The PTPN2/PTPN1 inhibitor ABBV-CLS-484 unleashes potent anti-tumour immunity
Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and new approaches are needed to overcome resistance 1 , 2 . The protein tyrosine phosphatases PTPN2 and PTPN1 are central regulators of inflammation, and their genetic deletion...
Saved in:
Published in | Nature (London) Vol. 622; no. 7984; pp. 850 - 862 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
26.10.2023
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and new approaches are needed to overcome resistance
1
,
2
. The protein tyrosine phosphatases PTPN2 and PTPN1 are central regulators of inflammation, and their genetic deletion in either tumour cells or immune cells promotes anti-tumour immunity
3
–
6
. However, phosphatases are challenging drug targets; in particular, the active site has been considered undruggable. Here we present the discovery and characterization of ABBV-CLS-484 (AC484), a first-in-class, orally bioavailable, potent PTPN2 and PTPN1 active-site inhibitor. AC484 treatment in vitro amplifies the response to interferon and promotes the activation and function of several immune cell subsets. In mouse models of cancer resistant to PD-1 blockade, AC484 monotherapy generates potent anti-tumour immunity. We show that AC484 inflames the tumour microenvironment and promotes natural killer cell and CD8
+
T cell function by enhancing JAK–STAT signalling and reducing T cell dysfunction. Inhibitors of PTPN2 and PTPN1 offer a promising new strategy for cancer immunotherapy and are currently being evaluated in patients with advanced solid tumours (ClinicalTrials.gov identifier
NCT04777994
). More broadly, our study shows that small-molecule inhibitors of key intracellular immune regulators can achieve efficacy comparable to or exceeding that of antibody-based immune checkpoint blockade in preclinical models. Finally, to our knowledge, AC484 represents the first active-site phosphatase inhibitor to enter clinical evaluation for cancer immunotherapy and may pave the way for additional therapeutics that target this important class of enzymes.
An orally bioavailable small-molecule active-site inhibitor of the phosphatases PTPN2 and PTPN1, ABBV-CLS-484, demonstrates immunotherapeutic efficacy in mouse models of cancer resistant to PD-1 blockade. |
---|---|
AbstractList | Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and new approaches are needed to overcome resistance1,2. The protein tyrosine phosphatases PTPN2 and PTPN1 are central regulators of inflammation, and their genetic deletion in either tumour cells or immune cells promotes anti-tumour immunity3-6. However, phosphatases are challenging drug targets; in particular, the active site has been considered undruggable. Here we present the discovery and characterization of ABBV-CLS-484 (AC484), a first-in-class, orally bioavailable, potent PTPN2 and PTPN1 active-site inhibitor. AC484 treatment in vitro amplifies the response to interferon and promotes the activation and function of several immune cell subsets. In mouse models of cancer resistant to PD-1 blockade, AC484 monotherapy generates potent anti-tumour immunity. We show that AC484 inflames the tumour microenvironment and promotes natural killer cell and CD8+ T cell function by enhancing JAK-STAT signalling and reducing T cell dysfunction. Inhibitors of PTPN2 and PTPN1 offer a promising new strategy for cancer immunotherapy and are currently being evaluated in patients with advanced solid tumours (ClinicalTrials.gov identifier NCT04777994 ). More broadly, our study shows that small-molecule inhibitors of key intracellular immune regulators can achieve efficacy comparable to or exceeding that of antibody-based immune checkpoint blockade in preclinical models. Finally, to our knowledge, AC484 represents the first active-site phosphatase inhibitor to enter clinical evaluation for cancer immunotherapy and may pave the way for additional therapeutics that target this important class of enzymes.Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and new approaches are needed to overcome resistance1,2. The protein tyrosine phosphatases PTPN2 and PTPN1 are central regulators of inflammation, and their genetic deletion in either tumour cells or immune cells promotes anti-tumour immunity3-6. However, phosphatases are challenging drug targets; in particular, the active site has been considered undruggable. Here we present the discovery and characterization of ABBV-CLS-484 (AC484), a first-in-class, orally bioavailable, potent PTPN2 and PTPN1 active-site inhibitor. AC484 treatment in vitro amplifies the response to interferon and promotes the activation and function of several immune cell subsets. In mouse models of cancer resistant to PD-1 blockade, AC484 monotherapy generates potent anti-tumour immunity. We show that AC484 inflames the tumour microenvironment and promotes natural killer cell and CD8+ T cell function by enhancing JAK-STAT signalling and reducing T cell dysfunction. Inhibitors of PTPN2 and PTPN1 offer a promising new strategy for cancer immunotherapy and are currently being evaluated in patients with advanced solid tumours (ClinicalTrials.gov identifier NCT04777994 ). More broadly, our study shows that small-molecule inhibitors of key intracellular immune regulators can achieve efficacy comparable to or exceeding that of antibody-based immune checkpoint blockade in preclinical models. Finally, to our knowledge, AC484 represents the first active-site phosphatase inhibitor to enter clinical evaluation for cancer immunotherapy and may pave the way for additional therapeutics that target this important class of enzymes. Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and new approaches are needed to overcome resistance 1,2 . The protein tyrosine phosphatases PTPN2 and PTPN1 are central regulators of inflammation, and their genetic deletion in either tumour cells or immune cells promotes anti-tumour immunity 3–6 . However, phosphatases are challenging drug targets; in particular, the active site has been considered undruggable. Here we present the discovery and characterization of ABBV-CLS-484 (AC484), a first-in-class, orally bioavailable, potent PTPN2 and PTPN1 active-site inhibitor. AC484 treatment in vitro amplifies the response to interferon and promotes the activation and function of several immune cell subsets. In mouse models of cancer resistant to PD-1 blockade, AC484 monotherapy generates potent anti-tumour immunity. We show that AC484 inflames the tumour microenvironment and promotes natural killer cell and CD8 + T cell function by enhancing JAK–STAT signalling and reducing T cell dysfunction. Inhibitors of PTPN2 and PTPN1 offer a promising new strategy for cancer immunotherapy and are currently being evaluated in patients with advanced solid tumours (ClinicalTrials.gov identifier NCT04777994 ). More broadly, our study shows that small-molecule inhibitors of key intracellular immune regulators can achieve efficacy comparable to or exceeding that of antibody-based immune checkpoint blockade in preclinical models. Finally, to our knowledge, AC484 represents the first active-site phosphatase inhibitor to enter clinical evaluation for cancer immunotherapy and may pave the way for additional therapeutics that target this important class of enzymes. Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and new approaches are needed to overcome resistance. The protein tyrosine phosphatases PTPN2 and PTPN1 are central regulators of inflammation, and their genetic deletion in either tumour cells or immune cells promotes anti-tumour immunity. However, phosphatases are challenging drug targets; in particular, the active site has been considered undruggable. Here we present the discovery and characterization of ABBV-CLS-484 (AC484), a first-in-class, orally bioavailable, potent PTPN2 and PTPN1 active-site inhibitor. AC484 treatment in vitro amplifies the response to interferon and promotes the activation and function of several immune cell subsets. In mouse models of cancer resistant to PD-1 blockade, AC484 monotherapy generates potent anti-tumour immunity. We show that AC484 inflames the tumour microenvironment and promotes natural killer cell and CD8+ T cell function by enhancing JAK–STAT signalling and reducing T cell dysfunction. Inhibitors of PTPN2 and PTPN1 offer a promising new strategy for cancer immunotherapy and are currently being evaluated in patients with advanced solid tumours (ClinicalTrials.gov identifier NCT04777994). More broadly, our study shows that small-molecule inhibitors of key intracellular immune regulators can achieve efficacy comparable to or exceeding that of antibody-based immune checkpoint blockade in preclinical models. Finally, to our knowledge, AC484 represents the first active-site phosphatase inhibitor to enter clinical evaluation for cancer immunotherapy and may pave the way for additional therapeutics that target this important class of enzymes. Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and new approaches are needed to overcome resistance 1 , 2 . The protein tyrosine phosphatases PTPN2 and PTPN1 are central regulators of inflammation, and their genetic deletion in either tumour cells or immune cells promotes anti-tumour immunity 3 – 6 . However, phosphatases are challenging drug targets; in particular, the active site has been considered undruggable. Here we present the discovery and characterization of ABBV-CLS-484 (AC484), a first-in-class, orally bioavailable, potent PTPN2 and PTPN1 active-site inhibitor. AC484 treatment in vitro amplifies the response to interferon and promotes the activation and function of several immune cell subsets. In mouse models of cancer resistant to PD-1 blockade, AC484 monotherapy generates potent anti-tumour immunity. We show that AC484 inflames the tumour microenvironment and promotes natural killer cell and CD8 + T cell function by enhancing JAK–STAT signalling and reducing T cell dysfunction. Inhibitors of PTPN2 and PTPN1 offer a promising new strategy for cancer immunotherapy and are currently being evaluated in patients with advanced solid tumours (ClinicalTrials.gov identifier NCT04777994 ). More broadly, our study shows that small-molecule inhibitors of key intracellular immune regulators can achieve efficacy comparable to or exceeding that of antibody-based immune checkpoint blockade in preclinical models. Finally, to our knowledge, AC484 represents the first active-site phosphatase inhibitor to enter clinical evaluation for cancer immunotherapy and may pave the way for additional therapeutics that target this important class of enzymes. An orally bioavailable small-molecule active-site inhibitor of the phosphatases PTPN2 and PTPN1, ABBV-CLS-484, demonstrates immunotherapeutic efficacy in mouse models of cancer resistant to PD-1 blockade. Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and new approaches are needed to overcome resistance . The protein tyrosine phosphatases PTPN2 and PTPN1 are central regulators of inflammation, and their genetic deletion in either tumour cells or immune cells promotes anti-tumour immunity . However, phosphatases are challenging drug targets; in particular, the active site has been considered undruggable. Here we present the discovery and characterization of ABBV-CLS-484 (AC484), a first-in-class, orally bioavailable, potent PTPN2 and PTPN1 active-site inhibitor. AC484 treatment in vitro amplifies the response to interferon and promotes the activation and function of several immune cell subsets. In mouse models of cancer resistant to PD-1 blockade, AC484 monotherapy generates potent anti-tumour immunity. We show that AC484 inflames the tumour microenvironment and promotes natural killer cell and CD8 T cell function by enhancing JAK-STAT signalling and reducing T cell dysfunction. Inhibitors of PTPN2 and PTPN1 offer a promising new strategy for cancer immunotherapy and are currently being evaluated in patients with advanced solid tumours (ClinicalTrials.gov identifier NCT04777994 ). More broadly, our study shows that small-molecule inhibitors of key intracellular immune regulators can achieve efficacy comparable to or exceeding that of antibody-based immune checkpoint blockade in preclinical models. Finally, to our knowledge, AC484 represents the first active-site phosphatase inhibitor to enter clinical evaluation for cancer immunotherapy and may pave the way for additional therapeutics that target this important class of enzymes. Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and newapproaches are needed to overcome resistance12. The protein tyrosine phosphatases PTPN2 and PTPN1 are central regulators of inflammation, andtheirgenetic deletion in eithertumourcellsor immune cells promotes anti-tumour immunity3 6. However, phosphatases are challenging drug targets; in particular, the active site has been considered undruggable. Here we present the discovery and characterization of ABBV-CLS-484 (AC484), a flrst-in-class, orally bioavailable, potent PTPN2 and PTPN1 active-site inhibitor. AC484 treatment in vitro ampliflesthe response to interferon and promotesthe activation and function of several immune cell subsets. In mouse models of cancer resistant to PD-1 blockade, AC484 monotherapy generates potent anti-tumour immunity. We show that AC484 inflames the tumour microenvironment and promotes natural killer cell and CD8+ T cell function by enhancingJAK-STAT signalling and reducing T cell dysfunction. Inhibitors of PTPN2 and PTPN1 offer a promising new strategy for cancer immunotherapy and are currently being evaluated in patients with advanced solid tumours (ClinicalTrials.gov identifier NCT04777994). More broadly, our study shows that small-molecule inhibitors of key intracellular immune regulators can achieve efficacy comparable to or exceeding that of antibody-based immune checkpoint blockade in preclinical models. Finally, to our knowledge, AC484 represents the first active-site phosphatase inhibitor to enter clinical evaluation for cancer immunotherapy and may pave the way for additional therapeutics that target this important class of enzymes. |
Author | Paddock, Marcia N. Geda, Prasanthi Chuong, Cun Lan Davis, Thomas G. R. Duggan, Ryan Frost, Jennifer M. Rees, Matthew G. Dunning, Jax P. Wu, Meng-Ju Kennedy, Domenick E. Roth, Jennifer A. Hrusch, Cara L. Kohnle, Ian C. Suermondt, Juliette S. M. T. Chen, Angeline Muscato, Audrey J. Klinge, Kelly L. McGuire, Kathleen A. Griffin, Gabriel K. Cheruiyot, Collins K. Fossey, Stacey Sun, Qi Kim, Sarah Y. Decker, Joshua H. Farney, Elliot P. Yeary, Mitchell D. Matulenko, Mark A. Kammula, Ashwin V. Golub, Todd R. Baumgartner, Christina K. El-Bardeesy, Nabeel Halvorsen, Geoff T. Ronan, Melissa Balon, Tyler M. Krishnan, Navasona Manguso, Robert T. Liu, Yue Olander, Kira E. Colvin, Kayla J. Mathew, Rebecca Backus, Carey Klahn, Joseph T. Sen, Debattama R. Trusk, Patricia Beauregard, Clay Iracheta-Vellve, Arvin Boghossian, Andrew Longenecker, Kenton Sun, Im-Meng Ebrahimi-Nik, Hakimeh Hutchins, Charles W. Halliwill, Kyle Patel, Chirag H. Mu, Liang Bulic, Marinka Guffroy, Magali Yates, Kathleen B. Knudsen, Nelson H. Avila, Omar I. Hamel, Keith M. Patti, James C. Qi |
Author_xml | – sequence: 1 givenname: Christina K. orcidid: 0000-0002-6872-6209 surname: Baumgartner fullname: Baumgartner, Christina K. email: christina.baumgartner@abbvie.com organization: AbbVie – sequence: 2 givenname: Hakimeh surname: Ebrahimi-Nik fullname: Ebrahimi-Nik, Hakimeh organization: Broad Institute of MIT and Harvard, Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Ohio State University Comprehensive Cancer Center and Pelotonia Institute for Immuno-Oncology – sequence: 3 givenname: Arvin orcidid: 0000-0002-6635-3904 surname: Iracheta-Vellve fullname: Iracheta-Vellve, Arvin organization: Broad Institute of MIT and Harvard, Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Pfizer – sequence: 4 givenname: Keith M. surname: Hamel fullname: Hamel, Keith M. organization: AbbVie – sequence: 5 givenname: Kira E. orcidid: 0000-0002-3356-7631 surname: Olander fullname: Olander, Kira E. organization: Broad Institute of MIT and Harvard, Center for Cancer Research and Department of Medicine, Massachusetts General Hospital – sequence: 6 givenname: Thomas G. R. surname: Davis fullname: Davis, Thomas G. R. organization: Broad Institute of MIT and Harvard, Center for Cancer Research and Department of Medicine, Massachusetts General Hospital – sequence: 7 givenname: Kathleen A. surname: McGuire fullname: McGuire, Kathleen A. organization: AbbVie – sequence: 8 givenname: Geoff T. surname: Halvorsen fullname: Halvorsen, Geoff T. organization: AbbVie – sequence: 9 givenname: Omar I. orcidid: 0000-0002-3853-9939 surname: Avila fullname: Avila, Omar I. organization: Broad Institute of MIT and Harvard, Center for Cancer Research and Department of Medicine, Massachusetts General Hospital – sequence: 10 givenname: Chirag H. surname: Patel fullname: Patel, Chirag H. organization: Calico Life Sciences – sequence: 11 givenname: Sarah Y. surname: Kim fullname: Kim, Sarah Y. organization: Broad Institute of MIT and Harvard, Center for Cancer Research and Department of Medicine, Massachusetts General Hospital – sequence: 12 givenname: Ashwin V. orcidid: 0000-0001-5284-721X surname: Kammula fullname: Kammula, Ashwin V. organization: Broad Institute of MIT and Harvard, Center for Cancer Research and Department of Medicine, Massachusetts General Hospital – sequence: 13 givenname: Audrey J. orcidid: 0000-0003-2009-6313 surname: Muscato fullname: Muscato, Audrey J. organization: Broad Institute of MIT and Harvard, Center for Cancer Research and Department of Medicine, Massachusetts General Hospital – sequence: 14 givenname: Kyle surname: Halliwill fullname: Halliwill, Kyle organization: AbbVie – sequence: 15 givenname: Prasanthi surname: Geda fullname: Geda, Prasanthi organization: AbbVie, Bristol Myers Squibb – sequence: 16 givenname: Kelly L. surname: Klinge fullname: Klinge, Kelly L. organization: AbbVie – sequence: 17 givenname: Zhaoming surname: Xiong fullname: Xiong, Zhaoming organization: AbbVie, Ipsen Biosciences – sequence: 18 givenname: Ryan surname: Duggan fullname: Duggan, Ryan organization: AbbVie – sequence: 19 givenname: Liang surname: Mu fullname: Mu, Liang organization: AbbVie – sequence: 20 givenname: Mitchell D. surname: Yeary fullname: Yeary, Mitchell D. organization: Broad Institute of MIT and Harvard, Center for Cancer Research and Department of Medicine, Massachusetts General Hospital – sequence: 21 givenname: James C. orcidid: 0000-0002-1733-6702 surname: Patti fullname: Patti, James C. organization: Broad Institute of MIT and Harvard, Center for Cancer Research and Department of Medicine, Massachusetts General Hospital – sequence: 22 givenname: Tyler M. surname: Balon fullname: Balon, Tyler M. organization: Broad Institute of MIT and Harvard, Center for Cancer Research and Department of Medicine, Massachusetts General Hospital – sequence: 23 givenname: Rebecca surname: Mathew fullname: Mathew, Rebecca organization: AbbVie – sequence: 24 givenname: Carey surname: Backus fullname: Backus, Carey organization: AbbVie – sequence: 25 givenname: Domenick E. orcidid: 0000-0002-5329-3711 surname: Kennedy fullname: Kennedy, Domenick E. organization: AbbVie – sequence: 26 givenname: Angeline surname: Chen fullname: Chen, Angeline organization: AbbVie – sequence: 27 givenname: Kenton surname: Longenecker fullname: Longenecker, Kenton organization: AbbVie – sequence: 28 givenname: Joseph T. surname: Klahn fullname: Klahn, Joseph T. organization: AbbVie – sequence: 29 givenname: Cara L. surname: Hrusch fullname: Hrusch, Cara L. organization: AbbVie – sequence: 30 givenname: Navasona surname: Krishnan fullname: Krishnan, Navasona organization: AbbVie, Monte Rosa Therapeutics – sequence: 31 givenname: Charles W. surname: Hutchins fullname: Hutchins, Charles W. organization: AbbVie – sequence: 32 givenname: Jax P. surname: Dunning fullname: Dunning, Jax P. organization: AbbVie – sequence: 33 givenname: Marinka surname: Bulic fullname: Bulic, Marinka organization: AbbVie – sequence: 34 givenname: Payal surname: Tiwari fullname: Tiwari, Payal organization: Broad Institute of MIT and Harvard, Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Dana-Farber Cancer Institute – sequence: 35 givenname: Kayla J. surname: Colvin fullname: Colvin, Kayla J. organization: Broad Institute of MIT and Harvard, Center for Cancer Research and Department of Medicine, Massachusetts General Hospital – sequence: 36 givenname: Cun Lan surname: Chuong fullname: Chuong, Cun Lan organization: Broad Institute of MIT and Harvard, Center for Cancer Research and Department of Medicine, Massachusetts General Hospital – sequence: 37 givenname: Ian C. surname: Kohnle fullname: Kohnle, Ian C. organization: Broad Institute of MIT and Harvard, Center for Cancer Research and Department of Medicine, Massachusetts General Hospital – sequence: 38 givenname: Matthew G. orcidid: 0000-0002-2987-7581 surname: Rees fullname: Rees, Matthew G. organization: Broad Institute of MIT and Harvard – sequence: 39 givenname: Andrew surname: Boghossian fullname: Boghossian, Andrew organization: Broad Institute of MIT and Harvard – sequence: 40 givenname: Melissa orcidid: 0000-0003-4269-1404 surname: Ronan fullname: Ronan, Melissa organization: Broad Institute of MIT and Harvard – sequence: 41 givenname: Jennifer A. orcidid: 0000-0002-5117-5586 surname: Roth fullname: Roth, Jennifer A. organization: Broad Institute of MIT and Harvard – sequence: 42 givenname: Meng-Ju orcidid: 0000-0001-6847-7065 surname: Wu fullname: Wu, Meng-Ju organization: Broad Institute of MIT and Harvard, Center for Cancer Research and Department of Medicine, Massachusetts General Hospital – sequence: 43 givenname: Juliette S. M. T. surname: Suermondt fullname: Suermondt, Juliette S. M. T. organization: Broad Institute of MIT and Harvard, Center for Cancer Research and Department of Medicine, Massachusetts General Hospital – sequence: 44 givenname: Nelson H. orcidid: 0000-0002-0384-1097 surname: Knudsen fullname: Knudsen, Nelson H. organization: Broad Institute of MIT and Harvard, Center for Cancer Research and Department of Medicine, Massachusetts General Hospital – sequence: 45 givenname: Collins K. surname: Cheruiyot fullname: Cheruiyot, Collins K. organization: Broad Institute of MIT and Harvard, Center for Cancer Research and Department of Medicine, Massachusetts General Hospital – sequence: 46 givenname: Debattama R. orcidid: 0000-0002-0947-8284 surname: Sen fullname: Sen, Debattama R. organization: Center for Cancer Research and Department of Medicine, Massachusetts General Hospital – sequence: 47 givenname: Gabriel K. surname: Griffin fullname: Griffin, Gabriel K. organization: Broad Institute of MIT and Harvard, Dana-Farber Cancer Institute – sequence: 48 givenname: Todd R. orcidid: 0000-0003-0113-2403 surname: Golub fullname: Golub, Todd R. organization: Broad Institute of MIT and Harvard, Dana-Farber Cancer Institute – sequence: 49 givenname: Nabeel orcidid: 0000-0003-3867-0416 surname: El-Bardeesy fullname: El-Bardeesy, Nabeel organization: Center for Cancer Research and Department of Medicine, Massachusetts General Hospital – sequence: 50 givenname: Joshua H. surname: Decker fullname: Decker, Joshua H. organization: AbbVie – sequence: 51 givenname: Yi surname: Yang fullname: Yang, Yi organization: AbbVie – sequence: 52 givenname: Magali surname: Guffroy fullname: Guffroy, Magali organization: AbbVie – sequence: 53 givenname: Stacey surname: Fossey fullname: Fossey, Stacey organization: AbbVie – sequence: 54 givenname: Patricia surname: Trusk fullname: Trusk, Patricia organization: AbbVie – sequence: 55 givenname: Im-Meng surname: Sun fullname: Sun, Im-Meng organization: Calico Life Sciences – sequence: 56 givenname: Yue surname: Liu fullname: Liu, Yue organization: Calico Life Sciences – sequence: 57 givenname: Wei surname: Qiu fullname: Qiu, Wei organization: AbbVie – sequence: 58 givenname: Qi surname: Sun fullname: Sun, Qi organization: AbbVie – sequence: 59 givenname: Marcia N. surname: Paddock fullname: Paddock, Marcia N. organization: Calico Life Sciences – sequence: 60 givenname: Elliot P. orcidid: 0000-0002-4084-0093 surname: Farney fullname: Farney, Elliot P. organization: AbbVie – sequence: 61 givenname: Mark A. surname: Matulenko fullname: Matulenko, Mark A. organization: AbbVie – sequence: 62 givenname: Clay surname: Beauregard fullname: Beauregard, Clay organization: Calico Life Sciences, Vir Biotechnology – sequence: 63 givenname: Jennifer M. surname: Frost fullname: Frost, Jennifer M. email: jennifer.frost@abbvie.com organization: AbbVie – sequence: 64 givenname: Kathleen B. orcidid: 0000-0002-7383-5573 surname: Yates fullname: Yates, Kathleen B. email: yates@broadinstitute.org organization: Broad Institute of MIT and Harvard, Center for Cancer Research and Department of Medicine, Massachusetts General Hospital – sequence: 65 givenname: Philip R. orcidid: 0000-0002-8161-9715 surname: Kym fullname: Kym, Philip R. email: phil.r.kym@abbvie.com organization: AbbVie – sequence: 66 givenname: Robert T. orcidid: 0000-0003-1336-413X surname: Manguso fullname: Manguso, Robert T. email: rmanguso@mgh.harvard.edu organization: Broad Institute of MIT and Harvard, Center for Cancer Research and Department of Medicine, Massachusetts General Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37794185$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/2470124$$D View this record in Osti.gov |
BookMark | eNp9kUtv1DAUhS1URKeFP8ACRbBhY-pn7KxQO-IljaASA1vL8dw0rhJ7iB2k_ns8pOXRRb2wF_7O8fE9J-goxAAIPafkDSVcnyVBpa4xYRyTWiqJ1SO0okLVWNRaHaEVIUxjonl9jE5SuiaESKrEE3TMlWoE1XKFNtseqsvt5Wd2dthp5UPvW5_jVJ1fXHzH681XLLSo5jCATT2kah8zhFzZkD3O8xjnqfLjOAefb56ix50dEjy7PU_Rt_fvtuuPePPlw6f1-QY7SVjGHXVSw67pmLaUMLFrWyUIk9qBlopQ1TaK25ZK4A0rhLKU1bXmDjrlyK7lp-jt4ruf2xF2ruSZ7GD2kx_tdGOi9eb_m-B7cxV_GkpkUxYvDi8Xh5iyN8n5DK53MQRw2TBRQjBRoNe3z0zxxwwpm9EnB8NgA8Q5GaYVZ6KRjBb01T30ugwmlCEUSgsuNBOsUC_-zf0n8F0dBdAL4KaY0gSdKcls9vHwDT-U_ObQvFmaN6V587t5o4qU3ZPeuT8o4osoFThcwfQ39gOqX_c7vWg |
CitedBy_id | crossref_primary_10_1038_s41586_025_08732_6 crossref_primary_10_1007_s12032_024_02308_6 crossref_primary_10_1016_j_jbc_2024_107268 crossref_primary_10_4251_wjgo_v17_i2_100546 crossref_primary_10_1021_acs_jmedchem_4c01802 crossref_primary_10_1002_cac2_12548 crossref_primary_10_1038_s41574_024_00965_1 crossref_primary_10_1016_j_ejmech_2024_116390 crossref_primary_10_1016_j_bbrc_2024_149995 crossref_primary_10_1021_acs_molpharmaceut_4c00692 crossref_primary_10_1016_j_ccell_2024_11_011 crossref_primary_10_1016_j_ejmech_2023_116031 crossref_primary_10_26508_lsa_202402831 crossref_primary_10_1186_s12951_024_02571_9 crossref_primary_10_1016_j_cellimm_2024_104863 crossref_primary_10_1002_1873_3468_14901 crossref_primary_10_1016_j_immuni_2025_02_016 crossref_primary_10_1038_s41388_025_03273_8 crossref_primary_10_3390_pharmaceutics16070888 crossref_primary_10_3390_ijms25073851 crossref_primary_10_1038_s41590_023_01689_6 crossref_primary_10_1038_s41586_024_08136_y crossref_primary_10_1084_jem_20241147 crossref_primary_10_3389_fimmu_2024_1368687 crossref_primary_10_1111_bph_16304 crossref_primary_10_3390_cells13030231 crossref_primary_10_1111_imcb_12711 crossref_primary_10_1021_acsptsci_4c00054 crossref_primary_10_1002_advs_202414769 crossref_primary_10_1002_ange_202416218 crossref_primary_10_1038_s41467_024_50138_x crossref_primary_10_3389_fmed_2024_1364778 crossref_primary_10_1136_jitc_2024_010301 crossref_primary_10_1021_acs_jmedchem_3c01348 crossref_primary_10_1186_s13046_024_03195_5 crossref_primary_10_1002_cmdc_202300669 crossref_primary_10_1016_j_apsb_2025_03_015 crossref_primary_10_1126_scitranslmed_adl3598 crossref_primary_10_1016_j_prp_2023_155018 crossref_primary_10_1038_s41392_024_02004_x crossref_primary_10_1016_j_immuni_2025_02_007 crossref_primary_10_1038_s41590_024_01943_5 crossref_primary_10_3389_fcell_2024_1514595 crossref_primary_10_3389_fonc_2024_1334845 crossref_primary_10_1055_s_0043_1763633 crossref_primary_10_1002_mco2_567 crossref_primary_10_1172_jci_insight_179680 crossref_primary_10_1007_s40257_024_00907_7 crossref_primary_10_1016_j_ejmech_2024_116774 crossref_primary_10_1038_s41467_024_47987_x crossref_primary_10_1002_anie_202416218 crossref_primary_10_1038_s41568_025_00797_9 crossref_primary_10_3390_ijms252413422 crossref_primary_10_1093_carcin_bgae053 crossref_primary_10_1039_D4TB01831A crossref_primary_10_1038_s41568_024_00706_6 crossref_primary_10_1002_adma_202313097 crossref_primary_10_1016_j_molmed_2024_04_014 crossref_primary_10_1002_mco2_70119 crossref_primary_10_1186_s13567_024_01316_8 crossref_primary_10_1084_jem_20232337 crossref_primary_10_3390_ijms25137033 crossref_primary_10_1038_s41598_025_91341_0 crossref_primary_10_1136_jitc_2024_009588 crossref_primary_10_1021_acs_jmedchem_4c00149 crossref_primary_10_1111_imm_13869 crossref_primary_10_1038_s42004_024_01263_7 crossref_primary_10_1002_adma_202414882 crossref_primary_10_1038_s41467_024_53733_0 crossref_primary_10_1016_j_apsb_2024_05_006 |
Cites_doi | 10.1038/nbt.3460 10.1038/nbt.3519 10.1038/s41586-022-05257-0 10.1073/pnas.1003457107 10.1182/blood-2005-12-4818 10.1038/s41467-017-01062-w 10.1038/nature23270 10.1158/2159-8290.CD-16-1223 10.1038/s41590-019-0312-6 10.1182/blood-2007-06-096297 10.1186/s13059-017-1382-0 10.1038/s41590-019-0480-4 10.1084/jem.186.5.683 10.4049/jimmunol.127.5.1754 10.1038/nature19330 10.1021/jm901090b 10.1016/j.cell.2018.10.038 10.15252/embj.2019103637 10.1016/j.cels.2015.12.004 10.1158/0008-5472.CAN-14-3499 10.1038/nature14404 10.1038/nature07201 10.1124/dmd.106.012294 10.7554/eLife.22057 10.1038/s41592-019-0619-0 10.1038/s41586-020-2265-1 10.1371/journal.ppat.1008555 10.1182/blood.V106.11.418.418 10.1016/j.immuni.2019.01.006 10.1172/JCI59492 10.1016/S0092-8674(00)81683-9 10.1021/acs.accounts.6b00537 10.1182/blood-2003-09-3153 10.1038/s41590-022-01315-x 10.1158/2159-8290.CD-21-0694 10.1038/s41590-019-0403-4 10.1038/s41592-018-0303-9 10.1053/j.gastro.2020.07.040 10.1186/s13059-014-0550-8 10.1038/s43018-019-0018-6 10.1038/nature05911 10.17796/1053-4628-41.5.358 10.1097/CJI.0000000000000408 10.1016/j.cell.2017.10.001 10.1016/j.celrep.2020.107957 10.1158/1078-0432.CCR-06-1905 10.1038/nrd.2018.201 10.1038/nature18621 10.1093/bioinformatics/btu170 10.1056/NEJMoa1604958 10.1073/pnas.0506580102 10.1016/S0960-9822(02)00697-8 10.1128/MCB.22.16.5662-5668.2002 10.1038/s41587-020-0505-4 10.1038/s41586-019-1325-x 10.1016/j.cell.2016.02.065 10.1200/EDBK_240837 10.1101/2022.10.03.509766 10.1038/nmeth.3364 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). Copyright Nature Publishing Group Oct 26, 2023 |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: Copyright Nature Publishing Group Oct 26, 2023 |
CorporateAuthor | Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS) |
CorporateAuthor_xml | – name: Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS) |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 OIOZB OTOTI 5PM |
DOI | 10.1038/s41586-023-06575-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Database Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Agricultural Science Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 862 |
ExternalDocumentID | PMC10599993 2470124 37794185 10_1038_s41586_023_06575_7 |
Genre | Journal Article Comparative Study |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P50 CA127003 – fundername: NCI NIH HHS grantid: R01 CA219670 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI C6C CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FAC FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR K6- KB. KOO L6V L7B LGEZI LK5 LK8 LOTEE LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NADUK NAPCQ NEPJS NXXTH O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YJ6 YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION NFIDA PHGZM PHGZT .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ ABAWZ ABDBF ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADXHL ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AGQPQ AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC CGR CUY CVF DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC ECM EIF EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 I-F ITC J5H L-9 MVM N4W NEJ NPM ODYON OHT P-O PEA PJZUB PM3 PPXIY PQGLB PV9 QS- R4F RHI SKT SV3 TH9 TUD TUS UBY UHB USG VOH X7L XOL YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZY4 ~8M ~G0 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 88A 8FD 8FK AFKWF C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI Q9U RC3 SOI 7X8 OIOZB OTOTI 5PM |
ID | FETCH-LOGICAL-c502t-f1c58ed9f28a1024dbb740258ce857017b973ab15e392a107a126683cef7c0db3 |
IEDL.DBID | 8FG |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 18:35:46 EDT 2025 Mon Mar 24 04:18:04 EDT 2025 Fri Jul 11 03:00:56 EDT 2025 Sat Aug 23 13:06:12 EDT 2025 Mon Jul 21 06:02:30 EDT 2025 Tue Jul 01 02:58:46 EDT 2025 Thu Apr 24 23:02:10 EDT 2025 Fri Feb 21 02:39:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7984 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-f1c58ed9f28a1024dbb740258ce857017b973ab15e392a107a126683cef7c0db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 AC02-06CH11357 USDOE Office of Science (SC), Basic Energy Sciences (BES) |
ORCID | 0000-0003-0113-2403 0000-0003-1336-413X 0000-0002-3853-9939 0000-0002-6872-6209 0000-0002-8161-9715 0000-0003-2009-6313 0000-0002-0947-8284 0000-0001-6847-7065 0000-0002-5117-5586 0000-0002-5329-3711 0000-0002-4084-0093 0000-0002-7383-5573 0000-0002-6635-3904 0000-0002-0384-1097 0000-0002-3356-7631 0000-0002-1733-6702 0000-0003-4269-1404 0000-0001-5284-721X 0000-0002-2987-7581 0000-0003-3867-0416 0000000320096313 0000000273835573 0000000233567631 0000000338670416 0000000266353904 0000000342691404 0000000301132403 0000000168477065 0000000240840093 0000000253293711 0000000229877581 0000000251175586 000000031336413X 0000000238539939 0000000217336702 0000000209478284 0000000268726209 0000000203841097 0000000281619715 000000015284721X |
OpenAccessLink | https://www.nature.com/articles/s41586-023-06575-7 |
PMID | 37794185 |
PQID | 2884348242 |
PQPubID | 40569 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10599993 osti_scitechconnect_2470124 proquest_miscellaneous_2873249521 proquest_journals_2884348242 pubmed_primary_37794185 crossref_citationtrail_10_1038_s41586_023_06575_7 crossref_primary_10_1038_s41586_023_06575_7 springer_journals_10_1038_s41586_023_06575_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-26 |
PublicationDateYYYYMMDD | 2023-10-26 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | TalmadgeJEMeyersKMPrieurDJStarkeyJRRole of natural killer cells in tumor growth and metastasis: C57BL/6 normal and beige miceJ. Natl Cancer Inst.1980659299351:STN:280:DyaL3M%2FltVaqtg%3D%3D6933263 Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell165, 35–44 (2016). Wiede, F. et al. PTP1B is an intracellular checkpoint that limits T-cell and CAR T-cell anti-tumor immunity. Cancer Discov.12, 752–773 (2022). TickotskyNPetelRArakiRMoskovitzMCaries progression rate in primary teeth: a retrospective studyJ. Clin. Pediatr. Dent.2017413583612887299210.17796/1053-4628-41.5.358 WiedeFT cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in miceJ. Clin. Invest.2011121475847741:CAS:528:DC%2BC3MXhs1ShsLjM22080863322600610.1172/JCI59492 DubrotJIn vivo CRISPR screens reveal the landscape of immune evasion pathways across cancerNat. Immunol.202223149515061:CAS:528:DC%2BB38XisVOhsL7N3615139510.1038/s41590-022-01315-x LossosISLuXTiganisTPTPN2, distinctively expressed in GCB-like and ABC-like DLBCL, is the nuclear phosphatase of STAT6Blood200510641841810.1182/blood.V106.11.418.418 ThaventhiranJEDWhole-genome sequencing of a sporadic primary immunodeficiency cohortNature202058390951:CAS:528:DC%2BB3cXoslOqtr0%3D32499645733404710.1038/s41586-020-2265-12020Natur.583...90T LoveMIHuberWAndersSModerated estimation of fold change and dispersion for RNA-seq data with DESeq2Genome Biol.20141525516281430204910.1186/s13059-014-0550-8 PulaskiBAOstrand-RosenbergSReduction of established spontaneous mammary carcinoma metastases following immunotherapy with major histocompatibility complex class II and B7.1 cell-based tumor vaccinesCancer Res.199858148614931:CAS:528:DyaK1cXit1eks7k%3D9537252 LaFleurMWPTPN2 regulates the generation of exhausted CD8+ T cell subpopulations and restrains tumor immunityNat. Immunol.201920133513471:CAS:528:DC%2BC1MXhslyisb%2FE31527834675430610.1038/s41590-019-0480-4 MillerBCSubsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockadeNat. Immunol.2019203263361:CAS:528:DC%2BC1MXnsVCitbg%3D30778252667365010.1038/s41590-019-0312-6 ImSJDefining CD8+ T cells that provide the proliferative burst after PD-1 therapyNature20165374174211:CAS:528:DC%2BC28XhsFajsrzE27501248529718310.1038/nature193302016Natur.537..417I KhanOTOX transcriptionally and epigenetically programs CD8+ T cell exhaustionNature20195712112181:CAS:528:DC%2BC1MXhtlSms7bI31207603671320210.1038/s41586-019-1325-x HanahanDWeinbergRAThe hallmarks of cancerCell200010057701:CAS:528:DC%2BD3cXks1CktA%3D%3D1064793110.1016/S0092-8674(00)81683-9 ShinDSPrimary resistance to PD-1 blockade mediated by JAK1/2 mutationsCancer Discov.201771882011:CAS:528:DC%2BC2sXitVCjsr0%3D2790350010.1158/2159-8290.CD-16-1223 MadiAT cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequenceseLife20176e2205728731407555393710.7554/eLife.22057 YuCHigh-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell linesNat. Biotechnol.2016344194231:CAS:528:DC%2BC28XivFKgsro%3D26928769550857410.1038/nbt.3460 SubramanianAGene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profilesProc. Natl Acad. Sci. USA200510215545155501:CAS:528:DC%2BD2MXht1ShtrnO16199517123989610.1073/pnas.05065801022005PNAS..10215545S AnzDSuppression of intratumoral CCL22 by type I interferon inhibits migration of regulatory T cells and blocks cancer progressionCancer Res.201575448344931:CAS:528:DC%2BC2MXhslGnu7vE2643240310.1158/0008-5472.CAN-14-3499 SprangerSBaoRGajewskiTFMelanoma-intrinsic β-catenin signalling prevents anti-tumour immunityNature20155232312351:CAS:528:DC%2BC2MXhtFaitrrL2597024810.1038/nature144042015Natur.523..231S HuangHWangCRubeltFScribaTJDavisMMAnalyzing the Mycobacterium tuberculosis immune response by T-cell receptor clustering with GLIPH2 and genome-wide antigen screeningNat. Biotechnol.202038119412021:CAS:528:DC%2BB3cXotVCisrc%3D32341563754139610.1038/s41587-020-0505-4 Halvorsen, G. T., Frost, J. M. & Kym, P. R. Protein tyrosine phosphatase inhibitors and methods of use thereof. US patent 10,851,073 B2 (2020). NtranosVYiLMelstedPPachterLA discriminative learning approach to differential expression analysis for single-cell RNA-seqNat. Methods2019161631661:CAS:528:DC%2BC1MXmtFGrurc%3D3066477410.1038/s41592-018-0303-9 FaresCMVan AllenEMDrakeCGAllisonJPHu-LieskovanSMechanisms of resistance to immune checkpoint blockade: why does checkpoint inhibitor immunotherapy not work for all patients?Am. Soc. Clin. Oncol. Educ. Book2019391471643109967410.1200/EDBK_240837 BolotinDAMiXCR: software for comprehensive adaptive immunity profilingNat. Methods2015123803811:CAS:528:DC%2BC2MXnsVWnurk%3D2592407110.1038/nmeth.3364 You-TenKEImpaired bone marrow microenvironment and immune function in T cell protein tyrosine phosphatase–deficient miceJ. Exp. Med.19971866836931:CAS:528:DyaK2sXlvVeit7g%3D9271584219902010.1084/jem.186.5.683 HannaNBurtonRCDefinitive evidence that natural killer (NK) cells inhibit experimental tumor metastases in vivoJ. Immunol.1981127175417581:STN:280:DyaL38%2FlsVSqtg%3D%3D729911510.4049/jimmunol.127.5.1754 BolgerAMLohseMUsadelBTrimmomatic: a flexible trimmer for Illumina sequence dataBioinformatics201430211421201:CAS:528:DC%2BC2cXht1Sqt7nP24695404410359010.1093/bioinformatics/btu170 CorselloSMDiscovering the anti-cancer potential of non-oncology drugs by systematic viability profilingNat. Cancer202012352481:CAS:528:DC%2BB38XjsVOmt7g%3D32613204732889910.1038/s43018-019-0018-6 ZhaoMRapid in vitro generation of bona fide exhausted CD8+ T cells is accompanied by Tcf7 promotor methylationPLoS Pathog.202016e10085551:CAS:528:DC%2BB3cXhsVehu7jP32579593734032610.1371/journal.ppat.1008555 CombsAPRecent advances in the discovery of competitive protein tyrosine phosphatase 1B inhibitors for the treatment of diabetes, obesity, and cancerJ. Med. Chem.201053233323441:CAS:528:DC%2BD1MXhsFektLzJ2000041910.1021/jm901090b2010stfu.book.....C HandTWDifferential effects of STAT5 and PI3K/AKT signaling on effector and memory CD8 T-cell survivalProc. Natl Acad. Sci. USA201010716601166061:CAS:528:DC%2BC3cXht1WqtrvE20823247294471910.1073/pnas.10034571072010PNAS..10716601H FlosbachMPTPN2 deficiency enhances programmed T cell expansion and survival capacity of activated T cellsCell Rep.2020321079571:CAS:528:DC%2BB3cXhsFSiu7nI32726622740800610.1016/j.celrep.2020.107957 McGranahanNAllele-specific HLA loss and immune escape in lung cancer evolutionCell201717112591271.e111:CAS:528:DC%2BC2sXhslehs7nL29107330572047810.1016/j.cell.2017.10.001 Sade-FeldmanMResistance to checkpoint blockade therapy through inactivation of antigen presentationNat. Commun.2017829070816565660710.1038/s41467-017-01062-w2017NatCo...8.1136S WoffordJAWiemanHLJacobsSRZhaoYRathmellJCIL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survivalBlood2008111210121111:CAS:528:DC%2BD1cXisVeisbg%3D18042802223405010.1182/blood-2007-06-096297 LiberzonAThe Molecular Signatures Database (MSigDB) hallmark gene set collectionCell Syst.201514174251:CAS:528:DC%2BC2sXhtFaltLc%3D26771021470796910.1016/j.cels.2015.12.004 WolfFAAngererPTheisFJSCANPY: large-scale single-cell gene expression data analysisGenome Biol.20181929409532580205410.1186/s13059-017-1382-0 MullardAPhosphatases start shedding their stigma of undruggabilityNat. Rev. Drug Discov.2018178478491:CAS:528:DC%2BC1cXitlalu7%2FL3048295010.1038/nrd.2018.201 Sade-FeldmanMDefining T cell states associated with response to checkpoint immunotherapy in melanomaCell20181759981013.e201:CAS:528:DC%2BC1cXitVyhurvP30388456664198410.1016/j.cell.2018.10.038 MangusoRTIn vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy targetNature20175474134181:CAS:528:DC%2BC2sXht1WqsrfM28723893592469310.1038/nature23270 Farney, E. et al. Protein tyrosine phosphotase inhibitors and methods of use thereof. World patent 2019, 246513 A1 (2019). ten HoeveJIdentification of a nuclear Stat1 protein tyrosine phosphataseMol. Cell. Biol.200222566256681213817813397610.1128/MCB.22.16.5662-5668.2002 ChenY-NPAllosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinasesNature20165351481521:CAS:528:DC%2BC28XhtVOns7bI2736222710.1038/nature186212016Natur.535..148C LambertSLAssociation of baseline and pharmacodynamic biomarkers with outcomes in patients treated with the PD-1 inhibitor budigalimabJ. Immunother.2022451671791:CAS:528:DC%2BB38Xmt1Sns74%3D35034046890624610.1097/CJI.0000000000000408 ZaretskyJMMutations associated with acquired resistance to PD-1 blockade in melanomaN. Engl. J. Med.20163758198291:CAS:528:DC%2BC28XhvF2ks7%2FP27433843500720610.1056/NEJMoa1604958 BrayNLPimentelHMelstedPPachterLNear-optimal probabilistic RNA-seq quantificationNat. Biotechnol.2016345255271:CAS:528:DC%2BC28XlsVansL8%3D2704300210.1038/nbt.3519 ButlerMOLong-lived antitumor CD8+ lymphocytes for adoptive therapy generated using an artificial antigen-presenting cellClin. Cancer Res.200713185718671:CAS:528:DC%2BD2sXivV2gtb8%3D1736354210.1158/1078-0432.CCR-06-1905 SimoncicPDLee-LoyABarberDLTremblayMLMcGladeCJThe T cell protein tyrosine phosphatase is a negative regulator of Janus family kinases 1 and 3Curr. Biol.2002124464531:CAS:528:DC%2BD38XitlGgtbc%3D1190952910.1016/S0960-9822(02)00697-8 ZhangZ-YDrugging the undruggable: therapeutic potential of targeting protein tyrosine phosphatasesAcc. Chem. Res.2017501221291:CAS:528:DC%2BC28XitVyitbfL2797713810.1021/acs.accounts.6b00537 KorsunskyIFast, sensitive and accurate integration of single-cell data with HarmonyNat. Methods201916128912961:CAS:528:DC%2BC1MXitFOqsr7N31740819688469310.1038/s41592-019-0619-0 HeinonenKMT-cell protein tyrosine phosphatase deletion results in progressive systemic inflammatory diseaseBlood2004103345734641:CAS:528:DC%2BD2cXjslKgt7w%3D1472637210.1182/blood-2003-09-3153 WiedeFPTPN2 phospha JC Kalvass (6575_CR51) 2007; 35 M Sade-Feldman (6575_CR46) 2017; 8 M Zhao (6575_CR63) 2020; 16 KE You-Ten (6575_CR22) 1997; 186 M Hashimoto (6575_CR37) 2022; 610 MR Betts (6575_CR42) 2006; 107 CM Fares (6575_CR2) 2019; 39 A Subramanian (6575_CR18) 2005; 102 H Huang (6575_CR32) 2020; 38 C Yu (6575_CR19) 2016; 34 N Tickotsky (6575_CR62) 2017; 41 V Ntranos (6575_CR59) 2019; 16 SM Corsello (6575_CR56) 2020; 1 6575_CR49 JED Thaventhiran (6575_CR13) 2020; 583 Wellcome Trust Case Control Consortium. (6575_CR23) 2007; 447 KM Heinonen (6575_CR21) 2004; 103 6575_CR50 R Medzhitov (6575_CR20) 2008; 454 D Hanahan (6575_CR25) 2000; 100 JA Wofford (6575_CR39) 2008; 111 BC Miller (6575_CR33) 2019; 20 O Khan (6575_CR36) 2019; 571 Z-Y Zhang (6575_CR15) 2017; 50 M Sade-Feldman (6575_CR35) 2018; 175 F Wiede (6575_CR4) 2020; 39 MW LaFleur (6575_CR5) 2019; 20 DS Shin (6575_CR45) 2017; 7 IS Lossos (6575_CR9) 2005; 106 6575_CR11 A Liberzon (6575_CR55) 2015; 1 RT Manguso (6575_CR3) 2017; 547 NL Bray (6575_CR53) 2016; 34 PD Simoncic (6575_CR7) 2002; 12 DA Bolotin (6575_CR61) 2015; 12 A Mullard (6575_CR14) 2018; 17 C Yao (6575_CR41) 2019; 20 MO Butler (6575_CR43) 2007; 13 N McGranahan (6575_CR47) 2017; 171 C-CS Pai (6575_CR48) 2019; 50 BA Pulaski (6575_CR26) 1998; 58 SJ Im (6575_CR34) 2016; 537 Y-NP Chen (6575_CR17) 2016; 535 A Madi (6575_CR31) 2017; 6 TW Hand (6575_CR40) 2010; 107 F Wiede (6575_CR12) 2011; 121 M Parlato (6575_CR10) 2020; 159 6575_CR1 S Spranger (6575_CR60) 2015; 523 JE Talmadge (6575_CR29) 1980; 65 J Dubrot (6575_CR27) 2022; 23 JM Zaretsky (6575_CR44) 2016; 375 M Flosbach (6575_CR6) 2020; 32 AP Combs (6575_CR16) 2010; 53 FA Wolf (6575_CR57) 2018; 19 D Anz (6575_CR30) 2015; 75 MI Love (6575_CR54) 2014; 15 J ten Hoeve (6575_CR8) 2002; 22 6575_CR38 AM Bolger (6575_CR52) 2014; 30 SL Lambert (6575_CR24) 2022; 45 I Korsunsky (6575_CR58) 2019; 16 N Hanna (6575_CR28) 1981; 127 37982351 - Immunol Cell Biol. 2024 Jan;102(1):8-11. doi: 10.1111/imcb.12711 37914810 - Nat Rev Drug Discov. 2023 Dec;22(12):951. doi: 10.1038/d41573-023-00178-7 |
References_xml | – reference: HeinonenKMT-cell protein tyrosine phosphatase deletion results in progressive systemic inflammatory diseaseBlood2004103345734641:CAS:528:DC%2BD2cXjslKgt7w%3D1472637210.1182/blood-2003-09-3153 – reference: MullardAPhosphatases start shedding their stigma of undruggabilityNat. Rev. Drug Discov.2018178478491:CAS:528:DC%2BC1cXitlalu7%2FL3048295010.1038/nrd.2018.201 – reference: Halvorsen, G. T., Frost, J. M. & Kym, P. R. Protein tyrosine phosphatase inhibitors and methods of use thereof. US patent 10,851,073 B2 (2020). – reference: YaoCSingle-cell RNA-seq reveals TOX as a key regulator of CD8+ T cell persistence in chronic infectionNat. Immunol.2019208909011:CAS:528:DC%2BC1MXhtFymtbvP31209400658840910.1038/s41590-019-0403-4 – reference: LossosISLuXTiganisTPTPN2, distinctively expressed in GCB-like and ABC-like DLBCL, is the nuclear phosphatase of STAT6Blood200510641841810.1182/blood.V106.11.418.418 – reference: TickotskyNPetelRArakiRMoskovitzMCaries progression rate in primary teeth: a retrospective studyJ. Clin. Pediatr. Dent.2017413583612887299210.17796/1053-4628-41.5.358 – reference: LaFleurMWPTPN2 regulates the generation of exhausted CD8+ T cell subpopulations and restrains tumor immunityNat. Immunol.201920133513471:CAS:528:DC%2BC1MXhslyisb%2FE31527834675430610.1038/s41590-019-0480-4 – reference: CorselloSMDiscovering the anti-cancer potential of non-oncology drugs by systematic viability profilingNat. Cancer202012352481:CAS:528:DC%2BB38XjsVOmt7g%3D32613204732889910.1038/s43018-019-0018-6 – reference: DubrotJIn vivo CRISPR screens reveal the landscape of immune evasion pathways across cancerNat. Immunol.202223149515061:CAS:528:DC%2BB38XisVOhsL7N3615139510.1038/s41590-022-01315-x – reference: Farney, E. et al. Protein tyrosine phosphotase inhibitors and methods of use thereof. World patent 2019, 246513 A1 (2019). – reference: Wiede, F. et al. PTP1B is an intracellular checkpoint that limits T-cell and CAR T-cell anti-tumor immunity. Cancer Discov.12, 752–773 (2022). – reference: KhanOTOX transcriptionally and epigenetically programs CD8+ T cell exhaustionNature20195712112181:CAS:528:DC%2BC1MXhtlSms7bI31207603671320210.1038/s41586-019-1325-x – reference: MillerBCSubsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockadeNat. Immunol.2019203263361:CAS:528:DC%2BC1MXnsVCitbg%3D30778252667365010.1038/s41590-019-0312-6 – reference: PaiC-CSClonal deletion of tumor-specific T cells by interferon-γ confers therapeutic resistance to combination immune checkpoint blockadeImmunity201950477492.e81:CAS:528:DC%2BC1MXisFWks7g%3D30737146688647510.1016/j.immuni.2019.01.006 – reference: BrayNLPimentelHMelstedPPachterLNear-optimal probabilistic RNA-seq quantificationNat. Biotechnol.2016345255271:CAS:528:DC%2BC28XlsVansL8%3D2704300210.1038/nbt.3519 – reference: ZaretskyJMMutations associated with acquired resistance to PD-1 blockade in melanomaN. Engl. J. Med.20163758198291:CAS:528:DC%2BC28XhvF2ks7%2FP27433843500720610.1056/NEJMoa1604958 – reference: WiedeFPTPN2 phosphatase deletion in T cells promotes anti-tumour immunity and CAR T-cell efficacy in solid tumoursEMBO J.202039e1036371:CAS:528:DC%2BC1MXit12rsbvJ3180397410.15252/embj.2019103637 – reference: CombsAPRecent advances in the discovery of competitive protein tyrosine phosphatase 1B inhibitors for the treatment of diabetes, obesity, and cancerJ. Med. Chem.201053233323441:CAS:528:DC%2BD1MXhsFektLzJ2000041910.1021/jm901090b2010stfu.book.....C – reference: Sade-FeldmanMDefining T cell states associated with response to checkpoint immunotherapy in melanomaCell20181759981013.e201:CAS:528:DC%2BC1cXitVyhurvP30388456664198410.1016/j.cell.2018.10.038 – reference: HuangHWangCRubeltFScribaTJDavisMMAnalyzing the Mycobacterium tuberculosis immune response by T-cell receptor clustering with GLIPH2 and genome-wide antigen screeningNat. Biotechnol.202038119412021:CAS:528:DC%2BB3cXotVCisrc%3D32341563754139610.1038/s41587-020-0505-4 – reference: McGranahanNAllele-specific HLA loss and immune escape in lung cancer evolutionCell201717112591271.e111:CAS:528:DC%2BC2sXhslehs7nL29107330572047810.1016/j.cell.2017.10.001 – reference: SimoncicPDLee-LoyABarberDLTremblayMLMcGladeCJThe T cell protein tyrosine phosphatase is a negative regulator of Janus family kinases 1 and 3Curr. Biol.2002124464531:CAS:528:DC%2BD38XitlGgtbc%3D1190952910.1016/S0960-9822(02)00697-8 – reference: HannaNBurtonRCDefinitive evidence that natural killer (NK) cells inhibit experimental tumor metastases in vivoJ. Immunol.1981127175417581:STN:280:DyaL38%2FlsVSqtg%3D%3D729911510.4049/jimmunol.127.5.1754 – reference: NtranosVYiLMelstedPPachterLA discriminative learning approach to differential expression analysis for single-cell RNA-seqNat. Methods2019161631661:CAS:528:DC%2BC1MXmtFGrurc%3D3066477410.1038/s41592-018-0303-9 – reference: TalmadgeJEMeyersKMPrieurDJStarkeyJRRole of natural killer cells in tumor growth and metastasis: C57BL/6 normal and beige miceJ. Natl Cancer Inst.1980659299351:STN:280:DyaL3M%2FltVaqtg%3D%3D6933263 – reference: Beltra, J.-C. et al. Enhanced STAT5a activation rewires exhausted CD8 T cells during chronic stimulation to acquire a hybrid durable effector like state. Preprint at bioRxivhttps://doi.org/10.1101/2022.10.03.509766 (2022). – reference: BettsMRHIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cellsBlood2006107478147891:CAS:528:DC%2BD28XlvFCgtrg%3D16467198189581110.1182/blood-2005-12-4818 – reference: ButlerMOLong-lived antitumor CD8+ lymphocytes for adoptive therapy generated using an artificial antigen-presenting cellClin. Cancer Res.200713185718671:CAS:528:DC%2BD2sXivV2gtb8%3D1736354210.1158/1078-0432.CCR-06-1905 – reference: PulaskiBAOstrand-RosenbergSReduction of established spontaneous mammary carcinoma metastases following immunotherapy with major histocompatibility complex class II and B7.1 cell-based tumor vaccinesCancer Res.199858148614931:CAS:528:DyaK1cXit1eks7k%3D9537252 – reference: MedzhitovROrigin and physiological roles of inflammationNature20084544284351:CAS:528:DC%2BD1cXovV2mtbw%3D1865091310.1038/nature072012008Natur.454..428M – reference: AnzDSuppression of intratumoral CCL22 by type I interferon inhibits migration of regulatory T cells and blocks cancer progressionCancer Res.201575448344931:CAS:528:DC%2BC2MXhslGnu7vE2643240310.1158/0008-5472.CAN-14-3499 – reference: ParlatoMLoss-of-function mutation in PTPN2 causes aberrant activation of JAK signaling via STAT and very early onset intestinal inflammationGastroenterology202015919681971.e41:CAS:528:DC%2BB3cXisFShsL3L3272143810.1053/j.gastro.2020.07.040 – reference: Wellcome Trust Case Control Consortium.Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controlsNature200744766167810.1038/nature05911 – reference: YuCHigh-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell linesNat. Biotechnol.2016344194231:CAS:528:DC%2BC28XivFKgsro%3D26928769550857410.1038/nbt.3460 – reference: ImSJDefining CD8+ T cells that provide the proliferative burst after PD-1 therapyNature20165374174211:CAS:528:DC%2BC28XhsFajsrzE27501248529718310.1038/nature193302016Natur.537..417I – reference: BolotinDAMiXCR: software for comprehensive adaptive immunity profilingNat. Methods2015123803811:CAS:528:DC%2BC2MXnsVWnurk%3D2592407110.1038/nmeth.3364 – reference: MadiAT cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequenceseLife20176e2205728731407555393710.7554/eLife.22057 – reference: SubramanianAGene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profilesProc. Natl Acad. Sci. USA200510215545155501:CAS:528:DC%2BD2MXht1ShtrnO16199517123989610.1073/pnas.05065801022005PNAS..10215545S – reference: LambertSLAssociation of baseline and pharmacodynamic biomarkers with outcomes in patients treated with the PD-1 inhibitor budigalimabJ. Immunother.2022451671791:CAS:528:DC%2BB38Xmt1Sns74%3D35034046890624610.1097/CJI.0000000000000408 – reference: FlosbachMPTPN2 deficiency enhances programmed T cell expansion and survival capacity of activated T cellsCell Rep.2020321079571:CAS:528:DC%2BB3cXhsFSiu7nI32726622740800610.1016/j.celrep.2020.107957 – reference: MangusoRTIn vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy targetNature20175474134181:CAS:528:DC%2BC2sXht1WqsrfM28723893592469310.1038/nature23270 – reference: ZhaoMRapid in vitro generation of bona fide exhausted CD8+ T cells is accompanied by Tcf7 promotor methylationPLoS Pathog.202016e10085551:CAS:528:DC%2BB3cXhsVehu7jP32579593734032610.1371/journal.ppat.1008555 – reference: ChenY-NPAllosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinasesNature20165351481521:CAS:528:DC%2BC28XhtVOns7bI2736222710.1038/nature186212016Natur.535..148C – reference: WolfFAAngererPTheisFJSCANPY: large-scale single-cell gene expression data analysisGenome Biol.20181929409532580205410.1186/s13059-017-1382-0 – reference: FaresCMVan AllenEMDrakeCGAllisonJPHu-LieskovanSMechanisms of resistance to immune checkpoint blockade: why does checkpoint inhibitor immunotherapy not work for all patients?Am. Soc. Clin. Oncol. Educ. Book2019391471643109967410.1200/EDBK_240837 – reference: LoveMIHuberWAndersSModerated estimation of fold change and dispersion for RNA-seq data with DESeq2Genome Biol.20141525516281430204910.1186/s13059-014-0550-8 – reference: ShinDSPrimary resistance to PD-1 blockade mediated by JAK1/2 mutationsCancer Discov.201771882011:CAS:528:DC%2BC2sXitVCjsr0%3D2790350010.1158/2159-8290.CD-16-1223 – reference: SprangerSBaoRGajewskiTFMelanoma-intrinsic β-catenin signalling prevents anti-tumour immunityNature20155232312351:CAS:528:DC%2BC2MXhtFaitrrL2597024810.1038/nature144042015Natur.523..231S – reference: Sade-FeldmanMResistance to checkpoint blockade therapy through inactivation of antigen presentationNat. Commun.2017829070816565660710.1038/s41467-017-01062-w2017NatCo...8.1136S – reference: HandTWDifferential effects of STAT5 and PI3K/AKT signaling on effector and memory CD8 T-cell survivalProc. Natl Acad. Sci. USA201010716601166061:CAS:528:DC%2BC3cXht1WqtrvE20823247294471910.1073/pnas.10034571072010PNAS..10716601H – reference: LiberzonAThe Molecular Signatures Database (MSigDB) hallmark gene set collectionCell Syst.201514174251:CAS:528:DC%2BC2sXhtFaltLc%3D26771021470796910.1016/j.cels.2015.12.004 – reference: You-TenKEImpaired bone marrow microenvironment and immune function in T cell protein tyrosine phosphatase–deficient miceJ. Exp. Med.19971866836931:CAS:528:DyaK2sXlvVeit7g%3D9271584219902010.1084/jem.186.5.683 – reference: KorsunskyIFast, sensitive and accurate integration of single-cell data with HarmonyNat. Methods201916128912961:CAS:528:DC%2BC1MXitFOqsr7N31740819688469310.1038/s41592-019-0619-0 – reference: ten HoeveJIdentification of a nuclear Stat1 protein tyrosine phosphataseMol. Cell. Biol.200222566256681213817813397610.1128/MCB.22.16.5662-5668.2002 – reference: HanahanDWeinbergRAThe hallmarks of cancerCell200010057701:CAS:528:DC%2BD3cXks1CktA%3D%3D1064793110.1016/S0092-8674(00)81683-9 – reference: HashimotoMPD-1 combination therapy with IL-2 modifies CD8+ T cell exhaustion programNature20226101731811:CAS:528:DC%2BB38XisFWit7vK36171288979389010.1038/s41586-022-05257-02022Natur.610..173H – reference: WoffordJAWiemanHLJacobsSRZhaoYRathmellJCIL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survivalBlood2008111210121111:CAS:528:DC%2BD1cXisVeisbg%3D18042802223405010.1182/blood-2007-06-096297 – reference: KalvassJCMaurerTSPollackGMUse of plasma and brain unbound fractions to assess the extent of brain distribution of 34 drugs: comparison of unbound concentration ratios to in vivo p-glycoprotein efflux ratiosDrug Metab. Dispos.2007356606661:CAS:528:DC%2BD2sXktVOntb4%3D1723715510.1124/dmd.106.012294 – reference: BolgerAMLohseMUsadelBTrimmomatic: a flexible trimmer for Illumina sequence dataBioinformatics201430211421201:CAS:528:DC%2BC2cXht1Sqt7nP24695404410359010.1093/bioinformatics/btu170 – reference: Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell165, 35–44 (2016). – reference: WiedeFT cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in miceJ. Clin. Invest.2011121475847741:CAS:528:DC%2BC3MXhs1ShsLjM22080863322600610.1172/JCI59492 – reference: ThaventhiranJEDWhole-genome sequencing of a sporadic primary immunodeficiency cohortNature202058390951:CAS:528:DC%2BB3cXoslOqtr0%3D32499645733404710.1038/s41586-020-2265-12020Natur.583...90T – reference: ZhangZ-YDrugging the undruggable: therapeutic potential of targeting protein tyrosine phosphatasesAcc. Chem. Res.2017501221291:CAS:528:DC%2BC28XitVyitbfL2797713810.1021/acs.accounts.6b00537 – volume: 34 start-page: 419 year: 2016 ident: 6575_CR19 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3460 – ident: 6575_CR50 – volume: 34 start-page: 525 year: 2016 ident: 6575_CR53 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3519 – volume: 610 start-page: 173 year: 2022 ident: 6575_CR37 publication-title: Nature doi: 10.1038/s41586-022-05257-0 – volume: 107 start-page: 16601 year: 2010 ident: 6575_CR40 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1003457107 – volume: 107 start-page: 4781 year: 2006 ident: 6575_CR42 publication-title: Blood doi: 10.1182/blood-2005-12-4818 – volume: 8 year: 2017 ident: 6575_CR46 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01062-w – volume: 547 start-page: 413 year: 2017 ident: 6575_CR3 publication-title: Nature doi: 10.1038/nature23270 – volume: 7 start-page: 188 year: 2017 ident: 6575_CR45 publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-16-1223 – volume: 20 start-page: 326 year: 2019 ident: 6575_CR33 publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0312-6 – volume: 111 start-page: 2101 year: 2008 ident: 6575_CR39 publication-title: Blood doi: 10.1182/blood-2007-06-096297 – volume: 19 year: 2018 ident: 6575_CR57 publication-title: Genome Biol. doi: 10.1186/s13059-017-1382-0 – ident: 6575_CR49 – volume: 20 start-page: 1335 year: 2019 ident: 6575_CR5 publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0480-4 – volume: 186 start-page: 683 year: 1997 ident: 6575_CR22 publication-title: J. Exp. Med. doi: 10.1084/jem.186.5.683 – volume: 127 start-page: 1754 year: 1981 ident: 6575_CR28 publication-title: J. Immunol. doi: 10.4049/jimmunol.127.5.1754 – volume: 537 start-page: 417 year: 2016 ident: 6575_CR34 publication-title: Nature doi: 10.1038/nature19330 – volume: 53 start-page: 2333 year: 2010 ident: 6575_CR16 publication-title: J. Med. Chem. doi: 10.1021/jm901090b – volume: 175 start-page: 998 year: 2018 ident: 6575_CR35 publication-title: Cell doi: 10.1016/j.cell.2018.10.038 – volume: 39 start-page: e103637 year: 2020 ident: 6575_CR4 publication-title: EMBO J. doi: 10.15252/embj.2019103637 – volume: 1 start-page: 417 year: 2015 ident: 6575_CR55 publication-title: Cell Syst. doi: 10.1016/j.cels.2015.12.004 – volume: 75 start-page: 4483 year: 2015 ident: 6575_CR30 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-3499 – volume: 523 start-page: 231 year: 2015 ident: 6575_CR60 publication-title: Nature doi: 10.1038/nature14404 – volume: 454 start-page: 428 year: 2008 ident: 6575_CR20 publication-title: Nature doi: 10.1038/nature07201 – volume: 35 start-page: 660 year: 2007 ident: 6575_CR51 publication-title: Drug Metab. Dispos. doi: 10.1124/dmd.106.012294 – volume: 6 start-page: e22057 year: 2017 ident: 6575_CR31 publication-title: eLife doi: 10.7554/eLife.22057 – volume: 16 start-page: 1289 year: 2019 ident: 6575_CR58 publication-title: Nat. Methods doi: 10.1038/s41592-019-0619-0 – volume: 583 start-page: 90 year: 2020 ident: 6575_CR13 publication-title: Nature doi: 10.1038/s41586-020-2265-1 – volume: 16 start-page: e1008555 year: 2020 ident: 6575_CR63 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1008555 – volume: 106 start-page: 418 year: 2005 ident: 6575_CR9 publication-title: Blood doi: 10.1182/blood.V106.11.418.418 – volume: 58 start-page: 1486 year: 1998 ident: 6575_CR26 publication-title: Cancer Res. – volume: 50 start-page: 477 year: 2019 ident: 6575_CR48 publication-title: Immunity doi: 10.1016/j.immuni.2019.01.006 – volume: 121 start-page: 4758 year: 2011 ident: 6575_CR12 publication-title: J. Clin. Invest. doi: 10.1172/JCI59492 – volume: 100 start-page: 57 year: 2000 ident: 6575_CR25 publication-title: Cell doi: 10.1016/S0092-8674(00)81683-9 – volume: 50 start-page: 122 year: 2017 ident: 6575_CR15 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00537 – volume: 103 start-page: 3457 year: 2004 ident: 6575_CR21 publication-title: Blood doi: 10.1182/blood-2003-09-3153 – volume: 23 start-page: 1495 year: 2022 ident: 6575_CR27 publication-title: Nat. Immunol. doi: 10.1038/s41590-022-01315-x – ident: 6575_CR11 doi: 10.1158/2159-8290.CD-21-0694 – volume: 20 start-page: 890 year: 2019 ident: 6575_CR41 publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0403-4 – volume: 16 start-page: 163 year: 2019 ident: 6575_CR59 publication-title: Nat. Methods doi: 10.1038/s41592-018-0303-9 – volume: 159 start-page: 1968 year: 2020 ident: 6575_CR10 publication-title: Gastroenterology doi: 10.1053/j.gastro.2020.07.040 – volume: 15 year: 2014 ident: 6575_CR54 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 1 start-page: 235 year: 2020 ident: 6575_CR56 publication-title: Nat. Cancer doi: 10.1038/s43018-019-0018-6 – volume: 447 start-page: 661 year: 2007 ident: 6575_CR23 publication-title: Nature doi: 10.1038/nature05911 – volume: 41 start-page: 358 year: 2017 ident: 6575_CR62 publication-title: J. Clin. Pediatr. Dent. doi: 10.17796/1053-4628-41.5.358 – volume: 45 start-page: 167 year: 2022 ident: 6575_CR24 publication-title: J. Immunother. doi: 10.1097/CJI.0000000000000408 – volume: 171 start-page: 1259 year: 2017 ident: 6575_CR47 publication-title: Cell doi: 10.1016/j.cell.2017.10.001 – volume: 32 start-page: 107957 year: 2020 ident: 6575_CR6 publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.107957 – volume: 13 start-page: 1857 year: 2007 ident: 6575_CR43 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-06-1905 – volume: 17 start-page: 847 year: 2018 ident: 6575_CR14 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2018.201 – volume: 535 start-page: 148 year: 2016 ident: 6575_CR17 publication-title: Nature doi: 10.1038/nature18621 – volume: 65 start-page: 929 year: 1980 ident: 6575_CR29 publication-title: J. Natl Cancer Inst. – volume: 30 start-page: 2114 year: 2014 ident: 6575_CR52 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 375 start-page: 819 year: 2016 ident: 6575_CR44 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1604958 – volume: 102 start-page: 15545 year: 2005 ident: 6575_CR18 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0506580102 – volume: 12 start-page: 446 year: 2002 ident: 6575_CR7 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)00697-8 – volume: 22 start-page: 5662 year: 2002 ident: 6575_CR8 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.22.16.5662-5668.2002 – volume: 38 start-page: 1194 year: 2020 ident: 6575_CR32 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0505-4 – volume: 571 start-page: 211 year: 2019 ident: 6575_CR36 publication-title: Nature doi: 10.1038/s41586-019-1325-x – ident: 6575_CR1 doi: 10.1016/j.cell.2016.02.065 – volume: 39 start-page: 147 year: 2019 ident: 6575_CR2 publication-title: Am. Soc. Clin. Oncol. Educ. Book doi: 10.1200/EDBK_240837 – ident: 6575_CR38 doi: 10.1101/2022.10.03.509766 – volume: 12 start-page: 380 year: 2015 ident: 6575_CR61 publication-title: Nat. Methods doi: 10.1038/nmeth.3364 – reference: 37914810 - Nat Rev Drug Discov. 2023 Dec;22(12):951. doi: 10.1038/d41573-023-00178-7 – reference: 37982351 - Immunol Cell Biol. 2024 Jan;102(1):8-11. doi: 10.1111/imcb.12711 |
SSID | ssj0005174 |
Score | 2.66183 |
Snippet | Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and new approaches are needed to... Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and newapproaches are needed to... |
SourceID | pubmedcentral osti proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 850 |
SubjectTerms | 101/58 13/1 13/106 13/21 13/31 13/51 14 14/34 38/39 38/91 42/41 59/5 60 APPLIED LIFE SCIENCES 631/67/1059/2325 631/67/580 64/60 692/308/2778 96/1 96/31 Animal models Animals Antibodies Antigens Bioavailability Cancer Cancer immunotherapy CD8 antigen CD8-Positive T-Lymphocytes - drug effects CD8-Positive T-Lymphocytes - immunology Cell culture Cell growth Clonal deletion Design Disease Models, Animal Drug dosages Drug Resistance, Neoplasm Humanities and Social Sciences Humans Immune Checkpoint Inhibitors Immune system Immunity Immunotherapy Immunotherapy - methods Inhibitors Interferons - immunology Killer Cells, Natural - drug effects Killer Cells, Natural - immunology Kinases Lymphocytes Lymphocytes T Mice multidisciplinary Naphthalenes - pharmacology Natural killer cells Neoplasms - drug therapy Neoplasms - enzymology Neoplasms - immunology Patients PD-1 protein Phosphatase Phosphorylation Plasma preclinical research Protein Tyrosine Phosphatase, Non-Receptor Type 1 - antagonists & inhibitors Protein Tyrosine Phosphatase, Non-Receptor Type 2 - antagonists & inhibitors Proteins PTPN2 protein Science Science (multidisciplinary) Signal transduction Solid tumors T cell receptors Therapeutic targets Thiadiazoles - pharmacology Tumor microenvironment Tumor Microenvironment - drug effects Tumor Microenvironment - immunology Tumors tumour immunology Tyrosine |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB3SLYVeSpJ-uUmKCj20tCJrWV7Jx2RpCCUNgSYlN2HJEmtIvSH2HvrvO6O1N2ySBuqDLx7ZkkbjeYNGbwA-YowsMq8LbtPSc-nSwAtN3HhOVVIWUlaBDjj_OJ0cX8jvl_nlBojhLExM2o-UlvE3PWSH7bfoaDSly1ItAoQYXD2Bp0TdTgHXdDK9Teu4w7zcH5QZZ_qBd6w5o9EcjeohoHk_X_LOpmn0RUeb8KIHkexg2e0t2PDNNjyLyZyu3Yat3mBb9qlnlf78Ek5wQbCz87NTsU_3lNXNrLZozzfs4PDwF5-e_ORSS7ZornzZzrDx9RzxdMdw6mveLX7jR1kdT5N0f17BxdG38-kx70spcJePRcdD6nLtqyIIXSKkkJW1CiPHXFPVUoVWaQuVlTbNPeIllFBlip5bZ84H5caVzV7DqJk3_i2wgAFgVXiXl0Q9nwZdVcKqEqFG5csQbALpMKfG9TzjVO7iysT97kybpR4M6sFEPRiVwJdVm-sly8aj0jukKoMYgYhuHWUEuc4IiQMRMoHdQYOmt8fWCK0l0fhIkcCH1WO0JNoeKRs_X5CMyqgSt0gTeLNU-KozRMtIND8J6LWlsBIglu71J009i2zdBGDxyhL4Oqya2379e5Dv_k98B54LWtjoVcVkF0bdzcLvIVzq7PtoH38B_-YJoQ priority: 102 providerName: Springer Nature |
Title | The PTPN2/PTPN1 inhibitor ABBV-CLS-484 unleashes potent anti-tumour immunity |
URI | https://link.springer.com/article/10.1038/s41586-023-06575-7 https://www.ncbi.nlm.nih.gov/pubmed/37794185 https://www.proquest.com/docview/2884348242 https://www.proquest.com/docview/2873249521 https://www.osti.gov/servlets/purl/2470124 https://pubmed.ncbi.nlm.nih.gov/PMC10599993 |
Volume | 622 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6xTki8IDZ-hY0qSDyAwGrtOLXzhNZoZUKjqmBDfYsS21EjjaQs6QP_PXdp2qoDlodIURzFzt3lPvvO3wG8xTmyCJyOWMZTx6ThOYs0ceMZZaWMpLQ5bXD-Oh1dXMsv83DeLbjVXVrl5p_Y_qhtZWiNfCC0lkTEIsWn5S9GVaMoutqV0DiAQ46ehlK69OTzLsXjDgtzt2lmGOhBjY5LU_ot1TZAyMLUnmPqVWhg_wKdf-dO3gmgtn5p8gQed4DSP1trwBE8cOUxPGwTO019DEed8db-u45h-v1TuETl8GdXs6kY0Jn7RbkoMrTtW_9sPP7B4svvTGrpr8obl9YLfHhZIbZufBRDwZrVT3ypX7Q7S5rfz-B6cn4VX7CurAIz4VA0LOcm1M5GudApwgtps0zhLDLUVMFUoYVmkQrSjIcOsRO2UGn7bQPjcmWGNgueQ6-sSvcS_BwngzZyJkyJhp7n2lqRqRRhh3Vpnmce8M03TUzHOU6lL26SNvYd6GQthwTlkLRySJQHH7bPLNeMG_e2PiFRJYgXiPTWUHaQaRIhcSBCenC6kWDS2Wad7DTJgzfb22hVFCpJS1etqI0KqCq34B68WAt82xmiaCTKHw_0nipsGxBj9_6dsli0zN0EZvEIPPi40Zpdv_4_yFf3D-MEHglSZPSoYnQKveZ25V4jVGqyPhyoucKzjnm_tY0-HI7Pp7NveBWP4j8-Ag_4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIgQviI2vbAOCBBIIrDaOszgPCG2D0rGumkSH9mZix1EjbWlZUqH9U_yN3OWjVQfsbXnIS5zEzp3vfo7vfgfwCtfI3LcyYtqLLRPGS1kkiRvPhIkQkRBJSgnOR6OdwYn4ehqcrsHvNheGwipbm1gZ6mRq6B95l0spiIhF8I-zn4yqRtHualtCo1aLQ3v5C5dsxYeDTyjf15z3P4_3B6ypKsBM0OMlSz0TSJtEKZcxeleRaB3iIiqQVMAzRAXVUejH2gssQgdsEcYeOjHpG5uGppdoH597C24LHz05Zab3vyxDSq6wPjdJOj1fdgt0lJLCfamWAkIkFq44ws4UJ_S_QO7fsZpXNmwrP9h_APcbAOvu1hq3Dms234A7VSCpKTZgvTEWhfumYbR--xCGqIzu8fh4xLt09twsn2QabcmFu7u3953tD78xIYU7z89sXEzw5tkUsXzpotgzVs7P8aVuVmWylJeP4ORGPvhj6OTT3D4FN8XFZxJZE8REe--lMkm4DmOEOYmN01Q74LXfVJmG45xKbZypaq_dl6qWg0I5qEoOKnTg3eKeWc3wcW3rLRKVQnxCJLuGopFMqbjAgXDhwHYrQdXYgkItNdeBl4vLOItpaybO7XRObUKfqoBzz4EntcAXnSFKSKIYckCuqMKiATGEr17Js0nFFE7gGQ_fgfet1iz79f9Bbl4_jBdwdzA-GqrhwehwC-5xUmr05nxnGzrlxdw-Q5hW6ufV3HDhx01Pxj9_kkf5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aRSBeEBu3sAFBAgkEVhvHmZ0HhLaOamOlqsSG9mYSx1EjjaQsqdD-Gr-Oc3Lp6IC9LQ95iZPYObfP8fF3AF7iHJn7VoUs9iLLhPFSFirixjMyESIUIklpg_Pnyfb-sfh0Epyswa9uLwylVXY-sXbUSWHoH3mfKyWIiEXwftqmRUz3Rh_mPxhVkKKV1q6cRqMih_b8J07fyvcHeyjrV5yPPh4N91lbYYCZYMArlnomUDYJU64ijLQiiWOJE6pAUTFPicoah9KPYi-wCCOwhYw8DGjKNzaVZpDEPj73BtyUvlRkY2r4R3rJJQbodsPOwFf9EoOmotRfqquAcInJlaDYK9C4_wV4_87bvLR4W8fE0T2424JZd6fRvnVYs_kG3KqTSk25Aeut4yjd1y279Zv7MEbFdKdH0wnv09lzs3yWxehXztyd3d2vbDj-woQS7iI_tVE5w5vnBeL6ykUVyFi1-I4vdbN6V0t1_gCOr-WDP4ReXuT2MbgpTkST0JogIgp8L1VJwmMZIeRJbJSmsQNe9021afnOqezGqa7X3X2lGzlolIOu5aClA2-X98wbto8rW2-SqDRiFSLcNZSZZCrNBQ6ECwe2Ognq1i-U-kKLHXixvIwWTcs0UW6LBbWRPlUE554DjxqBLztD9JBEN-SAWlGFZQNiC1-9kmezmjWcgDQevgPvOq256Nf_B_nk6mE8h9tohnp8MDnchDucdBoDO9_egl51trBPEbFV8bPaNFz4dt22-Buz2kv6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+PTPN2%2FPTPN1+inhibitor+ABBV-CLS-484+unleashes+potent+anti-tumour+immunity&rft.jtitle=Nature+%28London%29&rft.au=Baumgartner%2C+Christina+K.&rft.au=Ebrahimi-Nik%2C+Hakimeh&rft.au=Iracheta-Vellve%2C+Arvin&rft.au=Hamel%2C+Keith+M.&rft.date=2023-10-26&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=622&rft.issue=7984&rft_id=info:doi/10.1038%2Fs41586-023-06575-7&rft.externalDocID=2470124 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |