Transformer fusion-based scale-aware attention network for multispectral victim detection
The aftermath of a natural disaster leaves victims trapped in rubble which is challenging to detect by smart drones due to the victims in low visibility under the adverse disaster environments and victims in various sizes. To overcome the above challenges, a transformer fusion-based scale-aware atte...
Saved in:
Published in | Complex & intelligent systems Vol. 10; no. 5; pp. 6619 - 6632 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.10.2024
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The aftermath of a natural disaster leaves victims trapped in rubble which is challenging to detect by smart drones due to the victims in low visibility under the adverse disaster environments and victims in various sizes. To overcome the above challenges, a transformer fusion-based scale-aware attention network (TFSANet) is proposed to overcome adverse environmental impacts in disaster areas by robustly integrating the latent interactions between RGB and thermal images and to address the problem of various-sized victim detection. Firstly, a transformer fusion model is developed to incorporate a two-stream backbone network to effectively fuse the complementary characteristics between RGB and thermal images. This aims to solve the problem that the victims cannot be seen clearly due to the adverse disaster area, such as smog and heavy rain. In addition, a scale-aware attention mechanism is designed to be embedded into the head network to adaptively adjust the size of receptive fields aiming to capture victims with different scales. Extensive experiments on two challenging datasets indicate that our TFSANet achieves superior results. The proposed method achieves 86.56% average precision (AP) on the National Institute of Informatics—Chiba University (NII-CU) multispectral aerial person detection dataset, outperforming the state-of-the-art approach by 4.38%. On the drone-captured RGBT person detection (RGBTDronePerson) dataset, the proposed method significantly improves the AP of the state-of-the-art approach by 4.33%. |
---|---|
AbstractList | The aftermath of a natural disaster leaves victims trapped in rubble which is challenging to detect by smart drones due to the victims in low visibility under the adverse disaster environments and victims in various sizes. To overcome the above challenges, a transformer fusion-based scale-aware attention network (TFSANet) is proposed to overcome adverse environmental impacts in disaster areas by robustly integrating the latent interactions between RGB and thermal images and to address the problem of various-sized victim detection. Firstly, a transformer fusion model is developed to incorporate a two-stream backbone network to effectively fuse the complementary characteristics between RGB and thermal images. This aims to solve the problem that the victims cannot be seen clearly due to the adverse disaster area, such as smog and heavy rain. In addition, a scale-aware attention mechanism is designed to be embedded into the head network to adaptively adjust the size of receptive fields aiming to capture victims with different scales. Extensive experiments on two challenging datasets indicate that our TFSANet achieves superior results. The proposed method achieves 86.56% average precision (AP) on the National Institute of Informatics—Chiba University (NII-CU) multispectral aerial person detection dataset, outperforming the state-of-the-art approach by 4.38%. On the drone-captured RGBT person detection (RGBTDronePerson) dataset, the proposed method significantly improves the AP of the state-of-the-art approach by 4.33%. Abstract The aftermath of a natural disaster leaves victims trapped in rubble which is challenging to detect by smart drones due to the victims in low visibility under the adverse disaster environments and victims in various sizes. To overcome the above challenges, a transformer fusion-based scale-aware attention network (TFSANet) is proposed to overcome adverse environmental impacts in disaster areas by robustly integrating the latent interactions between RGB and thermal images and to address the problem of various-sized victim detection. Firstly, a transformer fusion model is developed to incorporate a two-stream backbone network to effectively fuse the complementary characteristics between RGB and thermal images. This aims to solve the problem that the victims cannot be seen clearly due to the adverse disaster area, such as smog and heavy rain. In addition, a scale-aware attention mechanism is designed to be embedded into the head network to adaptively adjust the size of receptive fields aiming to capture victims with different scales. Extensive experiments on two challenging datasets indicate that our TFSANet achieves superior results. The proposed method achieves 86.56% average precision (AP) on the National Institute of Informatics—Chiba University (NII-CU) multispectral aerial person detection dataset, outperforming the state-of-the-art approach by 4.38%. On the drone-captured RGBT person detection (RGBTDronePerson) dataset, the proposed method significantly improves the AP of the state-of-the-art approach by 4.33%. |
Author | Zheng, Wenqi Li, Yuting Chen, Yunfan Wan, Xiangkui |
Author_xml | – sequence: 1 givenname: Yunfan surname: Chen fullname: Chen, Yunfan organization: Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology – sequence: 2 givenname: Yuting surname: Li fullname: Li, Yuting organization: School of Computer Science, Hubei University of Technology – sequence: 3 givenname: Wenqi surname: Zheng fullname: Zheng, Wenqi organization: College of Computer Science and Technology, Harbin Engineering University, Modeling and Emulation in E-Government National Engineering Laboratory, Harbin Engineering University – sequence: 4 givenname: Xiangkui surname: Wan fullname: Wan, Xiangkui email: xkwan@hbut.edu.cn organization: Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology |
BookMark | eNp9kU9rHSEUxSWkkDTNF-hqoGsb_47OsoS2CQSySRZdyR3nGnydN76qr-F9-5o3DYUuslG5nt_h6HlPTpe0ICEfOfvMGTNXRTGjDGVCUcY11_RwQs4FHyztmZanx_NAlZb9GbksZcMY48ZYycQ5-fGQYSkh5S3mLuxLTAsdoeDUFQ8zUniGjB3Uikttd92C9Tnln10juu1-rrHs0NcMc_c7-hq33YS1DZr0A3kXYC54-Xe_II_fvj5c39C7---311_uqNdMVBqCZhAG1dvJcj1KK6YJLIAVownejJxPstfK6l6YXo0-DEx4qbQ1oBRaIy_I7eo7Jdi4XY5byAeXILrjIOUnB7lGP6Pj2lrLDPJBByX70cogA-Kkoa2jYM3r0-q1y-nXHkt1m7TPS4vvJGeq12IQtqnsqvI5lZIxOB8rvLy5fUScHWfupRe39uJaL-7Yizs0VPyHvgZ-E5IrVJp4ecL8L9Ub1B9ASaOX |
CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3550895 crossref_primary_10_3390_s25030772 crossref_primary_10_3390_biomimetics9090563 crossref_primary_10_3390_s25041027 |
Cites_doi | 10.1016/j.compeleceng.2020.106697 10.1016/j.isprsjprs.2019.02.005 10.1038/s42256-020-00261-3 10.1007/s11063-022-10991-7 10.3390/s18072244 10.1002/rob.22082 10.1049/iet-cvi.2018.5315 10.1016/j.isprsjprs.2023.08.016 10.1016/j.epsr.2022.108975 10.1007/s10614-017-9716-2 10.1364/JOSAA.386410 10.3390/su13010090 10.1007/s42452-018-0049-0 10.1016/j.asoc.2023.110768 10.1016/j.patcog.2018.08.005 10.1049/stg2.12095 10.5244/C.30.73 10.1007/978-3-030-58523-5_46 10.1007/978-3-319-10602-1_48 10.1109/CVPR.2015.7298706 10.1109/WACV48630.2021.00012 10.23919/MVA51890.2021.9511366 10.1109/CVPR.2019.00075 10.1109/ICCV.2019.00523 10.1109/CVPR.2019.00060 10.1109/CVPR52688.2022.00098 10.1109/WACV51458.2022.00339 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/s40747-024-01515-y |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Computer Science |
EISSN | 2198-6053 |
EndPage | 6632 |
ExternalDocumentID | oai_doaj_org_article_1588807e195f436b83f3feed5afeeb20 10_1007_s40747_024_01515_y |
GrantInformation_xml | – fundername: Natural Science Foundation of Hubei Province grantid: 2023AFB424 funderid: http://dx.doi.org/10.13039/501100003819 – fundername: Wuhan Knowledge Innovation Project grantid: 2022020801010258 |
GroupedDBID | 0R~ 8FE 8FG AAJSJ AAKKN ABEEZ ABFTD ACACY ACGFS ACULB ADINQ ADMLS AFGXO AFKRA AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF BAPOH BENPR BGLVJ C24 C6C CCPQU EBLON EBS EJD GROUPED_DOAJ HCIFZ IAO ISR ITC M~E OK1 P62 PIMPY PROAC RSV SOJ AASML AAYXX CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c502t-ff50af9468d815b382dda8aa82b7fc7b11d36548562764bcf902c34587a44e873 |
IEDL.DBID | DOA |
ISSN | 2199-4536 |
IngestDate | Wed Aug 27 01:29:24 EDT 2025 Sat Jul 26 02:04:45 EDT 2025 Thu Apr 24 23:11:43 EDT 2025 Tue Jul 01 03:42:42 EDT 2025 Fri Feb 21 02:38:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Deep learning Victim detection Convolutional neural network Smart drones Multispectral images |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-ff50af9468d815b382dda8aa82b7fc7b11d36548562764bcf902c34587a44e873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/1588807e195f436b83f3feed5afeeb20 |
PQID | 3104652928 |
PQPubID | 2044308 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1588807e195f436b83f3feed5afeeb20 proquest_journals_3104652928 crossref_citationtrail_10_1007_s40747_024_01515_y crossref_primary_10_1007_s40747_024_01515_y springer_journals_10_1007_s40747_024_01515_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Complex & intelligent systems |
PublicationTitleAbbrev | Complex Intell. Syst |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V Springer |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
References | Ghiasi, Niknam, Wang (CR18) 2023; 215 Cao, Guan, Wu (CR11) 2019; 150 Ghiasi, Wang, Mehrandezh (CR21) 2023; 6 Hu, Fu, Cao (CR16) 2023; 147 Ulloa, Garrido, Del Cerro (CR30) 2023; 4 CR38 CR15 CR37 CR14 CR36 CR35 CR12 CR34 CR33 CR10 CR32 CR31 Arnold, Yamaguchi, Tanaka (CR1) 2018; 3 Zuo, Wang, Liu (CR13) 2023; 55 Chen, Xie, Shin (CR5) 2018; 12 Dawdi, Abdalla, Elkalyoubi (CR27) 2020; 85 Wagner, Fischer, Herman (CR3) 2016; 587 Akbary, Ghiasi, Pourkheranjani (CR19) 2019; 53 CR2 Li, Song, Tong (CR6) 2019; 85 CR4 Chen, Shin (CR8) 2020; 37 CR7 CR29 CR9 CR25 De Oliveira, Wehrmeister (CR26) 2018; 18 CR22 Speth, Goncalves, Rigault (CR23) 2022; 39 Dehghani, Ghiasi, Niknam (CR17) 2020; 13 Schedl, Kurmi, Bimber (CR28) 2020; 2 Ghiasi, Ghadimi, Ahmadinia (CR20) 2019; 1 Zhang, Xu, Yang (CR24) 2023; 204 S Speth (1515_CR23) 2022; 39 W Hu (1515_CR16) 2023; 147 M Ghiasi (1515_CR18) 2023; 215 1515_CR7 1515_CR9 Y Zhang (1515_CR24) 2023; 204 DC Schedl (1515_CR28) 2020; 2 RD Arnold (1515_CR1) 2018; 3 1515_CR22 1515_CR2 1515_CR4 Y Cao (1515_CR11) 2019; 150 1515_CR29 1515_CR25 M Dehghani (1515_CR17) 2020; 13 P Akbary (1515_CR19) 2019; 53 Y Chen (1515_CR5) 2018; 12 J Wagner (1515_CR3) 2016; 587 DC De Oliveira (1515_CR26) 2018; 18 TM Dawdi (1515_CR27) 2020; 85 Y Chen (1515_CR8) 2020; 37 1515_CR31 1515_CR10 1515_CR32 M Ghiasi (1515_CR20) 2019; 1 1515_CR33 1515_CR12 1515_CR34 C Li (1515_CR6) 2019; 85 X Zuo (1515_CR13) 2023; 55 M Ghiasi (1515_CR21) 2023; 6 1515_CR35 1515_CR14 CC Ulloa (1515_CR30) 2023; 4 1515_CR36 1515_CR15 1515_CR37 1515_CR38 |
References_xml | – volume: 85 year: 2020 ident: CR27 article-title: Locating victims in hot environments using combined thermal and optical imaging publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2020.106697 – ident: CR22 – volume: 4 issue: 1 year: 2023 ident: CR30 article-title: Autonomous victim detection system based on deep learning and multispectral imagery publication-title: Mach Learn: Sci Technol – ident: CR4 – volume: 150 start-page: 70 year: 2019 end-page: 79 ident: CR11 article-title: Box-level segmentation supervised deep neural networks for accurate and real-time multispectral pedestrian detection publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2019.02.005 – ident: CR14 – ident: CR2 – ident: CR37 – ident: CR12 – volume: 2 start-page: 783 issue: 12 year: 2020 end-page: 790 ident: CR28 article-title: Search and rescue with airborne optical sectioning publication-title: Nat Mach Intell doi: 10.1038/s42256-020-00261-3 – ident: CR10 – ident: CR33 – ident: CR35 – ident: CR29 – volume: 55 start-page: 2935 issue: 3 year: 2023 end-page: 2952 ident: CR13 article-title: LGADet: light-weight anchor-free multispectral pedestrian detection with mixed local and global attention publication-title: Neural Process Lett doi: 10.1007/s11063-022-10991-7 – ident: CR25 – volume: 18 start-page: 2244 issue: 7 year: 2018 ident: CR26 article-title: Using deep learning and low-cost RGB and thermal cameras to detect pedestrians in aerial images captured by multirotor UAV publication-title: Sensors doi: 10.3390/s18072244 – volume: 39 start-page: 840 issue: 6 year: 2022 end-page: 868 ident: CR23 article-title: Deep learning with RGB and thermal images onboard a drone for monitoring operations publication-title: J Field Robot doi: 10.1002/rob.22082 – volume: 12 start-page: 1179 issue: 8 year: 2018 end-page: 1187 ident: CR5 article-title: Multi-layer fusion techniques using a CNN for multispectral pedestrian detection publication-title: IET Comput Vision doi: 10.1049/iet-cvi.2018.5315 – volume: 204 start-page: 61 year: 2023 end-page: 76 ident: CR24 article-title: Drone-based RGBT tiny person detection publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2023.08.016 – ident: CR15 – ident: CR38 – volume: 215 year: 2023 ident: CR18 article-title: A comprehensive review of cyber-attacks and defense mechanisms for improving security in smart grid energy systems: past, present and future publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2022.108975 – ident: CR31 – volume: 3 start-page: 1 issue: 1 year: 2018 end-page: 18 ident: CR1 article-title: Search and rescue with autonomous flying robots through behavior-based cooperative intelligence publication-title: J Int Hum Act – ident: CR9 – volume: 587 start-page: 509 year: 2016 end-page: 514 ident: CR3 article-title: Multispectral pedestrian detection using deep fusion convolutional neural networks publication-title: ESANN – ident: CR32 – volume: 53 start-page: 1 year: 2019 end-page: 26 ident: CR19 article-title: Extracting appropriate nodal marginal prices for all types of committed reserve publication-title: Comput Econ doi: 10.1007/s10614-017-9716-2 – ident: CR34 – ident: CR36 – volume: 37 start-page: 768 issue: 5 year: 2020 end-page: 779 ident: CR8 article-title: Multispectral image fusion based pedestrian detection using a multilayer fused deconvolutional single-shot detector publication-title: JOSA A doi: 10.1364/JOSAA.386410 – ident: CR7 – volume: 13 start-page: 90 issue: 1 year: 2020 ident: CR17 article-title: Blockchain-based securing of data exchange in a power transmission system considering congestion management and social welfare publication-title: Sustainability doi: 10.3390/su13010090 – volume: 1 start-page: 44 issue: 1 year: 2019 ident: CR20 article-title: An analytical methodology for reliability assessment and failure analysis in distributed power system publication-title: SN Appl Sci doi: 10.1007/s42452-018-0049-0 – volume: 147 year: 2023 ident: CR16 article-title: Joint dual-stream interaction and multi-scale feature extraction network for multi-spectral pedestrian detection publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2023.110768 – volume: 85 start-page: 161 year: 2019 end-page: 171 ident: CR6 article-title: Illumination-aware faster R-CNN for robust multispectral pedestrian detection publication-title: Pattern Recogn doi: 10.1016/j.patcog.2018.08.005 – volume: 6 start-page: 86 issue: 1 year: 2023 end-page: 102 ident: CR21 article-title: Evolution of smart grids towards the Internet of energy: concept and essential components for deep decarbonisation publication-title: IET Smart Grid doi: 10.1049/stg2.12095 – volume: 587 start-page: 509 year: 2016 ident: 1515_CR3 publication-title: ESANN – ident: 1515_CR4 doi: 10.5244/C.30.73 – ident: 1515_CR22 – ident: 1515_CR7 doi: 10.1007/978-3-030-58523-5_46 – ident: 1515_CR38 doi: 10.1007/978-3-319-10602-1_48 – ident: 1515_CR2 doi: 10.1109/CVPR.2015.7298706 – volume: 18 start-page: 2244 issue: 7 year: 2018 ident: 1515_CR26 publication-title: Sensors doi: 10.3390/s18072244 – volume: 1 start-page: 44 issue: 1 year: 2019 ident: 1515_CR20 publication-title: SN Appl Sci doi: 10.1007/s42452-018-0049-0 – volume: 2 start-page: 783 issue: 12 year: 2020 ident: 1515_CR28 publication-title: Nat Mach Intell doi: 10.1038/s42256-020-00261-3 – ident: 1515_CR9 doi: 10.1109/WACV48630.2021.00012 – volume: 53 start-page: 1 year: 2019 ident: 1515_CR19 publication-title: Comput Econ doi: 10.1007/s10614-017-9716-2 – volume: 6 start-page: 86 issue: 1 year: 2023 ident: 1515_CR21 publication-title: IET Smart Grid doi: 10.1049/stg2.12095 – ident: 1515_CR15 doi: 10.23919/MVA51890.2021.9511366 – ident: 1515_CR36 doi: 10.1109/CVPR.2019.00075 – volume: 12 start-page: 1179 issue: 8 year: 2018 ident: 1515_CR5 publication-title: IET Comput Vision doi: 10.1049/iet-cvi.2018.5315 – volume: 3 start-page: 1 issue: 1 year: 2018 ident: 1515_CR1 publication-title: J Int Hum Act – ident: 1515_CR14 doi: 10.1109/ICCV.2019.00523 – ident: 1515_CR34 – volume: 39 start-page: 840 issue: 6 year: 2022 ident: 1515_CR23 publication-title: J Field Robot doi: 10.1002/rob.22082 – volume: 37 start-page: 768 issue: 5 year: 2020 ident: 1515_CR8 publication-title: JOSA A doi: 10.1364/JOSAA.386410 – ident: 1515_CR35 doi: 10.1109/CVPR.2019.00060 – volume: 147 year: 2023 ident: 1515_CR16 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2023.110768 – volume: 85 year: 2020 ident: 1515_CR27 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2020.106697 – ident: 1515_CR32 doi: 10.1109/CVPR52688.2022.00098 – volume: 204 start-page: 61 year: 2023 ident: 1515_CR24 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2023.08.016 – ident: 1515_CR31 – ident: 1515_CR10 – volume: 215 year: 2023 ident: 1515_CR18 publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2022.108975 – ident: 1515_CR33 – volume: 13 start-page: 90 issue: 1 year: 2020 ident: 1515_CR17 publication-title: Sustainability doi: 10.3390/su13010090 – ident: 1515_CR37 – ident: 1515_CR12 doi: 10.1109/WACV51458.2022.00339 – volume: 150 start-page: 70 year: 2019 ident: 1515_CR11 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2019.02.005 – ident: 1515_CR29 – volume: 4 issue: 1 year: 2023 ident: 1515_CR30 publication-title: Mach Learn: Sci Technol – volume: 55 start-page: 2935 issue: 3 year: 2023 ident: 1515_CR13 publication-title: Neural Process Lett doi: 10.1007/s11063-022-10991-7 – ident: 1515_CR25 – volume: 85 start-page: 161 year: 2019 ident: 1515_CR6 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2018.08.005 |
SSID | ssj0001778302 ssib044733412 |
Score | 2.2971575 |
Snippet | The aftermath of a natural disaster leaves victims trapped in rubble which is challenging to detect by smart drones due to the victims in low visibility under... Abstract The aftermath of a natural disaster leaves victims trapped in rubble which is challenging to detect by smart drones due to the victims in low... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6619 |
SubjectTerms | Attention Complexity Computational Intelligence Computer science Convolutional neural network Data Structures and Information Theory Datasets Deep learning Disasters Drone aircraft Drones Engineering Evacuations & rescues Intelligent systems Low visibility Multispectral images Natural disasters Neural networks Original Article Pedestrians Smart drones Smog Thermal imaging Transformers Unmanned aerial vehicles Victim detection |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PbxUhECb6etGDP6rGV6vh4E2J7AILnIw1bRqTNsa0ST0RWMCL3Vffe7Xpf98ZHrtNTexlD7uwu2EG5oOZ-YaQ9z7rwKPlLHKrmQwpw5TSmSH0MACYk-SYKHx03B2eym9n6qweuK1qWOW4JpaFOi56PCP_JNAZqVrbms8XfxhWjULvai2h8ZBswRJszIxs7e0ff_8xapSUWghZDXg5ddEaCa-w4lxjLZPFd7kz5dNJpJNnYLZghw2Gnl3fsVaF1P8OEv3HeVps0sEz8qSCSfplI_3n5EEatsnTsVADrfN2mzw-mshZVy_Iz5MRrEKbfInHZQyNWaQrEFhi_sovE0XezRIJSYdNpDiFHrTEH5bszCV8-C_mk5zTmNYloGt4SU4P9k--HrJaYYH1irdrlrPiPlvZmWgaFYRpY_TGe9MGnXsdmiYKLCwPIEl3MvTZ8rYXUhntpUxGi1dkNiyG9JrQDMgt9wXfKAB50uZkO3iRtzGHJuc5acaRdH2lH8cqGL_dRJxcRt_B6Lsy-u56Tj5MfS425Bv3tt5DAU0tkTi73Fgsf7k6D12jYMvPdWqsylJ0wYgsMuAE5eEaWj4nu6N4XZ3NK3ere3PycRT57eP__9LO_W97Qx61qGwlNnCXzNbLy_QWMM46vKuKfAMP6PZR priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PbxUhECZaL3po_BlfWw0Hb0qEBRY46otNY1JPbVJPBBbmpKt577Wm_70zvN2nbVITL5vsLrCbGch8MDPfMPYmgcuyBCmKDE6YXAGXlANB0MMjYK5GUqLw6Zf-5Nx8vrAXE00O5cLc8t-_XxtieBdoSXDTi7ZXXN9nD6zSjso0LPvlPHeMcVqbyVS38xXniNqKasupEIRpXsqDu4e9YZcaff8NzHnLTdqsz_Fjtj_BRv5hq-cn7F4dn7JHf5EJ4t3pjoF1_Yx9PZsRaV1xuKQzMUEWq_A1aqWK9CutKidyzRbuyMdtODjHHrwFGbYUzBV-84qSRr7zUjctamt8zs6PP50tT8RURkEMVnYbAWBlgmB6X7yyWfuulORT8l12MLisVNFUPR6RkOtNHiDIbtDGepeMqd7pF2xv_DHWl4wDwjMYGoixiORMgBp6HCiFAlkBLJiahRiHiWOcSl18izt25Cb4iIKPTfDxesHe7vr83DJs_LP1R9LNriWxY7cHOGnitNiisrivl66qYMHoPnsNGhAM2ITX3MkFO5o1G6clu46avN22C51fsHeztv-8vvuXDv6v-SF72NG8awGBR2xvs7qsrxDYbPLrNqN_A5Yd7Hs priority: 102 providerName: Springer Nature |
Title | Transformer fusion-based scale-aware attention network for multispectral victim detection |
URI | https://link.springer.com/article/10.1007/s40747-024-01515-y https://www.proquest.com/docview/3104652928 https://doaj.org/article/1588807e195f436b83f3feed5afeeb20 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXOCAKA-xpax86A0sEj9i-7hddalWaoWglcrJsmPPCVK0uwX13zN2sqFFgl56SSTHTqzxOPONPf6GkAMPOlTRVixWVjMZEuCU0sAy9DAImJOs8kHhk9Pm-FwuL9TFjVRfOSaspwfuBfehVuijVTrVVoEUTTACBOCPXXm8Bl68dbR5N5wp1CQptRByMNxltUXrTHSVM83V1jJZ9iz3xnN0MtPIMzRX6FmjgWfXt6xUIfO_hUD_2jQttmjxjDwdQCSd9Z3fJQ9S95w8ORkZWNcvyNezLSJNKwpXeU2MZYsV6RpHJTH_y68SzeSaJdyRdn04OMUWtAQZliOYK_zKz3xo5DuNaVOitrqX5HxxdDY_ZkMaBdaqim8YgKo8WNmYaGoVhOExeuO94UFDq0NdR5GzxyMS0o0MLdiKt0Iqo72UyWjxiux0l116TSggPIO2gBiFSE5aSLbBF3kbIdQAE1JvxebagWM8p7r45kZ25CJqh6J2RdTuekLejW1-9Awb_619mEdjrJnZsUsB6owbdMbdpTMTsr8dSzdM2bUTebdbccvNhLzfju-fx__u0t59dOkNecyz_pUwwX2ys1ldpbcIdzZhSh6axccpeTSbLb8s8X54dPrpM5bOuczXZj4tuv8bThb9ag |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeeBQQWwr4ACewSPxY2weEeC1b2u1pK5VTsGObC82W3S3V_il-I2NvkqpI9NZLDonjRDPjmc-eF8ALG5UrvCmoL4yiwoWIS0pFmqCHRsAcRJEShSeHw_GR-HosjzfgT5cLk8IqO52YFbWf1emM_A1PzkjJDNPvTn_R1DUqeVe7FhprsdgPq3Pcsi3e7n1C_r5kbPR5-nFM264CtJYFW9IYZWGjEUPtdSkd18x7q63VzKlYK1eWnqdm6ggM1FC4OpqC1VxIrawQQSuO896Am4KjJU-Z6aMvnfwKoTgXLVzIZzxKpfJaqb9daQwV2VO602fviVS8nqKRxP08wgq6umQbcwuBS7j3H1dttoCje3Cnha7k_VrW7sNGaLbhbtcWgrRaYhu2Jn0p2MUD-DbtoDGOiWfpcI4m0-nJAsUjUHtu54GkKp857pI067h0gm-QHO2Yc0Hn-OHfKXvlhPiwzOFjzUM4uhbKP4LNZtaEx0Ai4sRYZzQlEVIKE4MZ4kTW-OjKGAdQdpSs6rbYeeq58bPqyzRn6ldI_SpTv1oN4FX_zum61MeVoz8kBvUjU5nufGM2_1G1q74qpUb9qEJpZBR86DSPPCIqkRavjhUD2O3YW7W6Y1FdSPoAXncsv3j8_1_auXq253BrPJ0cVAd7h_tP4DZLgpejEndhczk_C08RXS3dsyzSBL5f9xr6C4sqMQg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcUHmpW1rwAU5gNfEjtg8c2i2rltKKQyuVk7FjmwukVTal2n_FT2TsTQJFKhKHXiIlsfMYjz2f7ZlvEHplo3SF1wXxhZaEuxChS8lIEvRQAJgDL1Kg8NFxtX_KP5yJsxX0c4iFyd7uw5bkMqYhsTQ13faFj9tj4BtPvO8E7AtMhcEik0XvVnkYFlcwaZu_O9iDFn5N6ez9yXSf9HkFSC0K2pEYRWGj5pXyqhSOKeq9VdYq6mSspStLz1I6dYAGsuKujrqgNeNCSct5UJLBc--guzAzKtN0b1pNBw3mXDLGe8CQV3mkTARbKcNdqTXhea904-bfuGYdcxKBa8j3r83abANna-hhD17xzlLbHqGV0DxGD_6gNISzo5EHdv4EfT4ZcHFocbxMK3Mk2U2P56Abgdgr2wacKD6z0yVulk7pGGrg7OqYA0FbeOePFLryHfvQZd-x5ik6vRWhP0OrzXkT1hGOABJjnaGUADzJdQy6ggdZ7aMrY5ygchCiqXum85Rw45sZOZqz4A0I3mTBm8UEvRnrXCx5Pv5Zeje1zVgycXTnC-ftV9N3eVMKBYOjDKUWkbPKKRZZBEgiLBwdLSZoc2hZ0w8cc8PSnrugmqoJeju09u_bN3_Sxv8Vf4nufdqbmY8Hx4fP0X2aVDB7KG6i1a69DFuAtDr3Iis3Rl9uuzf9Ao0EMQE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformer+fusion-based+scale-aware+attention+network+for+multispectral+victim+detection&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Yunfan+Chen&rft.au=Yuting+Li&rft.au=Wenqi+Zheng&rft.au=Xiangkui+Wan&rft.date=2024-10-01&rft.pub=Springer&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=10&rft.issue=5&rft.spage=6619&rft.epage=6632&rft_id=info:doi/10.1007%2Fs40747-024-01515-y&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1588807e195f436b83f3feed5afeeb20 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon |