Development and Clinical Applications of Therapeutic Cancer Vaccines with Individualized and Shared Neoantigens

Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The promising outcomes of neoantigen-based cancer vaccines have inspired enthusiasm for their broader clinical applications. However, the individ...

Full description

Saved in:
Bibliographic Details
Published inVaccines (Basel) Vol. 12; no. 7; p. 717
Main Authors Hao, Qing, Long, Yuhang, Yang, Yi, Deng, Yiqi, Ding, Zhenyu, Yang, Li, Shu, Yang, Xu, Heng
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The promising outcomes of neoantigen-based cancer vaccines have inspired enthusiasm for their broader clinical applications. However, the individualized tumor-specific antigens (TSA) entail considerable costs and time due to the variable immunogenicity and response rates of these neoantigens-based vaccines, influenced by factors such as neoantigen response, vaccine types, and combination therapy. Given the crucial role of neoantigen efficacy, a number of bioinformatics algorithms and pipelines have been developed to improve the accuracy rate of prediction through considering a series of factors involving in HLA-peptide-TCR complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. On the other hand, shared neoantigens, originating from driver mutations at hot mutation spots (e.g., KRASG12D), offer a promising and ideal target for the development of therapeutic cancer vaccines. A series of clinical practices have established the efficacy of these vaccines in patients with distinct HLA haplotypes. Moreover, increasing evidence demonstrated that a combination of tumor associated antigens (TAAs) and neoantigens can also improve the prognosis, thus expand the repertoire of shared neoantigens for cancer vaccines. In this review, we provide an overview of the complex process involved in identifying personalized neoantigens, their clinical applications, advances in vaccine technology, and explore the therapeutic potential of shared neoantigen strategies.
AbstractList Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The promising outcomes of neoantigen-based cancer vaccines have inspired enthusiasm for their broader clinical applications. However, the individualized tumor-specific antigens (TSA) entail considerable costs and time due to the variable immunogenicity and response rates of these neoantigens-based vaccines, influenced by factors such as neoantigen response, vaccine types, and combination therapy. Given the crucial role of neoantigen efficacy, a number of bioinformatics algorithms and pipelines have been developed to improve the accuracy rate of prediction through considering a series of factors involving in HLA-peptide-TCR complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. On the other hand, shared neoantigens, originating from driver mutations at hot mutation spots (e.g., KRAS ), offer a promising and ideal target for the development of therapeutic cancer vaccines. A series of clinical practices have established the efficacy of these vaccines in patients with distinct HLA haplotypes. Moreover, increasing evidence demonstrated that a combination of tumor associated antigens (TAAs) and neoantigens can also improve the prognosis, thus expand the repertoire of shared neoantigens for cancer vaccines. In this review, we provide an overview of the complex process involved in identifying personalized neoantigens, their clinical applications, advances in vaccine technology, and explore the therapeutic potential of shared neoantigen strategies.
Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The promising outcomes of neoantigen-based cancer vaccines have inspired enthusiasm for their broader clinical applications. However, the individualized tumor-specific antigens (TSA) entail considerable costs and time due to the variable immunogenicity and response rates of these neoantigens-based vaccines, influenced by factors such as neoantigen response, vaccine types, and combination therapy. Given the crucial role of neoantigen efficacy, a number of bioinformatics algorithms and pipelines have been developed to improve the accuracy rate of prediction through considering a series of factors involving in HLA-peptide-TCR complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. On the other hand, shared neoantigens, originating from driver mutations at hot mutation spots (e.g., KRASG12D), offer a promising and ideal target for the development of therapeutic cancer vaccines. A series of clinical practices have established the efficacy of these vaccines in patients with distinct HLA haplotypes. Moreover, increasing evidence demonstrated that a combination of tumor associated antigens (TAAs) and neoantigens can also improve the prognosis, thus expand the repertoire of shared neoantigens for cancer vaccines. In this review, we provide an overview of the complex process involved in identifying personalized neoantigens, their clinical applications, advances in vaccine technology, and explore the therapeutic potential of shared neoantigen strategies.
Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The promising outcomes of neoantigen-based cancer vaccines have inspired enthusiasm for their broader clinical applications. However, the individualized tumor-specific antigens (TSA) entail considerable costs and time due to the variable immunogenicity and response rates of these neoantigens-based vaccines, influenced by factors such as neoantigen response, vaccine types, and combination therapy. Given the crucial role of neoantigen efficacy, a number of bioinformatics algorithms and pipelines have been developed to improve the accuracy rate of prediction through considering a series of factors involving in HLA-peptide-TCR complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. On the other hand, shared neoantigens, originating from driver mutations at hot mutation spots (e.g., KRAS[sup.G12D] ), offer a promising and ideal target for the development of therapeutic cancer vaccines. A series of clinical practices have established the efficacy of these vaccines in patients with distinct HLA haplotypes. Moreover, increasing evidence demonstrated that a combination of tumor associated antigens (TAAs) and neoantigens can also improve the prognosis, thus expand the repertoire of shared neoantigens for cancer vaccines. In this review, we provide an overview of the complex process involved in identifying personalized neoantigens, their clinical applications, advances in vaccine technology, and explore the therapeutic potential of shared neoantigen strategies.
Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The promising outcomes of neoantigen-based cancer vaccines have inspired enthusiasm for their broader clinical applications. However, the individualized tumor-specific antigens (TSA) entail considerable costs and time due to the variable immunogenicity and response rates of these neoantigens-based vaccines, influenced by factors such as neoantigen response, vaccine types, and combination therapy. Given the crucial role of neoantigen efficacy, a number of bioinformatics algorithms and pipelines have been developed to improve the accuracy rate of prediction through considering a series of factors involving in HLA-peptide-TCR complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. On the other hand, shared neoantigens, originating from driver mutations at hot mutation spots (e.g., KRASG12D), offer a promising and ideal target for the development of therapeutic cancer vaccines. A series of clinical practices have established the efficacy of these vaccines in patients with distinct HLA haplotypes. Moreover, increasing evidence demonstrated that a combination of tumor associated antigens (TAAs) and neoantigens can also improve the prognosis, thus expand the repertoire of shared neoantigens for cancer vaccines. In this review, we provide an overview of the complex process involved in identifying personalized neoantigens, their clinical applications, advances in vaccine technology, and explore the therapeutic potential of shared neoantigen strategies.Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The promising outcomes of neoantigen-based cancer vaccines have inspired enthusiasm for their broader clinical applications. However, the individualized tumor-specific antigens (TSA) entail considerable costs and time due to the variable immunogenicity and response rates of these neoantigens-based vaccines, influenced by factors such as neoantigen response, vaccine types, and combination therapy. Given the crucial role of neoantigen efficacy, a number of bioinformatics algorithms and pipelines have been developed to improve the accuracy rate of prediction through considering a series of factors involving in HLA-peptide-TCR complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. On the other hand, shared neoantigens, originating from driver mutations at hot mutation spots (e.g., KRASG12D), offer a promising and ideal target for the development of therapeutic cancer vaccines. A series of clinical practices have established the efficacy of these vaccines in patients with distinct HLA haplotypes. Moreover, increasing evidence demonstrated that a combination of tumor associated antigens (TAAs) and neoantigens can also improve the prognosis, thus expand the repertoire of shared neoantigens for cancer vaccines. In this review, we provide an overview of the complex process involved in identifying personalized neoantigens, their clinical applications, advances in vaccine technology, and explore the therapeutic potential of shared neoantigen strategies.
Audience Academic
Author Shu, Yang
Deng, Yiqi
Long, Yuhang
Hao, Qing
Yang, Li
Ding, Zhenyu
Xu, Heng
Yang, Yi
Author_xml – sequence: 1
  givenname: Qing
  surname: Hao
  fullname: Hao, Qing
– sequence: 2
  givenname: Yuhang
  surname: Long
  fullname: Long, Yuhang
– sequence: 3
  givenname: Yi
  surname: Yang
  fullname: Yang, Yi
– sequence: 4
  givenname: Yiqi
  surname: Deng
  fullname: Deng, Yiqi
– sequence: 5
  givenname: Zhenyu
  surname: Ding
  fullname: Ding, Zhenyu
– sequence: 6
  givenname: Li
  surname: Yang
  fullname: Yang, Li
– sequence: 7
  givenname: Yang
  surname: Shu
  fullname: Shu, Yang
– sequence: 8
  givenname: Heng
  surname: Xu
  fullname: Xu, Heng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39066355$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1v1DAQhiNUREvpnROKxIXLlnEc2_GxWr5WquBAQdwixx7vepW1g50sgl-P94OqrMA-eDR63ndm5HlanPngsSieE7imVMLrrdLaeUykAgGCiEfFRY74jEr67exBfF5cpbSGfCShDRdPivMs55wydlGEN7jFPgwb9GOpvCnnvfNOq768GYY-B6MLPpXBlncrjGrAaXS6nCuvMZZfjx2UP9y4KhfeuK0zk-rdLzR7s88rFXP4EYPyo1uiT8-Kx1b1Ca-O72Xx5d3bu_mH2e2n94v5ze1MM6jGGaKF2jZ1ZxSREpuaWyO0EFICqxUzlekIZ4YK2xjCdKcsQCPAIABaXgO9LBYHXxPUuh2i26j4sw3KtftEiMtWxTxKj62qO0GsQGvA1B0oWdUo0ehK0qrhNcterw5eQwzfJ0xju3FJY98rj2FKLYWGkYpIukNfnqDrMEWfJ91TwITkD6ilyvWdt2GMSu9M25sGqBCc8SpT1_-g8jW4cTrvgnU5_5fgxbH41G3Q3E_957czAAdAx5BSRHuPEGh3O9We7lSW8BOJduN-KXIzrv-_8Df129Fl
CitedBy_id crossref_primary_10_1038_s41467_024_54650_y
Cites_doi 10.1093/bioinformatics/btad469
10.1056/NEJMoa1406498
10.1200/JCO.2010.32.2537
10.1016/j.xcrm.2021.100194
10.1038/nrd2224
10.1038/nm.3910
10.1016/j.celrep.2018.03.050
10.1016/j.ccell.2023.02.016
10.1016/j.ccell.2018.07.001
10.1093/bioinformatics/btad743
10.1002/advs.201801847
10.1101/433706
10.1093/nar/gkaa379
10.1126/science.abc8697
10.1038/nature22991
10.1016/j.molcel.2018.06.034
10.1111/imr.12434
10.1126/science.abg2482
10.1016/j.cell.2018.02.060
10.1038/s41586-018-0810-y
10.1093/bioinformatics/btad055
10.1016/j.molimm.2023.03.010
10.1056/NEJMoa1001294
10.1101/cshperspect.a001008
10.1016/j.immuni.2018.03.007
10.1038/nrm.2017.27
10.18632/aging.103516
10.1158/2159-8290.CD-21-1059
10.1101/2023.11.21.568015
10.1038/s41571-020-00460-2
10.2139/ssrn.4565234
10.1038/nrc.2016.154
10.1038/s41587-020-0505-4
10.1038/s41588-018-0312-8
10.1111/cpr.13025
10.1016/j.immuni.2023.03.009
10.1038/s41591-024-02894-y
10.1038/s41392-022-01270-x
10.2174/1568009620666200619123725
10.1093/annonc/mdv604
10.1101/2023.09.13.557561
10.7554/eLife.82813
10.1158/0008-5472.CAN-11-2612
10.1016/S0140-6736(23)02268-7
10.1038/nrclinonc.2014.111
10.1016/j.jtho.2019.06.016
10.1093/nar/gkad922
10.3389/fimmu.2022.893247
10.1126/science.aaa1348
10.1073/pnas.0604045103
10.1158/2326-6066.CIR-19-0401
10.1093/bioinformatics/btz879
10.1158/2326-6066.CIR-18-0395
10.1093/bib/bbae024
10.1002/pro.4841
10.1056/NEJMoa1609279
10.1136/jitc-2021-002531
10.1186/s13073-018-0598-2
10.1093/bib/bbad116
10.1016/j.cell.2020.08.053
10.1101/2023.04.25.538237
10.1002/mog2.60
10.1093/bioinformatics/btac788
10.1093/bib/bbad436
10.1158/1538-7445.AM2023-CT001
10.1038/nrclinonc.2017.127
10.1038/nbt.4313
10.1038/s41591-024-02851-9
10.1038/nrc2373
10.1200/JCO.22.00096
10.1038/s42256-021-00383-2
10.1038/s41586-023-06063-y
10.1038/s41587-019-0280-2
10.1093/bib/bbr060
10.1158/2326-6066.CIR-22-0040
10.1038/bcj.2017.94
10.1038/s41586-021-03368-8
10.1007/s00262-017-2001-3
10.4049/jimmunol.1600582
10.1016/j.ccell.2018.04.011
10.1038/s41591-023-02760-3
10.1038/nature22383
10.1172/JCI134915
10.1038/nature11547
10.1038/s42256-023-00619-3
10.1093/bioinformatics/btw674
10.1038/s41573-022-00520-5
10.1126/science.aax0701
10.1126/sciimmunol.aaz3199
10.1001/jamaoncol.2022.5370
10.1038/s41586-018-0792-9
10.1038/nature12978
10.1038/nature10673
10.1038/s43018-022-00418-6
10.1093/bib/bbad086
10.1038/s42256-023-00634-4
10.1093/bioinformatics/btad551
10.1002/eji.200737995
10.1038/s41591-021-01544-x
10.1038/s42003-021-02610-3
10.1126/sciadv.adf3700
10.1073/pnas.2025570118
10.1158/2159-8290.CD-20-1808
10.1038/s41573-021-00387-y
10.1093/bioinformatics/btab759
10.1016/j.bbcan.2017.12.003
10.1038/nmat4822
10.1016/j.cell.2020.09.015
10.1038/s41591-022-01937-6
10.1111/cas.12996
10.1093/bioinformatics/btac225
10.1056/NEJMoa2034577
10.1038/nature23003
10.1038/s41392-020-00448-5
10.1093/nar/gkad356
10.1038/s41586-023-06834-7
10.1038/s41577-023-00937-y
10.4049/jimmunol.179.8.5033
10.1126/sciadv.aaw6071
10.1056/NEJMoa2119662
10.1038/nature13988
10.1016/j.tcb.2021.10.010
10.1016/j.cels.2022.12.002
10.1186/s13045-019-0787-5
10.1038/s41392-022-01007-w
10.1038/nature13387
10.1101/2022.09.14.507872
10.1126/science.aaa3828
10.1038/s41467-021-25006-7
10.1158/2326-6066.CIR-16-0280
10.1016/j.ccell.2022.10.013
10.7150/thno.38742
10.1186/s13073-019-0679-x
10.1016/j.cell.2011.02.013
10.3389/fgene.2022.942491
10.1016/j.cels.2020.06.010
10.1038/s41401-020-0415-5
10.1097/FPC.0000000000000538
10.1038/s41587-019-0322-9
10.1101/373472
10.1126/science.aaa4971
10.1158/2326-6066.CIR-18-0686
10.1038/s43018-023-00591-2
10.1158/1078-0432.CCR-14-2708
10.1145/3534678.3539075
10.1016/j.compbiolchem.2020.107281
10.1038/s41571-021-00546-5
10.1200/JCO.2012.47.7521
10.1158/1078-0432.CCR-18-0142
10.1074/mcp.TIR119.001658
10.1093/nar/gku1166
10.1016/j.ccell.2022.08.003
10.3389/fimmu.2020.01803
10.1146/annurev-pathol-011110-130206
10.1038/s41587-023-01957-8
10.1038/s41591-022-01786-3
10.1038/s41587-021-01021-3
10.1126/science.aay9189
10.1186/s12859-019-2876-4
10.1038/nrd.2017.243
10.1016/j.ymthe.2019.02.012
10.1056/NEJMoa2035389
10.1038/s41568-018-0015-6
10.1038/s41591-020-01206-4
10.2147/IJN.S30725
10.3389/fimmu.2021.682103
10.1016/j.ejmech.2021.113910
10.1038/s43018-021-00210-y
10.1016/j.vaccine.2012.04.060
10.1038/s41467-022-34395-2
10.1002/INMD.20230021
10.1093/bioinformatics/btad284
10.1186/s13073-021-00895-x
10.1038/nm.3161
10.1146/annurev-immunol-100311-102839
10.1016/j.celrep.2021.108815
10.1016/j.cell.2021.01.010
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
3V.
7T7
7XB
8FD
8FE
8FH
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
COVID
DWQXO
FR3
GNUQQ
GUQSH
HCIFZ
LK8
M2O
M7P
MBDVC
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.3390/vaccines12070717
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Coronavirus Research Database
ProQuest Central
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Biological Science Collection
Research Library
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Research Library
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Coronavirus Research Database
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 2076-393X
ExternalDocumentID oai_doaj_org_article_a4b71f7efd0d4b0a924e9edc29328645
A803776562
39066355
10_3390_vaccines12070717
Genre Journal Article
Review
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2023YFC3405200
GroupedDBID 53G
5VS
8FE
8FH
8G5
AADQD
AAHBH
AAYXX
ABUWG
ADBBV
AEUYN
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
NPM
PMFND
3V.
7T7
7XB
8FD
8FK
C1K
COVID
FR3
MBDVC
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c502t-eef04f84bda199e846fd7c7799054a5d2db165d37f8d15cbaf00870de00ef6403
IEDL.DBID M48
ISSN 2076-393X
IngestDate Wed Aug 27 01:28:48 EDT 2025
Fri Jul 11 01:53:08 EDT 2025
Fri Jul 25 10:42:34 EDT 2025
Tue Jun 17 22:07:29 EDT 2025
Tue Jun 10 21:06:11 EDT 2025
Thu Apr 03 07:04:05 EDT 2025
Thu Apr 24 22:59:53 EDT 2025
Tue Jul 01 01:11:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords neoantigen
cancer immunotherapy
therapeutic cancer vaccines
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-eef04f84bda199e846fd7c7799054a5d2db165d37f8d15cbaf00870de00ef6403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/vaccines12070717
PMID 39066355
PQID 3085057965
PQPubID 2032320
ParticipantIDs doaj_primary_oai_doaj_org_article_a4b71f7efd0d4b0a924e9edc29328645
proquest_miscellaneous_3085121935
proquest_journals_3085057965
gale_infotracmisc_A803776562
gale_infotracacademiconefile_A803776562
pubmed_primary_39066355
crossref_primary_10_3390_vaccines12070717
crossref_citationtrail_10_3390_vaccines12070717
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Vaccines (Basel)
PublicationTitleAlternate Vaccines (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Qu (ref_62) 2023; 39
ref_93
Khattak (ref_9) 2023; 83
Zarling (ref_31) 2006; 103
ref_90
Yarchoan (ref_113) 2024; 30
Sarkizova (ref_57) 2020; 38
You (ref_65) 2022; 38
Chen (ref_61) 2019; 37
Melero (ref_162) 2014; 11
Zhang (ref_88) 2023; 12
ref_97
Li (ref_143) 2021; 118
Korpela (ref_91) 2023; 39
ref_96
Vernerey (ref_165) 2023; 41
Gubin (ref_102) 2014; 515
Lin (ref_11) 2022; 3
Joyce (ref_169) 2023; 41
Lo (ref_150) 2019; 7
Yarchoan (ref_106) 2017; 17
Prior (ref_147) 2012; 72
Kumar (ref_16) 2024; 52
Katsikis (ref_40) 2024; 24
Wells (ref_15) 2020; 183
Baulu (ref_141) 2023; 9
Bailey (ref_159) 2018; 173
Steinman (ref_133) 2012; 30
Tran (ref_148) 2016; 375
Kantoff (ref_164) 2010; 363
Philips (ref_99) 2013; 31
Ulmer (ref_117) 2012; 30
Braun (ref_145) 2018; 10
Xie (ref_38) 2023; 8
Chandran (ref_160) 2022; 28
Yin (ref_84) 2023; 51
Bao (ref_178) 2023; 1
Fluckiger (ref_34) 2020; 369
Gu (ref_134) 2020; 41
Pant (ref_132) 2024; 30
Cafri (ref_109) 2020; 130
Kuai (ref_130) 2017; 16
Leidner (ref_140) 2022; 386
Robbins (ref_101) 2013; 19
Springer (ref_78) 2020; 11
Palmer (ref_110) 2022; 28
Hu (ref_126) 2021; 27
Weber (ref_111) 2024; 403
ref_76
Peng (ref_80) 2023; 5
ref_74
Rojas (ref_10) 2023; 618
Schmidt (ref_14) 2021; 2
Luo (ref_173) 2022; 13
Allenson (ref_176) 2016; 27
Zhang (ref_72) 2021; 12
Liau (ref_135) 2023; 9
Zhang (ref_68) 2012; 13
Chae (ref_104) 2019; 14
Ding (ref_7) 2021; 6
Schumacher (ref_154) 2014; 512
Fotakis (ref_47) 2020; 36
Rappaport (ref_112) 2024; 30
Kobayashi (ref_157) 2016; 107
Li (ref_156) 2021; 9
Rasmussen (ref_70) 2016; 197
Qin (ref_118) 2022; 7
Gao (ref_81) 2023; 5
Rieder (ref_51) 2022; 38
ref_149
Blass (ref_39) 2021; 18
Purcell (ref_123) 2007; 6
ref_85
Hsiue (ref_152) 2021; 371
Racle (ref_55) 2023; 56
Rapoport (ref_139) 2015; 21
Huang (ref_73) 2020; 38
Rizvi (ref_103) 2015; 348
Greaves (ref_17) 2018; 18
Ott (ref_6) 2020; 183
Lu (ref_79) 2021; 3
Zhou (ref_45) 2019; 11
Schumacher (ref_1) 2015; 348
Cai (ref_98) 2022; 13
Miller (ref_105) 2017; 7
Bradley (ref_92) 2023; 12
Kahles (ref_26) 2018; 34
ref_50
Shepherd (ref_155) 2011; 6
Hartout (ref_66) 2023; 39
ref_175
Baralle (ref_29) 2017; 18
Reynisson (ref_53) 2020; 48
Huang (ref_28) 2024; 625
ref_52
Baden (ref_115) 2020; 384
Waitkus (ref_153) 2018; 34
Jiang (ref_87) 2023; 24
Pardi (ref_116) 2018; 17
ref_59
Bijker (ref_124) 2007; 179
Bejarano (ref_170) 2021; 11
Robbins (ref_138) 2011; 29
Wang (ref_30) 2020; 20
Bjerregaard (ref_42) 2017; 66
Hanahan (ref_167) 2022; 12
Jiang (ref_2) 2019; 12
Chen (ref_172) 2021; 18
Li (ref_27) 2018; 71
Weber (ref_177) 2021; 13
Carreno (ref_108) 2015; 348
Montemurro (ref_75) 2021; 4
Pham (ref_89) 2023; 39
Honda (ref_127) 2013; 8
Robbins (ref_137) 2015; 21
Mantovani (ref_171) 2022; 21
ref_63
Dash (ref_71) 2017; 547
Bijker (ref_125) 2008; 38
Keskin (ref_5) 2019; 565
Liu (ref_121) 2021; 54
Matsuda (ref_136) 2018; 24
Kowalski (ref_119) 2019; 27
Ni (ref_144) 2020; 6
Mellman (ref_163) 2011; 480
Wright (ref_23) 2022; 32
Polack (ref_114) 2020; 383
Alvarez (ref_58) 2019; 18
Zhang (ref_82) 2024; 25
Yin (ref_107) 2023; 2
Nejman (ref_33) 2020; 368
Lu (ref_49) 2020; 5
Zhai (ref_179) 2023; 379
Takeshita (ref_158) 2015; 43
Kalaora (ref_35) 2021; 592
ref_36
Hundal (ref_48) 2020; 8
Patel (ref_142) 2018; 48
Zhang (ref_46) 2020; 12
Malaker (ref_32) 2017; 5
Kjeldsen (ref_166) 2021; 27
Wu (ref_95) 2023; 157
Mi (ref_128) 2019; 6
Lang (ref_41) 2022; 21
Tong (ref_77) 2020; 87
Ouspenskaia (ref_25) 2022; 40
Starck (ref_22) 2016; 272
Busby (ref_60) 2019; 37
Pearlman (ref_12) 2021; 2
Cuevas (ref_24) 2021; 34
Melief (ref_129) 2008; 8
Biankin (ref_146) 2012; 491
Kim (ref_151) 2022; 10
Hanahan (ref_168) 2011; 144
Wang (ref_67) 2023; 24
Ott (ref_3) 2017; 547
Schram (ref_18) 2017; 14
Cheng (ref_174) 2021; 184
Awad (ref_8) 2022; 40
Gao (ref_20) 2018; 23
Samstein (ref_21) 2019; 51
Zhang (ref_43) 2017; 33
Chen (ref_122) 2020; 10
ref_44
Mota (ref_161) 2023; 4
Sahin (ref_4) 2017; 547
Snyder (ref_100) 2014; 371
Rubinsteyn (ref_56) 2020; 11
Chen (ref_83) 2024; 33
Zhang (ref_94) 2023; 28
Hilf (ref_13) 2019; 565
Lybaert (ref_37) 2023; 41
Liu (ref_131) 2014; 507
Li (ref_120) 2022; 227
Dai (ref_19) 2018; 1869
Chen (ref_64) 2023; 39
Gfeller (ref_54) 2023; 14
Blaha (ref_69) 2019; 7
Jokinen (ref_86) 2023; 39
References_xml – volume: 39
  start-page: btad469
  year: 2023
  ident: ref_66
  article-title: Investigating the Human and Nonobese Diabetic Mouse MHC Class II Immunopeptidome Using Protein Language Modeling
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad469
– volume: 371
  start-page: 2189
  year: 2014
  ident: ref_100
  article-title: Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1406498
– volume: 29
  start-page: 917
  year: 2011
  ident: ref_138
  article-title: Tumor Regression in Patients with Metastatic Synovial Cell Sarcoma and Melanoma Using Genetically Engineered Lymphocytes Reactive with NY-ESO-1
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2010.32.2537
– volume: 2
  start-page: 100194
  year: 2021
  ident: ref_14
  article-title: Prediction of Neo-Epitope Immunogenicity Reveals TCR Recognition Determinants and Provides Insight into Immunoediting
  publication-title: Cell Rep. Med.
  doi: 10.1016/j.xcrm.2021.100194
– volume: 6
  start-page: 404
  year: 2007
  ident: ref_123
  article-title: More than One Reason to Rethink the Use of Peptides in Vaccine Design
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd2224
– volume: 21
  start-page: 914
  year: 2015
  ident: ref_139
  article-title: NY-ESO-1-Specific TCR-Engineered T Cells Mediate Sustained Antigen-Specific Antitumor Effects in Myeloma
  publication-title: Nat. Med.
  doi: 10.1038/nm.3910
– volume: 23
  start-page: 227
  year: 2018
  ident: ref_20
  article-title: Driver Fusions and Their Implications in the Development and Treatment of Human Cancers
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.03.050
– volume: 41
  start-page: 374
  year: 2023
  ident: ref_169
  article-title: The Evolving Tumor Microenvironment: From Cancer Initiation to Metastatic Outgrowth
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2023.02.016
– volume: 34
  start-page: 211
  year: 2018
  ident: ref_26
  article-title: Comprehensive Analysis of Alternative Splicing Across Tumors from 8705 Patients
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.07.001
– volume: 39
  start-page: btad743
  year: 2023
  ident: ref_91
  article-title: EPIC-TRACE: Predicting TCR Binding to Unseen Epitopes Using Attention and Contextualized Embeddings
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad743
– volume: 6
  start-page: 1801847
  year: 2019
  ident: ref_128
  article-title: Emerging Nano-/Microapproaches for Cancer Immunotherapy
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801847
– ident: ref_74
  doi: 10.1101/433706
– volume: 48
  start-page: W449
  year: 2020
  ident: ref_53
  article-title: NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved Predictions of MHC Antigen Presentation by Concurrent Motif Deconvolution and Integration of MS MHC Eluted Ligand Data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa379
– volume: 371
  start-page: eabc8697
  year: 2021
  ident: ref_152
  article-title: Targeting a Neoantigen Derived from a Common TP53 Mutation
  publication-title: Science
  doi: 10.1126/science.abc8697
– volume: 547
  start-page: 217
  year: 2017
  ident: ref_3
  article-title: An Immunogenic Personal Neoantigen Vaccine for Patients with Melanoma
  publication-title: Nature
  doi: 10.1038/nature22991
– volume: 71
  start-page: 428
  year: 2018
  ident: ref_27
  article-title: The Biogenesis, Functions, and Challenges of Circular RNAs
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.06.034
– volume: 272
  start-page: 8
  year: 2016
  ident: ref_22
  article-title: Nowhere to Hide: Unconventional Translation Yields Cryptic Peptides for Immune Surveillance
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12434
– volume: 379
  start-page: eabg2482
  year: 2023
  ident: ref_179
  article-title: Cysteine Carboxyethylation Generates Neoantigens to Induce HLA-Restricted Autoimmunity
  publication-title: Science
  doi: 10.1126/science.abg2482
– volume: 173
  start-page: 371
  year: 2018
  ident: ref_159
  article-title: Comprehensive Characterization of Cancer Driver Genes and Mutations
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.060
– volume: 565
  start-page: 240
  year: 2019
  ident: ref_13
  article-title: Actively Personalized Vaccination Trial for Newly Diagnosed Glioblastoma
  publication-title: Nature
  doi: 10.1038/s41586-018-0810-y
– volume: 39
  start-page: btad055
  year: 2023
  ident: ref_64
  article-title: Binding Peptide Generation for MHC Class I Proteins with Deep Reinforcement Learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad055
– volume: 157
  start-page: 30
  year: 2023
  ident: ref_95
  article-title: TPBTE: A Model Based on Convolutional Transformer for Predicting the Binding of TCR to Epitope
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2023.03.010
– volume: 363
  start-page: 411
  year: 2010
  ident: ref_164
  article-title: Sipuleucel-T Immunotherapy for Castration-Resistant Prostate Cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1001294
– ident: ref_149
  doi: 10.1101/cshperspect.a001008
– volume: 48
  start-page: 417
  year: 2018
  ident: ref_142
  article-title: Combination Cancer Therapy with Immune Checkpoint Blockade: Mechanisms and Strategies
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.03.007
– volume: 18
  start-page: 437
  year: 2017
  ident: ref_29
  article-title: Alternative Splicing as a Regulator of Development and Tissue Identity
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.27
– volume: 12
  start-page: 14633
  year: 2020
  ident: ref_46
  article-title: ASNEO: Identification of Personalized Alternative Splicing Based Neoantigens with RNA-Seq
  publication-title: Aging
  doi: 10.18632/aging.103516
– volume: 12
  start-page: 31
  year: 2022
  ident: ref_167
  article-title: Hallmarks of Cancer: New Dimensions
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-21-1059
– ident: ref_63
  doi: 10.1101/2023.11.21.568015
– volume: 18
  start-page: 215
  year: 2021
  ident: ref_39
  article-title: Advances in the Development of Personalized Neoantigen-Based Therapeutic Cancer Vaccines
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/s41571-020-00460-2
– ident: ref_93
  doi: 10.2139/ssrn.4565234
– volume: 17
  start-page: 209
  year: 2017
  ident: ref_106
  article-title: Targeting Neoantigens to Augment Antitumour Immunity
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2016.154
– volume: 38
  start-page: 1194
  year: 2020
  ident: ref_73
  article-title: Analyzing the Mycobacterium Tuberculosis Immune Response by T-Cell Receptor Clustering with GLIPH2 and Genome-Wide Antigen Screening
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0505-4
– volume: 51
  start-page: 202
  year: 2019
  ident: ref_21
  article-title: Tumor Mutational Load Predicts Survival after Immunotherapy across Multiple Cancer Types
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0312-8
– volume: 54
  start-page: e13025
  year: 2021
  ident: ref_121
  article-title: Peptide-Based Therapeutic Cancer Vaccine: Current Trends in Clinical Application
  publication-title: Cell Prolif.
  doi: 10.1111/cpr.13025
– volume: 56
  start-page: 1359
  year: 2023
  ident: ref_55
  article-title: Machine Learning Predictions of MHC-II Specificities Reveal Alternative Binding Mode of Class II Epitopes
  publication-title: Immunity
  doi: 10.1016/j.immuni.2023.03.009
– volume: 30
  start-page: 1044
  year: 2024
  ident: ref_113
  article-title: Personalized Neoantigen Vaccine and Pembrolizumab in Advanced Hepatocellular Carcinoma: A Phase 1/2 Trial
  publication-title: Nat. Med.
  doi: 10.1038/s41591-024-02894-y
– volume: 8
  start-page: 9
  year: 2023
  ident: ref_38
  article-title: Neoantigens: Promising Targets for Cancer Therapy
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-022-01270-x
– volume: 20
  start-page: 729
  year: 2020
  ident: ref_30
  article-title: The Roles of Alternative Splicing in Tumor-Immune Cell Interactions
  publication-title: Curr. Cancer Drug Targets
  doi: 10.2174/1568009620666200619123725
– volume: 27
  start-page: 635
  year: 2016
  ident: ref_176
  article-title: Minimally Invasive Genomic and Transcriptomic Profiling of Visceral Cancers by Next-Generation Sequencing of Circulating Exosomes
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdv604
– ident: ref_90
  doi: 10.1101/2023.09.13.557561
– volume: 12
  start-page: e82813
  year: 2023
  ident: ref_92
  article-title: Structure-Based Prediction of T Cell Receptor:Peptide-MHC Interactions
  publication-title: eLife
  doi: 10.7554/eLife.82813
– volume: 72
  start-page: 2457
  year: 2012
  ident: ref_147
  article-title: A Comprehensive Survey of Ras Mutations in Cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-2612
– volume: 403
  start-page: 632
  year: 2024
  ident: ref_111
  article-title: Individualised Neoantigen Therapy mRNA-4157 (V940) plus Pembrolizumab versus Pembrolizumab Monotherapy in Resected Melanoma (KEYNOTE-942): A Randomised, Phase 2b Study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(23)02268-7
– volume: 11
  start-page: 509
  year: 2014
  ident: ref_162
  article-title: Therapeutic Vaccines for Cancer: An Overview of Clinical Trials
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2014.111
– volume: 14
  start-page: 1807
  year: 2019
  ident: ref_104
  article-title: Clinical and Immunological Implications of Frameshift Mutations in Lung Cancer
  publication-title: J. Thorac. Oncol.
  doi: 10.1016/j.jtho.2019.06.016
– volume: 52
  start-page: D1276
  year: 2024
  ident: ref_16
  article-title: FusionNeoAntigen: A Resource of Fusion Gene-Specific Neoantigens
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkad922
– volume: 13
  start-page: 893247
  year: 2022
  ident: ref_98
  article-title: ATM-TCR: TCR-Epitope Binding Affinity Prediction Using a Multi-Head Self-Attention Model
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2022.893247
– volume: 348
  start-page: 124
  year: 2015
  ident: ref_103
  article-title: Cancer Immunology. Mutational Landscape Determines Sensitivity to PD-1 Blockade in Non-Small Cell Lung Cancer
  publication-title: Science
  doi: 10.1126/science.aaa1348
– volume: 103
  start-page: 14889
  year: 2006
  ident: ref_31
  article-title: Identification of Class I MHC-Associated Phosphopeptides as Targets for Cancer Immunotherapy
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0604045103
– volume: 8
  start-page: 409
  year: 2020
  ident: ref_48
  article-title: pVACtools: A Computational Toolkit to Identify and Visualize Cancer Neoantigens
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-19-0401
– volume: 36
  start-page: 2260
  year: 2020
  ident: ref_47
  article-title: NeoFuse: Predicting Fusion Neoantigens from RNA Sequencing Data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz879
– volume: 7
  start-page: 50
  year: 2019
  ident: ref_69
  article-title: High-Throughput Stability Screening of Neoantigen/HLA Complexes Improves Immunogenicity Predictions
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-18-0395
– ident: ref_52
  doi: 10.1093/bib/bbae024
– volume: 33
  start-page: e4841
  year: 2024
  ident: ref_83
  article-title: TEPCAM: Prediction of T-Cell Receptor-Epitope Binding Specificity via Interpretable Deep Learning
  publication-title: Protein Sci.
  doi: 10.1002/pro.4841
– volume: 375
  start-page: 2255
  year: 2016
  ident: ref_148
  article-title: T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1609279
– volume: 9
  start-page: e002531
  year: 2021
  ident: ref_156
  article-title: Neoantigen Vaccination Induces Clinical and Immunologic Responses in Non-Small Cell Lung Cancer Patients Harboring EGFR Mutations
  publication-title: J. Immunother. Cancer
  doi: 10.1136/jitc-2021-002531
– volume: 10
  start-page: 87
  year: 2018
  ident: ref_145
  article-title: Acquired Mechanisms of Immune Escape in Cancer Following Immunotherapy
  publication-title: Genome Med.
  doi: 10.1186/s13073-018-0598-2
– volume: 24
  start-page: bbad116
  year: 2023
  ident: ref_67
  article-title: TLimmuno2: Predicting MHC Class II Antigen Immunogenicity through Transfer Learning
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbad116
– volume: 183
  start-page: 347
  year: 2020
  ident: ref_6
  article-title: A Phase Ib Trial of Personalized Neoantigen Therapy Plus Anti-PD-1 in Patients with Advanced Melanoma, Non-Small Cell Lung Cancer, or Bladder Cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.053
– ident: ref_85
  doi: 10.1101/2023.04.25.538237
– volume: 2
  start-page: e60
  year: 2023
  ident: ref_107
  article-title: Novel Insights into HBV-hepatocellular Carcinoma at Single-cell Sequencing
  publication-title: MedComm Oncol.
  doi: 10.1002/mog2.60
– volume: 39
  start-page: btac788
  year: 2023
  ident: ref_86
  article-title: TCRconv: Predicting Recognition between T Cell Receptors and Epitopes Using Contextualized Motifs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac788
– volume: 25
  start-page: bbad436
  year: 2024
  ident: ref_82
  article-title: Accurate TCR-pMHC Interaction Prediction Using a BERT-Based Transfer Learning Method
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbad436
– volume: 83
  start-page: CT001
  year: 2023
  ident: ref_9
  article-title: Abstract CT001: A Personalized Cancer Vaccine, mRNA-4157, Combined with Pembrolizumab versus Pembrolizumab in Patients with Resected High-Risk Melanoma: Efficacy and Safety Results from the Randomized, Open-Label Phase 2 mRNA-4157-P201/Keynote-942 Trial
  publication-title: Cancer Res.
  doi: 10.1158/1538-7445.AM2023-CT001
– volume: 14
  start-page: 735
  year: 2017
  ident: ref_18
  article-title: Fusions in Solid Tumours: Diagnostic Strategies, Targeted Therapy, and Acquired Resistance
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2017.127
– volume: 37
  start-page: 55
  year: 2019
  ident: ref_60
  article-title: Deep Learning Using Tumor HLA Peptide Mass Spectrometry Datasets Improves Neoantigen Identification
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4313
– volume: 30
  start-page: 1013
  year: 2024
  ident: ref_112
  article-title: A Shared Neoantigen Vaccine Combined with Immune Checkpoint Blockade for Advanced Metastatic Solid Tumors: Phase 1 Trial Interim Results
  publication-title: Nat. Med.
  doi: 10.1038/s41591-024-02851-9
– volume: 8
  start-page: 351
  year: 2008
  ident: ref_129
  article-title: Immunotherapy of Established (Pre)Malignant Disease by Synthetic Long Peptide Vaccines
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2373
– volume: 41
  start-page: 373
  year: 2023
  ident: ref_165
  article-title: Safety, Immunogenicity, and 1-Year Efficacy of Universal Cancer Peptide–Based Vaccine in Patients With Refractory Advanced Non–Small-Cell Lung Cancer: A Phase Ib/Phase IIa De-Escalation Study
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.22.00096
– volume: 3
  start-page: 864
  year: 2021
  ident: ref_79
  article-title: Deep Learning-Based Prediction of the T Cell Receptor-Antigen Binding Specificity
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00383-2
– volume: 618
  start-page: 144
  year: 2023
  ident: ref_10
  article-title: Personalized RNA Neoantigen Vaccines Stimulate T Cells in Pancreatic Cancer
  publication-title: Nature
  doi: 10.1038/s41586-023-06063-y
– volume: 37
  start-page: 1332
  year: 2019
  ident: ref_61
  article-title: Predicting HLA Class II Antigen Presentation through Integrated Deep Learning
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0280-2
– volume: 13
  start-page: 350
  year: 2012
  ident: ref_68
  article-title: Toward More Accurate Pan-Specific MHC-Peptide Binding Prediction: A Review of Current Methods and Tools
  publication-title: Brief. Bioinform
  doi: 10.1093/bib/bbr060
– volume: 10
  start-page: 932
  year: 2022
  ident: ref_151
  article-title: Adoptive Cellular Therapy with Autologous Tumor-Infiltrating Lymphocytes and T-Cell Receptor-Engineered T Cells Targeting Common P53 Neoantigens in Human Solid Tumors
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-22-0040
– volume: 7
  start-page: e612
  year: 2017
  ident: ref_105
  article-title: High Somatic Mutation and Neoantigen Burden Are Correlated with Decreased Progression-Free Survival in Multiple Myeloma
  publication-title: Blood Cancer J.
  doi: 10.1038/bcj.2017.94
– volume: 592
  start-page: 138
  year: 2021
  ident: ref_35
  article-title: Identification of Bacteria-Derived HLA-Bound Peptides in Melanoma
  publication-title: Nature
  doi: 10.1038/s41586-021-03368-8
– volume: 66
  start-page: 1123
  year: 2017
  ident: ref_42
  article-title: MuPeXI: Prediction of Neo-Epitopes from Tumor Sequencing Data
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-017-2001-3
– volume: 197
  start-page: 1517
  year: 2016
  ident: ref_70
  article-title: Pan-Specific Prediction of Peptide-MHC Class I Complex Stability, a Correlate of T Cell Immunogenicity
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1600582
– volume: 34
  start-page: 186
  year: 2018
  ident: ref_153
  article-title: Biological Role and Therapeutic Potential of IDH Mutations in Cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.04.011
– volume: 30
  start-page: 531
  year: 2024
  ident: ref_132
  article-title: Lymph-Node-Targeted, mKRAS-Specific Amphiphile Vaccine in Pancreatic and Colorectal Cancer: The Phase 1 AMPLIFY-201 Trial
  publication-title: Nat. Med.
  doi: 10.1038/s41591-023-02760-3
– volume: 547
  start-page: 89
  year: 2017
  ident: ref_71
  article-title: Quantifiable Predictive Features Define Epitope-Specific T Cell Receptor Repertoires
  publication-title: Nature
  doi: 10.1038/nature22383
– volume: 130
  start-page: 5976
  year: 2020
  ident: ref_109
  article-title: mRNA Vaccine–Induced Neoantigen-Specific T Cell Immunity in Patients with Gastrointestinal Cancer
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI134915
– volume: 491
  start-page: 399
  year: 2012
  ident: ref_146
  article-title: Pancreatic Cancer Genomes Reveal Aberrations in Axon Guidance Pathway Genes
  publication-title: Nature
  doi: 10.1038/nature11547
– volume: 5
  start-page: 236
  year: 2023
  ident: ref_81
  article-title: Pan-Peptide Meta Learning for T-Cell Receptor–Antigen Binding Recognition
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-023-00619-3
– volume: 33
  start-page: 555
  year: 2017
  ident: ref_43
  article-title: INTEGRATE-Neo: A Pipeline for Personalized Gene Fusion Neoantigen Discovery
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw674
– volume: 21
  start-page: 799
  year: 2022
  ident: ref_171
  article-title: Macrophages as Tools and Targets in Cancer Therapy
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-022-00520-5
– volume: 369
  start-page: 936
  year: 2020
  ident: ref_34
  article-title: Cross-Reactivity between Tumor MHC Class I-Restricted Antigens and an Enterococcal Bacteriophage
  publication-title: Science
  doi: 10.1126/science.aax0701
– volume: 5
  start-page: eaaz3199
  year: 2020
  ident: ref_49
  article-title: Tumor Neoantigenicity Assessment with CSiN Score Incorporates Clonality and Immunogenicity to Predict Immunotherapy Outcomes
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aaz3199
– volume: 9
  start-page: 112
  year: 2023
  ident: ref_135
  article-title: Association of Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination With Extension of Survival Among Patients With Newly Diagnosed and Recurrent Glioblastoma: A Phase 3 Prospective Externally Controlled Cohort Trial
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2022.5370
– volume: 565
  start-page: 234
  year: 2019
  ident: ref_5
  article-title: Neoantigen Vaccine Generates Intratumoral T Cell Responses in Phase Ib Glioblastoma Trial
  publication-title: Nature
  doi: 10.1038/s41586-018-0792-9
– volume: 507
  start-page: 519
  year: 2014
  ident: ref_131
  article-title: Structure-Based Programming of Lymph-Node Targeting in Molecular Vaccines
  publication-title: Nature
  doi: 10.1038/nature12978
– volume: 480
  start-page: 480
  year: 2011
  ident: ref_163
  article-title: Cancer Immunotherapy Comes of Age
  publication-title: Nature
  doi: 10.1038/nature10673
– volume: 3
  start-page: 911
  year: 2022
  ident: ref_11
  article-title: Cancer Vaccines: The next Immunotherapy Frontier
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-022-00418-6
– volume: 24
  start-page: bbad086
  year: 2023
  ident: ref_87
  article-title: TEINet: A Deep Learning Framework for Prediction of TCR-Epitope Binding Specificity
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbad086
– volume: 5
  start-page: 395
  year: 2023
  ident: ref_80
  article-title: Characterizing the Interaction Conformation between T-Cell Receptors and Epitopes with Deep Learning
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-023-00634-4
– volume: 39
  start-page: btad551
  year: 2023
  ident: ref_62
  article-title: DeepMHCI: An Anchor Position-Aware Deep Interaction Model for Accurate MHC-I Peptide Binding Affinity Prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad551
– volume: 38
  start-page: 1033
  year: 2008
  ident: ref_125
  article-title: Superior Induction of Anti-Tumor CTL Immunity by Extended Peptide Vaccines Involves Prolonged, DC-Focused Antigen Presentation
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200737995
– volume: 27
  start-page: 2212
  year: 2021
  ident: ref_166
  article-title: A Phase 1/2 Trial of an Immune-Modulatory Vaccine against IDO/PD-L1 in Combination with Nivolumab in Metastatic Melanoma
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01544-x
– volume: 4
  start-page: 1060
  year: 2021
  ident: ref_75
  article-title: NetTCR-2.0 Enables Accurate Prediction of TCR-Peptide Binding by Using Paired TCRα and β Sequence Data
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-021-02610-3
– volume: 9
  start-page: eadf3700
  year: 2023
  ident: ref_141
  article-title: TCR-Engineered T Cell Therapy in Solid Tumors: State of the Art and Perspectives
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.adf3700
– volume: 118
  start-page: e2025570118
  year: 2021
  ident: ref_143
  article-title: Characterization of Neoantigen-Specific T Cells in Cancer Resistant to Immune Checkpoint Therapies
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2025570118
– volume: 11
  start-page: 933
  year: 2021
  ident: ref_170
  article-title: Therapeutic Targeting of the Tumor Microenvironment
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-20-1808
– volume: 21
  start-page: 261
  year: 2022
  ident: ref_41
  article-title: Identification of Neoantigens for Individualized Therapeutic Cancer Vaccines
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-021-00387-y
– volume: 38
  start-page: 1131
  year: 2022
  ident: ref_51
  article-title: nextNEOpi: A Comprehensive Pipeline for Computational Neoantigen Prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab759
– volume: 1869
  start-page: 149
  year: 2018
  ident: ref_19
  article-title: Fusion Genes: A Promising Tool Combating against Cancer
  publication-title: Biochim. Biophys. Acta (BBA) Rev. Cancer
  doi: 10.1016/j.bbcan.2017.12.003
– volume: 16
  start-page: 489
  year: 2017
  ident: ref_130
  article-title: Designer Vaccine Nanodiscs for Personalized Cancer Immunotherapy
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4822
– volume: 183
  start-page: 818
  year: 2020
  ident: ref_15
  article-title: Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.015
– volume: 28
  start-page: 1619
  year: 2022
  ident: ref_110
  article-title: Individualized, Heterologous Chimpanzee Adenovirus and Self-Amplifying mRNA Neoantigen Vaccine for Advanced Metastatic Solid Tumors: Phase 1 Trial Interim Results
  publication-title: Nat. Med.
  doi: 10.1038/s41591-022-01937-6
– volume: 28
  start-page: 347
  year: 2023
  ident: ref_94
  article-title: PiTE: TCR-Epitope Binding Affinity Prediction Pipeline Using Transformer-Based Sequence Encoder
  publication-title: Pac. Symp. Biocomput.
– volume: 107
  start-page: 1179
  year: 2016
  ident: ref_157
  article-title: Not All Epidermal Growth Factor Receptor Mutations in Lung Cancer Are Created Equal: Perspectives for Individualized Treatment Strategy
  publication-title: Cancer Sci.
  doi: 10.1111/cas.12996
– volume: 38
  start-page: i220
  year: 2022
  ident: ref_65
  article-title: DeepMHCII: A Novel Binding Core-Aware Deep Interaction Model for Accurate MHC-II Peptide Binding Affinity Prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac225
– volume: 383
  start-page: 2603
  year: 2020
  ident: ref_114
  article-title: Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2034577
– volume: 547
  start-page: 222
  year: 2017
  ident: ref_4
  article-title: Personalized RNA Mutanome Vaccines Mobilize Poly-Specific Therapeutic Immunity against Cancer
  publication-title: Nature
  doi: 10.1038/nature23003
– volume: 6
  start-page: 26
  year: 2021
  ident: ref_7
  article-title: Personalized Neoantigen Pulsed Dendritic Cell Vaccine for Advanced Lung Cancer
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-020-00448-5
– volume: 51
  start-page: W569
  year: 2023
  ident: ref_84
  article-title: TCRmodel2: High-Resolution Modeling of T Cell Receptor Recognition Using Deep Learning
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkad356
– volume: 625
  start-page: 593
  year: 2024
  ident: ref_28
  article-title: Tumour Circular RNAs Elicit Anti-Tumour Immunity by Encoding Cryptic Peptides
  publication-title: Nature
  doi: 10.1038/s41586-023-06834-7
– volume: 24
  start-page: 213
  year: 2024
  ident: ref_40
  article-title: Challenges in Developing Personalized Neoantigen Cancer Vaccines
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-023-00937-y
– volume: 179
  start-page: 5033
  year: 2007
  ident: ref_124
  article-title: CD8+ CTL Priming by Exact Peptide Epitopes in Incomplete Freund’s Adjuvant Induces a Vanishing CTL Response, Whereas Long Peptides Induce Sustained CTL Reactivity
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.179.8.5033
– volume: 6
  start-page: eaaw6071
  year: 2020
  ident: ref_144
  article-title: A Bi-Adjuvant Nanovaccine That Potentiates Immunogenicity of Neoantigen for Combination Immunotherapy of Colorectal Cancer
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw6071
– volume: 386
  start-page: 2112
  year: 2022
  ident: ref_140
  article-title: Neoantigen T-Cell Receptor Gene Therapy in Pancreatic Cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2119662
– volume: 515
  start-page: 577
  year: 2014
  ident: ref_102
  article-title: Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens
  publication-title: Nature
  doi: 10.1038/nature13988
– volume: 32
  start-page: 243
  year: 2022
  ident: ref_23
  article-title: The Dark Proteome: Translation from Noncanonical Open Reading Frames
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2021.10.010
– volume: 14
  start-page: 72
  year: 2023
  ident: ref_54
  article-title: Improved Predictions of Antigen Presentation and TCR Recognition with MixMHCpred2.2 and PRIME2.0 Reveal Potent SARS-CoV-2 CD8+ T-Cell Epitopes
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2022.12.002
– volume: 12
  start-page: 93
  year: 2019
  ident: ref_2
  article-title: Tumor Neoantigens: From Basic Research to Clinical Applications
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-019-0787-5
– volume: 12
  start-page: RP88837
  year: 2023
  ident: ref_88
  article-title: Context-Aware Amino Acid Embedding Advances Analysis of TCR-Epitope Interactions
  publication-title: eLife
– volume: 7
  start-page: 166
  year: 2022
  ident: ref_118
  article-title: mRNA-Based Therapeutics: Powerful and Versatile Tools to Combat Diseases
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-022-01007-w
– volume: 512
  start-page: 324
  year: 2014
  ident: ref_154
  article-title: A Vaccine Targeting Mutant IDH1 Induces Antitumour Immunity
  publication-title: Nature
  doi: 10.1038/nature13387
– ident: ref_50
  doi: 10.1101/2022.09.14.507872
– volume: 348
  start-page: 803
  year: 2015
  ident: ref_108
  article-title: Cancer Immunotherapy. A Dendritic Cell Vaccine Increases the Breadth and Diversity of Melanoma Neoantigen-Specific T Cells
  publication-title: Science
  doi: 10.1126/science.aaa3828
– volume: 12
  start-page: 4699
  year: 2021
  ident: ref_72
  article-title: GIANA Allows Computationally-Efficient TCR Clustering and Multi-Disease Repertoire Classification by Isometric Transformation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25006-7
– volume: 5
  start-page: 376
  year: 2017
  ident: ref_32
  article-title: Identification of Glycopeptides as Posttranslationally Modified Neoantigens in Leukemia
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-16-0280
– volume: 41
  start-page: 15
  year: 2023
  ident: ref_37
  article-title: Challenges in Neoantigen-Directed Therapeutics
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2022.10.013
– volume: 10
  start-page: 6011
  year: 2020
  ident: ref_122
  article-title: Personalized Neoantigen Vaccination with Synthetic Long Peptides: Recent Advances and Future Perspectives
  publication-title: Theranostics
  doi: 10.7150/thno.38742
– volume: 11
  start-page: 67
  year: 2019
  ident: ref_45
  article-title: pTuneos: Prioritizing Tumor Neoantigens from next-Generation Sequencing Data
  publication-title: Genome Med.
  doi: 10.1186/s13073-019-0679-x
– volume: 144
  start-page: 646
  year: 2011
  ident: ref_168
  article-title: Hallmarks of Cancer: The next Generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– ident: ref_96
  doi: 10.3389/fgene.2022.942491
– volume: 11
  start-page: 42
  year: 2020
  ident: ref_56
  article-title: MHCflurry 2.0: Improved Pan-Allele Prediction of MHC Class I-Presented Peptides by Incorporating Antigen Processing
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2020.06.010
– volume: 41
  start-page: 959
  year: 2020
  ident: ref_134
  article-title: Ex Vivo Pulsed Dendritic Cell Vaccination against Cancer
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/s41401-020-0415-5
– ident: ref_175
  doi: 10.1097/FPC.0000000000000538
– volume: 38
  start-page: 199
  year: 2020
  ident: ref_57
  article-title: A Large Peptidome Dataset Improves HLA Class I Epitope Prediction across Most of the Human Population
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0322-9
– ident: ref_76
  doi: 10.1101/373472
– volume: 348
  start-page: 69
  year: 2015
  ident: ref_1
  article-title: Neoantigens in Cancer Immunotherapy
  publication-title: Science
  doi: 10.1126/science.aaa4971
– volume: 7
  start-page: 534
  year: 2019
  ident: ref_150
  article-title: Immunologic Recognition of a Shared P53 Mutated Neoantigen in a Patient with Metastatic Colorectal Cancer
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-18-0686
– volume: 4
  start-page: 1016
  year: 2023
  ident: ref_161
  article-title: ALK Peptide Vaccination Restores the Immunogenicity of ALK-Rearranged Non-Small Cell Lung Cancer
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-023-00591-2
– volume: 21
  start-page: 1019
  year: 2015
  ident: ref_137
  article-title: A Pilot Trial Using Lymphocytes Genetically Engineered with an NY-ESO-1-Reactive T-Cell Receptor: Long-Term Follow-up and Correlates with Response
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-14-2708
– ident: ref_97
  doi: 10.1145/3534678.3539075
– volume: 87
  start-page: 107281
  year: 2020
  ident: ref_77
  article-title: SETE: Sequence-Based Ensemble Learning Approach for TCR Epitope Binding Prediction
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2020.107281
– volume: 18
  start-page: 792
  year: 2021
  ident: ref_172
  article-title: Clinical and Therapeutic Relevance of Cancer-Associated Fibroblasts
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/s41571-021-00546-5
– volume: 31
  start-page: e439
  year: 2013
  ident: ref_99
  article-title: Tumor Exome Analysis Reveals Neoantigen-Specific T-Cell Reactivity in an Ipilimumab-Responsive Melanoma
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2012.47.7521
– volume: 24
  start-page: 5357
  year: 2018
  ident: ref_136
  article-title: Induction of Neoantigen-Specific Cytotoxic T Cells and Construction of T-Cell Receptor-Engineered T Cells for Ovarian Cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-0142
– volume: 18
  start-page: 2459
  year: 2019
  ident: ref_58
  article-title: NNAlign_MA; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved T-cell epitope predictions
  publication-title: Mol. Cell. Proteom.
  doi: 10.1074/mcp.TIR119.001658
– volume: 43
  start-page: D784
  year: 2015
  ident: ref_158
  article-title: Allele Frequency Net 2015 Update: New Features for HLA Epitopes, KIR and Disease and HLA Adverse Drug Reaction Associations
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1166
– volume: 40
  start-page: 1010
  year: 2022
  ident: ref_8
  article-title: Personalized Neoantigen Vaccine NEO-PV-01 with Chemotherapy and Anti-PD-1 as First-Line Treatment for Non-Squamous Non-Small Cell Lung Cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2022.08.003
– volume: 11
  start-page: 1803
  year: 2020
  ident: ref_78
  article-title: Prediction of Specific TCR-Peptide Binding From Large Dictionaries of TCR-Peptide Pairs
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.01803
– volume: 6
  start-page: 49
  year: 2011
  ident: ref_155
  article-title: EGFR Mutations and Lung Cancer
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev-pathol-011110-130206
– ident: ref_36
  doi: 10.1038/s41587-023-01957-8
– volume: 28
  start-page: 946
  year: 2022
  ident: ref_160
  article-title: Immunogenicity and Therapeutic Targeting of a Public Neoantigen Derived from Mutated PIK3CA
  publication-title: Nat. Med.
  doi: 10.1038/s41591-022-01786-3
– volume: 40
  start-page: 209
  year: 2022
  ident: ref_25
  article-title: Unannotated Proteins Expand the MHC-I-Restricted Immunopeptidome in Cancer
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-01021-3
– volume: 368
  start-page: 973
  year: 2020
  ident: ref_33
  article-title: The Human Tumor Microbiome Is Composed of Tumor Type-Specific Intracellular Bacteria
  publication-title: Science
  doi: 10.1126/science.aay9189
– ident: ref_44
  doi: 10.1186/s12859-019-2876-4
– volume: 17
  start-page: 261
  year: 2018
  ident: ref_116
  article-title: mRNA Vaccines—A New Era in Vaccinology
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2017.243
– volume: 27
  start-page: 710
  year: 2019
  ident: ref_119
  article-title: Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2019.02.012
– volume: 384
  start-page: 403
  year: 2020
  ident: ref_115
  article-title: Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2035389
– volume: 18
  start-page: 471
  year: 2018
  ident: ref_17
  article-title: A Causal Mechanism for Childhood Acute Lymphoblastic Leukaemia
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-018-0015-6
– volume: 27
  start-page: 515
  year: 2021
  ident: ref_126
  article-title: Personal Neoantigen Vaccines Induce Persistent Memory T Cell Responses and Epitope Spreading in Patients with Melanoma
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-01206-4
– volume: 8
  start-page: 495
  year: 2013
  ident: ref_127
  article-title: Liposomes and Nanotechnology in Drug Development: Focus on Ocular Targets
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S30725
– ident: ref_59
  doi: 10.3389/fimmu.2021.682103
– volume: 227
  start-page: 113910
  year: 2022
  ident: ref_120
  article-title: The Nano Delivery Systems and Applications of mRNA
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2021.113910
– volume: 2
  start-page: 487
  year: 2021
  ident: ref_12
  article-title: Targeting Public Neoantigens for Cancer Immunotherapy
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-021-00210-y
– volume: 30
  start-page: 4414
  year: 2012
  ident: ref_117
  article-title: RNA-Based Vaccines
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2012.04.060
– volume: 13
  start-page: 6619
  year: 2022
  ident: ref_173
  article-title: Pan-Cancer Single-Cell Analysis Reveals the Heterogeneity and Plasticity of Cancer-Associated Fibroblasts in the Tumor Microenvironment
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-34395-2
– volume: 1
  start-page: e20230021
  year: 2023
  ident: ref_178
  article-title: Recent Advances of Liquid Biopsy: Interdisciplinary Strategies toward Clinical Decision-Making
  publication-title: Interdiscip. Med.
  doi: 10.1002/INMD.20230021
– volume: 39
  start-page: btad284
  year: 2023
  ident: ref_89
  article-title: epiTCR: A Highly Sensitive Predictor for TCR-Peptide Binding
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad284
– volume: 13
  start-page: 89
  year: 2021
  ident: ref_177
  article-title: Modeling Clonal Structure over Narrow Time Frames via Circulating Tumor DNA in Metastatic Breast Cancer
  publication-title: Genome Med.
  doi: 10.1186/s13073-021-00895-x
– volume: 19
  start-page: 747
  year: 2013
  ident: ref_101
  article-title: Mining Exomic Sequencing Data to Identify Mutated Antigens Recognized by Adoptively Transferred Tumor-Reactive T Cells
  publication-title: Nat. Med.
  doi: 10.1038/nm.3161
– volume: 30
  start-page: 1
  year: 2012
  ident: ref_133
  article-title: Decisions about Dendritic Cells: Past, Present, and Future
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-100311-102839
– volume: 34
  start-page: 108815
  year: 2021
  ident: ref_24
  article-title: Most Non-Canonical Proteins Uniquely Populate the Proteome or Immunopeptidome
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.108815
– volume: 184
  start-page: 792
  year: 2021
  ident: ref_174
  article-title: A Pan-Cancer Single-Cell Transcriptional Atlas of Tumor Infiltrating Myeloid Cells
  publication-title: Cell
  doi: 10.1016/j.cell.2021.01.010
SSID ssj0000913867
Score 2.3126311
SecondaryResourceType review_article
Snippet Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 717
SubjectTerms Algorithms
Antigen (tumor-associated)
Antigens
Bacteria
Bioinformatics
Cancer
cancer immunotherapy
Cancer vaccines
Complex formation
Complications and side effects
Diagnosis
Dosage and administration
Effectiveness
Genes
Haplotypes
Health aspects
Histocompatibility antigen HLA
Immune system
Immunogenicity
Immunotherapy
Lymphocytes
Medical research
Mutation
neoantigen
Neoantigens
Peptides
Prevention
Proteins
Therapeutic applications
therapeutic cancer vaccines
Tumor antigens
Tumors
Vaccines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA-yJ1_Eb69uEkEmwspNm7RJHudwTMGxh032FvIJgrRj906Yf_3OSbreboK--Faak7Snv5OckybnF0LeS6Ub1-pYSd_oSoCDrKx2ddW1AYLtqL2zmO_87bg7OhNfz9vz2VFfuCes0AOXD7e0wsk6yZgCC8IxC_OFqGOAlnmjOpHZS8HnzSZTeQzWNVedLOuSHOb1y1_W40r1qm6Q4CafT7bxQ5mu_89B-V6omV3O4WPyaIwV6X55xyfkQeyfkt2TQjZ9vUdPN7lTqz26S082NNTXz8gw2w9EbR_oSAEKDc4WremQ5u3QA7SCS_p91IPif1r6Zcra-vE7htwYEj3D5XEcABpk9Fw9J2eHn08PjqrxeIXKt6xZVzEmJpISLtha6wiBSArSSwn-qRUWsAquBsi4TCrULYCWkL-OhchYTJ1g_AXZ6oc-viJUOWdVxzvXKS9Eq52UKcJo4AGp1jqxIMvbj238yD2OR2D8NDAHQXjMfXgW5ONU46LwbvxF9hPiN8khY3a-AXZkRjsy_7KjBfmA6Bvs1_Bq3o7pCaAgMmSZfcW4lBD9NguyfUcS-qO_W3xrP2YcD1aGIzMgpv3Cc95NxVgT97j1cbgqMjU4EA4yL4vdTSqB2jk0fP0_VH1DHjYQmpVNx9tka315FXcgtFq7t7kX3QA56CNe
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbt5tJL6btuk6BCSSnErB-SJZ1KEhLSQpelJCU3o2cpBDtZbwrpr--MrfVuUsjN2GNh-RvNjB7zDSEfhVSF4cqnwhYqZeAgU61MnlbcQbDtlTUa852_z6rTc_btgl_EBbcuHqtc2cTeULvW4hr5tERuNUyc5F-urlOsGoW7q7GExmOyBSZYygnZOjyezX-MqyzIeikrMexPljC_n_7RFnesu7xAopu-TtnaH_W0_f8b53shZ-96Tp6RpzFmpAcDyM_JI9-8IHvzgXT6dp-erXOoun26R-drOurbl6TdOBdEdeNopAKFBjc2r2kbNtuhR6gNC_oz9oPiei39OmZv_f7rXd8YEj7D5cy3ABEye3avyPnJ8dnRaRrLLKSWZ8Uy9T5kLEhmnM6V8hCQBCesEOCnONOAmTM5QFeKIF3OAbyAPHaZ81nmQ8Wy8jWZNG3j3xIqjdGyKitTScsYV0aI4MEqWOUd14YlZLr62bWNHORYCuOyhrkIwlPfhychn8c3rgb-jQdkDxG_UQ6Zs_sb7eJXHQdirZkReRA-uMwxk2mYf3r4OtDUspAV4wn5hOjXOL7h06yOaQrQQWTKqg9kVgoBUXCRkO07kjAu7d3HK_2po13o6rUWJ-TD-BjfxLNujW9vBpkcHEkJMm8GvRu7BN3uQ8R3Dzf-njwpIPgajhVvk8lyceN3IHhamt04Qv4BWtQb0A
  priority: 102
  providerName: ProQuest
Title Development and Clinical Applications of Therapeutic Cancer Vaccines with Individualized and Shared Neoantigens
URI https://www.ncbi.nlm.nih.gov/pubmed/39066355
https://www.proquest.com/docview/3085057965
https://www.proquest.com/docview/3085121935
https://doaj.org/article/a4b71f7efd0d4b0a924e9edc29328645
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdbC6MvY91Xs3ZBg9ExqFfbki3rYZS2tHSDhjCakTejzzEo9pakZdlfvztbcZKu25uRTrLkO-nuLN3vCHkrCpnqTLpImFRGHBRkpKROojyzYGw7abTCeOfLQX4x4p_H2XgZHh0-4PRe1w7zSY0m1x9-_ZwfwYL_iB4nuOyHt8rgIfQ0SRG7JhEPySboJYH5DC6Dsd_syzJhRZNSFujyiEk2bs8t7-1kizyC4kYfr6msBtn_7_37jlXaaKfzJ-RxMCvpcSsH2-SBq56S_WGLSz0_oFfLMKvpAd2nwyVi9fwZqVeuDlFVWRrQQqHDlfNtWvvVfugpCsyEfg1TovhLl37qAry-_3a26QwxoeFx4GrgIoJ_Tp-T0fnZ1elFFDIxRCaL01nknI-5L7i2KpHSgc3irTBCgCrLuAK2Wp0Ad5nwhU0y4K9HqLvYujh2Pucxe0E2qrpyO4QWWqsiZ7nOC8N5JrUQ3sHGYaSzmdK8Rw4XH7s0AaYcs2Vcl-CuIKfKu5zqkfddix8tRMd_aE-Qfx0dgms3BfXkWxnWaqm4FokXztvYch0rcFEdjA6EmaVFzrMeeYfcL1EoYWhGhUgGmCCCaZXHRcyEAEM57ZG9NUpYuma9eiE_5ULyS4YgghghDO9501VjS7wOV7n6pqVJQNcwoHnZyl03pYXUvvpnzS7ZSsE0ay8d75GN2eTGvQbTaqb7ZPPkbDD80m9-TfSb9fMHSAcjEg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXxBuXAosERUi1srbXXvuAUFtaJbSNIpSi3tx9GSFVcUlSUPhR_EZmbMdJi9Rbb1E8Hu16nvuYbwDeyjQLdZw5X5ow8wUGSF9lOvCT2GKy7TKjFdU7Hw-S3on4chqfrsHfRS0MXatc-MTKUdvS0B55NyJsNSqcjD9d_PSpaxSdri5aaNRqcejmv3HJNv3Y_4zyfReGB_ujvZ7fdBXwTczDme9cwUWRCm1VkGUO429hpZES3XIsFA7R6gBHGskitUGMYy0Ito1bx7krEsEj5HsH1kWU8LAD67v7g-HXdleHUDbTRNbnoVGU8e4vZeiEfBqEBKxT9UVbxr-qTcD_weBailuFuoMHcL_JUdlOrVQPYc2NH8HWsAa5nm-z0bJma7rNtthwCX89fwzlyj0kpsaWNdCjyHDlsJyVxSoftkfaN2Hfmnkw2h9m_bZa7McfZytmBDCNPweuRJUgJNHpEzi5FQE8hc64HLvnwFKtVZpEiU5SI0ScaSkLh17IZM7GSgsPuouPnZsG85xab5znuPYh8eTXxePBh_aNixrv4wbaXZJfS0dI3dUf5eR73hh-roSWQSFdYbkVmitc7zocHVpGFKaJiD14T9LPyZ_g0IxqyiJwgoTMle-kPJISs-7Qg80rlOgHzNXHC_3JGz80zZdW48Gb9jG9SXfrxq68rGkCDFwR0jyr9a6dEk67Skk3bmb-Gu72RsdH-VF_cPgC7oWY-NVXmjehM5tcupeYuM30q8ZaGJzdtoH-A_RyWUE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9NADLdGJyFeEN8EBhwSDCEtaj4uueQBoX1VK4OqQhvaW7hPNGlKRtuByp_GX4edpGk3pL3trWouli_22b47-2eANyLLI5Xk1hc6yn2ODtKXuQr9NDEYbNtcK0n1zl9G6cEx_3SSnKzB30UtDKVVLmxibahNpemMvB8TthoVTiZ916ZFjPcGH89_-tRBim5aF-00GhU5tPPfuH2bfhjuoazfRtFg_2j3wG87DPg6CaKZb60LuMu4MjLMc4u-2BmhhUATnXCJ7BoVItexcJkJE-TbEYRbYGwQWJfyIEa6t2Bd0K6oB-s7-6Px1-6EhxA3s1Q0d6NxnAf9X1LTbfk0jAhkp-6RtvSFdcuA_x3DlXC3dnuDe3C3jVfZdqNg92HNlg9gc9wAXs-32NGyfmu6xTbZeAmFPX8I1UpOEpOlYS0MKRJcuThnlVulw3ZJEyfsWzsPRmfFbNhVjp3-saYmRmDT-HNkK1QPQhWdPoLjGxHAY-iVVWmfAsuUklkapyrNNOdJroRwFi2Szq1JpOIe9Bcfu9At_jm14TgrcB9E4imuiseD990b5w32xzVjd0h-3ThC7a7_qCY_itYIFJIrETphnQkMV4HEva9F7nCVxFGW8sSDdyT9gmwLsqZlWyKBEySUrmI7C2IhMAKPPNi4NBJtgr78eKE_RWuTpsVyBXnwuntMb1KeXWmri2ZMiE4sxjFPGr3rpoTTrsPTZ9cTfwW3cWEWn4ejw-dwJ8IYsMlu3oDebHJhX2AMN1Mv28XC4PtNr89_3Dpddg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+Clinical+Applications+of+Therapeutic+Cancer+Vaccines+with+Individualized+and+Shared+Neoantigens&rft.jtitle=Vaccines+%28Basel%29&rft.au=Hao%2C+Qing&rft.au=Long%2C+Yuhang&rft.au=Yang%2C+Yi&rft.au=Deng%2C+Yiqi&rft.date=2024-07-01&rft.issn=2076-393X&rft.eissn=2076-393X&rft.volume=12&rft.issue=7&rft_id=info:doi/10.3390%2Fvaccines12070717&rft_id=info%3Apmid%2F39066355&rft.externalDocID=39066355
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-393X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-393X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-393X&client=summon