Three-dimensional photoacoustic imaging using a two-dimensional CMUT array

In this paper, we describe using a 2-D array of capacitive micromachined ultrasonic transducers (CMUTs) to perform 3-D photoacoustic and acoustic imaging. A tunable optical parametric oscillator laser system that generates nanosecond laser pulses was used to induce the photoacoustic signals. To demo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 56; no. 11; pp. 2411 - 2419
Main Authors Vaithilingam, S., Ma, T-J., Furukawa, Y., Wygant, I.O., Zhuang, X., De La Zerda, A., Oralkan, Omer, Kamaya, Aya, Gambhir, Sanjiv s., Jeffrey, R. Brooke, Khuri-yakub, Butrus T.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.11.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we describe using a 2-D array of capacitive micromachined ultrasonic transducers (CMUTs) to perform 3-D photoacoustic and acoustic imaging. A tunable optical parametric oscillator laser system that generates nanosecond laser pulses was used to induce the photoacoustic signals. To demonstrate the feasibility of the system, 2 different phantoms were imaged. The first phantom consisted of alternating black and transparent fishing lines of 180 μm and 150 μm diameter, respectively. The second phantom comprised polyethylene tubes, embedded in chicken breast tissue, filled with liquids such as the dye indocyanine green, pig blood, and a mixture of the 2. The tubes were embedded at a depth of 0.8 cm inside the tissue and were at an overall distance of 1.8 cm from the CMUT array. Two-dimensional cross-sectional slices and 3-D volume rendered images of pulse-echo data as well as photoacoustic data are presented. The profile and beamwidths of the fishing line are analyzed and compared with a numerical simulation carried out using the Field II ultrasound simulation software. We investigated using a large aperture (64 x 64 element array) to perform photoacoustic and acoustic imaging by mechanically scanning a smaller CMUT array (16 x 16 elements). Two-dimensional transducer arrays overcome many of the limitations of a mechanically scanned system and enable volumetric imaging. Advantages of CMUT technology for photoacoustic imaging include the ease of integration with electronics, ability to fabricate large, fully populated 2-D arrays with arbitrary geometries, wide-bandwidth arrays and high-frequency arrays. A CMUT based photoacoustic system is proposed as a viable alternative to a piezoelectric transducer based photoacoustic systems.
AbstractList A tunable optical parametric oscillator laser system that generates nanosecond laser pulses was used to induce the photoacoustic signals.
In this paper, we describe using a 2-D array of capacitive micromachined ultrasonic transducers (CMUTs) to perform 3-D photoacoustic and acoustic imaging. A tunable optical parametric oscillator laser system that generates nanosecond laser pulses was used to induce the photoacoustic signals. To demonstrate the feasibility of the system, 2 different phantoms were imaged. The first phantom consisted of alternating black and transparent fishing lines of 180 mu m and 150 mu m diameter, respectively. The second phantom comprised polyethylene tubes, embedded in chicken breast tissue, filled with liquids such as the dye indocyanine green, pig blood, and a mixture of the 2. The tubes were embedded at a depth of 0.8 cm inside the tissue and were at an overall distance of 1.8 cm from the CMUT array. Two-dimensional cross-sectional slices and 3-D volume rendered images of pulse-echo data as well as photoacoustic data are presented. The profile and beamwidths of the fishing line are analyzed and compared with a numerical simulation carried out using the Field II ultrasound simulation software. We investigated using a large aperture (64 x 64 element array) to perform photoacoustic and acoustic imaging by mechanically scanning a smaller CMUT array (16 x 16 elements). Two-dimensional transducer arrays overcome many of the limitations of a mechanically scanned system and enable volumetric imaging. Advantages of CMUT technology for photoacoustic imaging include the ease of integration with electronics, ability to fabricate large, fully populated 2-D arrays with arbitrary geometries, wide-bandwidth arrays and high-frequency arrays. A CMUT based photoacoustic system is proposed as a viable alternative to a piezoelectric transducer based photoacoustic systems.
In this paper, we describe using a 2-D array of capacitive micromachined ultrasonic transducers (CMUTs) to perform 3-D photoacoustic and acoustic imaging. A tunable optical parametric oscillator laser system that generates nanosecond laser pulses was used to induce the photoacoustic signals. To demonstrate the feasibility of the system, 2 different phantoms were imaged. The first phantom consisted of alternating black and transparent fishing lines of 180 mum and 150 mum diameter, respectively. The second phantom comprised polyethylene tubes, embedded in chicken breast tissue, filled with liquids such as the dye indocyanine green, pig blood, and a mixture of the 2. The tubes were embedded at a depth of 0.8 cm inside the tissue and were at an overall distance of 1.8 cm from the CMUT array. Two-dimensional cross-sectional slices and 3-D volume rendered images of pulse-echo data as well as photoacoustic data are presented. The profile and beamwidths of the fishing line are analyzed and compared with a numerical simulation carried out using the Field II ultrasound simulation software. We investigated using a large aperture (64 x 64 element array) to perform photoacoustic and acoustic imaging by mechanically scanning a smaller CMUT array (16 x 16 elements). Two-dimensional transducer arrays overcome many of the limitations of a mechanically scanned system and enable volumetric imaging. Advantages of CMUT technology for photoacoustic imaging include the ease of integration with electronics, ability to fabricate large, fully populated 2-D arrays with arbitrary geometries, wide-bandwidth arrays and high-frequency arrays. A CMUT based photoacoustic system is proposed as a viable alternative to a piezoelectric transducer based photoacoustic systems.
In this paper, we describe using a 2-D array of capacitive micromachined ultrasonic transducers (CMUTs) to perform 3-D photoacoustic and acoustic imaging. A tunable optical parametric oscillator laser system that generates nanosecond laser pulses was used to induce the photoacoustic signals. To demonstrate the feasibility of the system, 2 different phantoms were imaged. The first phantom consisted of alternating black and transparent fishing lines of 180 μm and 150 μm diameter, respectively. The second phantom comprised polyethylene tubes, embedded in chicken breast tissue, filled with liquids such as the dye indocyanine green, pig blood, and a mixture of the 2. The tubes were embedded at a depth of 0.8 cm inside the tissue and were at an overall distance of 1.8 cm from the CMUT array. Two-dimensional cross-sectional slices and 3-D volume rendered images of pulse-echo data as well as photoacoustic data are presented. The profile and beamwidths of the fishing line are analyzed and compared with a numerical simulation carried out using the Field II ultrasound simulation software. We investigated using a large aperture (64 x 64 element array) to perform photoacoustic and acoustic imaging by mechanically scanning a smaller CMUT array (16 x 16 elements). Two-dimensional transducer arrays overcome many of the limitations of a mechanically scanned system and enable volumetric imaging. Advantages of CMUT technology for photoacoustic imaging include the ease of integration with electronics, ability to fabricate large, fully populated 2-D arrays with arbitrary geometries, wide-bandwidth arrays and high-frequency arrays. A CMUT based photoacoustic system is proposed as a viable alternative to a piezoelectric transducer based photoacoustic systems.
In this paper, we describe using a 2-D array of capacitive micromachined ultrasonic transducers (CMUTs) to perform 3-D photoacoustic and acoustic imaging. A tunable optical parametric oscillator laser system that generates nanosecond laser pulses was used to induce the photoacoustic signals. To demonstrate the feasibility of the system, 2 different phantoms were imaged. The first phantom consisted of alternating black and transparent fishing lines of 180 km and 150 km diameter, respectively. The second phantom comprised polyethylene tubes, embedded in chicken breast tissue, filled with liquids such as the dye indocyanine green, pig blood, and a mixture of the 2. The tubes were embedded at a depth of 0.8 cm inside the tissue and were at an overall distance of 1.8 cm from the CMUT array. Two-dimensional cross-sectional slices and 3-D volume rendered images of pulse-echo data as well as photoacoustic data are presented. The profile and beamwidths of the fishing line are analyzed and compared with a numerical simulation carried out using the Field II ultrasound simulation software. We investigated using a large aperture (64 x 64 element array) to perform photoacoustic and acoustic imaging by mechanically scanning a smaller CMUT array (16 x 16 elements). Two-dimensional transducer arrays overcome many of the limitations of a mechanically scanned system and enable volumetric imaging. Advantages of CMUT technology for photoacoustic imaging include the ease of integration with electronics, ability to fabricate large, fully populated 2-D arrays with arbitrary geometries, wide-bandwidth arrays and high-frequency arrays. A CMUT based photoacoustic system is proposed as a viable alternative to a piezoelectric transducer based photoacoustic systems.
Author Ma, T-J.
Furukawa, Y.
De La Zerda, A.
Gambhir, Sanjiv s.
Zhuang, X.
Khuri-yakub, Butrus T.
Vaithilingam, S.
Jeffrey, R. Brooke
Wygant, I.O.
Oralkan, Omer
Kamaya, Aya
Author_xml – sequence: 1
  givenname: S.
  surname: Vaithilingam
  fullname: Vaithilingam, S.
  organization: Edward l. Ginzton Laboratory, Stanford University, Stanford, CA
– sequence: 2
  givenname: T-J.
  surname: Ma
  fullname: Ma, T-J.
  organization: Edward l. Ginzton Laboratory, Stanford University, Stanford, CA
– sequence: 3
  givenname: Y.
  surname: Furukawa
  fullname: Furukawa, Y.
  organization: Edward l. Ginzton Laboratory, Stanford University, Stanford, CA
– sequence: 4
  givenname: I.O.
  surname: Wygant
  fullname: Wygant, I.O.
  organization: Edward l. Ginzton Laboratory, Stanford University, Stanford, CA
– sequence: 5
  givenname: X.
  surname: Zhuang
  fullname: Zhuang, X.
  organization: Edward l. Ginzton Laboratory, Stanford University, Stanford, CA
– sequence: 6
  givenname: A.
  surname: De La Zerda
  fullname: De La Zerda, A.
  organization: Department of Radiology, Molecular Imaging Program, Stanford University, Stanford, CA
– sequence: 7
  givenname: Omer
  surname: Oralkan
  fullname: Oralkan, Omer
  organization: Edward l. Ginzton Laboratory, Stanford University, Stanford, CA
– sequence: 8
  givenname: Aya
  surname: Kamaya
  fullname: Kamaya, Aya
  organization: Department of Radiology, Stanford University Medical Center, Stanford, CA
– sequence: 9
  givenname: Sanjiv s.
  surname: Gambhir
  fullname: Gambhir, Sanjiv s.
  organization: Department of Radiology, Molecular Imaging Program, Stanford University, Stanford, CA
– sequence: 10
  givenname: R. Brooke
  surname: Jeffrey
  fullname: Jeffrey, R. Brooke
  organization: Department of Radiology, Stanford University Medical Center, Stanford, CA
– sequence: 11
  givenname: Butrus T.
  surname: Khuri-yakub
  fullname: Khuri-yakub, Butrus T.
  organization: Edward l. Ginzton Laboratory, Stanford University, Stanford, CA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22491717$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19942528$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1P4zAQBmALsYLyceaAhCIk2FNa22PH9hFVlN0VKy7tOXLdCQSlcbETIf49Lq2K4LB7sQ9-Zjya94jst75FQs4YHTJGzWg6m0zckFNqhgy42SMDJrnMtZFynwyo1jIHyughOYrxmVImhOEH5JAZI7jkekD-TJ8CYr6ol9jG2re2yVZPvvPW-T52tcvqpX2s28esj-vTZt2r_6LHf2fTzIZg307Ij8o2EU-39zGZTW6n41_5_cPd7_HNfe4k5V2OC8WBKyiEVFKCUpICB8RKWZw7Qw1WxoAtdDUvtHJaYuWsBlFUunCaFXBMfm76roJ_6TF25bKODpvGtpiGLrU2oEFL9l-pQDCpmYAkr_8poQCplRAJXn6Dz74PaRHp3ySMMR8TjjbIBR9jwKpchbTH8FYyWq5zKz9yK9e5levcUsXFtm0_X-Li02-DSuBqC2x0tqmCbV0dd45zYZhiKrnzjasRcfcsgRaKc3gHEY2pAw
CODEN ITUCER
CitedBy_id crossref_primary_10_1121_1_4953580
crossref_primary_10_1121_10_0002096
crossref_primary_10_7498_aps_72_20231245
crossref_primary_10_1016_j_ultrasmedbio_2010_12_005
crossref_primary_10_3390_mi12050516
crossref_primary_10_1016_j_pacs_2023_100537
crossref_primary_10_1109_JSTQE_2011_2172192
crossref_primary_10_1109_TUFFC_2016_2567641
crossref_primary_10_1109_TUFFC_2018_2881409
crossref_primary_10_1364_BOE_423707
crossref_primary_10_1177_0161734615583981
crossref_primary_10_1364_BOE_417984
crossref_primary_10_1117_1_JBO_29_2_020502
crossref_primary_10_1117_1_JBO_24_12_121910
crossref_primary_10_1002_sdtp_16918
crossref_primary_10_1364_OE_390612
crossref_primary_10_1109_TUFFC_2018_2792784
crossref_primary_10_1016_j_pacs_2017_09_001
crossref_primary_10_1109_TUFFC_2015_007145
crossref_primary_10_1109_TMI_2013_2253117
crossref_primary_10_1117_1_JBO_17_6_061208
crossref_primary_10_1364_OL_42_000191
crossref_primary_10_1117_1_OE_55_8_085102
crossref_primary_10_1016_j_pacs_2023_100568
crossref_primary_10_1109_TBCAS_2022_3226290
crossref_primary_10_1117_1_JBO_22_4_041005
crossref_primary_10_1016_S1726_4901_10_70110_6
crossref_primary_10_1109_LED_2011_2157655
crossref_primary_10_1088_0960_1317_26_11_115023
crossref_primary_10_1364_OE_25_008022
crossref_primary_10_3390_mi11100928
crossref_primary_10_3390_s19163617
crossref_primary_10_1109_TUFFC_2021_3112917
crossref_primary_10_9773_sosei_51_784
crossref_primary_10_1109_TUFFC_2014_2930
crossref_primary_10_3390_mi11070692
crossref_primary_10_1109_TUFFC_2011_2076
crossref_primary_10_1016_j_ultras_2013_04_003
crossref_primary_10_1109_JMEMS_2016_2601312
crossref_primary_10_3390_s130607345
crossref_primary_10_1109_TUFFC_2016_2620381
crossref_primary_10_1364_OL_400295
crossref_primary_10_1177_016173461103300305
crossref_primary_10_1177_016173461103300303
crossref_primary_10_1371_journal_pone_0152597
crossref_primary_10_1109_TUFFC_2012_2318
crossref_primary_10_1117_1_JBO_22_9_095002
crossref_primary_10_1364_OE_455796
crossref_primary_10_1109_TUFFC_2014_006794
crossref_primary_10_1364_OL_475725
crossref_primary_10_1088_0031_9155_60_8_3111
crossref_primary_10_1088_0960_1317_21_5_054004
crossref_primary_10_1364_BOE_503475
crossref_primary_10_1109_TBME_2012_2183593
crossref_primary_10_1364_OL_476774
crossref_primary_10_1364_OE_458464
crossref_primary_10_3390_app9091904
crossref_primary_10_3390_mi8070210
crossref_primary_10_1063_1_5143155
crossref_primary_10_1088_0031_9155_59_17_4879
crossref_primary_10_1109_TMECH_2011_2159732
crossref_primary_10_1109_TUFFC_2017_2774283
crossref_primary_10_1088_0960_1317_21_2_025013
crossref_primary_10_1109_TMI_2019_2900656
crossref_primary_10_1016_j_pacs_2020_100176
crossref_primary_10_1016_j_pacs_2019_100137
crossref_primary_10_1109_JMEMS_2020_3010773
crossref_primary_10_1109_JMEMS_2021_3096733
Cites_doi 10.1109/ULTSYM.2008.0299
10.1109/84.709646
10.1117/1.2940362
10.1007/s00417-005-0216-z
10.1109/OCEANS.2002.1191991
10.1109/TUFFC.2003.1182117
10.1109/TUFFC.2003.1197968
10.1088/0960-1317/17/5/020
10.1063/1.1777820
10.1016/S0041-624X(99)00085-2
10.1117/12.659459
10.1109/ULTSYM.2006.112
10.1039/b209651j
10.1109/58.677612
10.1364/OL.30.000507
10.1364/AO.37.000798
10.1063/1.2195024
10.1109/58.148536
10.1109/JPROC.2007.913515
10.1109/TUFFC.2006.1642519
10.1109/ULTSYM.2002.1192474
10.1109/58.139123
10.1109/TUFFC.2008.652
10.1038/nnano.2008.231
10.1109/JMEMS.2008.918381
10.1109/ULTSYM.2005.1603249
10.1109/ULTSYM.2007.230
10.1364/OL.29.002506
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
DBID 97E
RIA
RIE
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SP
7U5
8FD
F28
FR3
L7M
7X8
DOI 10.1109/TUFFc.2009.1329
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList Solid State and Superconductivity Abstracts
Engineering Research Database
MEDLINE - Academic

MEDLINE
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1525-8955
EndPage 2419
ExternalDocumentID 2303876681
10_1109_TUFFc_2009_1329
19942528
22491717
5306722
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P50 CA114747
GroupedDBID ---
-~X
.GJ
0R~
186
29I
3EH
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABTAH
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TN5
TWZ
UKR
VH1
XFK
ZXP
ZY4
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SP
7U5
8FD
F28
FR3
L7M
7X8
ID FETCH-LOGICAL-c502t-ed72327364575537750323eef7aebc909ef993a68fb687c85efca8346f86c8163
IEDL.DBID RIE
ISSN 0885-3010
IngestDate Fri Aug 16 22:51:42 EDT 2024
Thu Aug 15 22:28:28 EDT 2024
Fri Aug 16 11:22:45 EDT 2024
Thu Oct 10 20:33:15 EDT 2024
Fri Aug 23 02:42:19 EDT 2024
Sat Sep 28 07:46:01 EDT 2024
Sun Oct 22 16:06:40 EDT 2023
Wed Jun 26 19:26:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Human
Pulse echo method
Tube
Capacitive transducer
Optical resonator
Green function
Modeling
Optical system
Tissue
Vertebrata
Nanosecond
Internal fluid
Breast
Feasibility
Tridimensional image
Chicken
Acoustic antenna
Mammary gland
Tunable laser
Plane antenna
Aves
Acoustic image
Ultrasonic transducer
Photoacoustic effect
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-ed72327364575537750323eef7aebc909ef993a68fb687c85efca8346f86c8163
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 19942528
PQID 858799916
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_36358744
proquest_miscellaneous_889383851
pascalfrancis_primary_22491717
proquest_journals_858799916
ieee_primary_5306722
crossref_primary_10_1109_TUFFc_2009_1329
proquest_miscellaneous_734158143
pubmed_primary_19942528
PublicationCentury 2000
PublicationDate 2009-11-01
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on ultrasonics, ferroelectrics, and frequency control
PublicationTitleAbbrev T-UFFC
PublicationTitleAlternate IEEE Trans Ultrason Ferroelectr Freq Control
PublicationYear 2009
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
jensen (ref32) 1996; 34
ref11
ref10
taroni (ref24) 2003; 2
ref2
daft (ref9) 2004; 1
ref1
ref17
ref16
ref19
ref18
hollman (ref27) 1999; 2
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
ref8
ref7
ref3
ref6
ref5
li (ref4) 2008; 96
faha (ref30) 2006
References_xml – ident: ref19
  doi: 10.1109/ULTSYM.2008.0299
– ident: ref20
  doi: 10.1109/84.709646
– ident: ref3
  doi: 10.1117/1.2940362
– ident: ref26
  doi: 10.1007/s00417-005-0216-z
– ident: ref6
  doi: 10.1109/OCEANS.2002.1191991
– ident: ref28
  doi: 10.1109/TUFFC.2003.1182117
– ident: ref14
  doi: 10.1109/TUFFC.2003.1197968
– ident: ref22
  doi: 10.1088/0960-1317/17/5/020
– ident: ref5
  doi: 10.1063/1.1777820
– ident: ref10
  doi: 10.1016/S0041-624X(99)00085-2
– ident: ref17
  doi: 10.1117/12.659459
– ident: ref18
  doi: 10.1109/ULTSYM.2006.112
– volume: 2
  start-page: 124
  year: 2003
  ident: ref24
  article-title: In vivo absorption and scattering spectroscopy of biological tissues
  publication-title: Photochem Photobiol Sci
  doi: 10.1039/b209651j
  contributor:
    fullname: taroni
– ident: ref13
  doi: 10.1109/58.677612
– ident: ref15
  doi: 10.1364/OL.30.000507
– ident: ref25
  doi: 10.1364/AO.37.000798
– ident: ref1
  doi: 10.1063/1.2195024
– ident: ref21
  doi: 10.1109/58.148536
– volume: 96
  start-page: 481
  year: 2008
  ident: ref4
  article-title: Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2007.913515
  contributor:
    fullname: li
– ident: ref7
  doi: 10.1109/TUFFC.2006.1642519
– volume: 34
  start-page: 351
  year: 1996
  ident: ref32
  article-title: Field: A program for simulating ultrasound systems
  publication-title: Med Biol Eng Comput
  contributor:
    fullname: jensen
– ident: ref11
  doi: 10.1109/ULTSYM.2002.1192474
– ident: ref31
  doi: 10.1109/58.139123
– volume: 1
  start-page: 493
  year: 2004
  ident: ref9
  article-title: Microfabricated ultrasonic transducers monolithically integrated with high voltage electronics
  publication-title: IEEE Ultrasonics Symp
  contributor:
    fullname: daft
– ident: ref12
  doi: 10.1109/TUFFC.2008.652
– ident: ref2
  doi: 10.1038/nnano.2008.231
– ident: ref8
  doi: 10.1109/JMEMS.2008.918381
– ident: ref16
  doi: 10.1109/ULTSYM.2005.1603249
– volume: 2
  start-page: 1257
  year: 1999
  ident: ref27
  article-title: Coherence factor of speckle from a multi-row probe
  publication-title: IEEE Ultrasonics Symp
  contributor:
    fullname: hollman
– ident: ref23
  doi: 10.1109/ULTSYM.2007.230
– start-page: 1
  year: 2006
  ident: ref30
  article-title: Osirix: An open source platform for advanced multimodality medical imaging
  publication-title: Int Conf on Information Communication Technology
  contributor:
    fullname: faha
– ident: ref29
  doi: 10.1364/OL.29.002506
SSID ssj0014492
Score 2.3129122
Snippet In this paper, we describe using a 2-D array of capacitive micromachined ultrasonic transducers (CMUTs) to perform 3-D photoacoustic and acoustic imaging. A...
A tunable optical parametric oscillator laser system that generates nanosecond laser pulses was used to induce the photoacoustic signals.
SourceID proquest
crossref
pubmed
pascalfrancis
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 2411
SubjectTerms Acoustic arrays
Acoustic imaging
Acoustic pulses
Acoustic signal processing
Acoustics
Arrays
Biological and medical sciences
Computer simulation
Computer-Aided Design
Elasticity Imaging Techniques - instrumentation
Equipment Design
Equipment Failure Analysis
Exact sciences and technology
Feasibility Studies
Fundamental areas of phenomenology (including applications)
Imaging
Imaging phantoms
Imaging, Three-Dimensional - instrumentation
Investigative techniques, diagnostic techniques (general aspects)
Lasers
Medical sciences
Miscellaneous. Technology
Nanostructure
Optical imaging
Optical pulse generation
Physics
Reproducibility of Results
Sensitivity and Specificity
Transducers
Transduction; acoustical devices for the generation and reproduction of sound
Tunable circuits and devices
Two dimensional
Ultrasonic imaging
Ultrasonic investigative techniques
Ultrasonic transducer arrays
Ultrasonic transducers
Title Three-dimensional photoacoustic imaging using a two-dimensional CMUT array
URI https://ieeexplore.ieee.org/document/5306722
https://www.ncbi.nlm.nih.gov/pubmed/19942528
https://www.proquest.com/docview/858799916
https://search.proquest.com/docview/36358744
https://search.proquest.com/docview/734158143
https://search.proquest.com/docview/889383851
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RJKT20FIoEKA0hx56aJa8HNvHCnWFkJbTrsQtcpwxrRAbtJtV1f56ZpxsCqgr9RbJoyj2zNifM48P4HPuslrVZLyJ03RBcVkSKZs6cncksJwRopBc7zy5Li5n-dWNuNmCr0MtDCL65DMc8aOP5deNXfGvsnPB-DalDfeV1Lqr1RoiBnnuCZDJaURERhv3bXySWJ9PZ-Ox7VpTMq267xOqyVaZgf3JYeTZVTg30ixpeVzHa7EZePoDaPwOJutP7_JO7karthrZPy-6Ov7v3HbhbY9Ew2-d6byHLZzvwZsn_Qn3YMfnh9rlPlxNSecY1cwF0PXxCB9-NG1D-6mnAwt_3nu6o5Dz6G9DE7a_mmfSF5PZNDSLhfn9AWbj79OLy6inYYisiNM2wloS7JIcr5RCZJIjn2mG6KTByupYoyOQYwrlqkJJqwQ6a1SWF04VVhHeO4DteTPHIy4Ql0VtC0Evq3PpBClLKJNoTFOjElsF8GWtj_Kh67ZR-ltKrEuvRWbN1CVrMYB9XsRBrF-_AM6e6W8YJ6hCN9NEBnCyVmjZu-uyVEJJj5QD-DSMkp9x8MTMkVayzAiZMVVAAOEGCUmAQCjCn5tFFKFDlRHIDeCws6W_0-xN8vjf8zqB1z6O5asgT2G7XazwI8GhtjrzfvAIIh4D6g
link.rule.ids 315,783,787,799,27938,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3Pb9MwFMefpiE0doCxwQhjWw47cCBdfjl2jmiiKmPdKZV2ixznGRCimdpUCP563nPSsE2rxK2Srar2e04-7vvxBThLbVKrmpw3sjldUGwSBcrElo47EiwnRBSS652n19lkll7eiJst-DDUwiCiSz7DEX90sfy6MSv-q-xcMN_G9MB9IpgrumqtIWaQpk4CmQZEQG4b9o18ojA_L2bjsemaU7KwuusUmpO3sgb7ndeR01fh7Ei9pA2ynbLFZvR0r6DxC5iuf3yXefJjtGqrkfnzoK_j_65uD573LOp_7JznJWzhfB9273Qo3IenLkPULA_gsiCrY1CzGkDXycO__da0DT1RnSCY__2nEzzyOZP-q6_99ldzb_bFdFb4erHQv1_BbPypuJgEvRBDYEQYtwHWksBLcsRSCpFIjn3GCaKVGiuThzlawhydKVtlShol0BqtkjSzKjOKiO81bM-bOb7hEnGZ1SYT9GV1Kq0gYwmloxzjWKvIVB68X9ujvO36bZTunhLmpbMi62bmJVvRgwPexGFav38enNyz3zBOsEJ300h6cLQ2aNkf2GWphJKOlT04HUbppHH4RM-RdrJMiM1YLMADf8MMSUggFBHo5imK-FAlhLkeHHa-9G-ZvUu-fXxdp7AzKaZX5dXn6y9H8MxFtVxN5DvYbhcrPCY4aqsTdyb-At3IBzc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+photoacoustic+imaging+using+a+two-dimensional+CMUT+array&rft.jtitle=IEEE+transactions+on+ultrasonics%2C+ferroelectrics%2C+and+frequency+control&rft.au=Vaithilingam%2C+Srikant&rft.au=Ma%2C+Te-Jen&rft.au=Furukawa%2C+Yukio&rft.au=Wygant%2C+Ira+O&rft.date=2009-11-01&rft.eissn=1525-8955&rft.volume=56&rft.issue=11&rft.spage=2411&rft.epage=2419&rft_id=info:doi/10.1109%2FTUFFc.2009.1329&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3010&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3010&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3010&client=summon