Androgen Receptor Signaling in the Development of Castration-Resistant Prostate Cancer
Most prostate cancers are androgen-sensitive malignancies whose growths depend on the transcriptional activity of the androgen receptor (AR). In the 1940s, Charles Huggins demonstrated that the surgical removal of testes in men can result in a dramatic improvement in symptoms and can induce prostate...
Saved in:
Published in | Frontiers in oncology Vol. 9; p. 858 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
04.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most prostate cancers are androgen-sensitive malignancies whose growths depend on the transcriptional activity of the androgen receptor (AR). In the 1940s, Charles Huggins demonstrated that the surgical removal of testes in men can result in a dramatic improvement in symptoms and can induce prostate cancer regression. Since then, androgen deprivation therapies have been the standard first-line treatment for advanced prostate cancer, including: surgical castration, medical castration, antiandrogens, and androgen biosynthesis inhibitors. These therapies relieve symptoms, reduce tumor burden, and prolong patient survival, while having relatively modest side effects. Unfortunately, hormone deprivation therapy rarely cures the cancer itself. Prostate cancer almost always recurs, resulting in deadly castration-resistant prostate cancer. The underlying escape mechanisms include androgen receptor gene/enhancer amplification, androgen receptor mutations, androgen receptor variants, coactivator overexpression, intratumoral de novo androgen synthesis, etc. Whereas, the majority of the castration-resistant prostate cancers continuously rely on the androgen axis, a subset of recurrent cancers have completely lost androgen receptor expression, undergone divergent clonal evolution or de-differentiation, and become truly androgen receptor-independent small-cell prostate cancers. There is an urgent need for the development of novel targeted and immune therapies for this subtype of prostate cancer, when more deadly small-cell prostate cancers are induced by thorough androgen deprivation and androgen receptor ablation.Most prostate cancers are androgen-sensitive malignancies whose growths depend on the transcriptional activity of the androgen receptor (AR). In the 1940s, Charles Huggins demonstrated that the surgical removal of testes in men can result in a dramatic improvement in symptoms and can induce prostate cancer regression. Since then, androgen deprivation therapies have been the standard first-line treatment for advanced prostate cancer, including: surgical castration, medical castration, antiandrogens, and androgen biosynthesis inhibitors. These therapies relieve symptoms, reduce tumor burden, and prolong patient survival, while having relatively modest side effects. Unfortunately, hormone deprivation therapy rarely cures the cancer itself. Prostate cancer almost always recurs, resulting in deadly castration-resistant prostate cancer. The underlying escape mechanisms include androgen receptor gene/enhancer amplification, androgen receptor mutations, androgen receptor variants, coactivator overexpression, intratumoral de novo androgen synthesis, etc. Whereas, the majority of the castration-resistant prostate cancers continuously rely on the androgen axis, a subset of recurrent cancers have completely lost androgen receptor expression, undergone divergent clonal evolution or de-differentiation, and become truly androgen receptor-independent small-cell prostate cancers. There is an urgent need for the development of novel targeted and immune therapies for this subtype of prostate cancer, when more deadly small-cell prostate cancers are induced by thorough androgen deprivation and androgen receptor ablation. |
---|---|
AbstractList | Most prostate cancers are androgen-sensitive malignancies whose growths depend on the transcriptional activity of the androgen receptor (AR). In the 1940s, Charles Huggins demonstrated that the surgical removal of testes in men can result in a dramatic improvement in symptoms and can induce prostate cancer regression. Since then, androgen deprivation therapies have been the standard first-line treatment for advanced prostate cancer, including: surgical castration, medical castration, antiandrogens, and androgen biosynthesis inhibitors. These therapies relieve symptoms, reduce tumor burden, and prolong patient survival, while having relatively modest side effects. Unfortunately, hormone deprivation therapy rarely cures the cancer itself. Prostate cancer almost always recurs, resulting in deadly castration-resistant prostate cancer. The underlying escape mechanisms include androgen receptor gene/enhancer amplification, androgen receptor mutations, androgen receptor variants, coactivator overexpression, intratumoral de novo androgen synthesis, etc. Whereas, the majority of the castration-resistant prostate cancers continuously rely on the androgen axis, a subset of recurrent cancers have completely lost androgen receptor expression, undergone divergent clonal evolution or de-differentiation, and become truly androgen receptor-independent small-cell prostate cancers. There is an urgent need for the development of novel targeted and immune therapies for this subtype of prostate cancer, when more deadly small-cell prostate cancers are induced by thorough androgen deprivation and androgen receptor ablation. Most prostate cancers are androgen-sensitive malignancies whose growths depend on the transcriptional activity of the androgen receptor (AR). In the 1940s, Charles Huggins demonstrated that the surgical removal of testes in men can result in a dramatic improvement in symptoms and can induce prostate cancer regression. Since then, androgen deprivation therapies have been the standard first-line treatment for advanced prostate cancer, including: surgical castration, medical castration, antiandrogens, and androgen biosynthesis inhibitors. These therapies relieve symptoms, reduce tumor burden, and prolong patient survival, while having relatively modest side effects. Unfortunately, hormone deprivation therapy rarely cures the cancer itself. Prostate cancer almost always recurs, resulting in deadly castration-resistant prostate cancer. The underlying escape mechanisms include androgen receptor gene/enhancer amplification, androgen receptor mutations, androgen receptor variants, coactivator overexpression, intratumoral de novo androgen synthesis, etc. Whereas, the majority of the castration-resistant prostate cancers continuously rely on the androgen axis, a subset of recurrent cancers have completely lost androgen receptor expression, undergone divergent clonal evolution or de-differentiation, and become truly androgen receptor-independent small-cell prostate cancers. There is an urgent need for the development of novel targeted and immune therapies for this subtype of prostate cancer, when more deadly small-cell prostate cancers are induced by thorough androgen deprivation and androgen receptor ablation.Most prostate cancers are androgen-sensitive malignancies whose growths depend on the transcriptional activity of the androgen receptor (AR). In the 1940s, Charles Huggins demonstrated that the surgical removal of testes in men can result in a dramatic improvement in symptoms and can induce prostate cancer regression. Since then, androgen deprivation therapies have been the standard first-line treatment for advanced prostate cancer, including: surgical castration, medical castration, antiandrogens, and androgen biosynthesis inhibitors. These therapies relieve symptoms, reduce tumor burden, and prolong patient survival, while having relatively modest side effects. Unfortunately, hormone deprivation therapy rarely cures the cancer itself. Prostate cancer almost always recurs, resulting in deadly castration-resistant prostate cancer. The underlying escape mechanisms include androgen receptor gene/enhancer amplification, androgen receptor mutations, androgen receptor variants, coactivator overexpression, intratumoral de novo androgen synthesis, etc. Whereas, the majority of the castration-resistant prostate cancers continuously rely on the androgen axis, a subset of recurrent cancers have completely lost androgen receptor expression, undergone divergent clonal evolution or de-differentiation, and become truly androgen receptor-independent small-cell prostate cancers. There is an urgent need for the development of novel targeted and immune therapies for this subtype of prostate cancer, when more deadly small-cell prostate cancers are induced by thorough androgen deprivation and androgen receptor ablation. Most prostate cancers are androgen-sensitive malignancies whose growths depend on the transcriptional activity of the androgen receptor (AR). In the 1940s, Charles Huggins demonstrated that the surgical removal of testes in men can result in a dramatic improvement in symptoms and can induce prostate cancer regression. Since then, androgen deprivation therapies have been the standard first-line treatment for advanced prostate cancer, including: surgical castration, medical castration, antiandrogens, and androgen biosynthesis inhibitors. These therapies relieve symptoms, reduce tumor burden, and prolong patient survival, while having relatively modest side effects. Unfortunately, hormone deprivation therapy rarely cures the cancer itself. Prostate cancer almost always recurs, resulting in deadly castration-resistant prostate cancer. The underlying escape mechanisms include androgen receptor gene/enhancer amplification, androgen receptor mutations, androgen receptor variants, coactivator overexpression, intratumoral de novo androgen synthesis, etc. Whereas, the majority of the castration-resistant prostate cancers continuously rely on the androgen axis, a subset of recurrent cancers have completely lost androgen receptor expression, undergone divergent clonal evolution or de-differentiation, and become truly androgen receptor-independent small-cell prostate cancers. There is an urgent need for the development of novel targeted and immune therapies for this subtype of prostate cancer, when more deadly small-cell prostate cancers are induced by thorough androgen deprivation and androgen receptor ablation. |
Author | Feng, Qin He, Bin |
AuthorAffiliation | 3 Department of Medicine-Cancer Biology, Weill Cornell Medicine, Cornell University , New York, NY , United States 2 Departments of Surgery and Urology, Immunobiology & Transplant Science Center, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital , Houston, TX , United States 1 Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston , Houston, TX , United States |
AuthorAffiliation_xml | – name: 3 Department of Medicine-Cancer Biology, Weill Cornell Medicine, Cornell University , New York, NY , United States – name: 2 Departments of Surgery and Urology, Immunobiology & Transplant Science Center, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital , Houston, TX , United States – name: 1 Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston , Houston, TX , United States |
Author_xml | – sequence: 1 givenname: Qin surname: Feng fullname: Feng, Qin – sequence: 2 givenname: Bin surname: He fullname: He, Bin |
BookMark | eNp1kctrXCEUxqWkNI9m3e1ddjMTH1evbgphmjaBQEv6oDvx6vHGcEen6gT639eZSaEp1I2H7zvnh57vFB3FFAGhNwQvGZPqwqdolxQTtcRYcvkCnVDK-oXq2Y-jv-pjdF7KA25HcEwwe4WOGeGcEklP0PfL6HKaIHZ3YGFTU-6-hCmaOcSpC7Gr99C9h0eY02YNsXbJdytTajY1pLi4gxJKNU3_nFMrKjQ3Wsiv0Utv5gLnT_cZ-vbh6uvqenH76ePN6vJ2YTmmdeG5waORBkvLpCAMuDdS9EopoI6Mg3SiH8fBGOl5k8nYc4WdxJIaj0ch2Bm6OXBdMg96k8Pa5F86maD3QsqTNrkGO4PmXnnl7CCU63vuhKGE9UClckSy5jXWuwNrsx3X4Gz7bjbzM-hzJ4Z7PaVHLQYmiWAN8PYJkNPPLZSq16FYmGcTIW2LplQNhArKSWvlh1bb9lYyeG1D3e-0kcOsCda7iPUuYr2LWO8jbnMX_8z9ed7_Jn4D-1erPg |
CitedBy_id | crossref_primary_10_1186_s12935_025_03658_5 crossref_primary_10_1016_j_mehy_2020_109639 crossref_primary_10_3390_ph14121322 crossref_primary_10_1016_j_clgc_2020_08_008 crossref_primary_10_1177_10781552221074621 crossref_primary_10_1038_s41401_024_01274_z crossref_primary_10_1039_D0NR07196J crossref_primary_10_3390_biomedicines11112895 crossref_primary_10_1021_acs_jmedchem_1c00763 crossref_primary_10_3390_ijms23158732 crossref_primary_10_1186_s12967_025_06322_8 crossref_primary_10_3892_or_2021_8214 crossref_primary_10_1186_s12967_022_03827_4 crossref_primary_10_3390_genes15040450 crossref_primary_10_1002_bcp_70022 crossref_primary_10_1016_j_ejmech_2021_113307 crossref_primary_10_2967_jnumed_123_266158 crossref_primary_10_1186_s13046_022_02384_4 crossref_primary_10_1002_pros_24336 crossref_primary_10_1002_onco_13869 crossref_primary_10_1038_s41591_021_01600_6 crossref_primary_10_1186_s12964_021_00807_x crossref_primary_10_36472_msd_v9i1_650 crossref_primary_10_1016_j_mce_2020_110745 crossref_primary_10_1007_s13402_020_00575_9 crossref_primary_10_1016_j_ncrna_2024_01_015 crossref_primary_10_1016_j_neo_2020_09_002 crossref_primary_10_1016_j_nantod_2022_101532 crossref_primary_10_1172_JCI161913 crossref_primary_10_3389_fmed_2022_924087 crossref_primary_10_3390_nu12010002 crossref_primary_10_1039_D1NJ05185G crossref_primary_10_1038_s41388_023_02690_x crossref_primary_10_3389_fonc_2022_865350 crossref_primary_10_1016_j_jphs_2023_08_002 crossref_primary_10_3389_fonc_2021_650919 crossref_primary_10_3390_biomedicines9121877 crossref_primary_10_3390_ijms22136676 crossref_primary_10_2147_RRU_S264722 crossref_primary_10_3390_jcm10215000 crossref_primary_10_1016_j_ajpath_2020_07_013 crossref_primary_10_3390_biom15010023 crossref_primary_10_3390_nu12010153 crossref_primary_10_1016_j_trecan_2020_01_015 crossref_primary_10_1002_pros_24496 crossref_primary_10_1016_j_isci_2024_109674 crossref_primary_10_1021_acs_jmedchem_1c01342 crossref_primary_10_3390_cells11081302 crossref_primary_10_1016_j_isci_2024_108984 crossref_primary_10_1016_j_taap_2020_115200 crossref_primary_10_1158_1541_7786_MCR_21_0477 crossref_primary_10_3390_ijms25052799 crossref_primary_10_1016_j_ijbiomac_2024_137993 crossref_primary_10_21518_2079_701X_2020_20_100_108 crossref_primary_10_3390_ijms23020897 crossref_primary_10_1016_j_bioorg_2024_107731 crossref_primary_10_1016_j_bioorg_2021_105575 crossref_primary_10_3389_fonc_2021_671141 crossref_primary_10_3390_cells10051133 crossref_primary_10_3390_ijms222011246 crossref_primary_10_1038_s41388_021_02026_7 crossref_primary_10_3389_fendo_2024_1437179 crossref_primary_10_1155_2023_9907948 crossref_primary_10_3390_cancers13153726 crossref_primary_10_1038_s41585_023_00738_x crossref_primary_10_3390_cancers13174425 crossref_primary_10_56543_aaeeu_2023_2_4_04 crossref_primary_10_1007_s11033_024_09653_9 crossref_primary_10_3390_pharmaceutics16050583 crossref_primary_10_1089_bioe_2022_0007 crossref_primary_10_1002_cbin_11418 crossref_primary_10_18632_aging_202919 crossref_primary_10_3390_ijms24087336 crossref_primary_10_1016_j_ecoenv_2022_113724 crossref_primary_10_1002_cbdv_202401904 crossref_primary_10_1016_j_humpath_2023_05_007 crossref_primary_10_1016_j_addr_2021_05_008 crossref_primary_10_1016_j_bcp_2024_116229 crossref_primary_10_1016_j_envpol_2020_116397 crossref_primary_10_1021_acs_jmedchem_3c02124 crossref_primary_10_1038_s41598_020_70948_5 crossref_primary_10_3389_fcell_2021_681163 crossref_primary_10_3390_ijms232113521 crossref_primary_10_1016_j_scr_2022_102864 crossref_primary_10_1056_EVIDoa2300171 crossref_primary_10_3390_pharmaceutics13091509 crossref_primary_10_1186_s13020_020_00309_x crossref_primary_10_1016_j_taap_2023_116699 crossref_primary_10_1158_0008_5472_CAN_22_1910 crossref_primary_10_1007_s00109_023_02300_z crossref_primary_10_1039_D3CB00010A crossref_primary_10_3390_cancers13122939 crossref_primary_10_1038_s41388_024_03073_6 crossref_primary_10_2174_1570180818666210813121431 crossref_primary_10_1186_s12894_023_01251_4 crossref_primary_10_1002_adhm_202400114 crossref_primary_10_1016_j_ctrv_2020_102069 crossref_primary_10_1038_s41467_021_27322_4 crossref_primary_10_1186_s13046_024_03097_6 crossref_primary_10_1016_j_ceca_2022_102554 crossref_primary_10_1007_s00092_020_4190_x crossref_primary_10_1007_s12032_021_01520_y crossref_primary_10_1016_j_compbiomed_2025_110000 crossref_primary_10_1016_j_bbamcr_2020_118731 crossref_primary_10_1186_s12964_024_01970_7 crossref_primary_10_3390_biom12030357 crossref_primary_10_3389_fonc_2022_917400 crossref_primary_10_1021_acs_jmedchem_3c02063 crossref_primary_10_3390_ijerph192315486 crossref_primary_10_1002_cam4_70319 crossref_primary_10_1016_j_jare_2024_01_003 crossref_primary_10_1016_j_urolonc_2024_11_018 crossref_primary_10_3390_cancers13122872 crossref_primary_10_1016_j_biocel_2020_105838 crossref_primary_10_3390_v14122728 crossref_primary_10_1016_j_bioorg_2022_105829 crossref_primary_10_3390_cancers13040633 crossref_primary_10_1016_j_csbj_2023_01_031 crossref_primary_10_1016_j_bcp_2020_114224 crossref_primary_10_62347_YQWJ7498 crossref_primary_10_1016_j_bmcl_2022_128952 crossref_primary_10_1038_s41388_020_1370_9 crossref_primary_10_3389_fragi_2023_1196648 crossref_primary_10_1038_s41598_024_60538_0 crossref_primary_10_1016_j_ucl_2022_07_002 crossref_primary_10_3390_cancers12040927 crossref_primary_10_1124_pharmrev_121_000302 crossref_primary_10_2217_fon_2023_0526 |
Cites_doi | 10.1186/s13059-015-0864-1 10.1056/NEJMoa1506859 10.1158/1538-7445.AM2018-5795 10.1074/jbc.M107492200 10.1158/1541-7786.MCR-08-0400 10.1002/pros.23214 10.1093/nar/gkt1382 10.1074/jbc.M002807200 10.1126/science.1168175 10.1056/NEJMoa1715546 10.1056/NEJMoa1903835 10.1126/science.aab4082 10.1016/j.cell.2015.06.053 10.1038/sj.pcan.4500262 10.1016/S0022-5347(01)64039-4 10.1158/0008-5472.CAN-08-0594 10.1128/MCB.25.4.1238-1257.2005 10.1016/j.molcel.2007.05.041 10.1158/2159-8290.CD-11-0130 10.1097/00005392-199707000-00051 10.1210/edrv.23.2.0460 10.1158/1535-7163.MCT-17-0386 10.1126/science.1117679 10.1038/onc.2009.243 10.1056/NEJMoa1200690 10.1007/s10637-015-0235-5 10.1073/pnas.1518007112 10.1016/j.cell.2018.06.039 10.1016/S0022-5347(17)36163-3 10.1158/1078-0432.CCR-13-3296 10.1158/2159-8290.CD-13-0142 10.1038/nm.4045 10.1158/1078-0432.CCR-1146-03 10.1016/S0006-291X(05)80067-1 10.1158/0008-5472.CAN-08-2764 10.1016/j.ccr.2011.04.008 10.1158/0008-5472.CAN-08-3795 10.1016/0090-4295(94)90092-2 10.1073/pnas.1421415111 10.1038/35094009 10.1016/j.ejca.2017.02.030 10.1074/jbc.M111975200 10.1074/jbc.M202809200 10.1158/1538-7445.SABCS18-4497 10.1038/nm.4070 10.1158/0008-5472.CAN-12-3630 10.1016/j.ymthe.2018.05.003 10.1200/JCO.2002.10.057 10.1056/NEJMoa1801946 10.1016/0303-7207(86)90132-2 10.1074/jbc.M112.428409 10.1016/j.bmcl.2013.02.056 10.1158/0008-5472.CAN-08-0249 10.1200/JCO.19.00799 10.1158/2159-8290.CD-13-0226 10.1158/0008-5472.CAN-12-3468 10.1056/NEJMoa1315815 10.1038/onc.2017.50 10.1038/ncomms14388 10.1016/S0021-9258(17)33103-4 10.1016/S1470-2045(19)30082-8 10.1021/acs.jmedchem.8b01631 10.1016/j.cell.2018.04.034 10.1038/s42003-018-0105-8 10.1038/s41586-019-1318-9 10.1021/jm201059s 10.1056/NEJMoa1706450 10.1016/j.eururo.2014.08.006 10.1038/nm972 10.1016/S0303-7207(00)00300-2 10.1016/S0090-4295(96)00558-4 10.1016/j.molcel.2004.09.036 10.1016/j.ccr.2011.05.006 10.1038/76287 10.1200/JCO.2018.36.6_suppl.TPS403 10.1016/j.cell.2018.05.037 10.1074/jbc.M307649200 10.1210/endo-126-2-1165 10.1158/0008-5472.CAN-14-3080 10.1056/NEJMoa1815671 10.1210/edrv-7-1-67 10.1002/pros.2990210514 10.1038/ng0495-401 10.1038/nature12477 10.1016/j.cell.2013.11.012 10.1126/science.aan6733 10.1056/NEJMoa1001294 10.1073/pnas.0401123101 10.1158/0008-5472.CAN-18-2812 10.1056/NEJMoa1903307 10.1056/NEJMoa1014618 10.1056/NEJMoa1704174 10.1016/S0959-437X(02)00319-2 10.1056/NEJMoa1207506 10.1126/science.275.5308.1943 10.1158/1078-0432.CCR-18-0981 10.1158/1078-0432.CCR-05-0525 10.1038/emboj.2011.328 10.3322/canjclin.52.3.154 10.1038/s41591-018-0040-8 10.1016/S1470-2045(18)30365-6 10.1056/NEJMoa1405095 10.1074/jbc.274.52.37219 10.1056/NEJMoa1800536 10.1677/erc.1.00525 10.1200/JCO.2017.35.6_suppl.135 10.1158/0008-5472.CAN-12-2350 10.1038/srep12007 10.1126/science.aar6711 10.7554/eLife.41913 10.1056/NEJM199505253322101 |
ContentType | Journal Article |
Copyright | Copyright © 2019 Feng and He. 2019 Feng and He |
Copyright_xml | – notice: Copyright © 2019 Feng and He. 2019 Feng and He |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fonc.2019.00858 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2234-943X |
ExternalDocumentID | oai_doaj_org_article_5f9f9dc769d445d6a2134e289d183f9f PMC6738163 10_3389_fonc_2019_00858 |
GrantInformation_xml | – fundername: National Institute of Allergy and Infectious Diseases – fundername: National Cancer Institute |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EJD EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM 7X8 5PM |
ID | FETCH-LOGICAL-c502t-f5a0ba8a08c38613e5fa864999e2d1b78d64bb7aa8f56491b4590d8082af0b663 |
IEDL.DBID | M48 |
ISSN | 2234-943X |
IngestDate | Wed Aug 27 01:30:14 EDT 2025 Thu Aug 21 18:15:19 EDT 2025 Thu Jul 10 22:54:23 EDT 2025 Thu Apr 24 22:59:45 EDT 2025 Tue Jul 01 00:43:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-f5a0ba8a08c38613e5fa864999e2d1b78d64bb7aa8f56491b4590d8082af0b663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Joaquin Mateo, Vall d'Hebron Institute of Oncology (VHIO), Spain; Devin B. Lowe, Texas Tech University Health Sciences Center, United States Edited by: Renee de Leeuw, University of Illinois at Chicago, United States This article was submitted to Genitourinary Oncology, a section of the journal Frontiers in Oncology |
OpenAccessLink | https://doaj.org/article/5f9f9dc769d445d6a2134e289d183f9f |
PMID | 31552182 |
PQID | 2297126251 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5f9f9dc769d445d6a2134e289d183f9f pubmedcentral_primary_oai_pubmedcentral_nih_gov_6738163 proquest_miscellaneous_2297126251 crossref_citationtrail_10_3389_fonc_2019_00858 crossref_primary_10_3389_fonc_2019_00858 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-04 |
PublicationDateYYYYMMDD | 2019-09-04 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-04 day: 04 |
PublicationDecade | 2010 |
PublicationTitle | Frontiers in oncology |
PublicationYear | 2019 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Quigley (B35) 2018; 174 Fizazi (B64) 2019; 20 (B119) 2019 Chi (B60) 2019; 381 Patient (B82) 2002; 12 Fizazi (B59) 2019; 380 Antonarakis (B70) 2014; 371 Li (B71) 2013; 73 Smith (B57) 2018; 378 Liu (B73) 2015; 75 Dehm (B45) 2008; 68 Salami (B97) 2018; 1 Kelly (B48) 1993; 149 (B23) 2000 Kim (B92) 2017; 36 Guo (B99) 2011; 54 Clarke (B104) 2018; 19 Scher (B28) 2004; 11 Sahu (B89) 2011; 30 Heinlein (B8) 2002; 23 Armstrong (B81) 2017; 81 Wu (B117) 2018; 173 Labrie (B21) 1986; 7 Grino (B12) 1990; 126 Kolinsky (B80) 2017; 35 Small (B49) 1994; 43 Sahu (B88) 2013; 73 Kregel (B100) 2019; 78 Swinney (B13) 2009; 12 Simard (B17) 1986; 44 Rathkopf (B54) 2018; 36 Mohler (B24) 2004; 10 Hellmann (B114) 2018; 378 Smith (B109) 2015; 112 Omlin (B96) 2015; 33 Karpf (B37) 2009; 7 Beltran (B105) 2016; 22 Scher (B55) 2012; 367 Li (B74) 2019; 79 Adams (B91) 2019; 571 Zacharakis (B112) 2018; 24 Dijkman (B22) 1997; 158 Alexandrov (B115) 2013; 500 Wilson (B11) 1976; 251 Mulholland (B77) 2011; 19 Veldscholte (B40) 1990; 173 Shaffer (B2) 2004; 101 Robinson (B33) 2015; 161 Beer (B56) 2014; 371 Lallous (B68) 2016; 17 Davis (B61) 2019; 381 He (B5) 2002; 277 Kolvenbag (B18) 1998; 1 de Voogt (B16) 1992; 4 Goodman (B113) 2017; 16 de Bono (B63) 2011; 364 Le (B118) 2017; 357 Junghans (B122) 2016; 76 Linja (B30) 2001; 61 June (B120) 2018; 359 Labrie (B20) 1982; 5 Toren (B79) 2015; 67 Hellerstedt (B15) 2002; 52 Koivisto (B31) 1997; 57 Montgomery (B26) 2008; 68 Tilley (B39) 1996; 2 Robson (B102) 2017; 377 Han (B98) 2019; 62 Takeda (B34) 2018; 174 He (B7) 2002; 277 Visakorpi (B29) 1995; 9 Huan (B50) 1997; 49 Li (B107) 1997; 275 Mateo (B103) 2015; 373 Jin (B93) 2013; 73 Tran (B52) 2009; 324 Howell (B94) 2002; 20 Arora (B69) 2013; 155 Hussain (B58) 2018; 378 Titus (B25) 2005; 11 He (B4) 2000; 275 Carver (B76) 2011; 19 He (B6) 2004; 16 Kloss (B121) 2018; 26 Taplin (B41) 1995; 332 Perez-Stable (B83) 2000; 167 Wang (B101) 2016; 22 Nadal (B3) 2017; 8 Hu (B43) 2009; 69 Korpal (B66) 2013; 3 Fenton (B51) 1997; 3 Guo (B44) 2009; 69 Minges (B38) 2013; 288 Bradbury (B95) 2013; 23 de Bono (B78) 2019; 25 He (B9) 1999; 274 Wang (B84) 2007; 27 Zhao (B42) 2000; 6 Bohm (B85) 2009; 28 Beltran (B106) 2011; 1 Fizazi (B65) 2017; 377 Joyce (B19) 1998; 159 Armstrong (B62) 2019 Bai (B10) 2005; 25 Culig (B47) 1994; 54 Lee (B75) 2019; 8 Tomlins (B108) 2005; 310 Martincorena (B116) 2015; 349 Feldman (B27) 2001; 1 Topalian (B111) 2012; 366 Gregory (B46) 2004; 279 Parolia (B90) 2019; 571 He (B1) 2001; 276 Huggins (B14) 1941; 1 Gregory (B36) 2001; 61 Chen (B32) 2004; 10 Joseph (B67) 2013; 3 He (B86) 2014; 111 Wu (B87) 2014; 42 Liu (B72) 2014; 20 Moilanen (B53) 2015; 5 Kantoff (B110) 2010; 363 |
References_xml | – volume: 17 start-page: 10 year: 2016 ident: B68 article-title: Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients publication-title: Genome Biol. doi: 10.1186/s13059-015-0864-1 – volume: 373 start-page: 1697 year: 2015 ident: B103 article-title: DNA-repair defects and olaparib in metastatic prostate cancer publication-title: N Engl J Med. doi: 10.1056/NEJMoa1506859 – volume: 78 start-page: 5795 year: 2019 ident: B100 article-title: Functional and mechanistic interrogation of BET bromodomain degraders for the treatment of metastatic castration-resistant prostate cancer publication-title: Clin Cancer Res. doi: 10.1158/1538-7445.AM2018-5795 – volume: 276 start-page: 42293 year: 2001 ident: B1 article-title: Androgen-induced NH2- and COOH-terminal interaction inhibits p160 coactivator recruitment by activation function 2 publication-title: J Biol Chem. doi: 10.1074/jbc.M107492200 – volume: 7 start-page: 523 year: 2009 ident: B37 article-title: Increased expression of androgen receptor coregulator MAGE-11 in prostate cancer by DNA hypomethylation and cyclic AMP publication-title: Mol Cancer Res. doi: 10.1158/1541-7786.MCR-08-0400 – volume: 76 start-page: 1257 year: 2016 ident: B122 article-title: Phase I trial of anti-PSMA designer CAR-T cells in prostate cancer: possible role for interacting interleukin 2-T cell pharmacodynamics as a determinant of clinical response publication-title: Prostate. doi: 10.1002/pros.23214 – volume: 42 start-page: 3607 year: 2014 ident: B87 article-title: Three-tiered role of the pioneer factor GATA2 in promoting androgen-dependent gene expression in prostate cancer publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1382 – volume: 275 start-page: 22986 year: 2000 ident: B4 article-title: FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor publication-title: J Biol Chem. doi: 10.1074/jbc.M002807200 – volume: 324 start-page: 787 year: 2009 ident: B52 article-title: Development of a second-generation antiandrogen for treatment of advanced prostate cancer publication-title: Science. doi: 10.1126/science.1168175 – volume: 378 start-page: 1408 year: 2018 ident: B57 article-title: Apalutamide treatment and metastasis-free survival in prostate cancer publication-title: N Engl J Med. doi: 10.1056/NEJMoa1715546 – volume: 381 start-page: 121 year: 2019 ident: B61 article-title: Enzalutamide with standard first-line therapy in metastatic prostate cancer publication-title: N Engl J Med. doi: 10.1056/NEJMoa1903835 – volume: 349 start-page: 1483 year: 2015 ident: B116 article-title: Somatic mutation in cancer and normal cells publication-title: Science. doi: 10.1126/science.aab4082 – volume: 12 start-page: 31 year: 2009 ident: B13 article-title: The role of binding kinetics in therapeutically useful drug action publication-title: Curr Opin Drug Discov Devel. – start-page: 569 volume-title: Cancer Discov. year: 2019 ident: B119 article-title: Anti-PD-1-CTLA4 Combo hits prostate cancer – volume: 54 start-page: 5474 year: 1994 ident: B47 article-title: Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor publication-title: Cancer Res. – volume: 161 start-page: 1215 year: 2015 ident: B33 article-title: Integrative clinical genomics of advanced prostate cancer publication-title: Cell. doi: 10.1016/j.cell.2015.06.053 – volume: 1 start-page: 307 year: 1998 ident: B18 article-title: Receptor affinity and potency of non-steroidal antiandrogens: translation of preclinical findings into clinical activity publication-title: Prostate Cancer Prostatic Dis. doi: 10.1038/sj.pcan.4500262 – volume: 159 start-page: 149 year: 1998 ident: B19 article-title: High dose bicalutamide for androgen independent prostate cancer: effect of prior hormonal therapy publication-title: J Urol. doi: 10.1016/S0022-5347(01)64039-4 – volume: 68 start-page: 5469 year: 2008 ident: B45 article-title: Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-0594 – volume: 25 start-page: 1238 year: 2005 ident: B10 article-title: Melanoma antigen gene protein MAGE-11 regulates androgen receptor function by modulating the interdomain interaction publication-title: Mol Cell Biol. doi: 10.1128/MCB.25.4.1238-1257.2005 – volume: 27 start-page: 380 year: 2007 ident: B84 article-title: A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth publication-title: Mol Cell. doi: 10.1016/j.molcel.2007.05.041 – volume: 1 start-page: 487 year: 2011 ident: B106 article-title: Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-11-0130 – volume: 158 start-page: 160 year: 1997 ident: B22 article-title: Long-term efficacy and safety of nilutamide plus castration in advanced prostate cancer, and the significance of early prostate specific antigen normalization. International Anandron Study Group publication-title: J Urol. doi: 10.1097/00005392-199707000-00051 – volume: 23 start-page: 175 year: 2002 ident: B8 article-title: Androgen receptor (AR) coregulators: an overview publication-title: Endocr Rev. doi: 10.1210/edrv.23.2.0460 – volume: 16 start-page: 2598 year: 2017 ident: B113 article-title: Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers publication-title: Mol Cancer Ther. doi: 10.1158/1535-7163.MCT-17-0386 – volume: 310 start-page: 644 year: 2005 ident: B108 article-title: Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer publication-title: Science. doi: 10.1126/science.1117679 – volume: 28 start-page: 3847 year: 2009 ident: B85 article-title: A role for GATA-2 in transition to an aggressive phenotype in prostate cancer through modulation of key androgen-regulated genes publication-title: Oncogene. doi: 10.1038/onc.2009.243 – volume: 366 start-page: 2443 year: 2012 ident: B111 article-title: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer publication-title: N Engl J Med. doi: 10.1056/NEJMoa1200690 – volume: 33 start-page: 679 year: 2015 ident: B96 article-title: AZD3514, an oral selective androgen receptor down-regulator in patients with castration-resistant prostate cancer - results of two parallel first-in-human phase I studies publication-title: Invest New Drugs. doi: 10.1007/s10637-015-0235-5 – volume: 112 start-page: E6544 year: 2015 ident: B109 article-title: A basal stem cell signature identifies aggressive prostate cancer phenotypes publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.1518007112 – volume: 174 start-page: 758 year: 2018 ident: B35 article-title: Genomic hallmarks and structural variation in metastatic prostate cancer publication-title: Cell. doi: 10.1016/j.cell.2018.06.039 – volume: 149 start-page: 607 year: 1993 ident: B48 article-title: Prostate specific antigen decline after antiandrogen withdrawal: the flutamide withdrawal syndrome publication-title: J Urol. doi: 10.1016/S0022-5347(17)36163-3 – volume: 5 start-page: 267 year: 1982 ident: B20 article-title: New hormonal therapy in prostatic carcinoma: combined treatment with an LHRH agonist and an antiandrogen publication-title: Clin Invest Med. – volume: 20 start-page: 3198 year: 2014 ident: B72 article-title: Niclosamide inhibits androgen receptor variants expression and overcomes enzalutamide resistance in castration-resistant prostate cancer publication-title: Clin Cancer Res. doi: 10.1158/1078-0432.CCR-13-3296 – volume: 3 start-page: 1030 year: 2013 ident: B66 article-title: An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide) publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-13-0142 – volume: 22 start-page: 298 year: 2016 ident: B105 article-title: Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer publication-title: Nat Med. doi: 10.1038/nm.4045 – volume: 10 start-page: 440 year: 2004 ident: B24 article-title: The androgen axis in recurrent prostate cancer publication-title: Clin Cancer Res. doi: 10.1158/1078-0432.CCR-1146-03 – volume: 173 start-page: 534 year: 1990 ident: B40 article-title: A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens publication-title: Biochem Biophys Res Commun. doi: 10.1016/S0006-291X(05)80067-1 – volume: 69 start-page: 16 year: 2009 ident: B43 article-title: Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-2764 – volume: 19 start-page: 575 year: 2011 ident: B76 article-title: Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer publication-title: Cancer Cell. doi: 10.1016/j.ccr.2011.04.008 – volume: 69 start-page: 2305 year: 2009 ident: B44 article-title: A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-3795 – volume: 43 start-page: 408 year: 1994 ident: B49 article-title: Prostate-specific antigen decline after casodex withdrawal: evidence for an antiandrogen withdrawal syndrome publication-title: Urology. doi: 10.1016/0090-4295(94)90092-2 – volume: 111 start-page: 18261 year: 2014 ident: B86 article-title: GATA2 facilitates steroid receptor coactivator recruitment to the androgen receptor complex publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.1421415111 – volume: 1 start-page: 34 year: 2001 ident: B27 article-title: The development of androgen-independent prostate cancer publication-title: Nat Rev Cancer. doi: 10.1038/35094009 – volume: 81 start-page: 228 year: 2017 ident: B81 article-title: Phase II trial of the PI3 kinase inhibitor buparlisib (BKM-120) with or without enzalutamide in men with metastatic castration resistant prostate cancer publication-title: Eur J Cancer. doi: 10.1016/j.ejca.2017.02.030 – volume: 277 start-page: 10226 year: 2002 ident: B5 article-title: The FXXLF motif mediates androgen receptor-specific interactions with coregulators publication-title: J Biol Chem. doi: 10.1074/jbc.M111975200 – volume: 277 start-page: 25631 year: 2002 ident: B7 article-title: Dependence of selective gene activation on the androgen receptor NH2- and COOH-terminal interaction publication-title: J Biol Chem. doi: 10.1074/jbc.M202809200 – volume: 571 start-page: 413 year: 2019 ident: B90 article-title: Distinct structural classes of activating FOXA1 alterations in advanced prostate cancer publication-title: Nature. doi: 10.1158/1538-7445.SABCS18-4497 – volume: 22 start-page: 488 year: 2016 ident: B101 article-title: ROR-gamma drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer publication-title: Nat Med. doi: 10.1038/nm.4070 – volume: 73 start-page: 483 year: 2013 ident: B71 article-title: Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-3630 – volume: 26 start-page: 1855 year: 2018 ident: B121 article-title: Dominant-negative TGF-beta receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication publication-title: Mol Ther. doi: 10.1016/j.ymthe.2018.05.003 – volume: 2 start-page: 277 year: 1996 ident: B39 article-title: Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence publication-title: Clin Cancer Res. – volume: 20 start-page: 3396 year: 2002 ident: B94 article-title: Fulvestrant, formerly ICI 182,780, is as effective as anastrozole in postmenopausal women with advanced breast cancer progressing after prior endocrine treatment publication-title: J Clin Oncol. doi: 10.1200/JCO.2002.10.057 – volume: 378 start-page: 2093 year: 2018 ident: B114 article-title: Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden publication-title: N Engl J Med. doi: 10.1056/NEJMoa1801946 – volume: 1 start-page: 293 year: 1941 ident: B14 article-title: Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate publication-title: Cancer Res. – volume: 44 start-page: 261 year: 1986 ident: B17 article-title: Characteristics of interaction of the antiandrogen flutamide with the androgen receptor in various target tissues publication-title: Mol Cell Endocrinol. doi: 10.1016/0303-7207(86)90132-2 – volume: 288 start-page: 1939 year: 2013 ident: B38 article-title: Melanoma antigen-A11 (MAGE-A11) enhances transcriptional activity by linking androgen receptor dimers publication-title: J Biol Chem. doi: 10.1074/jbc.M112.428409 – volume: 23 start-page: 1945 year: 2013 ident: B95 article-title: Discovery of AZD3514, a small-molecule androgen receptor downregulator for treatment of advanced prostate cancer publication-title: Bioorg Med Chem Lett. doi: 10.1016/j.bmcl.2013.02.056 – volume: 68 start-page: 4447 year: 2008 ident: B26 article-title: Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-0249 – year: 2019 ident: B62 article-title: ARCHES: A randomized, phase III study of androgen deprivation therapy with enzalutamide or placebo in men with metastatic hormone-sensitive prostate cancer publication-title: J Clin Oncol. doi: 10.1200/JCO.19.00799 – volume: 3 start-page: 1020 year: 2013 ident: B67 article-title: A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509 publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-13-0226 – volume: 73 start-page: 3725 year: 2013 ident: B93 article-title: Androgen receptor-independent function of FoxA1 in prostate cancer metastasis publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-3468 – volume: 371 start-page: 1028 year: 2014 ident: B70 article-title: AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer publication-title: N Engl J Med. doi: 10.1056/NEJMoa1315815 – volume: 36 start-page: 4072 year: 2017 ident: B92 article-title: FOXA1 inhibits prostate cancer neuroendocrine differentiation publication-title: Oncogene. doi: 10.1038/onc.2017.50 – volume: 8 start-page: 14388 year: 2017 ident: B3 article-title: Structure of the homodimeric androgen receptor ligand-binding domain publication-title: Nat Commun. doi: 10.1038/ncomms14388 – volume: 251 start-page: 5620 year: 1976 ident: B11 article-title: Binding properties of androgen receptors. Evidence for identical receptors in rat testis, epididymis, and prostate publication-title: J Biol Chem. doi: 10.1016/S0021-9258(17)33103-4 – volume: 3 start-page: 1383 year: 1997 ident: B51 article-title: Functional characterization of mutant androgen receptors from androgen-independent prostate cancer publication-title: Clin Cancer Res. – volume: 20 start-page: 686 year: 2019 ident: B64 article-title: Abiraterone acetate plus prednisone in patients with newly diagnosed high-risk metastatic castration-sensitive prostate cancer (LATITUDE): final overall survival analysis of a randomised, double-blind, phase 3 trial publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(19)30082-8 – volume: 62 start-page: 941 year: 2019 ident: B98 article-title: Discovery of ARD-69 as a highly potent proteolysis targeting chimera (PROTAC) degrader of androgen receptor (AR) for the treatment of prostate cancer publication-title: J Med Chem. doi: 10.1021/acs.jmedchem.8b01631 – volume: 173 start-page: 1770 year: 2018 ident: B117 article-title: Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer publication-title: Cell. doi: 10.1016/j.cell.2018.04.034 – volume: 1 start-page: 100 year: 2018 ident: B97 article-title: Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance publication-title: Commun Biol. doi: 10.1038/s42003-018-0105-8 – volume: 61 start-page: 3550 year: 2001 ident: B30 article-title: Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer publication-title: Cancer Res. – volume: 571 start-page: 408 year: 2019 ident: B91 article-title: FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes publication-title: Nature. doi: 10.1038/s41586-019-1318-9 – volume: 54 start-page: 7693 year: 2011 ident: B99 article-title: Discovery of aryloxy tetramethylcyclobutanes as novel androgen receptor antagonists publication-title: J Med Chem. doi: 10.1021/jm201059s – volume: 377 start-page: 523 year: 2017 ident: B102 article-title: Olaparib for metastatic breast cancer in patients with a germline BRCA mutation publication-title: N Engl J Med. doi: 10.1056/NEJMoa1706450 – volume: 67 start-page: 986 year: 2015 ident: B79 article-title: Combination AZD5363 with enzalutamide significantly delays enzalutamide-resistant prostate cancer in preclinical models publication-title: Eur Urol. doi: 10.1016/j.eururo.2014.08.006 – volume: 10 start-page: 33 year: 2004 ident: B32 article-title: Molecular determinants of resistance to antiandrogen therapy publication-title: Nat Med. doi: 10.1038/nm972 – volume: 167 start-page: 43 year: 2000 ident: B83 article-title: A role for GATA transcription factors in the androgen regulation of the prostate-specific antigen gene enhancer publication-title: Mol Cell Endocrinol. doi: 10.1016/S0303-7207(00)00300-2 – volume: 49 start-page: 632 year: 1997 ident: B50 article-title: Antiandrogen withdrawal syndrome with nilutamide publication-title: Urology. doi: 10.1016/S0090-4295(96)00558-4 – volume: 16 start-page: 425 year: 2004 ident: B6 article-title: Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance publication-title: Mol Cell. doi: 10.1016/j.molcel.2004.09.036 – volume: 19 start-page: 792 year: 2011 ident: B77 article-title: Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth publication-title: Cancer Cell. doi: 10.1016/j.ccr.2011.05.006 – volume: 6 start-page: 703 year: 2000 ident: B42 article-title: Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor publication-title: Nat Med. doi: 10.1038/76287 – volume: 36 start-page: TPS403 year: 2018 ident: B54 article-title: An open-label phase 1/2a study to evaluate the safety, pharmacokinetics, pharmacodynamics, and preliminary efficacy of TRC253, an androgen receptor antagonist, in patients with metastatic castration-resistant prostate cancer (mCRPC) publication-title: J Clin Oncol. doi: 10.1200/JCO.2018.36.6_suppl.TPS403 – volume: 174 start-page: 422 year: 2018 ident: B34 article-title: A somatically acquired enhancer of the androgen receptor is a noncoding driver in advanced prostate cancer publication-title: Cell. doi: 10.1016/j.cell.2018.05.037 – volume: 279 start-page: 7119 year: 2004 ident: B46 article-title: Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer publication-title: J Biol Chem. doi: 10.1074/jbc.M307649200 – volume: 126 start-page: 1165 year: 1990 ident: B12 article-title: Testosterone at high concentrations interacts with the human androgen receptor similarly to dihydrotestosterone publication-title: Endocrinology. doi: 10.1210/endo-126-2-1165 – volume: 75 start-page: 1413 year: 2015 ident: B73 article-title: Intracrine androgens and AKR1C3 activation confer resistance to enzalutamide in prostate cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-3080 – volume: 380 start-page: 1235 year: 2019 ident: B59 article-title: Darolutamide in nonmetastatic, castration-resistant prostate cancer publication-title: N Engl J Med. doi: 10.1056/NEJMoa1815671 – volume: 7 start-page: 67 year: 1986 ident: B21 article-title: Treatment of prostate cancer with gonadotropin-releasing hormone agonists publication-title: Endocr Rev. doi: 10.1210/edrv-7-1-67 – volume: 4 start-page: 91 year: 1992 ident: B16 article-title: The position of cyproterone acetate (CPA), a steroidal anti-androgen, in the treatment of prostate cancer publication-title: Prostate Suppl. doi: 10.1002/pros.2990210514 – volume: 9 start-page: 401 year: 1995 ident: B29 article-title: In vivo amplification of the androgen receptor gene and progression of human prostate cancer publication-title: Nat Genet. doi: 10.1038/ng0495-401 – volume: 500 start-page: 415 year: 2013 ident: B115 article-title: Signatures of mutational processes in human cancer publication-title: Nature. doi: 10.1038/nature12477 – volume: 155 start-page: 1309 year: 2013 ident: B69 article-title: Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade publication-title: Cell. doi: 10.1016/j.cell.2013.11.012 – volume: 357 start-page: 409 year: 2017 ident: B118 article-title: Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade publication-title: Science. doi: 10.1126/science.aan6733 – volume: 363 start-page: 411 year: 2010 ident: B110 article-title: Sipuleucel-T immunotherapy for castration-resistant prostate cancer publication-title: N Engl J Med. doi: 10.1056/NEJMoa1001294 – volume: 101 start-page: 4758 year: 2004 ident: B2 article-title: Structural basis of androgen receptor binding to selective androgen response elements publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.0401123101 – volume: 79 start-page: 2580 year: 2019 ident: B74 article-title: Activation of MAPK signaling by CXCR7 leads to enzalutamide resistance in prostate cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-18-2812 – volume: 381 start-page: 13 year: 2019 ident: B60 article-title: Apalutamide for metastatic, castration-sensitive prostate cancer publication-title: N Engl J Med. doi: 10.1056/NEJMoa1903307 – volume: 364 start-page: 1995 year: 2011 ident: B63 article-title: Abiraterone and increased survival in metastatic prostate cancer publication-title: N Engl J Med. doi: 10.1056/NEJMoa1014618 – volume: 377 start-page: 352 year: 2017 ident: B65 article-title: Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer publication-title: N Engl J Med. doi: 10.1056/NEJMoa1704174 – volume: 12 start-page: 416 year: 2002 ident: B82 article-title: The GATA family (vertebrates and invertebrates) publication-title: Curr Opin Genet Dev. doi: 10.1016/S0959-437X(02)00319-2 – volume: 367 start-page: 1187 year: 2012 ident: B55 article-title: Increased survival with enzalutamide in prostate cancer after chemotherapy publication-title: N Engl J Med. doi: 10.1056/NEJMoa1207506 – volume: 275 start-page: 1943 year: 1997 ident: B107 article-title: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer publication-title: Science. doi: 10.1126/science.275.5308.1943 – volume: 25 start-page: 928 year: 2019 ident: B78 article-title: Randomized phase II study evaluating Akt blockade with Ipatasertib, in combination with abiraterone, in patients with metastatic prostate cancer with and without PTEN loss publication-title: Clin Cancer Res. doi: 10.1158/1078-0432.CCR-18-0981 – volume: 11 start-page: 4653 year: 2005 ident: B25 article-title: Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer publication-title: Clin Cancer Res. doi: 10.1158/1078-0432.CCR-05-0525 – volume: 30 start-page: 3962 year: 2011 ident: B89 article-title: Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer publication-title: EMBO J. doi: 10.1038/emboj.2011.328 – volume: 52 start-page: 154 year: 2002 ident: B15 article-title: The current state of hormonal therapy for prostate cancer publication-title: CA Cancer J Clin. doi: 10.3322/canjclin.52.3.154 – volume: 24 start-page: 724 year: 2018 ident: B112 article-title: Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer publication-title: Nat Med. doi: 10.1038/s41591-018-0040-8 – volume: 19 start-page: 975 year: 2018 ident: B104 article-title: Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: a randomised, double-blind, placebo-controlled, phase 2 trial publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(18)30365-6 – volume: 371 start-page: 424 year: 2014 ident: B56 article-title: Enzalutamide in metastatic prostate cancer before chemotherapy publication-title: N Engl J Med. doi: 10.1056/NEJMoa1405095 – volume: 274 start-page: 37219 year: 1999 ident: B9 article-title: Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with the NH(2)-terminal domain publication-title: J Biol Chem. doi: 10.1074/jbc.274.52.37219 – volume: 61 start-page: 4315 year: 2001 ident: B36 article-title: A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy publication-title: Cancer Res. – volume: 378 start-page: 2465 year: 2018 ident: B58 article-title: Enzalutamide in men with nonmetastatic, castration-resistant prostate cancer publication-title: N Engl J Med. doi: 10.1056/NEJMoa1800536 – volume: 11 start-page: 459 year: 2004 ident: B28 article-title: Targeting the androgen receptor: improving outcomes for castration-resistant prostate cancer publication-title: Endocr Relat Cancer. doi: 10.1677/erc.1.00525 – volume: 35 start-page: 135 year: 2017 ident: B80 article-title: A phase I dose-escalation study of enzalutamide in combination with the AKT inhibitor AZD5363 in patients with mCRPC publication-title: J Clin Oncol. doi: 10.1200/JCO.2017.35.6_suppl.135 – volume: 73 start-page: 1570 year: 2013 ident: B88 article-title: FoxA1 specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-2350 – volume: 57 start-page: 314 year: 1997 ident: B31 article-title: Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer publication-title: Cancer Res. – start-page: 1491 volume-title: Lancet. year: 2000 ident: B23 article-title: Maximum androgen blockade in advanced prostate cancer: an overview of the randomised trials. Prostate Cancer Trialists' Collaborative Group – volume: 5 start-page: 12007 year: 2015 ident: B53 article-title: Discovery of ODM-201, a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies publication-title: Sci Rep. doi: 10.1038/srep12007 – volume: 359 start-page: 1361 year: 2018 ident: B120 article-title: CAR T cell immunotherapy for human cancer publication-title: Science. doi: 10.1126/science.aar6711 – volume: 8 start-page: e41913 year: 2019 ident: B75 article-title: GREB1 amplifies androgen receptor output in human prostate cancer and contributes to antiandrogen resistance publication-title: Elife. doi: 10.7554/eLife.41913 – volume: 332 start-page: 1393 year: 1995 ident: B41 article-title: Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer publication-title: N Engl J Med. doi: 10.1056/NEJM199505253322101 |
SSID | ssj0000650103 |
Score | 2.548851 |
SecondaryResourceType | review_article |
Snippet | Most prostate cancers are androgen-sensitive malignancies whose growths depend on the transcriptional activity of the androgen receptor (AR). In the 1940s,... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 858 |
SubjectTerms | androgen deprivation therapy (ADT) androgen receptor (AR) antiandrogen castration-resistant prostate cancer (CRPC) Oncology prostate cancer (PCa) small-cell prostate cancer (SCPC) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yB_EiPnF9EcGDl7ptN2mToy4ui6CIurK3kDTJuiDtso__70zblfYgXrwmKU0n08z3kck3hFwL6WRkmQuszICglPd8LBeBMKlxqSyLHGO2xXMyGrPHCZ80Sn1hTlglD1wZrse99NJmaSItY9wmGiXIHNAEC84Ifbj7QsxrkKlqD-ZYwKDS8gEWJnu-yFGxMEJ5SoEF3hthqFTrb0HMdoJkI-IM98huDRXpXTXFfbLl8gOy_VQfhh-SD0xGLMABKGA_NwfyTN9mUwTW-ZTOcgrQjjZygmjh6UBvZHKDV7dE6AjtL3jxAyAn9IIHLI7IePjwPhgFdZmEIONhvAo816HRQoci6wuIzo57LRJkMi62kUmFTZgxqdbCc2iODOMytAJiv_ahAcRxTDp5kbsTQq3vx30AUBZgGR6gCs-yzLE4SmKnE2u65HZjNZXVGuJYyuJLAZdAMys0s0Izq9LMXXLz88C8ks_4feg9LsPPMNS9LhvAG1TtDeovb-iSq80iKvhP8PBD565YL1UcyzSKge1FXZK2Vrf1xnZPPvssFbexNCoA19P_mOIZ2cGPLvPU2DnprBZrdwHAZmUuSx_-Bkip98s priority: 102 providerName: Directory of Open Access Journals |
Title | Androgen Receptor Signaling in the Development of Castration-Resistant Prostate Cancer |
URI | https://www.proquest.com/docview/2297126251 https://pubmed.ncbi.nlm.nih.gov/PMC6738163 https://doaj.org/article/5f9f9dc769d445d6a2134e289d183f9f |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS-QwEA-nB-LL4fmBq55E8MGXaj-SNnk4jju5vUVQRF3Zt5A0ybqwtHv7Ad5_fzPZrmfBA18KTdKWzmQ6v2kmvyHkVEgnE8tcZGUJAUrY52O5iIQpjCtkKHKM2RY3ea_PrgZ88K8cUCPA2ZuhHdaT6k_H58-__3wDg_-KESf42wtfV0hGmCDzpOBijXwEt1SglV43WH_5WeZY0wCLzaUZiyTLBkuqn7fu0fJSgcy_hUDb-ZOvHFJ3i3xqkCT9vlT9Z_LBVdtk47pZK98hj5irWMP8oAAN3QRia3o_GiLuroZ0VFFAfvRVyhCtPb3UKxbd6M7NEFlC-y3uCwFECr0wQaa7pN_9-XDZi5oqClHJ43Qeea5jo4WORZkJcN6Oey1yDHRcahNTCJszYwqthefQnBjGZWwFQAPtYwOAZI-sV3Xl9gm1PgPRZdwCasP1VeFZWTqWJnnqdG5Nh5yvpKbKhmIcK12MFYQaKGaFYlYoZhXE3CFnLxdMluwa_x_6A9XwMgxpsUNDPR2qxsoU99JLWxa5tIxxm2vkq3MQU1r4ckFfh5yslKjAjHBtRFeuXsxUmsoiSSEYTDqkaGm39cR2TzV6CoTcWDkVcO3B-9_mkGziSUhWY0dkfT5duC-AbubmOPwVgOOvQXIcZvBfFRH6Fw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Androgen+Receptor+Signaling+in+the+Development+of+Castration-Resistant+Prostate+Cancer&rft.jtitle=Frontiers+in+oncology&rft.au=Feng%2C+Qin&rft.au=He%2C+Bin&rft.date=2019-09-04&rft.issn=2234-943X&rft.eissn=2234-943X&rft.volume=9&rft_id=info:doi/10.3389%2Ffonc.2019.00858&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fonc_2019_00858 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-943X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-943X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-943X&client=summon |