Three-dimensional photoacoustic imaging using a two-dimensional CMUT array
In this paper, we describe using a 2-D array of capacitive micromachined ultrasonic transducers (CMUTs) to perform 3-D photoacoustic and acoustic imaging. A tunable optical parametric oscillator laser system that generates nanosecond laser pulses was used to induce the photoacoustic signals. To demo...
Saved in:
Published in | IEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 56; no. 11; pp. 2411 - 2419 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.11.2009
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we describe using a 2-D array of capacitive micromachined ultrasonic transducers (CMUTs) to perform 3-D photoacoustic and acoustic imaging. A tunable optical parametric oscillator laser system that generates nanosecond laser pulses was used to induce the photoacoustic signals. To demonstrate the feasibility of the system, 2 different phantoms were imaged. The first phantom consisted of alternating black and transparent fishing lines of 180 μm and 150 μm diameter, respectively. The second phantom comprised polyethylene tubes, embedded in chicken breast tissue, filled with liquids such as the dye indocyanine green, pig blood, and a mixture of the 2. The tubes were embedded at a depth of 0.8 cm inside the tissue and were at an overall distance of 1.8 cm from the CMUT array. Two-dimensional cross-sectional slices and 3-D volume rendered images of pulse-echo data as well as photoacoustic data are presented. The profile and beamwidths of the fishing line are analyzed and compared with a numerical simulation carried out using the Field II ultrasound simulation software. We investigated using a large aperture (64 x 64 element array) to perform photoacoustic and acoustic imaging by mechanically scanning a smaller CMUT array (16 x 16 elements). Two-dimensional transducer arrays overcome many of the limitations of a mechanically scanned system and enable volumetric imaging. Advantages of CMUT technology for photoacoustic imaging include the ease of integration with electronics, ability to fabricate large, fully populated 2-D arrays with arbitrary geometries, wide-bandwidth arrays and high-frequency arrays. A CMUT based photoacoustic system is proposed as a viable alternative to a piezoelectric transducer based photoacoustic systems. |
---|---|
AbstractList | A tunable optical parametric oscillator laser system that generates nanosecond laser pulses was used to induce the photoacoustic signals. In this paper, we describe using a 2-D array of capacitive micromachined ultrasonic transducers (CMUTs) to perform 3-D photoacoustic and acoustic imaging. A tunable optical parametric oscillator laser system that generates nanosecond laser pulses was used to induce the photoacoustic signals. To demonstrate the feasibility of the system, 2 different phantoms were imaged. The first phantom consisted of alternating black and transparent fishing lines of 180 mu m and 150 mu m diameter, respectively. The second phantom comprised polyethylene tubes, embedded in chicken breast tissue, filled with liquids such as the dye indocyanine green, pig blood, and a mixture of the 2. The tubes were embedded at a depth of 0.8 cm inside the tissue and were at an overall distance of 1.8 cm from the CMUT array. Two-dimensional cross-sectional slices and 3-D volume rendered images of pulse-echo data as well as photoacoustic data are presented. The profile and beamwidths of the fishing line are analyzed and compared with a numerical simulation carried out using the Field II ultrasound simulation software. We investigated using a large aperture (64 x 64 element array) to perform photoacoustic and acoustic imaging by mechanically scanning a smaller CMUT array (16 x 16 elements). Two-dimensional transducer arrays overcome many of the limitations of a mechanically scanned system and enable volumetric imaging. Advantages of CMUT technology for photoacoustic imaging include the ease of integration with electronics, ability to fabricate large, fully populated 2-D arrays with arbitrary geometries, wide-bandwidth arrays and high-frequency arrays. A CMUT based photoacoustic system is proposed as a viable alternative to a piezoelectric transducer based photoacoustic systems. In this paper, we describe using a 2-D array of capacitive micromachined ultrasonic transducers (CMUTs) to perform 3-D photoacoustic and acoustic imaging. A tunable optical parametric oscillator laser system that generates nanosecond laser pulses was used to induce the photoacoustic signals. To demonstrate the feasibility of the system, 2 different phantoms were imaged. The first phantom consisted of alternating black and transparent fishing lines of 180 mum and 150 mum diameter, respectively. The second phantom comprised polyethylene tubes, embedded in chicken breast tissue, filled with liquids such as the dye indocyanine green, pig blood, and a mixture of the 2. The tubes were embedded at a depth of 0.8 cm inside the tissue and were at an overall distance of 1.8 cm from the CMUT array. Two-dimensional cross-sectional slices and 3-D volume rendered images of pulse-echo data as well as photoacoustic data are presented. The profile and beamwidths of the fishing line are analyzed and compared with a numerical simulation carried out using the Field II ultrasound simulation software. We investigated using a large aperture (64 x 64 element array) to perform photoacoustic and acoustic imaging by mechanically scanning a smaller CMUT array (16 x 16 elements). Two-dimensional transducer arrays overcome many of the limitations of a mechanically scanned system and enable volumetric imaging. Advantages of CMUT technology for photoacoustic imaging include the ease of integration with electronics, ability to fabricate large, fully populated 2-D arrays with arbitrary geometries, wide-bandwidth arrays and high-frequency arrays. A CMUT based photoacoustic system is proposed as a viable alternative to a piezoelectric transducer based photoacoustic systems. In this paper, we describe using a 2-D array of capacitive micromachined ultrasonic transducers (CMUTs) to perform 3-D photoacoustic and acoustic imaging. A tunable optical parametric oscillator laser system that generates nanosecond laser pulses was used to induce the photoacoustic signals. To demonstrate the feasibility of the system, 2 different phantoms were imaged. The first phantom consisted of alternating black and transparent fishing lines of 180 μm and 150 μm diameter, respectively. The second phantom comprised polyethylene tubes, embedded in chicken breast tissue, filled with liquids such as the dye indocyanine green, pig blood, and a mixture of the 2. The tubes were embedded at a depth of 0.8 cm inside the tissue and were at an overall distance of 1.8 cm from the CMUT array. Two-dimensional cross-sectional slices and 3-D volume rendered images of pulse-echo data as well as photoacoustic data are presented. The profile and beamwidths of the fishing line are analyzed and compared with a numerical simulation carried out using the Field II ultrasound simulation software. We investigated using a large aperture (64 x 64 element array) to perform photoacoustic and acoustic imaging by mechanically scanning a smaller CMUT array (16 x 16 elements). Two-dimensional transducer arrays overcome many of the limitations of a mechanically scanned system and enable volumetric imaging. Advantages of CMUT technology for photoacoustic imaging include the ease of integration with electronics, ability to fabricate large, fully populated 2-D arrays with arbitrary geometries, wide-bandwidth arrays and high-frequency arrays. A CMUT based photoacoustic system is proposed as a viable alternative to a piezoelectric transducer based photoacoustic systems. In this paper, we describe using a 2-D array of capacitive micromachined ultrasonic transducers (CMUTs) to perform 3-D photoacoustic and acoustic imaging. A tunable optical parametric oscillator laser system that generates nanosecond laser pulses was used to induce the photoacoustic signals. To demonstrate the feasibility of the system, 2 different phantoms were imaged. The first phantom consisted of alternating black and transparent fishing lines of 180 km and 150 km diameter, respectively. The second phantom comprised polyethylene tubes, embedded in chicken breast tissue, filled with liquids such as the dye indocyanine green, pig blood, and a mixture of the 2. The tubes were embedded at a depth of 0.8 cm inside the tissue and were at an overall distance of 1.8 cm from the CMUT array. Two-dimensional cross-sectional slices and 3-D volume rendered images of pulse-echo data as well as photoacoustic data are presented. The profile and beamwidths of the fishing line are analyzed and compared with a numerical simulation carried out using the Field II ultrasound simulation software. We investigated using a large aperture (64 x 64 element array) to perform photoacoustic and acoustic imaging by mechanically scanning a smaller CMUT array (16 x 16 elements). Two-dimensional transducer arrays overcome many of the limitations of a mechanically scanned system and enable volumetric imaging. Advantages of CMUT technology for photoacoustic imaging include the ease of integration with electronics, ability to fabricate large, fully populated 2-D arrays with arbitrary geometries, wide-bandwidth arrays and high-frequency arrays. A CMUT based photoacoustic system is proposed as a viable alternative to a piezoelectric transducer based photoacoustic systems. |
Author | Ma, T-J. Furukawa, Y. De La Zerda, A. Gambhir, Sanjiv s. Zhuang, X. Khuri-yakub, Butrus T. Vaithilingam, S. Jeffrey, R. Brooke Wygant, I.O. Oralkan, Omer Kamaya, Aya |
Author_xml | – sequence: 1 givenname: S. surname: Vaithilingam fullname: Vaithilingam, S. organization: Edward l. Ginzton Laboratory, Stanford University, Stanford, CA – sequence: 2 givenname: T-J. surname: Ma fullname: Ma, T-J. organization: Edward l. Ginzton Laboratory, Stanford University, Stanford, CA – sequence: 3 givenname: Y. surname: Furukawa fullname: Furukawa, Y. organization: Edward l. Ginzton Laboratory, Stanford University, Stanford, CA – sequence: 4 givenname: I.O. surname: Wygant fullname: Wygant, I.O. organization: Edward l. Ginzton Laboratory, Stanford University, Stanford, CA – sequence: 5 givenname: X. surname: Zhuang fullname: Zhuang, X. organization: Edward l. Ginzton Laboratory, Stanford University, Stanford, CA – sequence: 6 givenname: A. surname: De La Zerda fullname: De La Zerda, A. organization: Department of Radiology, Molecular Imaging Program, Stanford University, Stanford, CA – sequence: 7 givenname: Omer surname: Oralkan fullname: Oralkan, Omer organization: Edward l. Ginzton Laboratory, Stanford University, Stanford, CA – sequence: 8 givenname: Aya surname: Kamaya fullname: Kamaya, Aya organization: Department of Radiology, Stanford University Medical Center, Stanford, CA – sequence: 9 givenname: Sanjiv s. surname: Gambhir fullname: Gambhir, Sanjiv s. organization: Department of Radiology, Molecular Imaging Program, Stanford University, Stanford, CA – sequence: 10 givenname: R. Brooke surname: Jeffrey fullname: Jeffrey, R. Brooke organization: Department of Radiology, Stanford University Medical Center, Stanford, CA – sequence: 11 givenname: Butrus T. surname: Khuri-yakub fullname: Khuri-yakub, Butrus T. organization: Edward l. Ginzton Laboratory, Stanford University, Stanford, CA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22491717$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19942528$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U1P4zAQBmALsYLyceaAhCIk2FNa22PH9hFVlN0VKy7tOXLdCQSlcbETIf49Lq2K4LB7sQ9-Zjya94jst75FQs4YHTJGzWg6m0zckFNqhgy42SMDJrnMtZFynwyo1jIHyughOYrxmVImhOEH5JAZI7jkekD-TJ8CYr6ol9jG2re2yVZPvvPW-T52tcvqpX2s28esj-vTZt2r_6LHf2fTzIZg307Ij8o2EU-39zGZTW6n41_5_cPd7_HNfe4k5V2OC8WBKyiEVFKCUpICB8RKWZw7Qw1WxoAtdDUvtHJaYuWsBlFUunCaFXBMfm76roJ_6TF25bKODpvGtpiGLrU2oEFL9l-pQDCpmYAkr_8poQCplRAJXn6Dz74PaRHp3ySMMR8TjjbIBR9jwKpchbTH8FYyWq5zKz9yK9e5levcUsXFtm0_X-Li02-DSuBqC2x0tqmCbV0dd45zYZhiKrnzjasRcfcsgRaKc3gHEY2pAw |
CODEN | ITUCER |
CitedBy_id | crossref_primary_10_1121_1_4953580 crossref_primary_10_1121_10_0002096 crossref_primary_10_7498_aps_72_20231245 crossref_primary_10_1016_j_ultrasmedbio_2010_12_005 crossref_primary_10_3390_mi12050516 crossref_primary_10_1016_j_pacs_2023_100537 crossref_primary_10_1109_JSTQE_2011_2172192 crossref_primary_10_1109_TUFFC_2016_2567641 crossref_primary_10_1109_TUFFC_2018_2881409 crossref_primary_10_1364_BOE_423707 crossref_primary_10_1177_0161734615583981 crossref_primary_10_1364_BOE_417984 crossref_primary_10_1117_1_JBO_29_2_020502 crossref_primary_10_1117_1_JBO_24_12_121910 crossref_primary_10_1002_sdtp_16918 crossref_primary_10_1364_OE_390612 crossref_primary_10_1109_TUFFC_2018_2792784 crossref_primary_10_1016_j_pacs_2017_09_001 crossref_primary_10_1109_TUFFC_2015_007145 crossref_primary_10_1109_TMI_2013_2253117 crossref_primary_10_1117_1_JBO_17_6_061208 crossref_primary_10_1364_OL_42_000191 crossref_primary_10_1117_1_OE_55_8_085102 crossref_primary_10_1016_j_pacs_2023_100568 crossref_primary_10_1109_TBCAS_2022_3226290 crossref_primary_10_1117_1_JBO_22_4_041005 crossref_primary_10_1016_S1726_4901_10_70110_6 crossref_primary_10_1109_LED_2011_2157655 crossref_primary_10_1088_0960_1317_26_11_115023 crossref_primary_10_1364_OE_25_008022 crossref_primary_10_3390_mi11100928 crossref_primary_10_3390_s19163617 crossref_primary_10_1109_TUFFC_2021_3112917 crossref_primary_10_9773_sosei_51_784 crossref_primary_10_1109_TUFFC_2014_2930 crossref_primary_10_3390_mi11070692 crossref_primary_10_1109_TUFFC_2011_2076 crossref_primary_10_1016_j_ultras_2013_04_003 crossref_primary_10_1109_JMEMS_2016_2601312 crossref_primary_10_3390_s130607345 crossref_primary_10_1109_TUFFC_2016_2620381 crossref_primary_10_1364_OL_400295 crossref_primary_10_1177_016173461103300305 crossref_primary_10_1177_016173461103300303 crossref_primary_10_1371_journal_pone_0152597 crossref_primary_10_1109_TUFFC_2012_2318 crossref_primary_10_1117_1_JBO_22_9_095002 crossref_primary_10_1364_OE_455796 crossref_primary_10_1109_TUFFC_2014_006794 crossref_primary_10_1364_OL_475725 crossref_primary_10_1088_0031_9155_60_8_3111 crossref_primary_10_1088_0960_1317_21_5_054004 crossref_primary_10_1364_BOE_503475 crossref_primary_10_1109_TBME_2012_2183593 crossref_primary_10_1364_OL_476774 crossref_primary_10_1364_OE_458464 crossref_primary_10_3390_app9091904 crossref_primary_10_3390_mi8070210 crossref_primary_10_1063_1_5143155 crossref_primary_10_1088_0031_9155_59_17_4879 crossref_primary_10_1109_TMECH_2011_2159732 crossref_primary_10_1109_TUFFC_2017_2774283 crossref_primary_10_1088_0960_1317_21_2_025013 crossref_primary_10_1109_TMI_2019_2900656 crossref_primary_10_1016_j_pacs_2020_100176 crossref_primary_10_1016_j_pacs_2019_100137 crossref_primary_10_1109_JMEMS_2020_3010773 crossref_primary_10_1109_JMEMS_2021_3096733 |
Cites_doi | 10.1109/ULTSYM.2008.0299 10.1109/84.709646 10.1117/1.2940362 10.1007/s00417-005-0216-z 10.1109/OCEANS.2002.1191991 10.1109/TUFFC.2003.1182117 10.1109/TUFFC.2003.1197968 10.1088/0960-1317/17/5/020 10.1063/1.1777820 10.1016/S0041-624X(99)00085-2 10.1117/12.659459 10.1109/ULTSYM.2006.112 10.1039/b209651j 10.1109/58.677612 10.1364/OL.30.000507 10.1364/AO.37.000798 10.1063/1.2195024 10.1109/58.148536 10.1109/JPROC.2007.913515 10.1109/TUFFC.2006.1642519 10.1109/ULTSYM.2002.1192474 10.1109/58.139123 10.1109/TUFFC.2008.652 10.1038/nnano.2008.231 10.1109/JMEMS.2008.918381 10.1109/ULTSYM.2005.1603249 10.1109/ULTSYM.2007.230 10.1364/OL.29.002506 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009 |
DBID | 97E RIA RIE IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SP 7U5 8FD F28 FR3 L7M 7X8 |
DOI | 10.1109/TUFFc.2009.1329 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts MEDLINE - Academic |
DatabaseTitleList | Solid State and Superconductivity Abstracts Engineering Research Database MEDLINE - Academic MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1525-8955 |
EndPage | 2419 |
ExternalDocumentID | 2303876681 10_1109_TUFFc_2009_1329 19942528 22491717 5306722 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P50 CA114747 |
GroupedDBID | --- -~X .GJ 0R~ 186 29I 3EH 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AASAJ ABQJQ ABTAH ABVLG ACGFO ACGFS ACIWK AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS TN5 TWZ UKR VH1 XFK ZXP ZY4 IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SP 7U5 8FD F28 FR3 L7M 7X8 |
ID | FETCH-LOGICAL-c502t-ed72327364575537750323eef7aebc909ef993a68fb687c85efca8346f86c8163 |
IEDL.DBID | RIE |
ISSN | 0885-3010 |
IngestDate | Fri Aug 16 22:51:42 EDT 2024 Thu Aug 15 22:28:28 EDT 2024 Fri Aug 16 11:22:45 EDT 2024 Thu Oct 10 20:33:15 EDT 2024 Fri Aug 23 02:42:19 EDT 2024 Sat Sep 28 07:46:01 EDT 2024 Sun Oct 22 16:06:40 EDT 2023 Wed Jun 26 19:26:59 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Human Pulse echo method Tube Capacitive transducer Optical resonator Green function Modeling Optical system Tissue Vertebrata Nanosecond Internal fluid Breast Feasibility Tridimensional image Chicken Acoustic antenna Mammary gland Tunable laser Plane antenna Aves Acoustic image Ultrasonic transducer Photoacoustic effect |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-ed72327364575537750323eef7aebc909ef993a68fb687c85efca8346f86c8163 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 19942528 |
PQID | 858799916 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_36358744 proquest_miscellaneous_889383851 pascalfrancis_primary_22491717 proquest_journals_858799916 ieee_primary_5306722 crossref_primary_10_1109_TUFFc_2009_1329 proquest_miscellaneous_734158143 pubmed_primary_19942528 |
PublicationCentury | 2000 |
PublicationDate | 2009-11-01 |
PublicationDateYYYYMMDD | 2009-11-01 |
PublicationDate_xml | – month: 11 year: 2009 text: 2009-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States – name: New York |
PublicationTitle | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
PublicationTitleAbbrev | T-UFFC |
PublicationTitleAlternate | IEEE Trans Ultrason Ferroelectr Freq Control |
PublicationYear | 2009 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 jensen (ref32) 1996; 34 ref11 ref10 taroni (ref24) 2003; 2 ref2 daft (ref9) 2004; 1 ref1 ref17 ref16 ref19 ref18 hollman (ref27) 1999; 2 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref29 ref8 ref7 ref3 ref6 ref5 li (ref4) 2008; 96 faha (ref30) 2006 |
References_xml | – ident: ref19 doi: 10.1109/ULTSYM.2008.0299 – ident: ref20 doi: 10.1109/84.709646 – ident: ref3 doi: 10.1117/1.2940362 – ident: ref26 doi: 10.1007/s00417-005-0216-z – ident: ref6 doi: 10.1109/OCEANS.2002.1191991 – ident: ref28 doi: 10.1109/TUFFC.2003.1182117 – ident: ref14 doi: 10.1109/TUFFC.2003.1197968 – ident: ref22 doi: 10.1088/0960-1317/17/5/020 – ident: ref5 doi: 10.1063/1.1777820 – ident: ref10 doi: 10.1016/S0041-624X(99)00085-2 – ident: ref17 doi: 10.1117/12.659459 – ident: ref18 doi: 10.1109/ULTSYM.2006.112 – volume: 2 start-page: 124 year: 2003 ident: ref24 article-title: In vivo absorption and scattering spectroscopy of biological tissues publication-title: Photochem Photobiol Sci doi: 10.1039/b209651j contributor: fullname: taroni – ident: ref13 doi: 10.1109/58.677612 – ident: ref15 doi: 10.1364/OL.30.000507 – ident: ref25 doi: 10.1364/AO.37.000798 – ident: ref1 doi: 10.1063/1.2195024 – ident: ref21 doi: 10.1109/58.148536 – volume: 96 start-page: 481 year: 2008 ident: ref4 article-title: Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography publication-title: Proc IEEE doi: 10.1109/JPROC.2007.913515 contributor: fullname: li – ident: ref7 doi: 10.1109/TUFFC.2006.1642519 – volume: 34 start-page: 351 year: 1996 ident: ref32 article-title: Field: A program for simulating ultrasound systems publication-title: Med Biol Eng Comput contributor: fullname: jensen – ident: ref11 doi: 10.1109/ULTSYM.2002.1192474 – ident: ref31 doi: 10.1109/58.139123 – volume: 1 start-page: 493 year: 2004 ident: ref9 article-title: Microfabricated ultrasonic transducers monolithically integrated with high voltage electronics publication-title: IEEE Ultrasonics Symp contributor: fullname: daft – ident: ref12 doi: 10.1109/TUFFC.2008.652 – ident: ref2 doi: 10.1038/nnano.2008.231 – ident: ref8 doi: 10.1109/JMEMS.2008.918381 – ident: ref16 doi: 10.1109/ULTSYM.2005.1603249 – volume: 2 start-page: 1257 year: 1999 ident: ref27 article-title: Coherence factor of speckle from a multi-row probe publication-title: IEEE Ultrasonics Symp contributor: fullname: hollman – ident: ref23 doi: 10.1109/ULTSYM.2007.230 – start-page: 1 year: 2006 ident: ref30 article-title: Osirix: An open source platform for advanced multimodality medical imaging publication-title: Int Conf on Information Communication Technology contributor: fullname: faha – ident: ref29 doi: 10.1364/OL.29.002506 |
SSID | ssj0014492 |
Score | 2.3129122 |
Snippet | In this paper, we describe using a 2-D array of capacitive micromachined ultrasonic transducers (CMUTs) to perform 3-D photoacoustic and acoustic imaging. A... A tunable optical parametric oscillator laser system that generates nanosecond laser pulses was used to induce the photoacoustic signals. |
SourceID | proquest crossref pubmed pascalfrancis ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2411 |
SubjectTerms | Acoustic arrays Acoustic imaging Acoustic pulses Acoustic signal processing Acoustics Arrays Biological and medical sciences Computer simulation Computer-Aided Design Elasticity Imaging Techniques - instrumentation Equipment Design Equipment Failure Analysis Exact sciences and technology Feasibility Studies Fundamental areas of phenomenology (including applications) Imaging Imaging phantoms Imaging, Three-Dimensional - instrumentation Investigative techniques, diagnostic techniques (general aspects) Lasers Medical sciences Miscellaneous. Technology Nanostructure Optical imaging Optical pulse generation Physics Reproducibility of Results Sensitivity and Specificity Transducers Transduction; acoustical devices for the generation and reproduction of sound Tunable circuits and devices Two dimensional Ultrasonic imaging Ultrasonic investigative techniques Ultrasonic transducer arrays Ultrasonic transducers |
Title | Three-dimensional photoacoustic imaging using a two-dimensional CMUT array |
URI | https://ieeexplore.ieee.org/document/5306722 https://www.ncbi.nlm.nih.gov/pubmed/19942528 https://www.proquest.com/docview/858799916 https://search.proquest.com/docview/36358744 https://search.proquest.com/docview/734158143 https://search.proquest.com/docview/889383851 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RJKT20FIoEKA0hx56aJa8HNvHCnWFkJbTrsQtcpwxrRAbtJtV1f56ZpxsCqgr9RbJoyj2zNifM48P4HPuslrVZLyJ03RBcVkSKZs6cncksJwRopBc7zy5Li5n-dWNuNmCr0MtDCL65DMc8aOP5deNXfGvsnPB-DalDfeV1Lqr1RoiBnnuCZDJaURERhv3bXySWJ9PZ-Ox7VpTMq267xOqyVaZgf3JYeTZVTg30ixpeVzHa7EZePoDaPwOJutP7_JO7karthrZPy-6Ov7v3HbhbY9Ew2-d6byHLZzvwZsn_Qn3YMfnh9rlPlxNSecY1cwF0PXxCB9-NG1D-6mnAwt_3nu6o5Dz6G9DE7a_mmfSF5PZNDSLhfn9AWbj79OLy6inYYisiNM2wloS7JIcr5RCZJIjn2mG6KTByupYoyOQYwrlqkJJqwQ6a1SWF04VVhHeO4DteTPHIy4Ql0VtC0Evq3PpBClLKJNoTFOjElsF8GWtj_Kh67ZR-ltKrEuvRWbN1CVrMYB9XsRBrF-_AM6e6W8YJ6hCN9NEBnCyVmjZu-uyVEJJj5QD-DSMkp9x8MTMkVayzAiZMVVAAOEGCUmAQCjCn5tFFKFDlRHIDeCws6W_0-xN8vjf8zqB1z6O5asgT2G7XazwI8GhtjrzfvAIIh4D6g |
link.rule.ids | 315,783,787,799,27938,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3Pb9MwFMefpiE0doCxwQhjWw47cCBdfjl2jmiiKmPdKZV2ixznGRCimdpUCP563nPSsE2rxK2Srar2e04-7vvxBThLbVKrmpw3sjldUGwSBcrElo47EiwnRBSS652n19lkll7eiJst-DDUwiCiSz7DEX90sfy6MSv-q-xcMN_G9MB9IpgrumqtIWaQpk4CmQZEQG4b9o18ojA_L2bjsemaU7KwuusUmpO3sgb7ndeR01fh7Ei9pA2ynbLFZvR0r6DxC5iuf3yXefJjtGqrkfnzoK_j_65uD573LOp_7JznJWzhfB9273Qo3IenLkPULA_gsiCrY1CzGkDXycO__da0DT1RnSCY__2nEzzyOZP-q6_99ldzb_bFdFb4erHQv1_BbPypuJgEvRBDYEQYtwHWksBLcsRSCpFIjn3GCaKVGiuThzlawhydKVtlShol0BqtkjSzKjOKiO81bM-bOb7hEnGZ1SYT9GV1Kq0gYwmloxzjWKvIVB68X9ujvO36bZTunhLmpbMi62bmJVvRgwPexGFav38enNyz3zBOsEJ300h6cLQ2aNkf2GWphJKOlT04HUbppHH4RM-RdrJMiM1YLMADf8MMSUggFBHo5imK-FAlhLkeHHa-9G-ZvUu-fXxdp7AzKaZX5dXn6y9H8MxFtVxN5DvYbhcrPCY4aqsTdyb-At3IBzc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+photoacoustic+imaging+using+a+two-dimensional+CMUT+array&rft.jtitle=IEEE+transactions+on+ultrasonics%2C+ferroelectrics%2C+and+frequency+control&rft.au=Vaithilingam%2C+Srikant&rft.au=Ma%2C+Te-Jen&rft.au=Furukawa%2C+Yukio&rft.au=Wygant%2C+Ira+O&rft.date=2009-11-01&rft.eissn=1525-8955&rft.volume=56&rft.issue=11&rft.spage=2411&rft.epage=2419&rft_id=info:doi/10.1109%2FTUFFc.2009.1329&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3010&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3010&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3010&client=summon |