident: CR15
– ident: CR38
– volume: 215
  year: 2023
  ident: CR18
  article-title: A comprehensive review of cyber-attacks and defense mechanisms for improving security in smart grid energy systems: past, present and future
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2022.108975
– ident: CR31
– volume: 3
  start-page: 1
  issue: 1
  year: 2018
  end-page: 18
  ident: CR1
  article-title: Search and rescue with autonomous flying robots through behavior-based cooperative intelligence
  publication-title: J Int Hum Act
– ident: CR9
– volume: 587
  start-page: 509
  year: 2016
  end-page: 514
  ident: CR3
  article-title: Multispectral pedestrian detection using deep fusion convolutional neural networks
  publication-title: ESANN
– ident: CR32
– volume: 53
  start-page: 1
  year: 2019
  end-page: 26
  ident: CR19
  article-title: Extracting appropriate nodal marginal prices for all types of committed reserve
  publication-title: Comput Econ
  doi: 10.1007/s10614-017-9716-2
– ident: CR34
– ident: CR36
– volume: 37
  start-page: 768
  issue: 5
  year: 2020
  end-page: 779
  ident: CR8
  article-title: Multispectral image fusion based pedestrian detection using a multilayer fused deconvolutional single-shot detector
  publication-title: JOSA A
  doi: 10.1364/JOSAA.386410
– ident: CR7
– volume: 13
  start-page: 90
  issue: 1
  year: 2020
  ident: CR17
  article-title: Blockchain-based securing of data exchange in a power transmission system considering congestion management and social welfare
  publication-title: Sustainability
  doi: 10.3390/su13010090
– volume: 1
  start-page: 44
  issue: 1
  year: 2019
  ident: CR20
  article-title: An analytical methodology for reliability assessment and failure analysis in distributed power system
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-018-0049-0
– volume: 147
  year: 2023
  ident: CR16
  article-title: Joint dual-stream interaction and multi-scale feature extraction network for multi-spectral pedestrian detection
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2023.110768
– volume: 85
  start-page: 161
  year: 2019
  end-page: 171
  ident: CR6
  article-title: Illumination-aware faster R-CNN for robust multispectral pedestrian detection
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2018.08.005
– volume: 6
  start-page: 86
  issue: 1
  year: 2023
  end-page: 102
  ident: CR21
  article-title: Evolution of smart grids towards the Internet of energy: concept and essential components for deep decarbonisation
  publication-title: IET Smart Grid
  doi: 10.1049/stg2.12095
– volume: 587
  start-page: 509
  year: 2016
  ident: 1515_CR3
  publication-title: ESANN
– ident: 1515_CR4
  doi: 10.5244/C.30.73
– ident: 1515_CR22
– ident: 1515_CR7
  doi: 10.1007/978-3-030-58523-5_46
– ident: 1515_CR38
  doi: 10.1007/978-3-319-10602-1_48
– ident: 1515_CR2
  doi: 10.1109/CVPR.2015.7298706
– volume: 18
  start-page: 2244
  issue: 7
  year: 2018
  ident: 1515_CR26
  publication-title: Sensors
  doi: 10.3390/s18072244
– volume: 1
  start-page: 44
  issue: 1
  year: 2019
  ident: 1515_CR20
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-018-0049-0
– volume: 2
  start-page: 783
  issue: 12
  year: 2020
  ident: 1515_CR28
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-020-00261-3
– ident: 1515_CR9
  doi: 10.1109/WACV48630.2021.00012
– volume: 53
  start-page: 1
  year: 2019
  ident: 1515_CR19
  publication-title: Comput Econ
  doi: 10.1007/s10614-017-9716-2
– volume: 6
  start-page: 86
  issue: 1
  year: 2023
  ident: 1515_CR21
  publication-title: IET Smart Grid
  doi: 10.1049/stg2.12095
– ident: 1515_CR15
  doi: 10.23919/MVA51890.2021.9511366
– ident: 1515_CR36
  doi: 10.1109/CVPR.2019.00075
– volume: 12
  start-page: 1179
  issue: 8
  year: 2018
  ident: 1515_CR5
  publication-title: IET Comput Vision
  doi: 10.1049/iet-cvi.2018.5315
– volume: 3
  start-page: 1
  issue: 1
  year: 2018
  ident: 1515_CR1
  publication-title: J Int Hum Act
– ident: 1515_CR14
  doi: 10.1109/ICCV.2019.00523
– ident: 1515_CR34
– volume: 39
  start-page: 840
  issue: 6
  year: 2022
  ident: 1515_CR23
  publication-title: J Field Robot
  doi: 10.1002/rob.22082
– volume: 37
  start-page: 768
  issue: 5
  year: 2020
  ident: 1515_CR8
  publication-title: JOSA A
  doi: 10.1364/JOSAA.386410
– ident: 1515_CR35
  doi: 10.1109/CVPR.2019.00060
– volume: 147
  year: 2023
  ident: 1515_CR16
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2023.110768
– volume: 85
  year: 2020
  ident: 1515_CR27
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2020.106697
– ident: 1515_CR32
  doi: 10.1109/CVPR52688.2022.00098
– volume: 204
  start-page: 61
  year: 2023
  ident: 1515_CR24
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2023.08.016
– ident: 1515_CR31
– ident: 1515_CR10
– volume: 215
  year: 2023
  ident: 1515_CR18
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2022.108975
– ident: 1515_CR33
– volume: 13
  start-page: 90
  issue: 1
  year: 2020
  ident: 1515_CR17
  publication-title: Sustainability
  doi: 10.3390/su13010090
– ident: 1515_CR37
– ident: 1515_CR12
  doi: 10.1109/WACV51458.2022.00339
– volume: 150
  start-page: 70
  year: 2019
  ident: 1515_CR11
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2019.02.005
– ident: 1515_CR29
– volume: 4
  issue: 1
  year: 2023
  ident: 1515_CR30
  publication-title: Mach Learn: Sci Technol
– volume: 55
  start-page: 2935
  issue: 3
  year: 2023
  ident: 1515_CR13
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-022-10991-7
– ident: 1515_CR25
– volume: 85
  start-page: 161
  year: 2019
  ident: 1515_CR6
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2018.08.005
SSID ssj0001778302
ssib044733412
Score 2.2971575
Snippet The aftermath of a natural disaster leaves victims trapped in rubble which is challenging to detect by smart drones due to the victims in low visibility under...
Abstract The aftermath of a natural disaster leaves victims trapped in rubble which is challenging to detect by smart drones due to the victims in low...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6619
SubjectTerms Attention
Complexity
Computational Intelligence
Computer science
Convolutional neural network
Data Structures and Information Theory
Datasets
Deep learning
Disasters
Drone aircraft
Drones
Engineering
Evacuations & rescues
Intelligent systems
Low visibility
Multispectral images
Natural disasters
Neural networks
Original Article
Pedestrians
Smart drones
Smog
Thermal imaging
Transformers
Unmanned aerial vehicles
Victim detection
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PbxUhECb6etGDP6rGV6vh4E2J7AILnIw1bRqTNsa0ST0RWMCL3Vffe7Xpf98ZHrtNTexlD7uwu2EG5oOZ-YaQ9z7rwKPlLHKrmQwpw5TSmSH0MACYk-SYKHx03B2eym9n6qweuK1qWOW4JpaFOi56PCP_JNAZqVrbms8XfxhWjULvai2h8ZBswRJszIxs7e0ff_8xapSUWghZDXg5ddEaCa-w4lxjLZPFd7kz5dNJpJNnYLZghw2Gnl3fsVaF1P8OEv3HeVps0sEz8qSCSfplI_3n5EEatsnTsVADrfN2mzw-mshZVy_Iz5MRrEKbfInHZQyNWaQrEFhi_sovE0XezRIJSYdNpDiFHrTEH5bszCV8-C_mk5zTmNYloGt4SU4P9k--HrJaYYH1irdrlrPiPlvZmWgaFYRpY_TGe9MGnXsdmiYKLCwPIEl3MvTZ8rYXUhntpUxGi1dkNiyG9JrQDMgt9wXfKAB50uZkO3iRtzGHJuc5acaRdH2lH8cqGL_dRJxcRt_B6Lsy-u56Tj5MfS425Bv3tt5DAU0tkTi73Fgsf7k6D12jYMvPdWqsylJ0wYgsMuAE5eEaWj4nu6N4XZ3NK3ere3PycRT57eP__9LO_W97Qx61qGwlNnCXzNbLy_QWMM46vKuKfAMP6PZR
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PbxUhECZaL3po_BlfWw0Hb0qEBRY46otNY1JPbVJPBBbmpKt577Wm_70zvN2nbVITL5vsLrCbGch8MDPfMPYmgcuyBCmKDE6YXAGXlANB0MMjYK5GUqLw6Zf-5Nx8vrAXE00O5cLc8t-_XxtieBdoSXDTi7ZXXN9nD6zSjso0LPvlPHeMcVqbyVS38xXniNqKasupEIRpXsqDu4e9YZcaff8NzHnLTdqsz_Fjtj_BRv5hq-cn7F4dn7JHf5EJ4t3pjoF1_Yx9PZsRaV1xuKQzMUEWq_A1aqWK9CutKidyzRbuyMdtODjHHrwFGbYUzBV-84qSRr7zUjctamt8zs6PP50tT8RURkEMVnYbAWBlgmB6X7yyWfuulORT8l12MLisVNFUPR6RkOtNHiDIbtDGepeMqd7pF2xv_DHWl4wDwjMYGoixiORMgBp6HCiFAlkBLJiahRiHiWOcSl18izt25Cb4iIKPTfDxesHe7vr83DJs_LP1R9LNriWxY7cHOGnitNiisrivl66qYMHoPnsNGhAM2ITX3MkFO5o1G6clu46avN22C51fsHeztv-8vvuXDv6v-SF72NG8awGBR2xvs7qsrxDYbPLrNqN_A5Yd7Hs
  priority: 102
  providerName: Springer Nature
Title Transformer fusion-based scale-aware attention network for multispectral victim detection
URI https://link.springer.com/article/10.1007/s40747-024-01515-y
https://www.proquest.com/docview/3104652928
https://doaj.org/article/1588807e195f436b83f3feed5afeeb20
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXOCAKA-xpax86A0sEj9i-7hddalWaoWglcrJsmPPCVK0uwX13zN2sqFFgl56SSTHTqzxOPONPf6GkAMPOlTRVixWVjMZEuCU0sAy9DAImJOs8kHhk9Pm-FwuL9TFjVRfOSaspwfuBfehVuijVTrVVoEUTTACBOCPXXm8Bl68dbR5N5wp1CQptRByMNxltUXrTHSVM83V1jJZ9iz3xnN0MtPIMzRX6FmjgWfXt6xUIfO_hUD_2jQttmjxjDwdQCSd9Z3fJQ9S95w8ORkZWNcvyNezLSJNKwpXeU2MZYsV6RpHJTH_y68SzeSaJdyRdn04OMUWtAQZliOYK_zKz3xo5DuNaVOitrqX5HxxdDY_ZkMaBdaqim8YgKo8WNmYaGoVhOExeuO94UFDq0NdR5GzxyMS0o0MLdiKt0Iqo72UyWjxiux0l116TSggPIO2gBiFSE5aSLbBF3kbIdQAE1JvxebagWM8p7r45kZ25CJqh6J2RdTuekLejW1-9Awb_619mEdjrJnZsUsB6owbdMbdpTMTsr8dSzdM2bUTebdbccvNhLzfju-fx__u0t59dOkNecyz_pUwwX2ys1ldpbcIdzZhSh6axccpeTSbLb8s8X54dPrpM5bOuczXZj4tuv8bThb9ag
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeeBQQWwr4ACewSPxY2weEeC1b2u1pK5VTsGObC82W3S3V_il-I2NvkqpI9NZLDonjRDPjmc-eF8ALG5UrvCmoL4yiwoWIS0pFmqCHRsAcRJEShSeHw_GR-HosjzfgT5cLk8IqO52YFbWf1emM_A1PzkjJDNPvTn_R1DUqeVe7FhprsdgPq3Pcsi3e7n1C_r5kbPR5-nFM264CtJYFW9IYZWGjEUPtdSkd18x7q63VzKlYK1eWnqdm6ggM1FC4OpqC1VxIrawQQSuO896Am4KjJU-Z6aMvnfwKoTgXLVzIZzxKpfJaqb9daQwV2VO602fviVS8nqKRxP08wgq6umQbcwuBS7j3H1dttoCje3Cnha7k_VrW7sNGaLbhbtcWgrRaYhu2Jn0p2MUD-DbtoDGOiWfpcI4m0-nJAsUjUHtu54GkKp857pI067h0gm-QHO2Yc0Hn-OHfKXvlhPiwzOFjzUM4uhbKP4LNZtaEx0Ai4sRYZzQlEVIKE4MZ4kTW-OjKGAdQdpSs6rbYeeq58bPqyzRn6ldI_SpTv1oN4FX_zum61MeVoz8kBvUjU5nufGM2_1G1q74qpUb9qEJpZBR86DSPPCIqkRavjhUD2O3YW7W6Y1FdSPoAXncsv3j8_1_auXq253BrPJ0cVAd7h_tP4DZLgpejEndhczk_C08RXS3dsyzSBL5f9xr6C4sqMQg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcUHmpW1rwAU5gNfEjtg8c2i2rltKKQyuVk7FjmwukVTal2n_FT2TsTQJFKhKHXiIlsfMYjz2f7ZlvEHplo3SF1wXxhZaEuxChS8lIEvRQAJgDL1Kg8NFxtX_KP5yJsxX0c4iFyd7uw5bkMqYhsTQ13faFj9tj4BtPvO8E7AtMhcEik0XvVnkYFlcwaZu_O9iDFn5N6ez9yXSf9HkFSC0K2pEYRWGj5pXyqhSOKeq9VdYq6mSspStLz1I6dYAGsuKujrqgNeNCSct5UJLBc--guzAzKtN0b1pNBw3mXDLGe8CQV3mkTARbKcNdqTXhea904-bfuGYdcxKBa8j3r83abANna-hhD17xzlLbHqGV0DxGD_6gNISzo5EHdv4EfT4ZcHFocbxMK3Mk2U2P56Abgdgr2wacKD6z0yVulk7pGGrg7OqYA0FbeOePFLryHfvQZd-x5ik6vRWhP0OrzXkT1hGOABJjnaGUADzJdQy6ggdZ7aMrY5ygchCiqXum85Rw45sZOZqz4A0I3mTBm8UEvRnrXCx5Pv5Zeje1zVgycXTnC-ftV9N3eVMKBYOjDKUWkbPKKRZZBEgiLBwdLSZoc2hZ0w8cc8PSnrugmqoJeju09u_bN3_Sxv8Vf4nufdqbmY8Hx4fP0X2aVDB7KG6i1a69DFuAtDr3Iis3Rl9uuzf9Ao0EMQE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformer+fusion-based+scale-aware+attention+network+for+multispectral+victim+detection&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Yunfan+Chen&rft.au=Yuting+Li&rft.au=Wenqi+Zheng&rft.au=Xiangkui+Wan&rft.date=2024-10-01&rft.pub=Springer&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=10&rft.issue=5&rft.spage=6619&rft.epage=6632&rft_id=info:doi/10.1007%2Fs40747-024-01515-y&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1588807e195f436b83f3feed5afeeb20
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon