Development and Clinical Applications of Therapeutic Cancer Vaccines with Individualized and Shared Neoantigens
Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The promising outcomes of neoantigen-based cancer vaccines have inspired enthusiasm for their broader clinical applications. However, the individ...
Saved in:
Published in | Vaccines (Basel) Vol. 12; no. 7; p. 717 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The promising outcomes of neoantigen-based cancer vaccines have inspired enthusiasm for their broader clinical applications. However, the individualized tumor-specific antigens (TSA) entail considerable costs and time due to the variable immunogenicity and response rates of these neoantigens-based vaccines, influenced by factors such as neoantigen response, vaccine types, and combination therapy. Given the crucial role of neoantigen efficacy, a number of bioinformatics algorithms and pipelines have been developed to improve the accuracy rate of prediction through considering a series of factors involving in HLA-peptide-TCR complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. On the other hand, shared neoantigens, originating from driver mutations at hot mutation spots (e.g., KRASG12D), offer a promising and ideal target for the development of therapeutic cancer vaccines. A series of clinical practices have established the efficacy of these vaccines in patients with distinct HLA haplotypes. Moreover, increasing evidence demonstrated that a combination of tumor associated antigens (TAAs) and neoantigens can also improve the prognosis, thus expand the repertoire of shared neoantigens for cancer vaccines. In this review, we provide an overview of the complex process involved in identifying personalized neoantigens, their clinical applications, advances in vaccine technology, and explore the therapeutic potential of shared neoantigen strategies. |
---|---|
AbstractList | Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The promising outcomes of neoantigen-based cancer vaccines have inspired enthusiasm for their broader clinical applications. However, the individualized tumor-specific antigens (TSA) entail considerable costs and time due to the variable immunogenicity and response rates of these neoantigens-based vaccines, influenced by factors such as neoantigen response, vaccine types, and combination therapy. Given the crucial role of neoantigen efficacy, a number of bioinformatics algorithms and pipelines have been developed to improve the accuracy rate of prediction through considering a series of factors involving in HLA-peptide-TCR complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. On the other hand, shared neoantigens, originating from driver mutations at hot mutation spots (e.g., KRAS
), offer a promising and ideal target for the development of therapeutic cancer vaccines. A series of clinical practices have established the efficacy of these vaccines in patients with distinct HLA haplotypes. Moreover, increasing evidence demonstrated that a combination of tumor associated antigens (TAAs) and neoantigens can also improve the prognosis, thus expand the repertoire of shared neoantigens for cancer vaccines. In this review, we provide an overview of the complex process involved in identifying personalized neoantigens, their clinical applications, advances in vaccine technology, and explore the therapeutic potential of shared neoantigen strategies. Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The promising outcomes of neoantigen-based cancer vaccines have inspired enthusiasm for their broader clinical applications. However, the individualized tumor-specific antigens (TSA) entail considerable costs and time due to the variable immunogenicity and response rates of these neoantigens-based vaccines, influenced by factors such as neoantigen response, vaccine types, and combination therapy. Given the crucial role of neoantigen efficacy, a number of bioinformatics algorithms and pipelines have been developed to improve the accuracy rate of prediction through considering a series of factors involving in HLA-peptide-TCR complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. On the other hand, shared neoantigens, originating from driver mutations at hot mutation spots (e.g., KRASG12D), offer a promising and ideal target for the development of therapeutic cancer vaccines. A series of clinical practices have established the efficacy of these vaccines in patients with distinct HLA haplotypes. Moreover, increasing evidence demonstrated that a combination of tumor associated antigens (TAAs) and neoantigens can also improve the prognosis, thus expand the repertoire of shared neoantigens for cancer vaccines. In this review, we provide an overview of the complex process involved in identifying personalized neoantigens, their clinical applications, advances in vaccine technology, and explore the therapeutic potential of shared neoantigen strategies. Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The promising outcomes of neoantigen-based cancer vaccines have inspired enthusiasm for their broader clinical applications. However, the individualized tumor-specific antigens (TSA) entail considerable costs and time due to the variable immunogenicity and response rates of these neoantigens-based vaccines, influenced by factors such as neoantigen response, vaccine types, and combination therapy. Given the crucial role of neoantigen efficacy, a number of bioinformatics algorithms and pipelines have been developed to improve the accuracy rate of prediction through considering a series of factors involving in HLA-peptide-TCR complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. On the other hand, shared neoantigens, originating from driver mutations at hot mutation spots (e.g., KRAS[sup.G12D] ), offer a promising and ideal target for the development of therapeutic cancer vaccines. A series of clinical practices have established the efficacy of these vaccines in patients with distinct HLA haplotypes. Moreover, increasing evidence demonstrated that a combination of tumor associated antigens (TAAs) and neoantigens can also improve the prognosis, thus expand the repertoire of shared neoantigens for cancer vaccines. In this review, we provide an overview of the complex process involved in identifying personalized neoantigens, their clinical applications, advances in vaccine technology, and explore the therapeutic potential of shared neoantigen strategies. Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The promising outcomes of neoantigen-based cancer vaccines have inspired enthusiasm for their broader clinical applications. However, the individualized tumor-specific antigens (TSA) entail considerable costs and time due to the variable immunogenicity and response rates of these neoantigens-based vaccines, influenced by factors such as neoantigen response, vaccine types, and combination therapy. Given the crucial role of neoantigen efficacy, a number of bioinformatics algorithms and pipelines have been developed to improve the accuracy rate of prediction through considering a series of factors involving in HLA-peptide-TCR complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. On the other hand, shared neoantigens, originating from driver mutations at hot mutation spots (e.g., KRASG12D), offer a promising and ideal target for the development of therapeutic cancer vaccines. A series of clinical practices have established the efficacy of these vaccines in patients with distinct HLA haplotypes. Moreover, increasing evidence demonstrated that a combination of tumor associated antigens (TAAs) and neoantigens can also improve the prognosis, thus expand the repertoire of shared neoantigens for cancer vaccines. In this review, we provide an overview of the complex process involved in identifying personalized neoantigens, their clinical applications, advances in vaccine technology, and explore the therapeutic potential of shared neoantigen strategies.Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The promising outcomes of neoantigen-based cancer vaccines have inspired enthusiasm for their broader clinical applications. However, the individualized tumor-specific antigens (TSA) entail considerable costs and time due to the variable immunogenicity and response rates of these neoantigens-based vaccines, influenced by factors such as neoantigen response, vaccine types, and combination therapy. Given the crucial role of neoantigen efficacy, a number of bioinformatics algorithms and pipelines have been developed to improve the accuracy rate of prediction through considering a series of factors involving in HLA-peptide-TCR complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. On the other hand, shared neoantigens, originating from driver mutations at hot mutation spots (e.g., KRASG12D), offer a promising and ideal target for the development of therapeutic cancer vaccines. A series of clinical practices have established the efficacy of these vaccines in patients with distinct HLA haplotypes. Moreover, increasing evidence demonstrated that a combination of tumor associated antigens (TAAs) and neoantigens can also improve the prognosis, thus expand the repertoire of shared neoantigens for cancer vaccines. In this review, we provide an overview of the complex process involved in identifying personalized neoantigens, their clinical applications, advances in vaccine technology, and explore the therapeutic potential of shared neoantigen strategies. |
Audience | Academic |
Author | Shu, Yang Deng, Yiqi Long, Yuhang Hao, Qing Yang, Li Ding, Zhenyu Xu, Heng Yang, Yi |
Author_xml | – sequence: 1 givenname: Qing surname: Hao fullname: Hao, Qing – sequence: 2 givenname: Yuhang surname: Long fullname: Long, Yuhang – sequence: 3 givenname: Yi surname: Yang fullname: Yang, Yi – sequence: 4 givenname: Yiqi surname: Deng fullname: Deng, Yiqi – sequence: 5 givenname: Zhenyu surname: Ding fullname: Ding, Zhenyu – sequence: 6 givenname: Li surname: Yang fullname: Yang, Li – sequence: 7 givenname: Yang surname: Shu fullname: Shu, Yang – sequence: 8 givenname: Heng surname: Xu fullname: Xu, Heng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39066355$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1v1DAQhiNUREvpnROKxIXLlnEc2_GxWr5WquBAQdwixx7vepW1g50sgl-P94OqrMA-eDR63ndm5HlanPngsSieE7imVMLrrdLaeUykAgGCiEfFRY74jEr67exBfF5cpbSGfCShDRdPivMs55wydlGEN7jFPgwb9GOpvCnnvfNOq768GYY-B6MLPpXBlncrjGrAaXS6nCuvMZZfjx2UP9y4KhfeuK0zk-rdLzR7s88rFXP4EYPyo1uiT8-Kx1b1Ca-O72Xx5d3bu_mH2e2n94v5ze1MM6jGGaKF2jZ1ZxSREpuaWyO0EFICqxUzlekIZ4YK2xjCdKcsQCPAIABaXgO9LBYHXxPUuh2i26j4sw3KtftEiMtWxTxKj62qO0GsQGvA1B0oWdUo0ehK0qrhNcterw5eQwzfJ0xju3FJY98rj2FKLYWGkYpIukNfnqDrMEWfJ91TwITkD6ilyvWdt2GMSu9M25sGqBCc8SpT1_-g8jW4cTrvgnU5_5fgxbH41G3Q3E_957czAAdAx5BSRHuPEGh3O9We7lSW8BOJduN-KXIzrv-_8Df129Fl |
CitedBy_id | crossref_primary_10_1038_s41467_024_54650_y |
Cites_doi | 10.1093/bioinformatics/btad469 10.1056/NEJMoa1406498 10.1200/JCO.2010.32.2537 10.1016/j.xcrm.2021.100194 10.1038/nrd2224 10.1038/nm.3910 10.1016/j.celrep.2018.03.050 10.1016/j.ccell.2023.02.016 10.1016/j.ccell.2018.07.001 10.1093/bioinformatics/btad743 10.1002/advs.201801847 10.1101/433706 10.1093/nar/gkaa379 10.1126/science.abc8697 10.1038/nature22991 10.1016/j.molcel.2018.06.034 10.1111/imr.12434 10.1126/science.abg2482 10.1016/j.cell.2018.02.060 10.1038/s41586-018-0810-y 10.1093/bioinformatics/btad055 10.1016/j.molimm.2023.03.010 10.1056/NEJMoa1001294 10.1101/cshperspect.a001008 10.1016/j.immuni.2018.03.007 10.1038/nrm.2017.27 10.18632/aging.103516 10.1158/2159-8290.CD-21-1059 10.1101/2023.11.21.568015 10.1038/s41571-020-00460-2 10.2139/ssrn.4565234 10.1038/nrc.2016.154 10.1038/s41587-020-0505-4 10.1038/s41588-018-0312-8 10.1111/cpr.13025 10.1016/j.immuni.2023.03.009 10.1038/s41591-024-02894-y 10.1038/s41392-022-01270-x 10.2174/1568009620666200619123725 10.1093/annonc/mdv604 10.1101/2023.09.13.557561 10.7554/eLife.82813 10.1158/0008-5472.CAN-11-2612 10.1016/S0140-6736(23)02268-7 10.1038/nrclinonc.2014.111 10.1016/j.jtho.2019.06.016 10.1093/nar/gkad922 10.3389/fimmu.2022.893247 10.1126/science.aaa1348 10.1073/pnas.0604045103 10.1158/2326-6066.CIR-19-0401 10.1093/bioinformatics/btz879 10.1158/2326-6066.CIR-18-0395 10.1093/bib/bbae024 10.1002/pro.4841 10.1056/NEJMoa1609279 10.1136/jitc-2021-002531 10.1186/s13073-018-0598-2 10.1093/bib/bbad116 10.1016/j.cell.2020.08.053 10.1101/2023.04.25.538237 10.1002/mog2.60 10.1093/bioinformatics/btac788 10.1093/bib/bbad436 10.1158/1538-7445.AM2023-CT001 10.1038/nrclinonc.2017.127 10.1038/nbt.4313 10.1038/s41591-024-02851-9 10.1038/nrc2373 10.1200/JCO.22.00096 10.1038/s42256-021-00383-2 10.1038/s41586-023-06063-y 10.1038/s41587-019-0280-2 10.1093/bib/bbr060 10.1158/2326-6066.CIR-22-0040 10.1038/bcj.2017.94 10.1038/s41586-021-03368-8 10.1007/s00262-017-2001-3 10.4049/jimmunol.1600582 10.1016/j.ccell.2018.04.011 10.1038/s41591-023-02760-3 10.1038/nature22383 10.1172/JCI134915 10.1038/nature11547 10.1038/s42256-023-00619-3 10.1093/bioinformatics/btw674 10.1038/s41573-022-00520-5 10.1126/science.aax0701 10.1126/sciimmunol.aaz3199 10.1001/jamaoncol.2022.5370 10.1038/s41586-018-0792-9 10.1038/nature12978 10.1038/nature10673 10.1038/s43018-022-00418-6 10.1093/bib/bbad086 10.1038/s42256-023-00634-4 10.1093/bioinformatics/btad551 10.1002/eji.200737995 10.1038/s41591-021-01544-x 10.1038/s42003-021-02610-3 10.1126/sciadv.adf3700 10.1073/pnas.2025570118 10.1158/2159-8290.CD-20-1808 10.1038/s41573-021-00387-y 10.1093/bioinformatics/btab759 10.1016/j.bbcan.2017.12.003 10.1038/nmat4822 10.1016/j.cell.2020.09.015 10.1038/s41591-022-01937-6 10.1111/cas.12996 10.1093/bioinformatics/btac225 10.1056/NEJMoa2034577 10.1038/nature23003 10.1038/s41392-020-00448-5 10.1093/nar/gkad356 10.1038/s41586-023-06834-7 10.1038/s41577-023-00937-y 10.4049/jimmunol.179.8.5033 10.1126/sciadv.aaw6071 10.1056/NEJMoa2119662 10.1038/nature13988 10.1016/j.tcb.2021.10.010 10.1016/j.cels.2022.12.002 10.1186/s13045-019-0787-5 10.1038/s41392-022-01007-w 10.1038/nature13387 10.1101/2022.09.14.507872 10.1126/science.aaa3828 10.1038/s41467-021-25006-7 10.1158/2326-6066.CIR-16-0280 10.1016/j.ccell.2022.10.013 10.7150/thno.38742 10.1186/s13073-019-0679-x 10.1016/j.cell.2011.02.013 10.3389/fgene.2022.942491 10.1016/j.cels.2020.06.010 10.1038/s41401-020-0415-5 10.1097/FPC.0000000000000538 10.1038/s41587-019-0322-9 10.1101/373472 10.1126/science.aaa4971 10.1158/2326-6066.CIR-18-0686 10.1038/s43018-023-00591-2 10.1158/1078-0432.CCR-14-2708 10.1145/3534678.3539075 10.1016/j.compbiolchem.2020.107281 10.1038/s41571-021-00546-5 10.1200/JCO.2012.47.7521 10.1158/1078-0432.CCR-18-0142 10.1074/mcp.TIR119.001658 10.1093/nar/gku1166 10.1016/j.ccell.2022.08.003 10.3389/fimmu.2020.01803 10.1146/annurev-pathol-011110-130206 10.1038/s41587-023-01957-8 10.1038/s41591-022-01786-3 10.1038/s41587-021-01021-3 10.1126/science.aay9189 10.1186/s12859-019-2876-4 10.1038/nrd.2017.243 10.1016/j.ymthe.2019.02.012 10.1056/NEJMoa2035389 10.1038/s41568-018-0015-6 10.1038/s41591-020-01206-4 10.2147/IJN.S30725 10.3389/fimmu.2021.682103 10.1016/j.ejmech.2021.113910 10.1038/s43018-021-00210-y 10.1016/j.vaccine.2012.04.060 10.1038/s41467-022-34395-2 10.1002/INMD.20230021 10.1093/bioinformatics/btad284 10.1186/s13073-021-00895-x 10.1038/nm.3161 10.1146/annurev-immunol-100311-102839 10.1016/j.celrep.2021.108815 10.1016/j.cell.2021.01.010 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM 3V. 7T7 7XB 8FD 8FE 8FH 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU COVID DWQXO FR3 GNUQQ GUQSH HCIFZ LK8 M2O M7P MBDVC P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
DOI | 10.3390/vaccines12070717 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Coronavirus Research Database ProQuest Central Engineering Research Database ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Biological Science Collection Research Library Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Research Library Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Coronavirus Research Database Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 2076-393X |
ExternalDocumentID | oai_doaj_org_article_a4b71f7efd0d4b0a924e9edc29328645 A803776562 39066355 10_3390_vaccines12070717 |
Genre | Journal Article Review |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2023YFC3405200 |
GroupedDBID | 53G 5VS 8FE 8FH 8G5 AADQD AAHBH AAYXX ABUWG ADBBV AEUYN AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DIK DWQXO GNUQQ GROUPED_DOAJ GUQSH HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM NPM PMFND 3V. 7T7 7XB 8FD 8FK C1K COVID FR3 MBDVC P64 PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c502t-eef04f84bda199e846fd7c7799054a5d2db165d37f8d15cbaf00870de00ef6403 |
IEDL.DBID | M48 |
ISSN | 2076-393X |
IngestDate | Wed Aug 27 01:28:48 EDT 2025 Fri Jul 11 01:53:08 EDT 2025 Fri Jul 25 10:42:34 EDT 2025 Tue Jun 17 22:07:29 EDT 2025 Tue Jun 10 21:06:11 EDT 2025 Thu Apr 03 07:04:05 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 Tue Jul 01 01:11:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | neoantigen cancer immunotherapy therapeutic cancer vaccines |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-eef04f84bda199e846fd7c7799054a5d2db165d37f8d15cbaf00870de00ef6403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/vaccines12070717 |
PMID | 39066355 |
PQID | 3085057965 |
PQPubID | 2032320 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a4b71f7efd0d4b0a924e9edc29328645 proquest_miscellaneous_3085121935 proquest_journals_3085057965 gale_infotracmisc_A803776562 gale_infotracacademiconefile_A803776562 pubmed_primary_39066355 crossref_primary_10_3390_vaccines12070717 crossref_citationtrail_10_3390_vaccines12070717 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Vaccines (Basel) |
PublicationTitleAlternate | Vaccines (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Qu (ref_62) 2023; 39 ref_93 Khattak (ref_9) 2023; 83 Zarling (ref_31) 2006; 103 ref_90 Yarchoan (ref_113) 2024; 30 Sarkizova (ref_57) 2020; 38 You (ref_65) 2022; 38 Chen (ref_61) 2019; 37 Melero (ref_162) 2014; 11 Zhang (ref_88) 2023; 12 ref_97 Li (ref_143) 2021; 118 Korpela (ref_91) 2023; 39 ref_96 Vernerey (ref_165) 2023; 41 Gubin (ref_102) 2014; 515 Lin (ref_11) 2022; 3 Joyce (ref_169) 2023; 41 Lo (ref_150) 2019; 7 Yarchoan (ref_106) 2017; 17 Prior (ref_147) 2012; 72 Kumar (ref_16) 2024; 52 Katsikis (ref_40) 2024; 24 Wells (ref_15) 2020; 183 Baulu (ref_141) 2023; 9 Bailey (ref_159) 2018; 173 Steinman (ref_133) 2012; 30 Tran (ref_148) 2016; 375 Kantoff (ref_164) 2010; 363 Philips (ref_99) 2013; 31 Ulmer (ref_117) 2012; 30 Braun (ref_145) 2018; 10 Xie (ref_38) 2023; 8 Chandran (ref_160) 2022; 28 Yin (ref_84) 2023; 51 Bao (ref_178) 2023; 1 Fluckiger (ref_34) 2020; 369 Gu (ref_134) 2020; 41 Pant (ref_132) 2024; 30 Cafri (ref_109) 2020; 130 Kuai (ref_130) 2017; 16 Leidner (ref_140) 2022; 386 Robbins (ref_101) 2013; 19 Springer (ref_78) 2020; 11 Palmer (ref_110) 2022; 28 Hu (ref_126) 2021; 27 Weber (ref_111) 2024; 403 ref_76 Peng (ref_80) 2023; 5 ref_74 Rojas (ref_10) 2023; 618 Schmidt (ref_14) 2021; 2 Luo (ref_173) 2022; 13 Allenson (ref_176) 2016; 27 Zhang (ref_72) 2021; 12 Liau (ref_135) 2023; 9 Zhang (ref_68) 2012; 13 Chae (ref_104) 2019; 14 Ding (ref_7) 2021; 6 Schumacher (ref_154) 2014; 512 Fotakis (ref_47) 2020; 36 Rappaport (ref_112) 2024; 30 Kobayashi (ref_157) 2016; 107 Li (ref_156) 2021; 9 Rasmussen (ref_70) 2016; 197 Qin (ref_118) 2022; 7 Gao (ref_81) 2023; 5 Rieder (ref_51) 2022; 38 ref_149 Blass (ref_39) 2021; 18 Purcell (ref_123) 2007; 6 ref_85 Hsiue (ref_152) 2021; 371 Racle (ref_55) 2023; 56 Rapoport (ref_139) 2015; 21 Huang (ref_73) 2020; 38 Rizvi (ref_103) 2015; 348 Greaves (ref_17) 2018; 18 Ott (ref_6) 2020; 183 Lu (ref_79) 2021; 3 Zhou (ref_45) 2019; 11 Schumacher (ref_1) 2015; 348 Cai (ref_98) 2022; 13 Miller (ref_105) 2017; 7 Bradley (ref_92) 2023; 12 Kahles (ref_26) 2018; 34 ref_50 Shepherd (ref_155) 2011; 6 Hartout (ref_66) 2023; 39 ref_175 Baralle (ref_29) 2017; 18 Reynisson (ref_53) 2020; 48 Huang (ref_28) 2024; 625 ref_52 Baden (ref_115) 2020; 384 Waitkus (ref_153) 2018; 34 Jiang (ref_87) 2023; 24 Pardi (ref_116) 2018; 17 ref_59 Bijker (ref_124) 2007; 179 Bejarano (ref_170) 2021; 11 Robbins (ref_138) 2011; 29 Wang (ref_30) 2020; 20 Bjerregaard (ref_42) 2017; 66 Hanahan (ref_167) 2022; 12 Jiang (ref_2) 2019; 12 Chen (ref_172) 2021; 18 Li (ref_27) 2018; 71 Weber (ref_177) 2021; 13 Carreno (ref_108) 2015; 348 Montemurro (ref_75) 2021; 4 Pham (ref_89) 2023; 39 Honda (ref_127) 2013; 8 Robbins (ref_137) 2015; 21 Mantovani (ref_171) 2022; 21 ref_63 Dash (ref_71) 2017; 547 Bijker (ref_125) 2008; 38 Keskin (ref_5) 2019; 565 Liu (ref_121) 2021; 54 Matsuda (ref_136) 2018; 24 Kowalski (ref_119) 2019; 27 Ni (ref_144) 2020; 6 Mellman (ref_163) 2011; 480 Wright (ref_23) 2022; 32 Polack (ref_114) 2020; 383 Alvarez (ref_58) 2019; 18 Zhang (ref_82) 2024; 25 Yin (ref_107) 2023; 2 Nejman (ref_33) 2020; 368 Lu (ref_49) 2020; 5 Zhai (ref_179) 2023; 379 Takeshita (ref_158) 2015; 43 Kalaora (ref_35) 2021; 592 ref_36 Hundal (ref_48) 2020; 8 Patel (ref_142) 2018; 48 Zhang (ref_46) 2020; 12 Malaker (ref_32) 2017; 5 Kjeldsen (ref_166) 2021; 27 Wu (ref_95) 2023; 157 Mi (ref_128) 2019; 6 Lang (ref_41) 2022; 21 Tong (ref_77) 2020; 87 Ouspenskaia (ref_25) 2022; 40 Starck (ref_22) 2016; 272 Busby (ref_60) 2019; 37 Pearlman (ref_12) 2021; 2 Cuevas (ref_24) 2021; 34 Melief (ref_129) 2008; 8 Biankin (ref_146) 2012; 491 Kim (ref_151) 2022; 10 Hanahan (ref_168) 2011; 144 Wang (ref_67) 2023; 24 Ott (ref_3) 2017; 547 Schram (ref_18) 2017; 14 Cheng (ref_174) 2021; 184 Awad (ref_8) 2022; 40 Gao (ref_20) 2018; 23 Samstein (ref_21) 2019; 51 Zhang (ref_43) 2017; 33 Chen (ref_122) 2020; 10 ref_44 Mota (ref_161) 2023; 4 Sahin (ref_4) 2017; 547 Snyder (ref_100) 2014; 371 Rubinsteyn (ref_56) 2020; 11 Chen (ref_83) 2024; 33 Zhang (ref_94) 2023; 28 Hilf (ref_13) 2019; 565 Lybaert (ref_37) 2023; 41 Liu (ref_131) 2014; 507 Li (ref_120) 2022; 227 Dai (ref_19) 2018; 1869 Chen (ref_64) 2023; 39 Gfeller (ref_54) 2023; 14 Blaha (ref_69) 2019; 7 Jokinen (ref_86) 2023; 39 |
References_xml | – volume: 39 start-page: btad469 year: 2023 ident: ref_66 article-title: Investigating the Human and Nonobese Diabetic Mouse MHC Class II Immunopeptidome Using Protein Language Modeling publication-title: Bioinformatics doi: 10.1093/bioinformatics/btad469 – volume: 371 start-page: 2189 year: 2014 ident: ref_100 article-title: Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1406498 – volume: 29 start-page: 917 year: 2011 ident: ref_138 article-title: Tumor Regression in Patients with Metastatic Synovial Cell Sarcoma and Melanoma Using Genetically Engineered Lymphocytes Reactive with NY-ESO-1 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2010.32.2537 – volume: 2 start-page: 100194 year: 2021 ident: ref_14 article-title: Prediction of Neo-Epitope Immunogenicity Reveals TCR Recognition Determinants and Provides Insight into Immunoediting publication-title: Cell Rep. Med. doi: 10.1016/j.xcrm.2021.100194 – volume: 6 start-page: 404 year: 2007 ident: ref_123 article-title: More than One Reason to Rethink the Use of Peptides in Vaccine Design publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2224 – volume: 21 start-page: 914 year: 2015 ident: ref_139 article-title: NY-ESO-1-Specific TCR-Engineered T Cells Mediate Sustained Antigen-Specific Antitumor Effects in Myeloma publication-title: Nat. Med. doi: 10.1038/nm.3910 – volume: 23 start-page: 227 year: 2018 ident: ref_20 article-title: Driver Fusions and Their Implications in the Development and Treatment of Human Cancers publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.03.050 – volume: 41 start-page: 374 year: 2023 ident: ref_169 article-title: The Evolving Tumor Microenvironment: From Cancer Initiation to Metastatic Outgrowth publication-title: Cancer Cell doi: 10.1016/j.ccell.2023.02.016 – volume: 34 start-page: 211 year: 2018 ident: ref_26 article-title: Comprehensive Analysis of Alternative Splicing Across Tumors from 8705 Patients publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.07.001 – volume: 39 start-page: btad743 year: 2023 ident: ref_91 article-title: EPIC-TRACE: Predicting TCR Binding to Unseen Epitopes Using Attention and Contextualized Embeddings publication-title: Bioinformatics doi: 10.1093/bioinformatics/btad743 – volume: 6 start-page: 1801847 year: 2019 ident: ref_128 article-title: Emerging Nano-/Microapproaches for Cancer Immunotherapy publication-title: Adv. Sci. doi: 10.1002/advs.201801847 – ident: ref_74 doi: 10.1101/433706 – volume: 48 start-page: W449 year: 2020 ident: ref_53 article-title: NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved Predictions of MHC Antigen Presentation by Concurrent Motif Deconvolution and Integration of MS MHC Eluted Ligand Data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa379 – volume: 371 start-page: eabc8697 year: 2021 ident: ref_152 article-title: Targeting a Neoantigen Derived from a Common TP53 Mutation publication-title: Science doi: 10.1126/science.abc8697 – volume: 547 start-page: 217 year: 2017 ident: ref_3 article-title: An Immunogenic Personal Neoantigen Vaccine for Patients with Melanoma publication-title: Nature doi: 10.1038/nature22991 – volume: 71 start-page: 428 year: 2018 ident: ref_27 article-title: The Biogenesis, Functions, and Challenges of Circular RNAs publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.06.034 – volume: 272 start-page: 8 year: 2016 ident: ref_22 article-title: Nowhere to Hide: Unconventional Translation Yields Cryptic Peptides for Immune Surveillance publication-title: Immunol. Rev. doi: 10.1111/imr.12434 – volume: 379 start-page: eabg2482 year: 2023 ident: ref_179 article-title: Cysteine Carboxyethylation Generates Neoantigens to Induce HLA-Restricted Autoimmunity publication-title: Science doi: 10.1126/science.abg2482 – volume: 173 start-page: 371 year: 2018 ident: ref_159 article-title: Comprehensive Characterization of Cancer Driver Genes and Mutations publication-title: Cell doi: 10.1016/j.cell.2018.02.060 – volume: 565 start-page: 240 year: 2019 ident: ref_13 article-title: Actively Personalized Vaccination Trial for Newly Diagnosed Glioblastoma publication-title: Nature doi: 10.1038/s41586-018-0810-y – volume: 39 start-page: btad055 year: 2023 ident: ref_64 article-title: Binding Peptide Generation for MHC Class I Proteins with Deep Reinforcement Learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btad055 – volume: 157 start-page: 30 year: 2023 ident: ref_95 article-title: TPBTE: A Model Based on Convolutional Transformer for Predicting the Binding of TCR to Epitope publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2023.03.010 – volume: 363 start-page: 411 year: 2010 ident: ref_164 article-title: Sipuleucel-T Immunotherapy for Castration-Resistant Prostate Cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1001294 – ident: ref_149 doi: 10.1101/cshperspect.a001008 – volume: 48 start-page: 417 year: 2018 ident: ref_142 article-title: Combination Cancer Therapy with Immune Checkpoint Blockade: Mechanisms and Strategies publication-title: Immunity doi: 10.1016/j.immuni.2018.03.007 – volume: 18 start-page: 437 year: 2017 ident: ref_29 article-title: Alternative Splicing as a Regulator of Development and Tissue Identity publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.27 – volume: 12 start-page: 14633 year: 2020 ident: ref_46 article-title: ASNEO: Identification of Personalized Alternative Splicing Based Neoantigens with RNA-Seq publication-title: Aging doi: 10.18632/aging.103516 – volume: 12 start-page: 31 year: 2022 ident: ref_167 article-title: Hallmarks of Cancer: New Dimensions publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-21-1059 – ident: ref_63 doi: 10.1101/2023.11.21.568015 – volume: 18 start-page: 215 year: 2021 ident: ref_39 article-title: Advances in the Development of Personalized Neoantigen-Based Therapeutic Cancer Vaccines publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-020-00460-2 – ident: ref_93 doi: 10.2139/ssrn.4565234 – volume: 17 start-page: 209 year: 2017 ident: ref_106 article-title: Targeting Neoantigens to Augment Antitumour Immunity publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2016.154 – volume: 38 start-page: 1194 year: 2020 ident: ref_73 article-title: Analyzing the Mycobacterium Tuberculosis Immune Response by T-Cell Receptor Clustering with GLIPH2 and Genome-Wide Antigen Screening publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0505-4 – volume: 51 start-page: 202 year: 2019 ident: ref_21 article-title: Tumor Mutational Load Predicts Survival after Immunotherapy across Multiple Cancer Types publication-title: Nat. Genet. doi: 10.1038/s41588-018-0312-8 – volume: 54 start-page: e13025 year: 2021 ident: ref_121 article-title: Peptide-Based Therapeutic Cancer Vaccine: Current Trends in Clinical Application publication-title: Cell Prolif. doi: 10.1111/cpr.13025 – volume: 56 start-page: 1359 year: 2023 ident: ref_55 article-title: Machine Learning Predictions of MHC-II Specificities Reveal Alternative Binding Mode of Class II Epitopes publication-title: Immunity doi: 10.1016/j.immuni.2023.03.009 – volume: 30 start-page: 1044 year: 2024 ident: ref_113 article-title: Personalized Neoantigen Vaccine and Pembrolizumab in Advanced Hepatocellular Carcinoma: A Phase 1/2 Trial publication-title: Nat. Med. doi: 10.1038/s41591-024-02894-y – volume: 8 start-page: 9 year: 2023 ident: ref_38 article-title: Neoantigens: Promising Targets for Cancer Therapy publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-022-01270-x – volume: 20 start-page: 729 year: 2020 ident: ref_30 article-title: The Roles of Alternative Splicing in Tumor-Immune Cell Interactions publication-title: Curr. Cancer Drug Targets doi: 10.2174/1568009620666200619123725 – volume: 27 start-page: 635 year: 2016 ident: ref_176 article-title: Minimally Invasive Genomic and Transcriptomic Profiling of Visceral Cancers by Next-Generation Sequencing of Circulating Exosomes publication-title: Ann. Oncol. doi: 10.1093/annonc/mdv604 – ident: ref_90 doi: 10.1101/2023.09.13.557561 – volume: 12 start-page: e82813 year: 2023 ident: ref_92 article-title: Structure-Based Prediction of T Cell Receptor:Peptide-MHC Interactions publication-title: eLife doi: 10.7554/eLife.82813 – volume: 72 start-page: 2457 year: 2012 ident: ref_147 article-title: A Comprehensive Survey of Ras Mutations in Cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-2612 – volume: 403 start-page: 632 year: 2024 ident: ref_111 article-title: Individualised Neoantigen Therapy mRNA-4157 (V940) plus Pembrolizumab versus Pembrolizumab Monotherapy in Resected Melanoma (KEYNOTE-942): A Randomised, Phase 2b Study publication-title: Lancet doi: 10.1016/S0140-6736(23)02268-7 – volume: 11 start-page: 509 year: 2014 ident: ref_162 article-title: Therapeutic Vaccines for Cancer: An Overview of Clinical Trials publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2014.111 – volume: 14 start-page: 1807 year: 2019 ident: ref_104 article-title: Clinical and Immunological Implications of Frameshift Mutations in Lung Cancer publication-title: J. Thorac. Oncol. doi: 10.1016/j.jtho.2019.06.016 – volume: 52 start-page: D1276 year: 2024 ident: ref_16 article-title: FusionNeoAntigen: A Resource of Fusion Gene-Specific Neoantigens publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkad922 – volume: 13 start-page: 893247 year: 2022 ident: ref_98 article-title: ATM-TCR: TCR-Epitope Binding Affinity Prediction Using a Multi-Head Self-Attention Model publication-title: Front. Immunol. doi: 10.3389/fimmu.2022.893247 – volume: 348 start-page: 124 year: 2015 ident: ref_103 article-title: Cancer Immunology. Mutational Landscape Determines Sensitivity to PD-1 Blockade in Non-Small Cell Lung Cancer publication-title: Science doi: 10.1126/science.aaa1348 – volume: 103 start-page: 14889 year: 2006 ident: ref_31 article-title: Identification of Class I MHC-Associated Phosphopeptides as Targets for Cancer Immunotherapy publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0604045103 – volume: 8 start-page: 409 year: 2020 ident: ref_48 article-title: pVACtools: A Computational Toolkit to Identify and Visualize Cancer Neoantigens publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-19-0401 – volume: 36 start-page: 2260 year: 2020 ident: ref_47 article-title: NeoFuse: Predicting Fusion Neoantigens from RNA Sequencing Data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz879 – volume: 7 start-page: 50 year: 2019 ident: ref_69 article-title: High-Throughput Stability Screening of Neoantigen/HLA Complexes Improves Immunogenicity Predictions publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-18-0395 – ident: ref_52 doi: 10.1093/bib/bbae024 – volume: 33 start-page: e4841 year: 2024 ident: ref_83 article-title: TEPCAM: Prediction of T-Cell Receptor-Epitope Binding Specificity via Interpretable Deep Learning publication-title: Protein Sci. doi: 10.1002/pro.4841 – volume: 375 start-page: 2255 year: 2016 ident: ref_148 article-title: T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1609279 – volume: 9 start-page: e002531 year: 2021 ident: ref_156 article-title: Neoantigen Vaccination Induces Clinical and Immunologic Responses in Non-Small Cell Lung Cancer Patients Harboring EGFR Mutations publication-title: J. Immunother. Cancer doi: 10.1136/jitc-2021-002531 – volume: 10 start-page: 87 year: 2018 ident: ref_145 article-title: Acquired Mechanisms of Immune Escape in Cancer Following Immunotherapy publication-title: Genome Med. doi: 10.1186/s13073-018-0598-2 – volume: 24 start-page: bbad116 year: 2023 ident: ref_67 article-title: TLimmuno2: Predicting MHC Class II Antigen Immunogenicity through Transfer Learning publication-title: Brief. Bioinform. doi: 10.1093/bib/bbad116 – volume: 183 start-page: 347 year: 2020 ident: ref_6 article-title: A Phase Ib Trial of Personalized Neoantigen Therapy Plus Anti-PD-1 in Patients with Advanced Melanoma, Non-Small Cell Lung Cancer, or Bladder Cancer publication-title: Cell doi: 10.1016/j.cell.2020.08.053 – ident: ref_85 doi: 10.1101/2023.04.25.538237 – volume: 2 start-page: e60 year: 2023 ident: ref_107 article-title: Novel Insights into HBV-hepatocellular Carcinoma at Single-cell Sequencing publication-title: MedComm Oncol. doi: 10.1002/mog2.60 – volume: 39 start-page: btac788 year: 2023 ident: ref_86 article-title: TCRconv: Predicting Recognition between T Cell Receptors and Epitopes Using Contextualized Motifs publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac788 – volume: 25 start-page: bbad436 year: 2024 ident: ref_82 article-title: Accurate TCR-pMHC Interaction Prediction Using a BERT-Based Transfer Learning Method publication-title: Brief. Bioinform. doi: 10.1093/bib/bbad436 – volume: 83 start-page: CT001 year: 2023 ident: ref_9 article-title: Abstract CT001: A Personalized Cancer Vaccine, mRNA-4157, Combined with Pembrolizumab versus Pembrolizumab in Patients with Resected High-Risk Melanoma: Efficacy and Safety Results from the Randomized, Open-Label Phase 2 mRNA-4157-P201/Keynote-942 Trial publication-title: Cancer Res. doi: 10.1158/1538-7445.AM2023-CT001 – volume: 14 start-page: 735 year: 2017 ident: ref_18 article-title: Fusions in Solid Tumours: Diagnostic Strategies, Targeted Therapy, and Acquired Resistance publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2017.127 – volume: 37 start-page: 55 year: 2019 ident: ref_60 article-title: Deep Learning Using Tumor HLA Peptide Mass Spectrometry Datasets Improves Neoantigen Identification publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4313 – volume: 30 start-page: 1013 year: 2024 ident: ref_112 article-title: A Shared Neoantigen Vaccine Combined with Immune Checkpoint Blockade for Advanced Metastatic Solid Tumors: Phase 1 Trial Interim Results publication-title: Nat. Med. doi: 10.1038/s41591-024-02851-9 – volume: 8 start-page: 351 year: 2008 ident: ref_129 article-title: Immunotherapy of Established (Pre)Malignant Disease by Synthetic Long Peptide Vaccines publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2373 – volume: 41 start-page: 373 year: 2023 ident: ref_165 article-title: Safety, Immunogenicity, and 1-Year Efficacy of Universal Cancer Peptide–Based Vaccine in Patients With Refractory Advanced Non–Small-Cell Lung Cancer: A Phase Ib/Phase IIa De-Escalation Study publication-title: J. Clin. Oncol. doi: 10.1200/JCO.22.00096 – volume: 3 start-page: 864 year: 2021 ident: ref_79 article-title: Deep Learning-Based Prediction of the T Cell Receptor-Antigen Binding Specificity publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00383-2 – volume: 618 start-page: 144 year: 2023 ident: ref_10 article-title: Personalized RNA Neoantigen Vaccines Stimulate T Cells in Pancreatic Cancer publication-title: Nature doi: 10.1038/s41586-023-06063-y – volume: 37 start-page: 1332 year: 2019 ident: ref_61 article-title: Predicting HLA Class II Antigen Presentation through Integrated Deep Learning publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0280-2 – volume: 13 start-page: 350 year: 2012 ident: ref_68 article-title: Toward More Accurate Pan-Specific MHC-Peptide Binding Prediction: A Review of Current Methods and Tools publication-title: Brief. Bioinform doi: 10.1093/bib/bbr060 – volume: 10 start-page: 932 year: 2022 ident: ref_151 article-title: Adoptive Cellular Therapy with Autologous Tumor-Infiltrating Lymphocytes and T-Cell Receptor-Engineered T Cells Targeting Common P53 Neoantigens in Human Solid Tumors publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-22-0040 – volume: 7 start-page: e612 year: 2017 ident: ref_105 article-title: High Somatic Mutation and Neoantigen Burden Are Correlated with Decreased Progression-Free Survival in Multiple Myeloma publication-title: Blood Cancer J. doi: 10.1038/bcj.2017.94 – volume: 592 start-page: 138 year: 2021 ident: ref_35 article-title: Identification of Bacteria-Derived HLA-Bound Peptides in Melanoma publication-title: Nature doi: 10.1038/s41586-021-03368-8 – volume: 66 start-page: 1123 year: 2017 ident: ref_42 article-title: MuPeXI: Prediction of Neo-Epitopes from Tumor Sequencing Data publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-017-2001-3 – volume: 197 start-page: 1517 year: 2016 ident: ref_70 article-title: Pan-Specific Prediction of Peptide-MHC Class I Complex Stability, a Correlate of T Cell Immunogenicity publication-title: J. Immunol. doi: 10.4049/jimmunol.1600582 – volume: 34 start-page: 186 year: 2018 ident: ref_153 article-title: Biological Role and Therapeutic Potential of IDH Mutations in Cancer publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.04.011 – volume: 30 start-page: 531 year: 2024 ident: ref_132 article-title: Lymph-Node-Targeted, mKRAS-Specific Amphiphile Vaccine in Pancreatic and Colorectal Cancer: The Phase 1 AMPLIFY-201 Trial publication-title: Nat. Med. doi: 10.1038/s41591-023-02760-3 – volume: 547 start-page: 89 year: 2017 ident: ref_71 article-title: Quantifiable Predictive Features Define Epitope-Specific T Cell Receptor Repertoires publication-title: Nature doi: 10.1038/nature22383 – volume: 130 start-page: 5976 year: 2020 ident: ref_109 article-title: mRNA Vaccine–Induced Neoantigen-Specific T Cell Immunity in Patients with Gastrointestinal Cancer publication-title: J. Clin. Investig. doi: 10.1172/JCI134915 – volume: 491 start-page: 399 year: 2012 ident: ref_146 article-title: Pancreatic Cancer Genomes Reveal Aberrations in Axon Guidance Pathway Genes publication-title: Nature doi: 10.1038/nature11547 – volume: 5 start-page: 236 year: 2023 ident: ref_81 article-title: Pan-Peptide Meta Learning for T-Cell Receptor–Antigen Binding Recognition publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-023-00619-3 – volume: 33 start-page: 555 year: 2017 ident: ref_43 article-title: INTEGRATE-Neo: A Pipeline for Personalized Gene Fusion Neoantigen Discovery publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw674 – volume: 21 start-page: 799 year: 2022 ident: ref_171 article-title: Macrophages as Tools and Targets in Cancer Therapy publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-022-00520-5 – volume: 369 start-page: 936 year: 2020 ident: ref_34 article-title: Cross-Reactivity between Tumor MHC Class I-Restricted Antigens and an Enterococcal Bacteriophage publication-title: Science doi: 10.1126/science.aax0701 – volume: 5 start-page: eaaz3199 year: 2020 ident: ref_49 article-title: Tumor Neoantigenicity Assessment with CSiN Score Incorporates Clonality and Immunogenicity to Predict Immunotherapy Outcomes publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aaz3199 – volume: 9 start-page: 112 year: 2023 ident: ref_135 article-title: Association of Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination With Extension of Survival Among Patients With Newly Diagnosed and Recurrent Glioblastoma: A Phase 3 Prospective Externally Controlled Cohort Trial publication-title: JAMA Oncol. doi: 10.1001/jamaoncol.2022.5370 – volume: 565 start-page: 234 year: 2019 ident: ref_5 article-title: Neoantigen Vaccine Generates Intratumoral T Cell Responses in Phase Ib Glioblastoma Trial publication-title: Nature doi: 10.1038/s41586-018-0792-9 – volume: 507 start-page: 519 year: 2014 ident: ref_131 article-title: Structure-Based Programming of Lymph-Node Targeting in Molecular Vaccines publication-title: Nature doi: 10.1038/nature12978 – volume: 480 start-page: 480 year: 2011 ident: ref_163 article-title: Cancer Immunotherapy Comes of Age publication-title: Nature doi: 10.1038/nature10673 – volume: 3 start-page: 911 year: 2022 ident: ref_11 article-title: Cancer Vaccines: The next Immunotherapy Frontier publication-title: Nat. Cancer doi: 10.1038/s43018-022-00418-6 – volume: 24 start-page: bbad086 year: 2023 ident: ref_87 article-title: TEINet: A Deep Learning Framework for Prediction of TCR-Epitope Binding Specificity publication-title: Brief. Bioinform. doi: 10.1093/bib/bbad086 – volume: 5 start-page: 395 year: 2023 ident: ref_80 article-title: Characterizing the Interaction Conformation between T-Cell Receptors and Epitopes with Deep Learning publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-023-00634-4 – volume: 39 start-page: btad551 year: 2023 ident: ref_62 article-title: DeepMHCI: An Anchor Position-Aware Deep Interaction Model for Accurate MHC-I Peptide Binding Affinity Prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btad551 – volume: 38 start-page: 1033 year: 2008 ident: ref_125 article-title: Superior Induction of Anti-Tumor CTL Immunity by Extended Peptide Vaccines Involves Prolonged, DC-Focused Antigen Presentation publication-title: Eur. J. Immunol. doi: 10.1002/eji.200737995 – volume: 27 start-page: 2212 year: 2021 ident: ref_166 article-title: A Phase 1/2 Trial of an Immune-Modulatory Vaccine against IDO/PD-L1 in Combination with Nivolumab in Metastatic Melanoma publication-title: Nat. Med. doi: 10.1038/s41591-021-01544-x – volume: 4 start-page: 1060 year: 2021 ident: ref_75 article-title: NetTCR-2.0 Enables Accurate Prediction of TCR-Peptide Binding by Using Paired TCRα and β Sequence Data publication-title: Commun. Biol. doi: 10.1038/s42003-021-02610-3 – volume: 9 start-page: eadf3700 year: 2023 ident: ref_141 article-title: TCR-Engineered T Cell Therapy in Solid Tumors: State of the Art and Perspectives publication-title: Sci. Adv. doi: 10.1126/sciadv.adf3700 – volume: 118 start-page: e2025570118 year: 2021 ident: ref_143 article-title: Characterization of Neoantigen-Specific T Cells in Cancer Resistant to Immune Checkpoint Therapies publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2025570118 – volume: 11 start-page: 933 year: 2021 ident: ref_170 article-title: Therapeutic Targeting of the Tumor Microenvironment publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-20-1808 – volume: 21 start-page: 261 year: 2022 ident: ref_41 article-title: Identification of Neoantigens for Individualized Therapeutic Cancer Vaccines publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-021-00387-y – volume: 38 start-page: 1131 year: 2022 ident: ref_51 article-title: nextNEOpi: A Comprehensive Pipeline for Computational Neoantigen Prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab759 – volume: 1869 start-page: 149 year: 2018 ident: ref_19 article-title: Fusion Genes: A Promising Tool Combating against Cancer publication-title: Biochim. Biophys. Acta (BBA) Rev. Cancer doi: 10.1016/j.bbcan.2017.12.003 – volume: 16 start-page: 489 year: 2017 ident: ref_130 article-title: Designer Vaccine Nanodiscs for Personalized Cancer Immunotherapy publication-title: Nat. Mater. doi: 10.1038/nmat4822 – volume: 183 start-page: 818 year: 2020 ident: ref_15 article-title: Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction publication-title: Cell doi: 10.1016/j.cell.2020.09.015 – volume: 28 start-page: 1619 year: 2022 ident: ref_110 article-title: Individualized, Heterologous Chimpanzee Adenovirus and Self-Amplifying mRNA Neoantigen Vaccine for Advanced Metastatic Solid Tumors: Phase 1 Trial Interim Results publication-title: Nat. Med. doi: 10.1038/s41591-022-01937-6 – volume: 28 start-page: 347 year: 2023 ident: ref_94 article-title: PiTE: TCR-Epitope Binding Affinity Prediction Pipeline Using Transformer-Based Sequence Encoder publication-title: Pac. Symp. Biocomput. – volume: 107 start-page: 1179 year: 2016 ident: ref_157 article-title: Not All Epidermal Growth Factor Receptor Mutations in Lung Cancer Are Created Equal: Perspectives for Individualized Treatment Strategy publication-title: Cancer Sci. doi: 10.1111/cas.12996 – volume: 38 start-page: i220 year: 2022 ident: ref_65 article-title: DeepMHCII: A Novel Binding Core-Aware Deep Interaction Model for Accurate MHC-II Peptide Binding Affinity Prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac225 – volume: 383 start-page: 2603 year: 2020 ident: ref_114 article-title: Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2034577 – volume: 547 start-page: 222 year: 2017 ident: ref_4 article-title: Personalized RNA Mutanome Vaccines Mobilize Poly-Specific Therapeutic Immunity against Cancer publication-title: Nature doi: 10.1038/nature23003 – volume: 6 start-page: 26 year: 2021 ident: ref_7 article-title: Personalized Neoantigen Pulsed Dendritic Cell Vaccine for Advanced Lung Cancer publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-020-00448-5 – volume: 51 start-page: W569 year: 2023 ident: ref_84 article-title: TCRmodel2: High-Resolution Modeling of T Cell Receptor Recognition Using Deep Learning publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkad356 – volume: 625 start-page: 593 year: 2024 ident: ref_28 article-title: Tumour Circular RNAs Elicit Anti-Tumour Immunity by Encoding Cryptic Peptides publication-title: Nature doi: 10.1038/s41586-023-06834-7 – volume: 24 start-page: 213 year: 2024 ident: ref_40 article-title: Challenges in Developing Personalized Neoantigen Cancer Vaccines publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-023-00937-y – volume: 179 start-page: 5033 year: 2007 ident: ref_124 article-title: CD8+ CTL Priming by Exact Peptide Epitopes in Incomplete Freund’s Adjuvant Induces a Vanishing CTL Response, Whereas Long Peptides Induce Sustained CTL Reactivity publication-title: J. Immunol. doi: 10.4049/jimmunol.179.8.5033 – volume: 6 start-page: eaaw6071 year: 2020 ident: ref_144 article-title: A Bi-Adjuvant Nanovaccine That Potentiates Immunogenicity of Neoantigen for Combination Immunotherapy of Colorectal Cancer publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw6071 – volume: 386 start-page: 2112 year: 2022 ident: ref_140 article-title: Neoantigen T-Cell Receptor Gene Therapy in Pancreatic Cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2119662 – volume: 515 start-page: 577 year: 2014 ident: ref_102 article-title: Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens publication-title: Nature doi: 10.1038/nature13988 – volume: 32 start-page: 243 year: 2022 ident: ref_23 article-title: The Dark Proteome: Translation from Noncanonical Open Reading Frames publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2021.10.010 – volume: 14 start-page: 72 year: 2023 ident: ref_54 article-title: Improved Predictions of Antigen Presentation and TCR Recognition with MixMHCpred2.2 and PRIME2.0 Reveal Potent SARS-CoV-2 CD8+ T-Cell Epitopes publication-title: Cell Syst. doi: 10.1016/j.cels.2022.12.002 – volume: 12 start-page: 93 year: 2019 ident: ref_2 article-title: Tumor Neoantigens: From Basic Research to Clinical Applications publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-019-0787-5 – volume: 12 start-page: RP88837 year: 2023 ident: ref_88 article-title: Context-Aware Amino Acid Embedding Advances Analysis of TCR-Epitope Interactions publication-title: eLife – volume: 7 start-page: 166 year: 2022 ident: ref_118 article-title: mRNA-Based Therapeutics: Powerful and Versatile Tools to Combat Diseases publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-022-01007-w – volume: 512 start-page: 324 year: 2014 ident: ref_154 article-title: A Vaccine Targeting Mutant IDH1 Induces Antitumour Immunity publication-title: Nature doi: 10.1038/nature13387 – ident: ref_50 doi: 10.1101/2022.09.14.507872 – volume: 348 start-page: 803 year: 2015 ident: ref_108 article-title: Cancer Immunotherapy. A Dendritic Cell Vaccine Increases the Breadth and Diversity of Melanoma Neoantigen-Specific T Cells publication-title: Science doi: 10.1126/science.aaa3828 – volume: 12 start-page: 4699 year: 2021 ident: ref_72 article-title: GIANA Allows Computationally-Efficient TCR Clustering and Multi-Disease Repertoire Classification by Isometric Transformation publication-title: Nat. Commun. doi: 10.1038/s41467-021-25006-7 – volume: 5 start-page: 376 year: 2017 ident: ref_32 article-title: Identification of Glycopeptides as Posttranslationally Modified Neoantigens in Leukemia publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-16-0280 – volume: 41 start-page: 15 year: 2023 ident: ref_37 article-title: Challenges in Neoantigen-Directed Therapeutics publication-title: Cancer Cell doi: 10.1016/j.ccell.2022.10.013 – volume: 10 start-page: 6011 year: 2020 ident: ref_122 article-title: Personalized Neoantigen Vaccination with Synthetic Long Peptides: Recent Advances and Future Perspectives publication-title: Theranostics doi: 10.7150/thno.38742 – volume: 11 start-page: 67 year: 2019 ident: ref_45 article-title: pTuneos: Prioritizing Tumor Neoantigens from next-Generation Sequencing Data publication-title: Genome Med. doi: 10.1186/s13073-019-0679-x – volume: 144 start-page: 646 year: 2011 ident: ref_168 article-title: Hallmarks of Cancer: The next Generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – ident: ref_96 doi: 10.3389/fgene.2022.942491 – volume: 11 start-page: 42 year: 2020 ident: ref_56 article-title: MHCflurry 2.0: Improved Pan-Allele Prediction of MHC Class I-Presented Peptides by Incorporating Antigen Processing publication-title: Cell Syst. doi: 10.1016/j.cels.2020.06.010 – volume: 41 start-page: 959 year: 2020 ident: ref_134 article-title: Ex Vivo Pulsed Dendritic Cell Vaccination against Cancer publication-title: Acta Pharmacol. Sin. doi: 10.1038/s41401-020-0415-5 – ident: ref_175 doi: 10.1097/FPC.0000000000000538 – volume: 38 start-page: 199 year: 2020 ident: ref_57 article-title: A Large Peptidome Dataset Improves HLA Class I Epitope Prediction across Most of the Human Population publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0322-9 – ident: ref_76 doi: 10.1101/373472 – volume: 348 start-page: 69 year: 2015 ident: ref_1 article-title: Neoantigens in Cancer Immunotherapy publication-title: Science doi: 10.1126/science.aaa4971 – volume: 7 start-page: 534 year: 2019 ident: ref_150 article-title: Immunologic Recognition of a Shared P53 Mutated Neoantigen in a Patient with Metastatic Colorectal Cancer publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-18-0686 – volume: 4 start-page: 1016 year: 2023 ident: ref_161 article-title: ALK Peptide Vaccination Restores the Immunogenicity of ALK-Rearranged Non-Small Cell Lung Cancer publication-title: Nat. Cancer doi: 10.1038/s43018-023-00591-2 – volume: 21 start-page: 1019 year: 2015 ident: ref_137 article-title: A Pilot Trial Using Lymphocytes Genetically Engineered with an NY-ESO-1-Reactive T-Cell Receptor: Long-Term Follow-up and Correlates with Response publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-14-2708 – ident: ref_97 doi: 10.1145/3534678.3539075 – volume: 87 start-page: 107281 year: 2020 ident: ref_77 article-title: SETE: Sequence-Based Ensemble Learning Approach for TCR Epitope Binding Prediction publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2020.107281 – volume: 18 start-page: 792 year: 2021 ident: ref_172 article-title: Clinical and Therapeutic Relevance of Cancer-Associated Fibroblasts publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-021-00546-5 – volume: 31 start-page: e439 year: 2013 ident: ref_99 article-title: Tumor Exome Analysis Reveals Neoantigen-Specific T-Cell Reactivity in an Ipilimumab-Responsive Melanoma publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2012.47.7521 – volume: 24 start-page: 5357 year: 2018 ident: ref_136 article-title: Induction of Neoantigen-Specific Cytotoxic T Cells and Construction of T-Cell Receptor-Engineered T Cells for Ovarian Cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-18-0142 – volume: 18 start-page: 2459 year: 2019 ident: ref_58 article-title: NNAlign_MA; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved T-cell epitope predictions publication-title: Mol. Cell. Proteom. doi: 10.1074/mcp.TIR119.001658 – volume: 43 start-page: D784 year: 2015 ident: ref_158 article-title: Allele Frequency Net 2015 Update: New Features for HLA Epitopes, KIR and Disease and HLA Adverse Drug Reaction Associations publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1166 – volume: 40 start-page: 1010 year: 2022 ident: ref_8 article-title: Personalized Neoantigen Vaccine NEO-PV-01 with Chemotherapy and Anti-PD-1 as First-Line Treatment for Non-Squamous Non-Small Cell Lung Cancer publication-title: Cancer Cell doi: 10.1016/j.ccell.2022.08.003 – volume: 11 start-page: 1803 year: 2020 ident: ref_78 article-title: Prediction of Specific TCR-Peptide Binding From Large Dictionaries of TCR-Peptide Pairs publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.01803 – volume: 6 start-page: 49 year: 2011 ident: ref_155 article-title: EGFR Mutations and Lung Cancer publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev-pathol-011110-130206 – ident: ref_36 doi: 10.1038/s41587-023-01957-8 – volume: 28 start-page: 946 year: 2022 ident: ref_160 article-title: Immunogenicity and Therapeutic Targeting of a Public Neoantigen Derived from Mutated PIK3CA publication-title: Nat. Med. doi: 10.1038/s41591-022-01786-3 – volume: 40 start-page: 209 year: 2022 ident: ref_25 article-title: Unannotated Proteins Expand the MHC-I-Restricted Immunopeptidome in Cancer publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-01021-3 – volume: 368 start-page: 973 year: 2020 ident: ref_33 article-title: The Human Tumor Microbiome Is Composed of Tumor Type-Specific Intracellular Bacteria publication-title: Science doi: 10.1126/science.aay9189 – ident: ref_44 doi: 10.1186/s12859-019-2876-4 – volume: 17 start-page: 261 year: 2018 ident: ref_116 article-title: mRNA Vaccines—A New Era in Vaccinology publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2017.243 – volume: 27 start-page: 710 year: 2019 ident: ref_119 article-title: Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2019.02.012 – volume: 384 start-page: 403 year: 2020 ident: ref_115 article-title: Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2035389 – volume: 18 start-page: 471 year: 2018 ident: ref_17 article-title: A Causal Mechanism for Childhood Acute Lymphoblastic Leukaemia publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-018-0015-6 – volume: 27 start-page: 515 year: 2021 ident: ref_126 article-title: Personal Neoantigen Vaccines Induce Persistent Memory T Cell Responses and Epitope Spreading in Patients with Melanoma publication-title: Nat. Med. doi: 10.1038/s41591-020-01206-4 – volume: 8 start-page: 495 year: 2013 ident: ref_127 article-title: Liposomes and Nanotechnology in Drug Development: Focus on Ocular Targets publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S30725 – ident: ref_59 doi: 10.3389/fimmu.2021.682103 – volume: 227 start-page: 113910 year: 2022 ident: ref_120 article-title: The Nano Delivery Systems and Applications of mRNA publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2021.113910 – volume: 2 start-page: 487 year: 2021 ident: ref_12 article-title: Targeting Public Neoantigens for Cancer Immunotherapy publication-title: Nat. Cancer doi: 10.1038/s43018-021-00210-y – volume: 30 start-page: 4414 year: 2012 ident: ref_117 article-title: RNA-Based Vaccines publication-title: Vaccine doi: 10.1016/j.vaccine.2012.04.060 – volume: 13 start-page: 6619 year: 2022 ident: ref_173 article-title: Pan-Cancer Single-Cell Analysis Reveals the Heterogeneity and Plasticity of Cancer-Associated Fibroblasts in the Tumor Microenvironment publication-title: Nat. Commun. doi: 10.1038/s41467-022-34395-2 – volume: 1 start-page: e20230021 year: 2023 ident: ref_178 article-title: Recent Advances of Liquid Biopsy: Interdisciplinary Strategies toward Clinical Decision-Making publication-title: Interdiscip. Med. doi: 10.1002/INMD.20230021 – volume: 39 start-page: btad284 year: 2023 ident: ref_89 article-title: epiTCR: A Highly Sensitive Predictor for TCR-Peptide Binding publication-title: Bioinformatics doi: 10.1093/bioinformatics/btad284 – volume: 13 start-page: 89 year: 2021 ident: ref_177 article-title: Modeling Clonal Structure over Narrow Time Frames via Circulating Tumor DNA in Metastatic Breast Cancer publication-title: Genome Med. doi: 10.1186/s13073-021-00895-x – volume: 19 start-page: 747 year: 2013 ident: ref_101 article-title: Mining Exomic Sequencing Data to Identify Mutated Antigens Recognized by Adoptively Transferred Tumor-Reactive T Cells publication-title: Nat. Med. doi: 10.1038/nm.3161 – volume: 30 start-page: 1 year: 2012 ident: ref_133 article-title: Decisions about Dendritic Cells: Past, Present, and Future publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-100311-102839 – volume: 34 start-page: 108815 year: 2021 ident: ref_24 article-title: Most Non-Canonical Proteins Uniquely Populate the Proteome or Immunopeptidome publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.108815 – volume: 184 start-page: 792 year: 2021 ident: ref_174 article-title: A Pan-Cancer Single-Cell Transcriptional Atlas of Tumor Infiltrating Myeloid Cells publication-title: Cell doi: 10.1016/j.cell.2021.01.010 |
SSID | ssj0000913867 |
Score | 2.3126311 |
SecondaryResourceType | review_article |
Snippet | Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 717 |
SubjectTerms | Algorithms Antigen (tumor-associated) Antigens Bacteria Bioinformatics Cancer cancer immunotherapy Cancer vaccines Complex formation Complications and side effects Diagnosis Dosage and administration Effectiveness Genes Haplotypes Health aspects Histocompatibility antigen HLA Immune system Immunogenicity Immunotherapy Lymphocytes Medical research Mutation neoantigen Neoantigens Peptides Prevention Proteins Therapeutic applications therapeutic cancer vaccines Tumor antigens Tumors Vaccines |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA-yJ1_Eb69uEkEmwspNm7RJHudwTMGxh032FvIJgrRj906Yf_3OSbreboK--Faak7Snv5OckybnF0LeS6Ub1-pYSd_oSoCDrKx2ddW1AYLtqL2zmO_87bg7OhNfz9vz2VFfuCes0AOXD7e0wsk6yZgCC8IxC_OFqGOAlnmjOpHZS8HnzSZTeQzWNVedLOuSHOb1y1_W40r1qm6Q4CafT7bxQ5mu_89B-V6omV3O4WPyaIwV6X55xyfkQeyfkt2TQjZ9vUdPN7lTqz26S082NNTXz8gw2w9EbR_oSAEKDc4WremQ5u3QA7SCS_p91IPif1r6Zcra-vE7htwYEj3D5XEcABpk9Fw9J2eHn08PjqrxeIXKt6xZVzEmJpISLtha6wiBSArSSwn-qRUWsAquBsi4TCrULYCWkL-OhchYTJ1g_AXZ6oc-viJUOWdVxzvXKS9Eq52UKcJo4AGp1jqxIMvbj238yD2OR2D8NDAHQXjMfXgW5ONU46LwbvxF9hPiN8khY3a-AXZkRjsy_7KjBfmA6Bvs1_Bq3o7pCaAgMmSZfcW4lBD9NguyfUcS-qO_W3xrP2YcD1aGIzMgpv3Cc95NxVgT97j1cbgqMjU4EA4yL4vdTSqB2jk0fP0_VH1DHjYQmpVNx9tka315FXcgtFq7t7kX3QA56CNe priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbt5tJL6btuk6BCSSnErB-SJZ1KEhLSQpelJCU3o2cpBDtZbwrpr--MrfVuUsjN2GNh-RvNjB7zDSEfhVSF4cqnwhYqZeAgU61MnlbcQbDtlTUa852_z6rTc_btgl_EBbcuHqtc2cTeULvW4hr5tERuNUyc5F-urlOsGoW7q7GExmOyBSZYygnZOjyezX-MqyzIeikrMexPljC_n_7RFnesu7xAopu-TtnaH_W0_f8b53shZ-96Tp6RpzFmpAcDyM_JI9-8IHvzgXT6dp-erXOoun26R-drOurbl6TdOBdEdeNopAKFBjc2r2kbNtuhR6gNC_oz9oPiei39OmZv_f7rXd8YEj7D5cy3ABEye3avyPnJ8dnRaRrLLKSWZ8Uy9T5kLEhmnM6V8hCQBCesEOCnONOAmTM5QFeKIF3OAbyAPHaZ81nmQ8Wy8jWZNG3j3xIqjdGyKitTScsYV0aI4MEqWOUd14YlZLr62bWNHORYCuOyhrkIwlPfhychn8c3rgb-jQdkDxG_UQ6Zs_sb7eJXHQdirZkReRA-uMwxk2mYf3r4OtDUspAV4wn5hOjXOL7h06yOaQrQQWTKqg9kVgoBUXCRkO07kjAu7d3HK_2po13o6rUWJ-TD-BjfxLNujW9vBpkcHEkJMm8GvRu7BN3uQ8R3Dzf-njwpIPgajhVvk8lyceN3IHhamt04Qv4BWtQb0A priority: 102 providerName: ProQuest |
Title | Development and Clinical Applications of Therapeutic Cancer Vaccines with Individualized and Shared Neoantigens |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39066355 https://www.proquest.com/docview/3085057965 https://www.proquest.com/docview/3085121935 https://doaj.org/article/a4b71f7efd0d4b0a924e9edc29328645 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdbC6MvY91Xs3ZBg9ExqFfbki3rYZS2tHSDhjCakTejzzEo9pakZdlfvztbcZKu25uRTrLkO-nuLN3vCHkrCpnqTLpImFRGHBRkpKROojyzYGw7abTCeOfLQX4x4p_H2XgZHh0-4PRe1w7zSY0m1x9-_ZwfwYL_iB4nuOyHt8rgIfQ0SRG7JhEPySboJYH5DC6Dsd_syzJhRZNSFujyiEk2bs8t7-1kizyC4kYfr6msBtn_7_37jlXaaKfzJ-RxMCvpcSsH2-SBq56S_WGLSz0_oFfLMKvpAd2nwyVi9fwZqVeuDlFVWRrQQqHDlfNtWvvVfugpCsyEfg1TovhLl37qAry-_3a26QwxoeFx4GrgIoJ_Tp-T0fnZ1elFFDIxRCaL01nknI-5L7i2KpHSgc3irTBCgCrLuAK2Wp0Ad5nwhU0y4K9HqLvYujh2Pucxe0E2qrpyO4QWWqsiZ7nOC8N5JrUQ3sHGYaSzmdK8Rw4XH7s0AaYcs2Vcl-CuIKfKu5zqkfddix8tRMd_aE-Qfx0dgms3BfXkWxnWaqm4FokXztvYch0rcFEdjA6EmaVFzrMeeYfcL1EoYWhGhUgGmCCCaZXHRcyEAEM57ZG9NUpYuma9eiE_5ULyS4YgghghDO9501VjS7wOV7n6pqVJQNcwoHnZyl03pYXUvvpnzS7ZSsE0ay8d75GN2eTGvQbTaqb7ZPPkbDD80m9-TfSb9fMHSAcjEg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXxBuXAosERUi1srbXXvuAUFtaJbSNIpSi3tx9GSFVcUlSUPhR_EZmbMdJi9Rbb1E8Hu16nvuYbwDeyjQLdZw5X5ow8wUGSF9lOvCT2GKy7TKjFdU7Hw-S3on4chqfrsHfRS0MXatc-MTKUdvS0B55NyJsNSqcjD9d_PSpaxSdri5aaNRqcejmv3HJNv3Y_4zyfReGB_ujvZ7fdBXwTczDme9cwUWRCm1VkGUO429hpZES3XIsFA7R6gBHGskitUGMYy0Ito1bx7krEsEj5HsH1kWU8LAD67v7g-HXdleHUDbTRNbnoVGU8e4vZeiEfBqEBKxT9UVbxr-qTcD_weBailuFuoMHcL_JUdlOrVQPYc2NH8HWsAa5nm-z0bJma7rNtthwCX89fwzlyj0kpsaWNdCjyHDlsJyVxSoftkfaN2Hfmnkw2h9m_bZa7McfZytmBDCNPweuRJUgJNHpEzi5FQE8hc64HLvnwFKtVZpEiU5SI0ScaSkLh17IZM7GSgsPuouPnZsG85xab5znuPYh8eTXxePBh_aNixrv4wbaXZJfS0dI3dUf5eR73hh-roSWQSFdYbkVmitc7zocHVpGFKaJiD14T9LPyZ_g0IxqyiJwgoTMle-kPJISs-7Qg80rlOgHzNXHC_3JGz80zZdW48Gb9jG9SXfrxq68rGkCDFwR0jyr9a6dEk67Skk3bmb-Gu72RsdH-VF_cPgC7oWY-NVXmjehM5tcupeYuM30q8ZaGJzdtoH-A_RyWUE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9NADLdGJyFeEN8EBhwSDCEtaj4uueQBoX1VK4OqQhvaW7hPNGlKRtuByp_GX4edpGk3pL3trWouli_22b47-2eANyLLI5Xk1hc6yn2ODtKXuQr9NDEYbNtcK0n1zl9G6cEx_3SSnKzB30UtDKVVLmxibahNpemMvB8TthoVTiZ916ZFjPcGH89_-tRBim5aF-00GhU5tPPfuH2bfhjuoazfRtFg_2j3wG87DPg6CaKZb60LuMu4MjLMc4u-2BmhhUATnXCJ7BoVItexcJkJE-TbEYRbYGwQWJfyIEa6t2Bd0K6oB-s7-6Px1-6EhxA3s1Q0d6NxnAf9X1LTbfk0jAhkp-6RtvSFdcuA_x3DlXC3dnuDe3C3jVfZdqNg92HNlg9gc9wAXs-32NGyfmu6xTbZeAmFPX8I1UpOEpOlYS0MKRJcuThnlVulw3ZJEyfsWzsPRmfFbNhVjp3-saYmRmDT-HNkK1QPQhWdPoLjGxHAY-iVVWmfAsuUklkapyrNNOdJroRwFi2Szq1JpOIe9Bcfu9At_jm14TgrcB9E4imuiseD990b5w32xzVjd0h-3ThC7a7_qCY_itYIFJIrETphnQkMV4HEva9F7nCVxFGW8sSDdyT9gmwLsqZlWyKBEySUrmI7C2IhMAKPPNi4NBJtgr78eKE_RWuTpsVyBXnwuntMb1KeXWmri2ZMiE4sxjFPGr3rpoTTrsPTZ9cTfwW3cWEWn4ejw-dwJ8IYsMlu3oDebHJhX2AMN1Mv28XC4PtNr89_3Dpddg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+Clinical+Applications+of+Therapeutic+Cancer+Vaccines+with+Individualized+and+Shared+Neoantigens&rft.jtitle=Vaccines+%28Basel%29&rft.au=Hao%2C+Qing&rft.au=Long%2C+Yuhang&rft.au=Yang%2C+Yi&rft.au=Deng%2C+Yiqi&rft.date=2024-07-01&rft.issn=2076-393X&rft.eissn=2076-393X&rft.volume=12&rft.issue=7&rft_id=info:doi/10.3390%2Fvaccines12070717&rft_id=info%3Apmid%2F39066355&rft.externalDocID=39066355 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-393X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-393X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-393X&client=summon |