Androgen Receptor Signaling in the Development of Castration-Resistant Prostate Cancer

Most prostate cancers are androgen-sensitive malignancies whose growths depend on the transcriptional activity of the androgen receptor (AR). In the 1940s, Charles Huggins demonstrated that the surgical removal of testes in men can result in a dramatic improvement in symptoms and can induce prostate...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in oncology Vol. 9; p. 858
Main Authors Feng, Qin, He, Bin
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 04.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most prostate cancers are androgen-sensitive malignancies whose growths depend on the transcriptional activity of the androgen receptor (AR). In the 1940s, Charles Huggins demonstrated that the surgical removal of testes in men can result in a dramatic improvement in symptoms and can induce prostate cancer regression. Since then, androgen deprivation therapies have been the standard first-line treatment for advanced prostate cancer, including: surgical castration, medical castration, antiandrogens, and androgen biosynthesis inhibitors. These therapies relieve symptoms, reduce tumor burden, and prolong patient survival, while having relatively modest side effects. Unfortunately, hormone deprivation therapy rarely cures the cancer itself. Prostate cancer almost always recurs, resulting in deadly castration-resistant prostate cancer. The underlying escape mechanisms include androgen receptor gene/enhancer amplification, androgen receptor mutations, androgen receptor variants, coactivator overexpression, intratumoral de novo androgen synthesis, etc. Whereas, the majority of the castration-resistant prostate cancers continuously rely on the androgen axis, a subset of recurrent cancers have completely lost androgen receptor expression, undergone divergent clonal evolution or de-differentiation, and become truly androgen receptor-independent small-cell prostate cancers. There is an urgent need for the development of novel targeted and immune therapies for this subtype of prostate cancer, when more deadly small-cell prostate cancers are induced by thorough androgen deprivation and androgen receptor ablation.Most prostate cancers are androgen-sensitive malignancies whose growths depend on the transcriptional activity of the androgen receptor (AR). In the 1940s, Charles Huggins demonstrated that the surgical removal of testes in men can result in a dramatic improvement in symptoms and can induce prostate cancer regression. Since then, androgen deprivation therapies have been the standard first-line treatment for advanced prostate cancer, including: surgical castration, medical castration, antiandrogens, and androgen biosynthesis inhibitors. These therapies relieve symptoms, reduce tumor burden, and prolong patient survival, while having relatively modest side effects. Unfortunately, hormone deprivation therapy rarely cures the cancer itself. Prostate cancer almost always recurs, resulting in deadly castration-resistant prostate cancer. The underlying escape mechanisms include androgen receptor gene/enhancer amplification, androgen receptor mutations, androgen receptor variants, coactivator overexpression, intratumoral de novo androgen synthesis, etc. Whereas, the majority of the castration-resistant prostate cancers continuously rely on the androgen axis, a subset of recurrent cancers have completely lost androgen receptor expression, undergone divergent clonal evolution or de-differentiation, and become truly androgen receptor-independent small-cell prostate cancers. There is an urgent need for the development of novel targeted and immune therapies for this subtype of prostate cancer, when more deadly small-cell prostate cancers are induced by thorough androgen deprivation and androgen receptor ablation.
AbstractList Most prostate cancers are androgen-sensitive malignancies whose growths depend on the transcriptional activity of the androgen receptor (AR). In the 1940s, Charles Huggins demonstrated that the surgical removal of testes in men can result in a dramatic improvement in symptoms and can induce prostate cancer regression. Since then, androgen deprivation therapies have been the standard first-line treatment for advanced prostate cancer, including: surgical castration, medical castration, antiandrogens, and androgen biosynthesis inhibitors. These therapies relieve symptoms, reduce tumor burden, and prolong patient survival, while having relatively modest side effects. Unfortunately, hormone deprivation therapy rarely cures the cancer itself. Prostate cancer almost always recurs, resulting in deadly castration-resistant prostate cancer. The underlying escape mechanisms include androgen receptor gene/enhancer amplification, androgen receptor mutations, androgen receptor variants, coactivator overexpression, intratumoral de novo androgen synthesis, etc. Whereas, the majority of the castration-resistant prostate cancers continuously rely on the androgen axis, a subset of recurrent cancers have completely lost androgen receptor expression, undergone divergent clonal evolution or de-differentiation, and become truly androgen receptor-independent small-cell prostate cancers. There is an urgent need for the development of novel targeted and immune therapies for this subtype of prostate cancer, when more deadly small-cell prostate cancers are induced by thorough androgen deprivation and androgen receptor ablation.
Most prostate cancers are androgen-sensitive malignancies whose growths depend on the transcriptional activity of the androgen receptor (AR). In the 1940s, Charles Huggins demonstrated that the surgical removal of testes in men can result in a dramatic improvement in symptoms and can induce prostate cancer regression. Since then, androgen deprivation therapies have been the standard first-line treatment for advanced prostate cancer, including: surgical castration, medical castration, antiandrogens, and androgen biosynthesis inhibitors. These therapies relieve symptoms, reduce tumor burden, and prolong patient survival, while having relatively modest side effects. Unfortunately, hormone deprivation therapy rarely cures the cancer itself. Prostate cancer almost always recurs, resulting in deadly castration-resistant prostate cancer. The underlying escape mechanisms include androgen receptor gene/enhancer amplification, androgen receptor mutations, androgen receptor variants, coactivator overexpression, intratumoral de novo androgen synthesis, etc. Whereas, the majority of the castration-resistant prostate cancers continuously rely on the androgen axis, a subset of recurrent cancers have completely lost androgen receptor expression, undergone divergent clonal evolution or de-differentiation, and become truly androgen receptor-independent small-cell prostate cancers. There is an urgent need for the development of novel targeted and immune therapies for this subtype of prostate cancer, when more deadly small-cell prostate cancers are induced by thorough androgen deprivation and androgen receptor ablation.Most prostate cancers are androgen-sensitive malignancies whose growths depend on the transcriptional activity of the androgen receptor (AR). In the 1940s, Charles Huggins demonstrated that the surgical removal of testes in men can result in a dramatic improvement in symptoms and can induce prostate cancer regression. Since then, androgen deprivation therapies have been the standard first-line treatment for advanced prostate cancer, including: surgical castration, medical castration, antiandrogens, and androgen biosynthesis inhibitors. These therapies relieve symptoms, reduce tumor burden, and prolong patient survival, while having relatively modest side effects. Unfortunately, hormone deprivation therapy rarely cures the cancer itself. Prostate cancer almost always recurs, resulting in deadly castration-resistant prostate cancer. The underlying escape mechanisms include androgen receptor gene/enhancer amplification, androgen receptor mutations, androgen receptor variants, coactivator overexpression, intratumoral de novo androgen synthesis, etc. Whereas, the majority of the castration-resistant prostate cancers continuously rely on the androgen axis, a subset of recurrent cancers have completely lost androgen receptor expression, undergone divergent clonal evolution or de-differentiation, and become truly androgen receptor-independent small-cell prostate cancers. There is an urgent need for the development of novel targeted and immune therapies for this subtype of prostate cancer, when more deadly small-cell prostate cancers are induced by thorough androgen deprivation and androgen receptor ablation.
Most prostate cancers are androgen-sensitive malignancies whose growths depend on the transcriptional activity of the androgen receptor (AR). In the 1940s, Charles Huggins demonstrated that the surgical removal of testes in men can result in a dramatic improvement in symptoms and can induce prostate cancer regression. Since then, androgen deprivation therapies have been the standard first-line treatment for advanced prostate cancer, including: surgical castration, medical castration, antiandrogens, and androgen biosynthesis inhibitors. These therapies relieve symptoms, reduce tumor burden, and prolong patient survival, while having relatively modest side effects. Unfortunately, hormone deprivation therapy rarely cures the cancer itself. Prostate cancer almost always recurs, resulting in deadly castration-resistant prostate cancer. The underlying escape mechanisms include androgen receptor gene/enhancer amplification, androgen receptor mutations, androgen receptor variants, coactivator overexpression, intratumoral de novo androgen synthesis, etc. Whereas, the majority of the castration-resistant prostate cancers continuously rely on the androgen axis, a subset of recurrent cancers have completely lost androgen receptor expression, undergone divergent clonal evolution or de-differentiation, and become truly androgen receptor-independent small-cell prostate cancers. There is an urgent need for the development of novel targeted and immune therapies for this subtype of prostate cancer, when more deadly small-cell prostate cancers are induced by thorough androgen deprivation and androgen receptor ablation.
Author Feng, Qin
He, Bin
AuthorAffiliation 3 Department of Medicine-Cancer Biology, Weill Cornell Medicine, Cornell University , New York, NY , United States
2 Departments of Surgery and Urology, Immunobiology & Transplant Science Center, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital , Houston, TX , United States
1 Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston , Houston, TX , United States
AuthorAffiliation_xml – name: 3 Department of Medicine-Cancer Biology, Weill Cornell Medicine, Cornell University , New York, NY , United States
– name: 2 Departments of Surgery and Urology, Immunobiology & Transplant Science Center, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital , Houston, TX , United States
– name: 1 Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston , Houston, TX , United States
Author_xml – sequence: 1
  givenname: Qin
  surname: Feng
  fullname: Feng, Qin
– sequence: 2
  givenname: Bin
  surname: He
  fullname: He, Bin
BookMark eNp1kctrXCEUxqWkNI9m3e1ddjMTH1evbgphmjaBQEv6oDvx6vHGcEen6gT639eZSaEp1I2H7zvnh57vFB3FFAGhNwQvGZPqwqdolxQTtcRYcvkCnVDK-oXq2Y-jv-pjdF7KA25HcEwwe4WOGeGcEklP0PfL6HKaIHZ3YGFTU-6-hCmaOcSpC7Gr99C9h0eY02YNsXbJdytTajY1pLi4gxJKNU3_nFMrKjQ3Wsiv0Utv5gLnT_cZ-vbh6uvqenH76ePN6vJ2YTmmdeG5waORBkvLpCAMuDdS9EopoI6Mg3SiH8fBGOl5k8nYc4WdxJIaj0ch2Bm6OXBdMg96k8Pa5F86maD3QsqTNrkGO4PmXnnl7CCU63vuhKGE9UClckSy5jXWuwNrsx3X4Gz7bjbzM-hzJ4Z7PaVHLQYmiWAN8PYJkNPPLZSq16FYmGcTIW2LplQNhArKSWvlh1bb9lYyeG1D3e-0kcOsCda7iPUuYr2LWO8jbnMX_8z9ed7_Jn4D-1erPg
CitedBy_id crossref_primary_10_1186_s12935_025_03658_5
crossref_primary_10_1016_j_mehy_2020_109639
crossref_primary_10_3390_ph14121322
crossref_primary_10_1016_j_clgc_2020_08_008
crossref_primary_10_1177_10781552221074621
crossref_primary_10_1038_s41401_024_01274_z
crossref_primary_10_1039_D0NR07196J
crossref_primary_10_3390_biomedicines11112895
crossref_primary_10_1021_acs_jmedchem_1c00763
crossref_primary_10_3390_ijms23158732
crossref_primary_10_1186_s12967_025_06322_8
crossref_primary_10_3892_or_2021_8214
crossref_primary_10_1186_s12967_022_03827_4
crossref_primary_10_3390_genes15040450
crossref_primary_10_1002_bcp_70022
crossref_primary_10_1016_j_ejmech_2021_113307
crossref_primary_10_2967_jnumed_123_266158
crossref_primary_10_1186_s13046_022_02384_4
crossref_primary_10_1002_pros_24336
crossref_primary_10_1002_onco_13869
crossref_primary_10_1038_s41591_021_01600_6
crossref_primary_10_1186_s12964_021_00807_x
crossref_primary_10_36472_msd_v9i1_650
crossref_primary_10_1016_j_mce_2020_110745
crossref_primary_10_1007_s13402_020_00575_9
crossref_primary_10_1016_j_ncrna_2024_01_015
crossref_primary_10_1016_j_neo_2020_09_002
crossref_primary_10_1016_j_nantod_2022_101532
crossref_primary_10_1172_JCI161913
crossref_primary_10_3389_fmed_2022_924087
crossref_primary_10_3390_nu12010002
crossref_primary_10_1039_D1NJ05185G
crossref_primary_10_1038_s41388_023_02690_x
crossref_primary_10_3389_fonc_2022_865350
crossref_primary_10_1016_j_jphs_2023_08_002
crossref_primary_10_3389_fonc_2021_650919
crossref_primary_10_3390_biomedicines9121877
crossref_primary_10_3390_ijms22136676
crossref_primary_10_2147_RRU_S264722
crossref_primary_10_3390_jcm10215000
crossref_primary_10_1016_j_ajpath_2020_07_013
crossref_primary_10_3390_biom15010023
crossref_primary_10_3390_nu12010153
crossref_primary_10_1016_j_trecan_2020_01_015
crossref_primary_10_1002_pros_24496
crossref_primary_10_1016_j_isci_2024_109674
crossref_primary_10_1021_acs_jmedchem_1c01342
crossref_primary_10_3390_cells11081302
crossref_primary_10_1016_j_isci_2024_108984
crossref_primary_10_1016_j_taap_2020_115200
crossref_primary_10_1158_1541_7786_MCR_21_0477
crossref_primary_10_3390_ijms25052799
crossref_primary_10_1016_j_ijbiomac_2024_137993
crossref_primary_10_21518_2079_701X_2020_20_100_108
crossref_primary_10_3390_ijms23020897
crossref_primary_10_1016_j_bioorg_2024_107731
crossref_primary_10_1016_j_bioorg_2021_105575
crossref_primary_10_3389_fonc_2021_671141
crossref_primary_10_3390_cells10051133
crossref_primary_10_3390_ijms222011246
crossref_primary_10_1038_s41388_021_02026_7
crossref_primary_10_3389_fendo_2024_1437179
crossref_primary_10_1155_2023_9907948
crossref_primary_10_3390_cancers13153726
crossref_primary_10_1038_s41585_023_00738_x
crossref_primary_10_3390_cancers13174425
crossref_primary_10_56543_aaeeu_2023_2_4_04
crossref_primary_10_1007_s11033_024_09653_9
crossref_primary_10_3390_pharmaceutics16050583
crossref_primary_10_1089_bioe_2022_0007
crossref_primary_10_1002_cbin_11418
crossref_primary_10_18632_aging_202919
crossref_primary_10_3390_ijms24087336
crossref_primary_10_1016_j_ecoenv_2022_113724
crossref_primary_10_1002_cbdv_202401904
crossref_primary_10_1016_j_humpath_2023_05_007
crossref_primary_10_1016_j_addr_2021_05_008
crossref_primary_10_1016_j_bcp_2024_116229
crossref_primary_10_1016_j_envpol_2020_116397
crossref_primary_10_1021_acs_jmedchem_3c02124
crossref_primary_10_1038_s41598_020_70948_5
crossref_primary_10_3389_fcell_2021_681163
crossref_primary_10_3390_ijms232113521
crossref_primary_10_1016_j_scr_2022_102864
crossref_primary_10_1056_EVIDoa2300171
crossref_primary_10_3390_pharmaceutics13091509
crossref_primary_10_1186_s13020_020_00309_x
crossref_primary_10_1016_j_taap_2023_116699
crossref_primary_10_1158_0008_5472_CAN_22_1910
crossref_primary_10_1007_s00109_023_02300_z
crossref_primary_10_1039_D3CB00010A
crossref_primary_10_3390_cancers13122939
crossref_primary_10_1038_s41388_024_03073_6
crossref_primary_10_2174_1570180818666210813121431
crossref_primary_10_1186_s12894_023_01251_4
crossref_primary_10_1002_adhm_202400114
crossref_primary_10_1016_j_ctrv_2020_102069
crossref_primary_10_1038_s41467_021_27322_4
crossref_primary_10_1186_s13046_024_03097_6
crossref_primary_10_1016_j_ceca_2022_102554
crossref_primary_10_1007_s00092_020_4190_x
crossref_primary_10_1007_s12032_021_01520_y
crossref_primary_10_1016_j_compbiomed_2025_110000
crossref_primary_10_1016_j_bbamcr_2020_118731
crossref_primary_10_1186_s12964_024_01970_7
crossref_primary_10_3390_biom12030357
crossref_primary_10_3389_fonc_2022_917400
crossref_primary_10_1021_acs_jmedchem_3c02063
crossref_primary_10_3390_ijerph192315486
crossref_primary_10_1002_cam4_70319
crossref_primary_10_1016_j_jare_2024_01_003
crossref_primary_10_1016_j_urolonc_2024_11_018
crossref_primary_10_3390_cancers13122872
crossref_primary_10_1016_j_biocel_2020_105838
crossref_primary_10_3390_v14122728
crossref_primary_10_1016_j_bioorg_2022_105829
crossref_primary_10_3390_cancers13040633
crossref_primary_10_1016_j_csbj_2023_01_031
crossref_primary_10_1016_j_bcp_2020_114224
crossref_primary_10_62347_YQWJ7498
crossref_primary_10_1016_j_bmcl_2022_128952
crossref_primary_10_1038_s41388_020_1370_9
crossref_primary_10_3389_fragi_2023_1196648
crossref_primary_10_1038_s41598_024_60538_0
crossref_primary_10_1016_j_ucl_2022_07_002
crossref_primary_10_3390_cancers12040927
crossref_primary_10_1124_pharmrev_121_000302
crossref_primary_10_2217_fon_2023_0526
Cites_doi 10.1186/s13059-015-0864-1
10.1056/NEJMoa1506859
10.1158/1538-7445.AM2018-5795
10.1074/jbc.M107492200
10.1158/1541-7786.MCR-08-0400
10.1002/pros.23214
10.1093/nar/gkt1382
10.1074/jbc.M002807200
10.1126/science.1168175
10.1056/NEJMoa1715546
10.1056/NEJMoa1903835
10.1126/science.aab4082
10.1016/j.cell.2015.06.053
10.1038/sj.pcan.4500262
10.1016/S0022-5347(01)64039-4
10.1158/0008-5472.CAN-08-0594
10.1128/MCB.25.4.1238-1257.2005
10.1016/j.molcel.2007.05.041
10.1158/2159-8290.CD-11-0130
10.1097/00005392-199707000-00051
10.1210/edrv.23.2.0460
10.1158/1535-7163.MCT-17-0386
10.1126/science.1117679
10.1038/onc.2009.243
10.1056/NEJMoa1200690
10.1007/s10637-015-0235-5
10.1073/pnas.1518007112
10.1016/j.cell.2018.06.039
10.1016/S0022-5347(17)36163-3
10.1158/1078-0432.CCR-13-3296
10.1158/2159-8290.CD-13-0142
10.1038/nm.4045
10.1158/1078-0432.CCR-1146-03
10.1016/S0006-291X(05)80067-1
10.1158/0008-5472.CAN-08-2764
10.1016/j.ccr.2011.04.008
10.1158/0008-5472.CAN-08-3795
10.1016/0090-4295(94)90092-2
10.1073/pnas.1421415111
10.1038/35094009
10.1016/j.ejca.2017.02.030
10.1074/jbc.M111975200
10.1074/jbc.M202809200
10.1158/1538-7445.SABCS18-4497
10.1038/nm.4070
10.1158/0008-5472.CAN-12-3630
10.1016/j.ymthe.2018.05.003
10.1200/JCO.2002.10.057
10.1056/NEJMoa1801946
10.1016/0303-7207(86)90132-2
10.1074/jbc.M112.428409
10.1016/j.bmcl.2013.02.056
10.1158/0008-5472.CAN-08-0249
10.1200/JCO.19.00799
10.1158/2159-8290.CD-13-0226
10.1158/0008-5472.CAN-12-3468
10.1056/NEJMoa1315815
10.1038/onc.2017.50
10.1038/ncomms14388
10.1016/S0021-9258(17)33103-4
10.1016/S1470-2045(19)30082-8
10.1021/acs.jmedchem.8b01631
10.1016/j.cell.2018.04.034
10.1038/s42003-018-0105-8
10.1038/s41586-019-1318-9
10.1021/jm201059s
10.1056/NEJMoa1706450
10.1016/j.eururo.2014.08.006
10.1038/nm972
10.1016/S0303-7207(00)00300-2
10.1016/S0090-4295(96)00558-4
10.1016/j.molcel.2004.09.036
10.1016/j.ccr.2011.05.006
10.1038/76287
10.1200/JCO.2018.36.6_suppl.TPS403
10.1016/j.cell.2018.05.037
10.1074/jbc.M307649200
10.1210/endo-126-2-1165
10.1158/0008-5472.CAN-14-3080
10.1056/NEJMoa1815671
10.1210/edrv-7-1-67
10.1002/pros.2990210514
10.1038/ng0495-401
10.1038/nature12477
10.1016/j.cell.2013.11.012
10.1126/science.aan6733
10.1056/NEJMoa1001294
10.1073/pnas.0401123101
10.1158/0008-5472.CAN-18-2812
10.1056/NEJMoa1903307
10.1056/NEJMoa1014618
10.1056/NEJMoa1704174
10.1016/S0959-437X(02)00319-2
10.1056/NEJMoa1207506
10.1126/science.275.5308.1943
10.1158/1078-0432.CCR-18-0981
10.1158/1078-0432.CCR-05-0525
10.1038/emboj.2011.328
10.3322/canjclin.52.3.154
10.1038/s41591-018-0040-8
10.1016/S1470-2045(18)30365-6
10.1056/NEJMoa1405095
10.1074/jbc.274.52.37219
10.1056/NEJMoa1800536
10.1677/erc.1.00525
10.1200/JCO.2017.35.6_suppl.135
10.1158/0008-5472.CAN-12-2350
10.1038/srep12007
10.1126/science.aar6711
10.7554/eLife.41913
10.1056/NEJM199505253322101
ContentType Journal Article
Copyright Copyright © 2019 Feng and He. 2019 Feng and He
Copyright_xml – notice: Copyright © 2019 Feng and He. 2019 Feng and He
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fonc.2019.00858
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2234-943X
ExternalDocumentID oai_doaj_org_article_5f9f9dc769d445d6a2134e289d183f9f
PMC6738163
10_3389_fonc_2019_00858
GrantInformation_xml – fundername: National Institute of Allergy and Infectious Diseases
– fundername: National Cancer Institute
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EJD
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
7X8
5PM
ID FETCH-LOGICAL-c502t-f5a0ba8a08c38613e5fa864999e2d1b78d64bb7aa8f56491b4590d8082af0b663
IEDL.DBID M48
ISSN 2234-943X
IngestDate Wed Aug 27 01:30:14 EDT 2025
Thu Aug 21 18:15:19 EDT 2025
Thu Jul 10 22:54:23 EDT 2025
Thu Apr 24 22:59:45 EDT 2025
Tue Jul 01 00:43:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-f5a0ba8a08c38613e5fa864999e2d1b78d64bb7aa8f56491b4590d8082af0b663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Reviewed by: Joaquin Mateo, Vall d'Hebron Institute of Oncology (VHIO), Spain; Devin B. Lowe, Texas Tech University Health Sciences Center, United States
Edited by: Renee de Leeuw, University of Illinois at Chicago, United States
This article was submitted to Genitourinary Oncology, a section of the journal Frontiers in Oncology
OpenAccessLink https://doaj.org/article/5f9f9dc769d445d6a2134e289d183f9f
PMID 31552182
PQID 2297126251
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_5f9f9dc769d445d6a2134e289d183f9f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6738163
proquest_miscellaneous_2297126251
crossref_citationtrail_10_3389_fonc_2019_00858
crossref_primary_10_3389_fonc_2019_00858
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-04
PublicationDateYYYYMMDD 2019-09-04
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-04
  day: 04
PublicationDecade 2010
PublicationTitle Frontiers in oncology
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Quigley (B35) 2018; 174
Fizazi (B64) 2019; 20
(B119) 2019
Chi (B60) 2019; 381
Patient (B82) 2002; 12
Fizazi (B59) 2019; 380
Antonarakis (B70) 2014; 371
Li (B71) 2013; 73
Smith (B57) 2018; 378
Liu (B73) 2015; 75
Dehm (B45) 2008; 68
Salami (B97) 2018; 1
Kelly (B48) 1993; 149
(B23) 2000
Kim (B92) 2017; 36
Guo (B99) 2011; 54
Clarke (B104) 2018; 19
Scher (B28) 2004; 11
Sahu (B89) 2011; 30
Heinlein (B8) 2002; 23
Armstrong (B81) 2017; 81
Wu (B117) 2018; 173
Labrie (B21) 1986; 7
Grino (B12) 1990; 126
Kolinsky (B80) 2017; 35
Small (B49) 1994; 43
Sahu (B88) 2013; 73
Kregel (B100) 2019; 78
Swinney (B13) 2009; 12
Simard (B17) 1986; 44
Rathkopf (B54) 2018; 36
Mohler (B24) 2004; 10
Hellmann (B114) 2018; 378
Smith (B109) 2015; 112
Omlin (B96) 2015; 33
Karpf (B37) 2009; 7
Beltran (B105) 2016; 22
Scher (B55) 2012; 367
Li (B74) 2019; 79
Adams (B91) 2019; 571
Zacharakis (B112) 2018; 24
Dijkman (B22) 1997; 158
Alexandrov (B115) 2013; 500
Wilson (B11) 1976; 251
Mulholland (B77) 2011; 19
Veldscholte (B40) 1990; 173
Shaffer (B2) 2004; 101
Robinson (B33) 2015; 161
Beer (B56) 2014; 371
Lallous (B68) 2016; 17
Davis (B61) 2019; 381
He (B5) 2002; 277
Kolvenbag (B18) 1998; 1
de Voogt (B16) 1992; 4
Goodman (B113) 2017; 16
de Bono (B63) 2011; 364
Le (B118) 2017; 357
Junghans (B122) 2016; 76
Linja (B30) 2001; 61
June (B120) 2018; 359
Labrie (B20) 1982; 5
Toren (B79) 2015; 67
Hellerstedt (B15) 2002; 52
Koivisto (B31) 1997; 57
Montgomery (B26) 2008; 68
Tilley (B39) 1996; 2
Robson (B102) 2017; 377
Han (B98) 2019; 62
Takeda (B34) 2018; 174
He (B7) 2002; 277
Visakorpi (B29) 1995; 9
Huan (B50) 1997; 49
Li (B107) 1997; 275
Mateo (B103) 2015; 373
Jin (B93) 2013; 73
Tran (B52) 2009; 324
Howell (B94) 2002; 20
Arora (B69) 2013; 155
Hussain (B58) 2018; 378
Titus (B25) 2005; 11
He (B4) 2000; 275
Carver (B76) 2011; 19
He (B6) 2004; 16
Kloss (B121) 2018; 26
Taplin (B41) 1995; 332
Perez-Stable (B83) 2000; 167
Wang (B101) 2016; 22
Nadal (B3) 2017; 8
Hu (B43) 2009; 69
Korpal (B66) 2013; 3
Fenton (B51) 1997; 3
Guo (B44) 2009; 69
Minges (B38) 2013; 288
Bradbury (B95) 2013; 23
de Bono (B78) 2019; 25
He (B9) 1999; 274
Wang (B84) 2007; 27
Zhao (B42) 2000; 6
Bohm (B85) 2009; 28
Beltran (B106) 2011; 1
Fizazi (B65) 2017; 377
Joyce (B19) 1998; 159
Armstrong (B62) 2019
Bai (B10) 2005; 25
Culig (B47) 1994; 54
Lee (B75) 2019; 8
Tomlins (B108) 2005; 310
Martincorena (B116) 2015; 349
Feldman (B27) 2001; 1
Topalian (B111) 2012; 366
Gregory (B46) 2004; 279
Parolia (B90) 2019; 571
He (B1) 2001; 276
Huggins (B14) 1941; 1
Gregory (B36) 2001; 61
Chen (B32) 2004; 10
Joseph (B67) 2013; 3
He (B86) 2014; 111
Wu (B87) 2014; 42
Liu (B72) 2014; 20
Moilanen (B53) 2015; 5
Kantoff (B110) 2010; 363
References_xml – volume: 17
  start-page: 10
  year: 2016
  ident: B68
  article-title: Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0864-1
– volume: 373
  start-page: 1697
  year: 2015
  ident: B103
  article-title: DNA-repair defects and olaparib in metastatic prostate cancer
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa1506859
– volume: 78
  start-page: 5795
  year: 2019
  ident: B100
  article-title: Functional and mechanistic interrogation of BET bromodomain degraders for the treatment of metastatic castration-resistant prostate cancer
  publication-title: Clin Cancer Res.
  doi: 10.1158/1538-7445.AM2018-5795
– volume: 276
  start-page: 42293
  year: 2001
  ident: B1
  article-title: Androgen-induced NH2- and COOH-terminal interaction inhibits p160 coactivator recruitment by activation function 2
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M107492200
– volume: 7
  start-page: 523
  year: 2009
  ident: B37
  article-title: Increased expression of androgen receptor coregulator MAGE-11 in prostate cancer by DNA hypomethylation and cyclic AMP
  publication-title: Mol Cancer Res.
  doi: 10.1158/1541-7786.MCR-08-0400
– volume: 76
  start-page: 1257
  year: 2016
  ident: B122
  article-title: Phase I trial of anti-PSMA designer CAR-T cells in prostate cancer: possible role for interacting interleukin 2-T cell pharmacodynamics as a determinant of clinical response
  publication-title: Prostate.
  doi: 10.1002/pros.23214
– volume: 42
  start-page: 3607
  year: 2014
  ident: B87
  article-title: Three-tiered role of the pioneer factor GATA2 in promoting androgen-dependent gene expression in prostate cancer
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1382
– volume: 275
  start-page: 22986
  year: 2000
  ident: B4
  article-title: FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M002807200
– volume: 324
  start-page: 787
  year: 2009
  ident: B52
  article-title: Development of a second-generation antiandrogen for treatment of advanced prostate cancer
  publication-title: Science.
  doi: 10.1126/science.1168175
– volume: 378
  start-page: 1408
  year: 2018
  ident: B57
  article-title: Apalutamide treatment and metastasis-free survival in prostate cancer
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa1715546
– volume: 381
  start-page: 121
  year: 2019
  ident: B61
  article-title: Enzalutamide with standard first-line therapy in metastatic prostate cancer
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa1903835
– volume: 349
  start-page: 1483
  year: 2015
  ident: B116
  article-title: Somatic mutation in cancer and normal cells
  publication-title: Science.
  doi: 10.1126/science.aab4082
– volume: 12
  start-page: 31
  year: 2009
  ident: B13
  article-title: The role of binding kinetics in therapeutically useful drug action
  publication-title: Curr Opin Drug Discov Devel.
– start-page: 569
  volume-title: Cancer Discov.
  year: 2019
  ident: B119
  article-title: Anti-PD-1-CTLA4 Combo hits prostate cancer
– volume: 54
  start-page: 5474
  year: 1994
  ident: B47
  article-title: Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor
  publication-title: Cancer Res.
– volume: 161
  start-page: 1215
  year: 2015
  ident: B33
  article-title: Integrative clinical genomics of advanced prostate cancer
  publication-title: Cell.
  doi: 10.1016/j.cell.2015.06.053
– volume: 1
  start-page: 307
  year: 1998
  ident: B18
  article-title: Receptor affinity and potency of non-steroidal antiandrogens: translation of preclinical findings into clinical activity
  publication-title: Prostate Cancer Prostatic Dis.
  doi: 10.1038/sj.pcan.4500262
– volume: 159
  start-page: 149
  year: 1998
  ident: B19
  article-title: High dose bicalutamide for androgen independent prostate cancer: effect of prior hormonal therapy
  publication-title: J Urol.
  doi: 10.1016/S0022-5347(01)64039-4
– volume: 68
  start-page: 5469
  year: 2008
  ident: B45
  article-title: Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-0594
– volume: 25
  start-page: 1238
  year: 2005
  ident: B10
  article-title: Melanoma antigen gene protein MAGE-11 regulates androgen receptor function by modulating the interdomain interaction
  publication-title: Mol Cell Biol.
  doi: 10.1128/MCB.25.4.1238-1257.2005
– volume: 27
  start-page: 380
  year: 2007
  ident: B84
  article-title: A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2007.05.041
– volume: 1
  start-page: 487
  year: 2011
  ident: B106
  article-title: Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-11-0130
– volume: 158
  start-page: 160
  year: 1997
  ident: B22
  article-title: Long-term efficacy and safety of nilutamide plus castration in advanced prostate cancer, and the significance of early prostate specific antigen normalization. International Anandron Study Group
  publication-title: J Urol.
  doi: 10.1097/00005392-199707000-00051
– volume: 23
  start-page: 175
  year: 2002
  ident: B8
  article-title: Androgen receptor (AR) coregulators: an overview
  publication-title: Endocr Rev.
  doi: 10.1210/edrv.23.2.0460
– volume: 16
  start-page: 2598
  year: 2017
  ident: B113
  article-title: Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers
  publication-title: Mol Cancer Ther.
  doi: 10.1158/1535-7163.MCT-17-0386
– volume: 310
  start-page: 644
  year: 2005
  ident: B108
  article-title: Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer
  publication-title: Science.
  doi: 10.1126/science.1117679
– volume: 28
  start-page: 3847
  year: 2009
  ident: B85
  article-title: A role for GATA-2 in transition to an aggressive phenotype in prostate cancer through modulation of key androgen-regulated genes
  publication-title: Oncogene.
  doi: 10.1038/onc.2009.243
– volume: 366
  start-page: 2443
  year: 2012
  ident: B111
  article-title: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa1200690
– volume: 33
  start-page: 679
  year: 2015
  ident: B96
  article-title: AZD3514, an oral selective androgen receptor down-regulator in patients with castration-resistant prostate cancer - results of two parallel first-in-human phase I studies
  publication-title: Invest New Drugs.
  doi: 10.1007/s10637-015-0235-5
– volume: 112
  start-page: E6544
  year: 2015
  ident: B109
  article-title: A basal stem cell signature identifies aggressive prostate cancer phenotypes
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.1518007112
– volume: 174
  start-page: 758
  year: 2018
  ident: B35
  article-title: Genomic hallmarks and structural variation in metastatic prostate cancer
  publication-title: Cell.
  doi: 10.1016/j.cell.2018.06.039
– volume: 149
  start-page: 607
  year: 1993
  ident: B48
  article-title: Prostate specific antigen decline after antiandrogen withdrawal: the flutamide withdrawal syndrome
  publication-title: J Urol.
  doi: 10.1016/S0022-5347(17)36163-3
– volume: 5
  start-page: 267
  year: 1982
  ident: B20
  article-title: New hormonal therapy in prostatic carcinoma: combined treatment with an LHRH agonist and an antiandrogen
  publication-title: Clin Invest Med.
– volume: 20
  start-page: 3198
  year: 2014
  ident: B72
  article-title: Niclosamide inhibits androgen receptor variants expression and overcomes enzalutamide resistance in castration-resistant prostate cancer
  publication-title: Clin Cancer Res.
  doi: 10.1158/1078-0432.CCR-13-3296
– volume: 3
  start-page: 1030
  year: 2013
  ident: B66
  article-title: An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide)
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-13-0142
– volume: 22
  start-page: 298
  year: 2016
  ident: B105
  article-title: Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer
  publication-title: Nat Med.
  doi: 10.1038/nm.4045
– volume: 10
  start-page: 440
  year: 2004
  ident: B24
  article-title: The androgen axis in recurrent prostate cancer
  publication-title: Clin Cancer Res.
  doi: 10.1158/1078-0432.CCR-1146-03
– volume: 173
  start-page: 534
  year: 1990
  ident: B40
  article-title: A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens
  publication-title: Biochem Biophys Res Commun.
  doi: 10.1016/S0006-291X(05)80067-1
– volume: 69
  start-page: 16
  year: 2009
  ident: B43
  article-title: Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-2764
– volume: 19
  start-page: 575
  year: 2011
  ident: B76
  article-title: Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer
  publication-title: Cancer Cell.
  doi: 10.1016/j.ccr.2011.04.008
– volume: 69
  start-page: 2305
  year: 2009
  ident: B44
  article-title: A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-3795
– volume: 43
  start-page: 408
  year: 1994
  ident: B49
  article-title: Prostate-specific antigen decline after casodex withdrawal: evidence for an antiandrogen withdrawal syndrome
  publication-title: Urology.
  doi: 10.1016/0090-4295(94)90092-2
– volume: 111
  start-page: 18261
  year: 2014
  ident: B86
  article-title: GATA2 facilitates steroid receptor coactivator recruitment to the androgen receptor complex
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.1421415111
– volume: 1
  start-page: 34
  year: 2001
  ident: B27
  article-title: The development of androgen-independent prostate cancer
  publication-title: Nat Rev Cancer.
  doi: 10.1038/35094009
– volume: 81
  start-page: 228
  year: 2017
  ident: B81
  article-title: Phase II trial of the PI3 kinase inhibitor buparlisib (BKM-120) with or without enzalutamide in men with metastatic castration resistant prostate cancer
  publication-title: Eur J Cancer.
  doi: 10.1016/j.ejca.2017.02.030
– volume: 277
  start-page: 10226
  year: 2002
  ident: B5
  article-title: The FXXLF motif mediates androgen receptor-specific interactions with coregulators
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M111975200
– volume: 277
  start-page: 25631
  year: 2002
  ident: B7
  article-title: Dependence of selective gene activation on the androgen receptor NH2- and COOH-terminal interaction
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M202809200
– volume: 571
  start-page: 413
  year: 2019
  ident: B90
  article-title: Distinct structural classes of activating FOXA1 alterations in advanced prostate cancer
  publication-title: Nature.
  doi: 10.1158/1538-7445.SABCS18-4497
– volume: 22
  start-page: 488
  year: 2016
  ident: B101
  article-title: ROR-gamma drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer
  publication-title: Nat Med.
  doi: 10.1038/nm.4070
– volume: 73
  start-page: 483
  year: 2013
  ident: B71
  article-title: Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-3630
– volume: 26
  start-page: 1855
  year: 2018
  ident: B121
  article-title: Dominant-negative TGF-beta receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication
  publication-title: Mol Ther.
  doi: 10.1016/j.ymthe.2018.05.003
– volume: 2
  start-page: 277
  year: 1996
  ident: B39
  article-title: Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence
  publication-title: Clin Cancer Res.
– volume: 20
  start-page: 3396
  year: 2002
  ident: B94
  article-title: Fulvestrant, formerly ICI 182,780, is as effective as anastrozole in postmenopausal women with advanced breast cancer progressing after prior endocrine treatment
  publication-title: J Clin Oncol.
  doi: 10.1200/JCO.2002.10.057
– volume: 378
  start-page: 2093
  year: 2018
  ident: B114
  article-title: Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa1801946
– volume: 1
  start-page: 293
  year: 1941
  ident: B14
  article-title: Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate
  publication-title: Cancer Res.
– volume: 44
  start-page: 261
  year: 1986
  ident: B17
  article-title: Characteristics of interaction of the antiandrogen flutamide with the androgen receptor in various target tissues
  publication-title: Mol Cell Endocrinol.
  doi: 10.1016/0303-7207(86)90132-2
– volume: 288
  start-page: 1939
  year: 2013
  ident: B38
  article-title: Melanoma antigen-A11 (MAGE-A11) enhances transcriptional activity by linking androgen receptor dimers
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M112.428409
– volume: 23
  start-page: 1945
  year: 2013
  ident: B95
  article-title: Discovery of AZD3514, a small-molecule androgen receptor downregulator for treatment of advanced prostate cancer
  publication-title: Bioorg Med Chem Lett.
  doi: 10.1016/j.bmcl.2013.02.056
– volume: 68
  start-page: 4447
  year: 2008
  ident: B26
  article-title: Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-0249
– year: 2019
  ident: B62
  article-title: ARCHES: A randomized, phase III study of androgen deprivation therapy with enzalutamide or placebo in men with metastatic hormone-sensitive prostate cancer
  publication-title: J Clin Oncol.
  doi: 10.1200/JCO.19.00799
– volume: 3
  start-page: 1020
  year: 2013
  ident: B67
  article-title: A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-13-0226
– volume: 73
  start-page: 3725
  year: 2013
  ident: B93
  article-title: Androgen receptor-independent function of FoxA1 in prostate cancer metastasis
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-3468
– volume: 371
  start-page: 1028
  year: 2014
  ident: B70
  article-title: AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa1315815
– volume: 36
  start-page: 4072
  year: 2017
  ident: B92
  article-title: FOXA1 inhibits prostate cancer neuroendocrine differentiation
  publication-title: Oncogene.
  doi: 10.1038/onc.2017.50
– volume: 8
  start-page: 14388
  year: 2017
  ident: B3
  article-title: Structure of the homodimeric androgen receptor ligand-binding domain
  publication-title: Nat Commun.
  doi: 10.1038/ncomms14388
– volume: 251
  start-page: 5620
  year: 1976
  ident: B11
  article-title: Binding properties of androgen receptors. Evidence for identical receptors in rat testis, epididymis, and prostate
  publication-title: J Biol Chem.
  doi: 10.1016/S0021-9258(17)33103-4
– volume: 3
  start-page: 1383
  year: 1997
  ident: B51
  article-title: Functional characterization of mutant androgen receptors from androgen-independent prostate cancer
  publication-title: Clin Cancer Res.
– volume: 20
  start-page: 686
  year: 2019
  ident: B64
  article-title: Abiraterone acetate plus prednisone in patients with newly diagnosed high-risk metastatic castration-sensitive prostate cancer (LATITUDE): final overall survival analysis of a randomised, double-blind, phase 3 trial
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(19)30082-8
– volume: 62
  start-page: 941
  year: 2019
  ident: B98
  article-title: Discovery of ARD-69 as a highly potent proteolysis targeting chimera (PROTAC) degrader of androgen receptor (AR) for the treatment of prostate cancer
  publication-title: J Med Chem.
  doi: 10.1021/acs.jmedchem.8b01631
– volume: 173
  start-page: 1770
  year: 2018
  ident: B117
  article-title: Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer
  publication-title: Cell.
  doi: 10.1016/j.cell.2018.04.034
– volume: 1
  start-page: 100
  year: 2018
  ident: B97
  article-title: Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance
  publication-title: Commun Biol.
  doi: 10.1038/s42003-018-0105-8
– volume: 61
  start-page: 3550
  year: 2001
  ident: B30
  article-title: Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer
  publication-title: Cancer Res.
– volume: 571
  start-page: 408
  year: 2019
  ident: B91
  article-title: FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes
  publication-title: Nature.
  doi: 10.1038/s41586-019-1318-9
– volume: 54
  start-page: 7693
  year: 2011
  ident: B99
  article-title: Discovery of aryloxy tetramethylcyclobutanes as novel androgen receptor antagonists
  publication-title: J Med Chem.
  doi: 10.1021/jm201059s
– volume: 377
  start-page: 523
  year: 2017
  ident: B102
  article-title: Olaparib for metastatic breast cancer in patients with a germline BRCA mutation
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa1706450
– volume: 67
  start-page: 986
  year: 2015
  ident: B79
  article-title: Combination AZD5363 with enzalutamide significantly delays enzalutamide-resistant prostate cancer in preclinical models
  publication-title: Eur Urol.
  doi: 10.1016/j.eururo.2014.08.006
– volume: 10
  start-page: 33
  year: 2004
  ident: B32
  article-title: Molecular determinants of resistance to antiandrogen therapy
  publication-title: Nat Med.
  doi: 10.1038/nm972
– volume: 167
  start-page: 43
  year: 2000
  ident: B83
  article-title: A role for GATA transcription factors in the androgen regulation of the prostate-specific antigen gene enhancer
  publication-title: Mol Cell Endocrinol.
  doi: 10.1016/S0303-7207(00)00300-2
– volume: 49
  start-page: 632
  year: 1997
  ident: B50
  article-title: Antiandrogen withdrawal syndrome with nilutamide
  publication-title: Urology.
  doi: 10.1016/S0090-4295(96)00558-4
– volume: 16
  start-page: 425
  year: 2004
  ident: B6
  article-title: Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2004.09.036
– volume: 19
  start-page: 792
  year: 2011
  ident: B77
  article-title: Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth
  publication-title: Cancer Cell.
  doi: 10.1016/j.ccr.2011.05.006
– volume: 6
  start-page: 703
  year: 2000
  ident: B42
  article-title: Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor
  publication-title: Nat Med.
  doi: 10.1038/76287
– volume: 36
  start-page: TPS403
  year: 2018
  ident: B54
  article-title: An open-label phase 1/2a study to evaluate the safety, pharmacokinetics, pharmacodynamics, and preliminary efficacy of TRC253, an androgen receptor antagonist, in patients with metastatic castration-resistant prostate cancer (mCRPC)
  publication-title: J Clin Oncol.
  doi: 10.1200/JCO.2018.36.6_suppl.TPS403
– volume: 174
  start-page: 422
  year: 2018
  ident: B34
  article-title: A somatically acquired enhancer of the androgen receptor is a noncoding driver in advanced prostate cancer
  publication-title: Cell.
  doi: 10.1016/j.cell.2018.05.037
– volume: 279
  start-page: 7119
  year: 2004
  ident: B46
  article-title: Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M307649200
– volume: 126
  start-page: 1165
  year: 1990
  ident: B12
  article-title: Testosterone at high concentrations interacts with the human androgen receptor similarly to dihydrotestosterone
  publication-title: Endocrinology.
  doi: 10.1210/endo-126-2-1165
– volume: 75
  start-page: 1413
  year: 2015
  ident: B73
  article-title: Intracrine androgens and AKR1C3 activation confer resistance to enzalutamide in prostate cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-3080
– volume: 380
  start-page: 1235
  year: 2019
  ident: B59
  article-title: Darolutamide in nonmetastatic, castration-resistant prostate cancer
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa1815671
– volume: 7
  start-page: 67
  year: 1986
  ident: B21
  article-title: Treatment of prostate cancer with gonadotropin-releasing hormone agonists
  publication-title: Endocr Rev.
  doi: 10.1210/edrv-7-1-67
– volume: 4
  start-page: 91
  year: 1992
  ident: B16
  article-title: The position of cyproterone acetate (CPA), a steroidal anti-androgen, in the treatment of prostate cancer
  publication-title: Prostate Suppl.
  doi: 10.1002/pros.2990210514
– volume: 9
  start-page: 401
  year: 1995
  ident: B29
  article-title: In vivo amplification of the androgen receptor gene and progression of human prostate cancer
  publication-title: Nat Genet.
  doi: 10.1038/ng0495-401
– volume: 500
  start-page: 415
  year: 2013
  ident: B115
  article-title: Signatures of mutational processes in human cancer
  publication-title: Nature.
  doi: 10.1038/nature12477
– volume: 155
  start-page: 1309
  year: 2013
  ident: B69
  article-title: Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade
  publication-title: Cell.
  doi: 10.1016/j.cell.2013.11.012
– volume: 357
  start-page: 409
  year: 2017
  ident: B118
  article-title: Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade
  publication-title: Science.
  doi: 10.1126/science.aan6733
– volume: 363
  start-page: 411
  year: 2010
  ident: B110
  article-title: Sipuleucel-T immunotherapy for castration-resistant prostate cancer
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa1001294
– volume: 101
  start-page: 4758
  year: 2004
  ident: B2
  article-title: Structural basis of androgen receptor binding to selective androgen response elements
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.0401123101
– volume: 79
  start-page: 2580
  year: 2019
  ident: B74
  article-title: Activation of MAPK signaling by CXCR7 leads to enzalutamide resistance in prostate cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-18-2812
– volume: 381
  start-page: 13
  year: 2019
  ident: B60
  article-title: Apalutamide for metastatic, castration-sensitive prostate cancer
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa1903307
– volume: 364
  start-page: 1995
  year: 2011
  ident: B63
  article-title: Abiraterone and increased survival in metastatic prostate cancer
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa1014618
– volume: 377
  start-page: 352
  year: 2017
  ident: B65
  article-title: Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa1704174
– volume: 12
  start-page: 416
  year: 2002
  ident: B82
  article-title: The GATA family (vertebrates and invertebrates)
  publication-title: Curr Opin Genet Dev.
  doi: 10.1016/S0959-437X(02)00319-2
– volume: 367
  start-page: 1187
  year: 2012
  ident: B55
  article-title: Increased survival with enzalutamide in prostate cancer after chemotherapy
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa1207506
– volume: 275
  start-page: 1943
  year: 1997
  ident: B107
  article-title: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer
  publication-title: Science.
  doi: 10.1126/science.275.5308.1943
– volume: 25
  start-page: 928
  year: 2019
  ident: B78
  article-title: Randomized phase II study evaluating Akt blockade with Ipatasertib, in combination with abiraterone, in patients with metastatic prostate cancer with and without PTEN loss
  publication-title: Clin Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-0981
– volume: 11
  start-page: 4653
  year: 2005
  ident: B25
  article-title: Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer
  publication-title: Clin Cancer Res.
  doi: 10.1158/1078-0432.CCR-05-0525
– volume: 30
  start-page: 3962
  year: 2011
  ident: B89
  article-title: Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.328
– volume: 52
  start-page: 154
  year: 2002
  ident: B15
  article-title: The current state of hormonal therapy for prostate cancer
  publication-title: CA Cancer J Clin.
  doi: 10.3322/canjclin.52.3.154
– volume: 24
  start-page: 724
  year: 2018
  ident: B112
  article-title: Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer
  publication-title: Nat Med.
  doi: 10.1038/s41591-018-0040-8
– volume: 19
  start-page: 975
  year: 2018
  ident: B104
  article-title: Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: a randomised, double-blind, placebo-controlled, phase 2 trial
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(18)30365-6
– volume: 371
  start-page: 424
  year: 2014
  ident: B56
  article-title: Enzalutamide in metastatic prostate cancer before chemotherapy
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa1405095
– volume: 274
  start-page: 37219
  year: 1999
  ident: B9
  article-title: Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with the NH(2)-terminal domain
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.274.52.37219
– volume: 61
  start-page: 4315
  year: 2001
  ident: B36
  article-title: A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy
  publication-title: Cancer Res.
– volume: 378
  start-page: 2465
  year: 2018
  ident: B58
  article-title: Enzalutamide in men with nonmetastatic, castration-resistant prostate cancer
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMoa1800536
– volume: 11
  start-page: 459
  year: 2004
  ident: B28
  article-title: Targeting the androgen receptor: improving outcomes for castration-resistant prostate cancer
  publication-title: Endocr Relat Cancer.
  doi: 10.1677/erc.1.00525
– volume: 35
  start-page: 135
  year: 2017
  ident: B80
  article-title: A phase I dose-escalation study of enzalutamide in combination with the AKT inhibitor AZD5363 in patients with mCRPC
  publication-title: J Clin Oncol.
  doi: 10.1200/JCO.2017.35.6_suppl.135
– volume: 73
  start-page: 1570
  year: 2013
  ident: B88
  article-title: FoxA1 specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-2350
– volume: 57
  start-page: 314
  year: 1997
  ident: B31
  article-title: Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer
  publication-title: Cancer Res.
– start-page: 1491
  volume-title: Lancet.
  year: 2000
  ident: B23
  article-title: Maximum androgen blockade in advanced prostate cancer: an overview of the randomised trials. Prostate Cancer Trialists' Collaborative Group
– volume: 5
  start-page: 12007
  year: 2015
  ident: B53
  article-title: Discovery of ODM-201, a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies
  publication-title: Sci Rep.
  doi: 10.1038/srep12007
– volume: 359
  start-page: 1361
  year: 2018
  ident: B120
  article-title: CAR T cell immunotherapy for human cancer
  publication-title: Science.
  doi: 10.1126/science.aar6711
– volume: 8
  start-page: e41913
  year: 2019
  ident: B75
  article-title: GREB1 amplifies androgen receptor output in human prostate cancer and contributes to antiandrogen resistance
  publication-title: Elife.
  doi: 10.7554/eLife.41913
– volume: 332
  start-page: 1393
  year: 1995
  ident: B41
  article-title: Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer
  publication-title: N Engl J Med.
  doi: 10.1056/NEJM199505253322101
SSID ssj0000650103
Score 2.548851
SecondaryResourceType review_article
Snippet Most prostate cancers are androgen-sensitive malignancies whose growths depend on the transcriptional activity of the androgen receptor (AR). In the 1940s,...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 858
SubjectTerms androgen deprivation therapy (ADT)
androgen receptor (AR)
antiandrogen
castration-resistant prostate cancer (CRPC)
Oncology
prostate cancer (PCa)
small-cell prostate cancer (SCPC)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yB_EiPnF9EcGDl7ptN2mToy4ui6CIurK3kDTJuiDtso__70zblfYgXrwmKU0n08z3kck3hFwL6WRkmQuszICglPd8LBeBMKlxqSyLHGO2xXMyGrPHCZ80Sn1hTlglD1wZrse99NJmaSItY9wmGiXIHNAEC84Ifbj7QsxrkKlqD-ZYwKDS8gEWJnu-yFGxMEJ5SoEF3hthqFTrb0HMdoJkI-IM98huDRXpXTXFfbLl8gOy_VQfhh-SD0xGLMABKGA_NwfyTN9mUwTW-ZTOcgrQjjZygmjh6UBvZHKDV7dE6AjtL3jxAyAn9IIHLI7IePjwPhgFdZmEIONhvAo816HRQoci6wuIzo57LRJkMi62kUmFTZgxqdbCc2iODOMytAJiv_ahAcRxTDp5kbsTQq3vx30AUBZgGR6gCs-yzLE4SmKnE2u65HZjNZXVGuJYyuJLAZdAMys0s0Izq9LMXXLz88C8ks_4feg9LsPPMNS9LhvAG1TtDeovb-iSq80iKvhP8PBD565YL1UcyzSKge1FXZK2Vrf1xnZPPvssFbexNCoA19P_mOIZ2cGPLvPU2DnprBZrdwHAZmUuSx_-Bkip98s
  priority: 102
  providerName: Directory of Open Access Journals
Title Androgen Receptor Signaling in the Development of Castration-Resistant Prostate Cancer
URI https://www.proquest.com/docview/2297126251
https://pubmed.ncbi.nlm.nih.gov/PMC6738163
https://doaj.org/article/5f9f9dc769d445d6a2134e289d183f9f
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS-QwEA-nB-LL4fmBq55E8MGXaj-SNnk4jju5vUVQRF3Zt5A0ybqwtHv7Ad5_fzPZrmfBA18KTdKWzmQ6v2kmvyHkVEgnE8tcZGUJAUrY52O5iIQpjCtkKHKM2RY3ea_PrgZ88K8cUCPA2ZuhHdaT6k_H58-__3wDg_-KESf42wtfV0hGmCDzpOBijXwEt1SglV43WH_5WeZY0wCLzaUZiyTLBkuqn7fu0fJSgcy_hUDb-ZOvHFJ3i3xqkCT9vlT9Z_LBVdtk47pZK98hj5irWMP8oAAN3QRia3o_GiLuroZ0VFFAfvRVyhCtPb3UKxbd6M7NEFlC-y3uCwFECr0wQaa7pN_9-XDZi5oqClHJ43Qeea5jo4WORZkJcN6Oey1yDHRcahNTCJszYwqthefQnBjGZWwFQAPtYwOAZI-sV3Xl9gm1PgPRZdwCasP1VeFZWTqWJnnqdG5Nh5yvpKbKhmIcK12MFYQaKGaFYlYoZhXE3CFnLxdMluwa_x_6A9XwMgxpsUNDPR2qxsoU99JLWxa5tIxxm2vkq3MQU1r4ckFfh5yslKjAjHBtRFeuXsxUmsoiSSEYTDqkaGm39cR2TzV6CoTcWDkVcO3B-9_mkGziSUhWY0dkfT5duC-AbubmOPwVgOOvQXIcZvBfFRH6Fw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Androgen+Receptor+Signaling+in+the+Development+of+Castration-Resistant+Prostate+Cancer&rft.jtitle=Frontiers+in+oncology&rft.au=Feng%2C+Qin&rft.au=He%2C+Bin&rft.date=2019-09-04&rft.issn=2234-943X&rft.eissn=2234-943X&rft.volume=9&rft_id=info:doi/10.3389%2Ffonc.2019.00858&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fonc_2019_00858
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-943X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-943X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-943X&client=summon