SCDC: bulk gene expression deconvolution by multiple single-cell RNA sequencing references

Abstract Recent advances in single-cell RNA sequencing (scRNA-seq) enable characterization of transcriptomic profiles with single-cell resolution and circumvent averaging artifacts associated with traditional bulk RNA sequencing (RNA-seq) data. Here, we propose SCDC, a deconvolution method for bulk...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 22; no. 1; pp. 416 - 427
Main Authors Dong, Meichen, Thennavan, Aatish, Urrutia, Eugene, Li, Yun, Perou, Charles M, Zou, Fei, Jiang, Yuchao
Format Journal Article
LanguageEnglish
Published England Oxford University Press 18.01.2021
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Recent advances in single-cell RNA sequencing (scRNA-seq) enable characterization of transcriptomic profiles with single-cell resolution and circumvent averaging artifacts associated with traditional bulk RNA sequencing (RNA-seq) data. Here, we propose SCDC, a deconvolution method for bulk RNA-seq that leverages cell-type specific gene expression profiles from multiple scRNA-seq reference datasets. SCDC adopts an ENSEMBLE method to integrate deconvolution results from different scRNA-seq datasets that are produced in different laboratories and at different times, implicitly addressing the problem of batch-effect confounding. SCDC is benchmarked against existing methods using both in silico generated pseudo-bulk samples and experimentally mixed cell lines, whose known cell-type compositions serve as ground truths. We show that SCDC outperforms existing methods with improved accuracy of cell-type decomposition under both settings. To illustrate how the ENSEMBLE framework performs in complex tissues under different scenarios, we further apply our method to a human pancreatic islet dataset and a mouse mammary gland dataset. SCDC returns results that are more consistent with experimental designs and that reproduce more significant associations between cell-type proportions and measured phenotypes.
AbstractList Recent advances in single-cell RNA sequencing (scRNA-seq) enable characterization of transcriptomic profiles with single-cell resolution and circumvent averaging artifacts associated with traditional bulk RNA sequencing (RNA-seq) data. Here, we propose SCDC, a deconvolution method for bulk RNA-seq that leverages cell-type specific gene expression profiles from multiple scRNA-seq reference datasets. SCDC adopts an ENSEMBLE method to integrate deconvolution results from different scRNA-seq datasets that are produced in different laboratories and at different times, implicitly addressing the problem of batch-effect confounding. SCDC is benchmarked against existing methods using both in silico generated pseudo-bulk samples and experimentally mixed cell lines, whose known cell-type compositions serve as ground truths. We show that SCDC outperforms existing methods with improved accuracy of cell-type decomposition under both settings. To illustrate how the ENSEMBLE framework performs in complex tissues under different scenarios, we further apply our method to a human pancreatic islet dataset and a mouse mammary gland dataset. SCDC returns results that are more consistent with experimental designs and that reproduce more significant associations between cell-type proportions and measured phenotypes.
Recent advances in single-cell RNA sequencing (scRNA-seq) enable characterization of transcriptomic profiles with single-cell resolution and circumvent averaging artifacts associated with traditional bulk RNA sequencing (RNA-seq) data. Here, we propose SCDC, a deconvolution method for bulk RNA-seq that leverages cell-type specific gene expression profiles from multiple scRNA-seq reference datasets. SCDC adopts an ENSEMBLE method to integrate deconvolution results from different scRNA-seq datasets that are produced in different laboratories and at different times, implicitly addressing the problem of batch-effect confounding. SCDC is benchmarked against existing methods using both in silico generated pseudo-bulk samples and experimentally mixed cell lines, whose known cell-type compositions serve as ground truths. We show that SCDC outperforms existing methods with improved accuracy of cell-type decomposition under both settings. To illustrate how the ENSEMBLE framework performs in complex tissues under different scenarios, we further apply our method to a human pancreatic islet dataset and a mouse mammary gland dataset. SCDC returns results that are more consistent with experimental designs and that reproduce more significant associations between cell-type proportions and measured phenotypes.
Recent advances in single-cell RNA sequencing (scRNA-seq) enable characterization of transcriptomic profiles with single-cell resolution and circumvent averaging artifacts associated with traditional bulk RNA sequencing (RNA-seq) data. Here, we propose SCDC, a deconvolution method for bulk RNA-seq that leverages cell-type specific gene expression profiles from multiple scRNA-seq reference datasets. SCDC adopts an ENSEMBLE method to integrate deconvolution results from different scRNA-seq datasets that are produced in different laboratories and at different times, implicitly addressing the problem of batch-effect confounding. SCDC is benchmarked against existing methods using both in silico generated pseudo-bulk samples and experimentally mixed cell lines, whose known cell-type compositions serve as ground truths. We show that SCDC outperforms existing methods with improved accuracy of cell-type decomposition under both settings. To illustrate how the ENSEMBLE framework performs in complex tissues under different scenarios, we further apply our method to a human pancreatic islet dataset and a mouse mammary gland dataset. SCDC returns results that are more consistent with experimental designs and that reproduce more significant associations between cell-type proportions and measured phenotypes.Recent advances in single-cell RNA sequencing (scRNA-seq) enable characterization of transcriptomic profiles with single-cell resolution and circumvent averaging artifacts associated with traditional bulk RNA sequencing (RNA-seq) data. Here, we propose SCDC, a deconvolution method for bulk RNA-seq that leverages cell-type specific gene expression profiles from multiple scRNA-seq reference datasets. SCDC adopts an ENSEMBLE method to integrate deconvolution results from different scRNA-seq datasets that are produced in different laboratories and at different times, implicitly addressing the problem of batch-effect confounding. SCDC is benchmarked against existing methods using both in silico generated pseudo-bulk samples and experimentally mixed cell lines, whose known cell-type compositions serve as ground truths. We show that SCDC outperforms existing methods with improved accuracy of cell-type decomposition under both settings. To illustrate how the ENSEMBLE framework performs in complex tissues under different scenarios, we further apply our method to a human pancreatic islet dataset and a mouse mammary gland dataset. SCDC returns results that are more consistent with experimental designs and that reproduce more significant associations between cell-type proportions and measured phenotypes.
Abstract Recent advances in single-cell RNA sequencing (scRNA-seq) enable characterization of transcriptomic profiles with single-cell resolution and circumvent averaging artifacts associated with traditional bulk RNA sequencing (RNA-seq) data. Here, we propose SCDC, a deconvolution method for bulk RNA-seq that leverages cell-type specific gene expression profiles from multiple scRNA-seq reference datasets. SCDC adopts an ENSEMBLE method to integrate deconvolution results from different scRNA-seq datasets that are produced in different laboratories and at different times, implicitly addressing the problem of batch-effect confounding. SCDC is benchmarked against existing methods using both in silico generated pseudo-bulk samples and experimentally mixed cell lines, whose known cell-type compositions serve as ground truths. We show that SCDC outperforms existing methods with improved accuracy of cell-type decomposition under both settings. To illustrate how the ENSEMBLE framework performs in complex tissues under different scenarios, we further apply our method to a human pancreatic islet dataset and a mouse mammary gland dataset. SCDC returns results that are more consistent with experimental designs and that reproduce more significant associations between cell-type proportions and measured phenotypes.
Author Thennavan, Aatish
Li, Yun
Urrutia, Eugene
Zou, Fei
Dong, Meichen
Perou, Charles M
Jiang, Yuchao
Author_xml – sequence: 1
  givenname: Meichen
  surname: Dong
  fullname: Dong, Meichen
– sequence: 2
  givenname: Aatish
  surname: Thennavan
  fullname: Thennavan, Aatish
– sequence: 3
  givenname: Eugene
  surname: Urrutia
  fullname: Urrutia, Eugene
– sequence: 4
  givenname: Yun
  surname: Li
  fullname: Li, Yun
– sequence: 5
  givenname: Charles M
  surname: Perou
  fullname: Perou, Charles M
– sequence: 6
  givenname: Fei
  surname: Zou
  fullname: Zou, Fei
  email: feizou@email.unc.edu
– sequence: 7
  givenname: Yuchao
  surname: Jiang
  fullname: Jiang, Yuchao
  email: yuchaoj@email.unc.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31925417$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1rFTEQhoNU7Jc3_gAJiCDC2nzsbja9EMrRVqFU8OPGm5BkZ4-pOcma7BbrrzfLaaUW8SqT5Jl3Zt7ZRzshBkDoCSWvKJH8yDhzZMwv2rYP0B6thahq0tQ7d-JdtJ_zJSGMiI4-QrucStbUVOyhr59Wb1bH2Mz-O15DAAw_xwQ5uxhwDzaGq-jnabmZa7yZ_eRGDzi7sPZQWfAef7w4wRl-zBBsecUJBkglhnyIHg7aZ3h8cx6gL6dvP6_eVecfzt6vTs4r2xA2VT1rCLFESiKYASJkr7kWTHatHoTlg-1rI402VHNujegHVg9NKdLVQ6fbnvAD9HqrO85mA72FMCXt1ZjcRqdrFbVTf_8E902t45USHSNdVxeBFzcCKZY58qQ2Li-z6QBxzopx3rKmbeiCPruHXsY5hTKeYg2TshWSLNTTux39aeXW9gKQLWBTzLlYpqyb9GJzadB5RYlaNqvKZtV2syXl5b2UW9V_ws-3cJzH_3G_AXWos6g
CitedBy_id crossref_primary_10_1016_j_celrep_2023_112786
crossref_primary_10_3390_biomedicines11102613
crossref_primary_10_1093_nar_gkac1044
crossref_primary_10_1038_s41467_022_32691_5
crossref_primary_10_1093_bib_bbac223
crossref_primary_10_1186_s12859_023_05476_w
crossref_primary_10_3389_fmmed_2022_839338
crossref_primary_10_1038_s41467_023_43005_8
crossref_primary_10_2139_ssrn_4093540
crossref_primary_10_1152_ajplung_00401_2020
crossref_primary_10_1038_s41531_023_00568_z
crossref_primary_10_1016_j_joca_2021_11_004
crossref_primary_10_1186_s12920_023_01674_w
crossref_primary_10_1038_s41587_022_01273_7
crossref_primary_10_1016_j_isci_2024_110368
crossref_primary_10_26508_lsa_202000794
crossref_primary_10_1093_bioinformatics_btac825
crossref_primary_10_1186_s12859_023_05230_2
crossref_primary_10_1186_s13059_024_03292_w
crossref_primary_10_1093_bib_bbad026
crossref_primary_10_1093_nargab_lqaf023
crossref_primary_10_1016_j_crmeth_2024_100799
crossref_primary_10_1093_neuonc_noae172
crossref_primary_10_3389_fimmu_2024_1362140
crossref_primary_10_1093_nargab_lqab102
crossref_primary_10_2337_db23_0365
crossref_primary_10_1038_s41598_022_22115_1
crossref_primary_10_1002_cam4_6197
crossref_primary_10_1016_j_arr_2020_101156
crossref_primary_10_1016_j_xgen_2023_100440
crossref_primary_10_1093_bib_bbae626
crossref_primary_10_3389_fgene_2023_1182579
crossref_primary_10_1016_j_neurobiolaging_2023_01_013
crossref_primary_10_1038_s41592_023_02166_6
crossref_primary_10_1038_s41398_022_02279_0
crossref_primary_10_1093_bib_bbae422
crossref_primary_10_3389_fcell_2022_792774
crossref_primary_10_2139_ssrn_3945928
crossref_primary_10_1016_j_compbiomed_2023_106939
crossref_primary_10_1093_bib_bbac002
crossref_primary_10_1093_bib_bbae260
crossref_primary_10_1093_bioinformatics_btac279
crossref_primary_10_1371_journal_pgen_1010825
crossref_primary_10_3390_cancers14092197
crossref_primary_10_1093_nargab_lqae098
crossref_primary_10_1093_bib_bbab546
crossref_primary_10_1038_s41467_023_36062_6
crossref_primary_10_3390_cells11020198
crossref_primary_10_1038_s41419_023_05591_9
crossref_primary_10_1002_jbm4_10535
crossref_primary_10_1186_s13059_021_02362_7
crossref_primary_10_1093_nar_gkab043
crossref_primary_10_1038_s41598_023_39453_3
crossref_primary_10_1038_s42003_023_04791_5
crossref_primary_10_1038_s41523_022_00450_w
crossref_primary_10_1093_bioinformatics_btac605
crossref_primary_10_1186_s13059_023_03123_4
crossref_primary_10_1186_s13059_024_03441_1
crossref_primary_10_1093_bioinformatics_btac563
crossref_primary_10_1038_s41576_021_00370_8
crossref_primary_10_1186_s13059_023_02978_x
crossref_primary_10_3389_fbioe_2022_917086
crossref_primary_10_1101_gr_272344_120
crossref_primary_10_1038_s41598_021_91214_2
crossref_primary_10_1093_bioadv_vbae048
crossref_primary_10_1093_nar_gkad231
crossref_primary_10_1371_journal_pgen_1010251
crossref_primary_10_1016_j_celrep_2024_113862
crossref_primary_10_3389_fbinf_2023_1120290
crossref_primary_10_1042_BSR20221680
crossref_primary_10_1038_s41586_021_03670_5
crossref_primary_10_1038_s41698_023_00436_2
crossref_primary_10_1089_dna_2022_0509
crossref_primary_10_1093_gigascience_giab002
crossref_primary_10_1038_s41380_023_02311_9
crossref_primary_10_1186_s13059_022_02688_w
crossref_primary_10_1038_s41598_020_74917_w
crossref_primary_10_1186_s12859_021_04186_5
crossref_primary_10_7554_eLife_87726_3
crossref_primary_10_1038_s41467_020_19015_1
crossref_primary_10_1038_s41598_024_83775_9
crossref_primary_10_3389_fimmu_2021_788315
crossref_primary_10_3390_cells13100793
crossref_primary_10_1186_s13059_023_03007_7
crossref_primary_10_1038_s41593_022_01164_9
crossref_primary_10_1038_s41598_024_54798_z
crossref_primary_10_1158_2767_9764_CRC_24_0201
crossref_primary_10_1016_j_xpro_2022_101121
crossref_primary_10_1101_gr_275430_121
crossref_primary_10_1038_s41467_023_36961_8
crossref_primary_10_1242_dmm_049086
crossref_primary_10_1371_journal_pcbi_1012742
crossref_primary_10_1016_j_crmeth_2024_100905
crossref_primary_10_1042_BST20210128
crossref_primary_10_1016_j_csbj_2022_11_051
crossref_primary_10_1093_nar_gkae267
crossref_primary_10_1186_s13024_022_00517_z
crossref_primary_10_1080_01621459_2023_2297467
crossref_primary_10_1093_nar_gkab031
crossref_primary_10_3390_cells11223604
crossref_primary_10_1093_bib_bbae585
crossref_primary_10_1016_j_jaut_2022_102919
crossref_primary_10_1038_s43018_022_00356_3
crossref_primary_10_1038_s41467_024_46076_3
crossref_primary_10_7554_eLife_87726
crossref_primary_10_1016_j_immuni_2022_11_002
crossref_primary_10_1038_s41598_023_39864_2
crossref_primary_10_1214_23_AOAS1862
crossref_primary_10_1093_bib_bbaf031
crossref_primary_10_1186_s12859_024_05825_3
crossref_primary_10_1016_j_jare_2024_10_008
crossref_primary_10_1186_s12967_024_05186_8
crossref_primary_10_1002_advs_202306329
crossref_primary_10_1093_bioinformatics_btae263
crossref_primary_10_1186_s13059_024_03353_0
crossref_primary_10_1016_j_stemcr_2022_11_002
crossref_primary_10_1016_j_isci_2021_103292
crossref_primary_10_1093_nargab_lqad109
crossref_primary_10_1186_s12864_024_10728_x
crossref_primary_10_1038_s41586_024_08247_6
crossref_primary_10_1038_s41467_024_55213_x
crossref_primary_10_7554_eLife_93161
crossref_primary_10_3389_fimmu_2024_1483346
crossref_primary_10_1016_j_jcmgh_2023_02_014
crossref_primary_10_1101_gr_278822_123
crossref_primary_10_3390_cancers15030936
crossref_primary_10_1038_s41467_023_40458_9
Cites_doi 10.1016/j.cell.2018.02.001
10.1016/j.cmet.2016.08.020
10.1016/j.molcel.2017.01.023
10.1038/s41467-019-10802-z
10.1214/17-AOAS1110
10.1007/978-3-540-70529-1_419
10.1093/bioinformatics/btu607
10.3389/fcell.2018.00108
10.1016/j.cels.2016.08.011
10.1016/j.cell.2019.05.006
10.1186/1471-2105-14-89
10.1093/bioinformatics/btp616
10.1038/s12276-018-0071-8
10.1369/jhc.5C6684.2005
10.4161/isl.2.3.11815
10.1093/nar/gkv007
10.1093/bioinformatics/bty019
10.1093/nar/30.1.207
10.1038/nbt.4091
10.2337/dc10-1352
10.1016/j.cct.2015.09.002
10.1038/s41467-018-07242-6
10.1038/s41587-019-0114-2
10.1186/s13059-017-1200-8
10.1186/s13059-014-0550-8
10.1093/nar/gku555
10.1038/s41467-018-08023-x
10.1155/2016/8797316
10.1038/nmeth.1439
10.1038/nrg3833
10.1016/j.cell.2019.05.031
10.1073/pnas.0510790103
10.1038/s41592-019-0353-7
10.1038/nmeth.3337
10.1038/nbt.4096
10.1093/bioinformatics/bts635
10.1186/s12935-016-0300-y
10.1016/j.cmet.2016.08.018
10.7554/eLife.27041
10.1038/nmeth.4197
10.1038/s41586-018-0590-4
10.1073/pnas.1402665111
10.1093/bioinformatics/btp352
10.1038/nprot.2014.006
10.1186/s13059-016-1070-5
10.1093/bioinformatics/btt090
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press. 2021
The Author(s) 2020. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press. 2021
– notice: The Author(s) 2020. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
DOI 10.1093/bib/bbz166
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
CrossRef
Genetics Abstracts
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
EndPage 427
ExternalDocumentID PMC7820884
31925417
10_1093_bib_bbz166
10.1093/bib/bbz166
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P01 CA142538
– fundername: NIGMS NIH HHS
  grantid: R35 GM118102
– fundername: NCATS NIH HHS
  grantid: UL1 TR002489
– fundername: NIEHS NIH HHS
  grantid: P30 ES010126
– fundername: NCI NIH HHS
  grantid: R01 CA148761
– fundername: NHLBI NIH HHS
  grantid: R01 HL129132
– fundername: NIEHS NIH HHS
  grantid: T32 ES007018
– fundername: NIGMS NIH HHS
  grantid: R01 GM105785
– fundername: NCI NIH HHS
  grantid: P50 CA058223
– fundername: NIGMS NIH HHS
  grantid: R35 GM138342
– fundername: ;
– fundername: ;
  grantid: T32 ES007018; R01 HL129132; R01 GM105785; P30 ES010126; P01 CA142538; R35 GM118102; UL1 TR002489
– fundername: ;
  grantid: 2017T109
– fundername: ;
  grantid: P50 CA5822; R01 CA148761
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABPQP
ABXZS
ACUXJ
AHGBF
ALXQX
ANAKG
CITATION
JXSIZ
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c502t-d2500c099072be079da3a72986af7c3fcd4b9bab1a33cb7df24f5efe84f8a6d03
IEDL.DBID TOX
ISSN 1477-4054
1467-5463
IngestDate Thu Aug 21 13:13:11 EDT 2025
Fri Jul 11 07:20:53 EDT 2025
Mon Jun 30 08:53:47 EDT 2025
Mon Jul 21 05:59:42 EDT 2025
Tue Jul 01 03:39:29 EDT 2025
Thu Apr 24 23:12:27 EDT 2025
Thu Feb 27 05:38:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords single-cell RNA sequencing
ENSEMBLE
batch effect
bulk RNA sequencing
gene expression deconvolution
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
http://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2020. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-d2500c099072be079da3a72986af7c3fcd4b9bab1a33cb7df24f5efe84f8a6d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://dx.doi.org/10.1093/bib/bbz166
PMID 31925417
PQID 2529967904
PQPubID 26846
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7820884
proquest_miscellaneous_2336256514
proquest_journals_2529967904
pubmed_primary_31925417
crossref_citationtrail_10_1093_bib_bbz166
crossref_primary_10_1093_bib_bbz166
oup_primary_10_1093_bib_bbz166
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-18
PublicationDateYYYYMMDD 2021-01-18
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-18
  day: 18
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2021
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Vanderbei (2021012203431471000_ref49) 2015
Stuart (2021012203431471000_ref52) 2019; 177
Hou (2021012203431471000_ref35) 2016; 2016
Wang (2021012203431471000_ref10) 2014; 31
Osorio F (2021012203431471000_ref50) 2017
Zhong (2021012203431471000_ref8) 2013; 14
Saliba (2021012203431471000_ref11) 2014; 42
Segerstolpe (2021012203431471000_ref28) 2016; 24
Han (2021012203431471000_ref22) 2018; 172
Vallania (2021012203431471000_ref23) 2018; 9
Ziegenhain (2021012203431471000_ref13) 2017; 65
Patro (2021012203431471000_ref46) 2017; 14
Weinstein (2021012203431471000_ref15) 2013
Cabrera (2021012203431471000_ref32) 2006; 103
Tabula Muris Consortium (2021012203431471000_ref36) 2018; 562
Newman (2021012203431471000_ref7) 2015; 12
Yuchao Jiang (2021012203431471000_ref26) 2017; 18
Shen-Orr (2021012203431471000_ref5) 2010; 7
Newman (2021012203431471000_ref18) 2019; 37
Qin (2021012203431471000_ref42) 2016; 16
Welch (2021012203431471000_ref51) 2019; 177
Butler (2021012203431471000_ref24) 2018; 36
Wang (2021012203431471000_ref17) 2019; 10
Michael Borenstein (2021012203431471000_ref40) 2011
Ritchie (2021012203431471000_ref3) 2015; 43
Baron (2021012203431471000_ref16) 2016; 3
Brissova (2021012203431471000_ref33) 2005; 53
Tsoucas (2021012203431471000_ref20) 2019; 10
Regev (2021012203431471000_ref21) 2017; 6
Hwang (2021012203431471000_ref38) 2018; 50
Alexander Dobin (2021012203431471000_ref43) 2013; 29
Love (2021012203431471000_ref2) 2014; 15
Edgar (2021012203431471000_ref14) 2002; 30
Stegle (2021012203431471000_ref12) 2015; 16
Li (2021012203431471000_ref44) 2009; 25
Cobos (2021012203431471000_ref4) 2018; 34
Fadista (2021012203431471000_ref30) 2014; 111
Nguyen (2021012203431471000_ref37) 2018; 6
Robinson (2021012203431471000_ref1) 2010; 26
DerSimonian (2021012203431471000_ref39) 2015; 45
Huh (2021012203431471000_ref47) 2019
Wilson (2021012203431471000_ref48) 2019; 14
Haghverdi (2021012203431471000_ref25) 2018; 36
Xin (2021012203431471000_ref27) 2016; 24
Deng (2021012203431471000_ref53) 2019; 16
Picelli (2021012203431471000_ref29) 2014; 9
Steiner (2021012203431471000_ref31) 2010; 2
Gong (2021012203431471000_ref6) 2013; 29
Becht (2021012203431471000_ref9) 2016; 17
Picard (2021012203431471000_ref45) 2019
Zhu (2021012203431471000_ref41) 2018; 12
Jew (2021012203431471000_ref19) 2019
Kanat (2021012203431471000_ref34) 2011; 34
References_xml – volume: 172
  start-page: 1091
  issue: 5
  year: 2018
  ident: 2021012203431471000_ref22
  article-title: Mapping the mouse cell atlas by microwell-seq
  publication-title: Cell.
  doi: 10.1016/j.cell.2018.02.001
– volume: 24
  start-page: 593
  issue: 4
  year: 2016
  ident: 2021012203431471000_ref28
  article-title: Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2016.08.020
– volume: 65
  start-page: 631
  issue: 4
  year: 2017
  ident: 2021012203431471000_ref13
  article-title: Comparative analysis of single-cell RNA sequencing methods
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2017.01.023
– volume: 10
  start-page: 2975
  issue: 1
  year: 2019
  ident: 2021012203431471000_ref20
  article-title: Accurate estimation of cell-type composition from gene expression data
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-10802-z
– volume: 12
  start-page: 609
  issue: 1
  year: 2018
  ident: 2021012203431471000_ref41
  article-title: A unified statistical framework for single cell and bulk rna sequencing data
  publication-title: Ann Appl Stat
  doi: 10.1214/17-AOAS1110
– year: 2015
  ident: 2021012203431471000_ref49
  article-title: Linear Programming
  doi: 10.1007/978-3-540-70529-1_419
– volume: 31
  start-page: 137
  issue: 1
  year: 2014
  ident: 2021012203431471000_ref10
  article-title: Undo: a bioconductor r package for unsupervised deconvolution of mixed gene expressions in tumor samples
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu607
– volume: 6
  start-page: 108
  issue: 108
  year: 2018
  ident: 2021012203431471000_ref37
  article-title: Experimental considerations for single cell rna sequencing approaches
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2018.00108
– volume: 3
  start-page: 346
  issue: 4
  year: 2016
  ident: 2021012203431471000_ref16
  article-title: A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.08.011
– volume: 177
  start-page: 1873
  issue: 7
  year: 2019
  ident: 2021012203431471000_ref51
  article-title: Single-cell multiomic integration compares and contrasts features of brain cell identity
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.006
– volume: 14
  start-page: 89
  issue: 1
  year: 2013
  ident: 2021012203431471000_ref8
  article-title: Digital sorting of complex tissues for cell type-specific gene expression profiles
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-89
– volume: 26
  start-page: 139
  issue: 1
  year: 2010
  ident: 2021012203431471000_ref1
  article-title: edger: a bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 50
  start-page: 96
  issue: 8
  year: 2018
  ident: 2021012203431471000_ref38
  article-title: Single-cell RNA sequencing technologies and bioinformatics pipelines
  publication-title: Exp Mol Med
  doi: 10.1038/s12276-018-0071-8
– start-page: 1113
  volume-title: Nature genetics
  year: 2013
  ident: 2021012203431471000_ref15
  article-title: Cancer Genome Atlas Research Network. The cancer genome atlas pan-cancer analysis project
– volume: 53
  start-page: 1087
  issue: 9
  year: 2005
  ident: 2021012203431471000_ref33
  article-title: Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy
  publication-title: J Histochem Cytochem
  doi: 10.1369/jhc.5C6684.2005
– volume: 2
  start-page: 135
  issue: 3
  year: 2010
  ident: 2021012203431471000_ref31
  article-title: Pancreatic islet plasticity: interspecies comparison of islet architecture and composition
  publication-title: Islets
  doi: 10.4161/isl.2.3.11815
– volume: 43
  start-page: e47
  issue: 7
  year: 2015
  ident: 2021012203431471000_ref3
  article-title: limma powers differential expression analyses for rna-sequencing and microarray studies
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv007
– year: 2019
  ident: 2021012203431471000_ref47
  article-title: SAME-clustering: Single-cell Aggregated Clustering via Mixture Model Ensemble.
  publication-title: Nucleic Acids Research
– volume: 34
  start-page: 1969
  issue: 11
  year: 2018
  ident: 2021012203431471000_ref4
  article-title: Computational deconvolution of transcriptomics data from mixed cell populations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty019
– volume-title: Introduction to Meta-analysis
  year: 2011
  ident: 2021012203431471000_ref40
– volume: 30
  start-page: 207
  issue: 1
  year: 2002
  ident: 2021012203431471000_ref14
  article-title: Gene expression omnibus: NCBI gene expression and hybridization array data repository
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.1.207
– volume: 36
  start-page: 421
  issue: 5
  year: 2018
  ident: 2021012203431471000_ref25
  article-title: Batch effects in single-cell rna-sequencing data are corrected by matching mutual nearest neighbors
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4091
– volume: 34
  start-page: 1006
  issue: 4
  year: 2011
  ident: 2021012203431471000_ref34
  article-title: The relationship between $\beta $-cell function and glycated hemoglobin: results from the veterans administration genetic epidemiology study
  publication-title: Diabetes Care
  doi: 10.2337/dc10-1352
– volume: 45
  start-page: 139
  year: 2015
  ident: 2021012203431471000_ref39
  article-title: Meta-analysis in clinical trials revisited
  publication-title: Contemp Clin Trials
  doi: 10.1016/j.cct.2015.09.002
– volume: 9
  start-page: 4735
  issue: 1
  year: 2018
  ident: 2021012203431471000_ref23
  article-title: Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07242-6
– volume: 37
  start-page: 773
  year: 2019
  ident: 2021012203431471000_ref18
  article-title: Determining cell type abundance and expression from bulk tissues with digital cytometry
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0114-2
– volume: 18
  start-page: 74
  issue: 1
  year: 2017
  ident: 2021012203431471000_ref26
  article-title: Zhang, and Mingyao Li. Scale: modeling allele-specific gene expression by single-cell rna sequencing
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1200-8
– volume-title: Package ’l1pack’
  year: 2017
  ident: 2021012203431471000_ref50
– year: 2019
  ident: 2021012203431471000_ref45
– volume: 15
  start-page: 550
  issue: 12
  year: 2014
  ident: 2021012203431471000_ref2
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with deseq2
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 42
  start-page: 8845
  issue: 14
  year: 2014
  ident: 2021012203431471000_ref11
  article-title: Single-cell rna-seq: advances and future challenges
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku555
– volume: 10
  start-page: 380
  issue: 1
  year: 2019
  ident: 2021012203431471000_ref17
  article-title: Bulk tissue cell type deconvolution with multi-subject single-cell expression reference
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-08023-x
– volume: 2016
  start-page: 8797316
  year: 2016
  ident: 2021012203431471000_ref35
  article-title: Relationship of hemoglobin a1c with $\beta $ cell function and insulin resistance in newly diagnosed and drug naive type 2 diabetes patients
  publication-title: J Diabetes Res
  doi: 10.1155/2016/8797316
– volume: 7
  start-page: 287
  issue: 4
  year: 2010
  ident: 2021012203431471000_ref5
  article-title: Cell type–specific gene expression differences in complex tissues
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1439
– volume: 16
  start-page: 133
  issue: 3
  year: 2015
  ident: 2021012203431471000_ref12
  article-title: Computational and analytical challenges in single-cell transcriptomics
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3833
– volume: 177
  start-page: 1888
  issue: 7
  year: 2019
  ident: 2021012203431471000_ref52
  article-title: Comprehensive Integration of Single-Cell Data
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– volume: 103
  start-page: 2334
  issue: 7
  year: 2006
  ident: 2021012203431471000_ref32
  article-title: The unique cytoarchitecture of human pancreatic islets has implications for islet cell function
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0510790103
– volume: 16
  start-page: 311
  year: 2019
  ident: 2021012203431471000_ref53
  article-title: Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0353-7
– volume: 14
  start-page: 1
  year: 2019
  ident: 2021012203431471000_ref48
  article-title: ICeD-T Provides Accurate Estimates of Immune Cell Abundance in Tumor Samples by Allowing for Aberrant Gene Expression Patterns
  publication-title: Journal of the American Statistical Association
– volume: 12
  start-page: 453
  issue: 5
  year: 2015
  ident: 2021012203431471000_ref7
  article-title: Robust enumeration of cell subsets from tissue expression profiles
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3337
– volume: 36
  start-page: 411
  year: 2018
  ident: 2021012203431471000_ref24
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4096
– volume: 29
  start-page: 15
  issue: 1
  year: 2013
  ident: 2021012203431471000_ref43
  article-title: Star: ultrafast universal rna-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 16
  start-page: 26
  issue: 1
  year: 2016
  ident: 2021012203431471000_ref42
  article-title: Weight loss reduces basal-like breast cancer through kinome reprogramming
  publication-title: Cancer Cell Int
  doi: 10.1186/s12935-016-0300-y
– volume: 24
  start-page: 608
  issue: 4
  year: 2016
  ident: 2021012203431471000_ref27
  article-title: RNA sequencing of single human islet cells reveals type 2 diabetes genes
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2016.08.018
– volume: 6
  start-page: e27041
  year: 2017
  ident: 2021012203431471000_ref21
  article-title: Science forum: the human cell atlas
  publication-title: Elife
  doi: 10.7554/eLife.27041
– volume: 14
  start-page: 417
  issue: 4
  year: 2017
  ident: 2021012203431471000_ref46
  article-title: Salmon provides fast and bias-aware quantification of transcript expression
  publication-title: Nature methods,
  doi: 10.1038/nmeth.4197
– start-page: 669911
  year: 2019
  ident: 2021012203431471000_ref19
  article-title: Accurate estimation of cell composition in bulk expression through robust integration of single-cell information
  publication-title: bioRxiv
– volume: 562
  start-page: 367
  issue: 7727
  year: 2018
  ident: 2021012203431471000_ref36
  article-title: Single-cell transcriptomics of 20 mouse organs creates a tabula muris
  publication-title: Nature
  doi: 10.1038/s41586-018-0590-4
– volume: 111
  start-page: 13924
  issue: 38
  year: 2014
  ident: 2021012203431471000_ref30
  article-title: Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1402665111
– volume: 25
  start-page: 2078
  issue: 16
  year: 2009
  ident: 2021012203431471000_ref44
  article-title: The sequence alignment/map format and samtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 9
  start-page: 171
  issue: 1
  year: 2014
  ident: 2021012203431471000_ref29
  article-title: Full-length rna-seq from single cells using smart-seq2
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2014.006
– volume: 17
  start-page: 218
  issue: 1
  year: 2016
  ident: 2021012203431471000_ref9
  article-title: Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-1070-5
– volume: 29
  start-page: 1083
  issue: 8
  year: 2013
  ident: 2021012203431471000_ref6
  article-title: DeconRNAseq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-seq data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt090
SSID ssj0020781
Score 2.6088006
Snippet Abstract Recent advances in single-cell RNA sequencing (scRNA-seq) enable characterization of transcriptomic profiles with single-cell resolution and...
Recent advances in single-cell RNA sequencing (scRNA-seq) enable characterization of transcriptomic profiles with single-cell resolution and circumvent...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 416
SubjectTerms Animals
Cell lines
Datasets
Deconvolution
Female
Gene expression
Gene Expression Regulation, Neoplastic
Gene sequencing
Humans
Islets of Langerhans - metabolism
Mammary gland
Mammary glands
Mammary Glands, Animal - metabolism
MCF-7 Cells
Mice
Pancreas
Phenotypes
Reference Standards
Ribonucleic acid
RNA
RNA-Seq - methods
RNA-Seq - standards
Single-Cell Analysis - methods
Single-Cell Analysis - standards
Software - standards
Transcriptomics
Title SCDC: bulk gene expression deconvolution by multiple single-cell RNA sequencing references
URI https://www.ncbi.nlm.nih.gov/pubmed/31925417
https://www.proquest.com/docview/2529967904
https://www.proquest.com/docview/2336256514
https://pubmed.ncbi.nlm.nih.gov/PMC7820884
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swEBelMOjLWNduS9sFle5lD6a2PixlbyVbKIWmsCUQ9mJ0-mClwSlNUpr-9TvFjqlH6F6tH7K5k3x3utPvCPmSMttzxoUk6Hglh9mQgMxFYizaPiZBhvU55PUwvxyLq4mc1EU08y0p_B4_h1s4B3jO8kisjdY3MuSPbiZNWBXpajbEoy14y9S0rq-98CL_LYZ8YV0G78jb2i2kF5Ue98mOL9-TN1WjyNUB-f2r_73_jcJyekdR4576p7qAtaQuhrSP9QqisKKbGkEajwGmPoln8_Tn8ILWZdP4lDbdReaHZDz4MepfJnVXhMTKlC0Sh05LamM-SzHwqUJRc4Muss5NUJYH6wT0wEBmOLegXGAiSJxUi6BN7lL-geyWs9J_ItSZTHGQkaXLCSG9lhq4g9QyozTPoEO-bgRY2JoyPHaumBZV6poXKOyiEnaHnDXY-4ooYyuqi3p4FXCyUVFR76Z5wSQazVz1UtEhp80w7oMoQFP62RIxHE0xeqcZYj5WGm1eg78ZjIMz1SGqpesGEDm22yPl7Z8113akE9RaHP3vu4_JHovVLmmWZPqE7C4elv4zuisL6K5X619TTuzl
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SCDC%3A+bulk+gene+expression+deconvolution+by+multiple+single-cell+RNA+sequencing+references&rft.jtitle=Briefings+in+bioinformatics&rft.au=Dong%2C+Meichen&rft.au=Thennavan%2C+Aatish&rft.au=Urrutia%2C+Eugene&rft.au=Li%2C+Yun&rft.date=2021-01-18&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=22&rft.issue=1&rft.spage=416&rft.epage=427&rft_id=info:doi/10.1093%2Fbib%2Fbbz166&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-4054&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-4054&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-4054&client=summon