SCDC: bulk gene expression deconvolution by multiple single-cell RNA sequencing references
Abstract Recent advances in single-cell RNA sequencing (scRNA-seq) enable characterization of transcriptomic profiles with single-cell resolution and circumvent averaging artifacts associated with traditional bulk RNA sequencing (RNA-seq) data. Here, we propose SCDC, a deconvolution method for bulk...
Saved in:
Published in | Briefings in bioinformatics Vol. 22; no. 1; pp. 416 - 427 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
18.01.2021
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Recent advances in single-cell RNA sequencing (scRNA-seq) enable characterization of transcriptomic profiles with single-cell resolution and circumvent averaging artifacts associated with traditional bulk RNA sequencing (RNA-seq) data. Here, we propose SCDC, a deconvolution method for bulk RNA-seq that leverages cell-type specific gene expression profiles from multiple scRNA-seq reference datasets. SCDC adopts an ENSEMBLE method to integrate deconvolution results from different scRNA-seq datasets that are produced in different laboratories and at different times, implicitly addressing the problem of batch-effect confounding. SCDC is benchmarked against existing methods using both in silico generated pseudo-bulk samples and experimentally mixed cell lines, whose known cell-type compositions serve as ground truths. We show that SCDC outperforms existing methods with improved accuracy of cell-type decomposition under both settings. To illustrate how the ENSEMBLE framework performs in complex tissues under different scenarios, we further apply our method to a human pancreatic islet dataset and a mouse mammary gland dataset. SCDC returns results that are more consistent with experimental designs and that reproduce more significant associations between cell-type proportions and measured phenotypes. |
---|---|
AbstractList | Recent advances in single-cell RNA sequencing (scRNA-seq) enable characterization of transcriptomic profiles with single-cell resolution and circumvent averaging artifacts associated with traditional bulk RNA sequencing (RNA-seq) data. Here, we propose SCDC, a deconvolution method for bulk RNA-seq that leverages cell-type specific gene expression profiles from multiple scRNA-seq reference datasets. SCDC adopts an ENSEMBLE method to integrate deconvolution results from different scRNA-seq datasets that are produced in different laboratories and at different times, implicitly addressing the problem of batch-effect confounding. SCDC is benchmarked against existing methods using both
in silico
generated pseudo-bulk samples and experimentally mixed cell lines, whose known cell-type compositions serve as ground truths. We show that SCDC outperforms existing methods with improved accuracy of cell-type decomposition under both settings. To illustrate how the ENSEMBLE framework performs in complex tissues under different scenarios, we further apply our method to a human pancreatic islet dataset and a mouse mammary gland dataset. SCDC returns results that are more consistent with experimental designs and that reproduce more significant associations between cell-type proportions and measured phenotypes. Recent advances in single-cell RNA sequencing (scRNA-seq) enable characterization of transcriptomic profiles with single-cell resolution and circumvent averaging artifacts associated with traditional bulk RNA sequencing (RNA-seq) data. Here, we propose SCDC, a deconvolution method for bulk RNA-seq that leverages cell-type specific gene expression profiles from multiple scRNA-seq reference datasets. SCDC adopts an ENSEMBLE method to integrate deconvolution results from different scRNA-seq datasets that are produced in different laboratories and at different times, implicitly addressing the problem of batch-effect confounding. SCDC is benchmarked against existing methods using both in silico generated pseudo-bulk samples and experimentally mixed cell lines, whose known cell-type compositions serve as ground truths. We show that SCDC outperforms existing methods with improved accuracy of cell-type decomposition under both settings. To illustrate how the ENSEMBLE framework performs in complex tissues under different scenarios, we further apply our method to a human pancreatic islet dataset and a mouse mammary gland dataset. SCDC returns results that are more consistent with experimental designs and that reproduce more significant associations between cell-type proportions and measured phenotypes. Recent advances in single-cell RNA sequencing (scRNA-seq) enable characterization of transcriptomic profiles with single-cell resolution and circumvent averaging artifacts associated with traditional bulk RNA sequencing (RNA-seq) data. Here, we propose SCDC, a deconvolution method for bulk RNA-seq that leverages cell-type specific gene expression profiles from multiple scRNA-seq reference datasets. SCDC adopts an ENSEMBLE method to integrate deconvolution results from different scRNA-seq datasets that are produced in different laboratories and at different times, implicitly addressing the problem of batch-effect confounding. SCDC is benchmarked against existing methods using both in silico generated pseudo-bulk samples and experimentally mixed cell lines, whose known cell-type compositions serve as ground truths. We show that SCDC outperforms existing methods with improved accuracy of cell-type decomposition under both settings. To illustrate how the ENSEMBLE framework performs in complex tissues under different scenarios, we further apply our method to a human pancreatic islet dataset and a mouse mammary gland dataset. SCDC returns results that are more consistent with experimental designs and that reproduce more significant associations between cell-type proportions and measured phenotypes.Recent advances in single-cell RNA sequencing (scRNA-seq) enable characterization of transcriptomic profiles with single-cell resolution and circumvent averaging artifacts associated with traditional bulk RNA sequencing (RNA-seq) data. Here, we propose SCDC, a deconvolution method for bulk RNA-seq that leverages cell-type specific gene expression profiles from multiple scRNA-seq reference datasets. SCDC adopts an ENSEMBLE method to integrate deconvolution results from different scRNA-seq datasets that are produced in different laboratories and at different times, implicitly addressing the problem of batch-effect confounding. SCDC is benchmarked against existing methods using both in silico generated pseudo-bulk samples and experimentally mixed cell lines, whose known cell-type compositions serve as ground truths. We show that SCDC outperforms existing methods with improved accuracy of cell-type decomposition under both settings. To illustrate how the ENSEMBLE framework performs in complex tissues under different scenarios, we further apply our method to a human pancreatic islet dataset and a mouse mammary gland dataset. SCDC returns results that are more consistent with experimental designs and that reproduce more significant associations between cell-type proportions and measured phenotypes. Abstract Recent advances in single-cell RNA sequencing (scRNA-seq) enable characterization of transcriptomic profiles with single-cell resolution and circumvent averaging artifacts associated with traditional bulk RNA sequencing (RNA-seq) data. Here, we propose SCDC, a deconvolution method for bulk RNA-seq that leverages cell-type specific gene expression profiles from multiple scRNA-seq reference datasets. SCDC adopts an ENSEMBLE method to integrate deconvolution results from different scRNA-seq datasets that are produced in different laboratories and at different times, implicitly addressing the problem of batch-effect confounding. SCDC is benchmarked against existing methods using both in silico generated pseudo-bulk samples and experimentally mixed cell lines, whose known cell-type compositions serve as ground truths. We show that SCDC outperforms existing methods with improved accuracy of cell-type decomposition under both settings. To illustrate how the ENSEMBLE framework performs in complex tissues under different scenarios, we further apply our method to a human pancreatic islet dataset and a mouse mammary gland dataset. SCDC returns results that are more consistent with experimental designs and that reproduce more significant associations between cell-type proportions and measured phenotypes. |
Author | Thennavan, Aatish Li, Yun Urrutia, Eugene Zou, Fei Dong, Meichen Perou, Charles M Jiang, Yuchao |
Author_xml | – sequence: 1 givenname: Meichen surname: Dong fullname: Dong, Meichen – sequence: 2 givenname: Aatish surname: Thennavan fullname: Thennavan, Aatish – sequence: 3 givenname: Eugene surname: Urrutia fullname: Urrutia, Eugene – sequence: 4 givenname: Yun surname: Li fullname: Li, Yun – sequence: 5 givenname: Charles M surname: Perou fullname: Perou, Charles M – sequence: 6 givenname: Fei surname: Zou fullname: Zou, Fei email: feizou@email.unc.edu – sequence: 7 givenname: Yuchao surname: Jiang fullname: Jiang, Yuchao email: yuchaoj@email.unc.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31925417$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1rFTEQhoNU7Jc3_gAJiCDC2nzsbja9EMrRVqFU8OPGm5BkZ4-pOcma7BbrrzfLaaUW8SqT5Jl3Zt7ZRzshBkDoCSWvKJH8yDhzZMwv2rYP0B6thahq0tQ7d-JdtJ_zJSGMiI4-QrucStbUVOyhr59Wb1bH2Mz-O15DAAw_xwQ5uxhwDzaGq-jnabmZa7yZ_eRGDzi7sPZQWfAef7w4wRl-zBBsecUJBkglhnyIHg7aZ3h8cx6gL6dvP6_eVecfzt6vTs4r2xA2VT1rCLFESiKYASJkr7kWTHatHoTlg-1rI402VHNujegHVg9NKdLVQ6fbnvAD9HqrO85mA72FMCXt1ZjcRqdrFbVTf_8E902t45USHSNdVxeBFzcCKZY58qQ2Li-z6QBxzopx3rKmbeiCPruHXsY5hTKeYg2TshWSLNTTux39aeXW9gKQLWBTzLlYpqyb9GJzadB5RYlaNqvKZtV2syXl5b2UW9V_ws-3cJzH_3G_AXWos6g |
CitedBy_id | crossref_primary_10_1016_j_celrep_2023_112786 crossref_primary_10_3390_biomedicines11102613 crossref_primary_10_1093_nar_gkac1044 crossref_primary_10_1038_s41467_022_32691_5 crossref_primary_10_1093_bib_bbac223 crossref_primary_10_1186_s12859_023_05476_w crossref_primary_10_3389_fmmed_2022_839338 crossref_primary_10_1038_s41467_023_43005_8 crossref_primary_10_2139_ssrn_4093540 crossref_primary_10_1152_ajplung_00401_2020 crossref_primary_10_1038_s41531_023_00568_z crossref_primary_10_1016_j_joca_2021_11_004 crossref_primary_10_1186_s12920_023_01674_w crossref_primary_10_1038_s41587_022_01273_7 crossref_primary_10_1016_j_isci_2024_110368 crossref_primary_10_26508_lsa_202000794 crossref_primary_10_1093_bioinformatics_btac825 crossref_primary_10_1186_s12859_023_05230_2 crossref_primary_10_1186_s13059_024_03292_w crossref_primary_10_1093_bib_bbad026 crossref_primary_10_1093_nargab_lqaf023 crossref_primary_10_1016_j_crmeth_2024_100799 crossref_primary_10_1093_neuonc_noae172 crossref_primary_10_3389_fimmu_2024_1362140 crossref_primary_10_1093_nargab_lqab102 crossref_primary_10_2337_db23_0365 crossref_primary_10_1038_s41598_022_22115_1 crossref_primary_10_1002_cam4_6197 crossref_primary_10_1016_j_arr_2020_101156 crossref_primary_10_1016_j_xgen_2023_100440 crossref_primary_10_1093_bib_bbae626 crossref_primary_10_3389_fgene_2023_1182579 crossref_primary_10_1016_j_neurobiolaging_2023_01_013 crossref_primary_10_1038_s41592_023_02166_6 crossref_primary_10_1038_s41398_022_02279_0 crossref_primary_10_1093_bib_bbae422 crossref_primary_10_3389_fcell_2022_792774 crossref_primary_10_2139_ssrn_3945928 crossref_primary_10_1016_j_compbiomed_2023_106939 crossref_primary_10_1093_bib_bbac002 crossref_primary_10_1093_bib_bbae260 crossref_primary_10_1093_bioinformatics_btac279 crossref_primary_10_1371_journal_pgen_1010825 crossref_primary_10_3390_cancers14092197 crossref_primary_10_1093_nargab_lqae098 crossref_primary_10_1093_bib_bbab546 crossref_primary_10_1038_s41467_023_36062_6 crossref_primary_10_3390_cells11020198 crossref_primary_10_1038_s41419_023_05591_9 crossref_primary_10_1002_jbm4_10535 crossref_primary_10_1186_s13059_021_02362_7 crossref_primary_10_1093_nar_gkab043 crossref_primary_10_1038_s41598_023_39453_3 crossref_primary_10_1038_s42003_023_04791_5 crossref_primary_10_1038_s41523_022_00450_w crossref_primary_10_1093_bioinformatics_btac605 crossref_primary_10_1186_s13059_023_03123_4 crossref_primary_10_1186_s13059_024_03441_1 crossref_primary_10_1093_bioinformatics_btac563 crossref_primary_10_1038_s41576_021_00370_8 crossref_primary_10_1186_s13059_023_02978_x crossref_primary_10_3389_fbioe_2022_917086 crossref_primary_10_1101_gr_272344_120 crossref_primary_10_1038_s41598_021_91214_2 crossref_primary_10_1093_bioadv_vbae048 crossref_primary_10_1093_nar_gkad231 crossref_primary_10_1371_journal_pgen_1010251 crossref_primary_10_1016_j_celrep_2024_113862 crossref_primary_10_3389_fbinf_2023_1120290 crossref_primary_10_1042_BSR20221680 crossref_primary_10_1038_s41586_021_03670_5 crossref_primary_10_1038_s41698_023_00436_2 crossref_primary_10_1089_dna_2022_0509 crossref_primary_10_1093_gigascience_giab002 crossref_primary_10_1038_s41380_023_02311_9 crossref_primary_10_1186_s13059_022_02688_w crossref_primary_10_1038_s41598_020_74917_w crossref_primary_10_1186_s12859_021_04186_5 crossref_primary_10_7554_eLife_87726_3 crossref_primary_10_1038_s41467_020_19015_1 crossref_primary_10_1038_s41598_024_83775_9 crossref_primary_10_3389_fimmu_2021_788315 crossref_primary_10_3390_cells13100793 crossref_primary_10_1186_s13059_023_03007_7 crossref_primary_10_1038_s41593_022_01164_9 crossref_primary_10_1038_s41598_024_54798_z crossref_primary_10_1158_2767_9764_CRC_24_0201 crossref_primary_10_1016_j_xpro_2022_101121 crossref_primary_10_1101_gr_275430_121 crossref_primary_10_1038_s41467_023_36961_8 crossref_primary_10_1242_dmm_049086 crossref_primary_10_1371_journal_pcbi_1012742 crossref_primary_10_1016_j_crmeth_2024_100905 crossref_primary_10_1042_BST20210128 crossref_primary_10_1016_j_csbj_2022_11_051 crossref_primary_10_1093_nar_gkae267 crossref_primary_10_1186_s13024_022_00517_z crossref_primary_10_1080_01621459_2023_2297467 crossref_primary_10_1093_nar_gkab031 crossref_primary_10_3390_cells11223604 crossref_primary_10_1093_bib_bbae585 crossref_primary_10_1016_j_jaut_2022_102919 crossref_primary_10_1038_s43018_022_00356_3 crossref_primary_10_1038_s41467_024_46076_3 crossref_primary_10_7554_eLife_87726 crossref_primary_10_1016_j_immuni_2022_11_002 crossref_primary_10_1038_s41598_023_39864_2 crossref_primary_10_1214_23_AOAS1862 crossref_primary_10_1093_bib_bbaf031 crossref_primary_10_1186_s12859_024_05825_3 crossref_primary_10_1016_j_jare_2024_10_008 crossref_primary_10_1186_s12967_024_05186_8 crossref_primary_10_1002_advs_202306329 crossref_primary_10_1093_bioinformatics_btae263 crossref_primary_10_1186_s13059_024_03353_0 crossref_primary_10_1016_j_stemcr_2022_11_002 crossref_primary_10_1016_j_isci_2021_103292 crossref_primary_10_1093_nargab_lqad109 crossref_primary_10_1186_s12864_024_10728_x crossref_primary_10_1038_s41586_024_08247_6 crossref_primary_10_1038_s41467_024_55213_x crossref_primary_10_7554_eLife_93161 crossref_primary_10_3389_fimmu_2024_1483346 crossref_primary_10_1016_j_jcmgh_2023_02_014 crossref_primary_10_1101_gr_278822_123 crossref_primary_10_3390_cancers15030936 crossref_primary_10_1038_s41467_023_40458_9 |
Cites_doi | 10.1016/j.cell.2018.02.001 10.1016/j.cmet.2016.08.020 10.1016/j.molcel.2017.01.023 10.1038/s41467-019-10802-z 10.1214/17-AOAS1110 10.1007/978-3-540-70529-1_419 10.1093/bioinformatics/btu607 10.3389/fcell.2018.00108 10.1016/j.cels.2016.08.011 10.1016/j.cell.2019.05.006 10.1186/1471-2105-14-89 10.1093/bioinformatics/btp616 10.1038/s12276-018-0071-8 10.1369/jhc.5C6684.2005 10.4161/isl.2.3.11815 10.1093/nar/gkv007 10.1093/bioinformatics/bty019 10.1093/nar/30.1.207 10.1038/nbt.4091 10.2337/dc10-1352 10.1016/j.cct.2015.09.002 10.1038/s41467-018-07242-6 10.1038/s41587-019-0114-2 10.1186/s13059-017-1200-8 10.1186/s13059-014-0550-8 10.1093/nar/gku555 10.1038/s41467-018-08023-x 10.1155/2016/8797316 10.1038/nmeth.1439 10.1038/nrg3833 10.1016/j.cell.2019.05.031 10.1073/pnas.0510790103 10.1038/s41592-019-0353-7 10.1038/nmeth.3337 10.1038/nbt.4096 10.1093/bioinformatics/bts635 10.1186/s12935-016-0300-y 10.1016/j.cmet.2016.08.018 10.7554/eLife.27041 10.1038/nmeth.4197 10.1038/s41586-018-0590-4 10.1073/pnas.1402665111 10.1093/bioinformatics/btp352 10.1038/nprot.2014.006 10.1186/s13059-016-1070-5 10.1093/bioinformatics/btt090 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press. 2021 The Author(s) 2020. Published by Oxford University Press. |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press. 2021 – notice: The Author(s) 2020. Published by Oxford University Press. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
DOI | 10.1093/bib/bbz166 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | CrossRef Genetics Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
EndPage | 427 |
ExternalDocumentID | PMC7820884 31925417 10_1093_bib_bbz166 10.1093/bib/bbz166 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P01 CA142538 – fundername: NIGMS NIH HHS grantid: R35 GM118102 – fundername: NCATS NIH HHS grantid: UL1 TR002489 – fundername: NIEHS NIH HHS grantid: P30 ES010126 – fundername: NCI NIH HHS grantid: R01 CA148761 – fundername: NHLBI NIH HHS grantid: R01 HL129132 – fundername: NIEHS NIH HHS grantid: T32 ES007018 – fundername: NIGMS NIH HHS grantid: R01 GM105785 – fundername: NCI NIH HHS grantid: P50 CA058223 – fundername: NIGMS NIH HHS grantid: R35 GM138342 – fundername: ; – fundername: ; grantid: T32 ES007018; R01 HL129132; R01 GM105785; P30 ES010126; P01 CA142538; R35 GM118102; UL1 TR002489 – fundername: ; grantid: 2017T109 – fundername: ; grantid: P50 CA5822; R01 CA148761 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABPQP ABXZS ACUXJ AHGBF ALXQX ANAKG CITATION JXSIZ CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c502t-d2500c099072be079da3a72986af7c3fcd4b9bab1a33cb7df24f5efe84f8a6d03 |
IEDL.DBID | TOX |
ISSN | 1477-4054 1467-5463 |
IngestDate | Thu Aug 21 13:13:11 EDT 2025 Fri Jul 11 07:20:53 EDT 2025 Mon Jun 30 08:53:47 EDT 2025 Mon Jul 21 05:59:42 EDT 2025 Tue Jul 01 03:39:29 EDT 2025 Thu Apr 24 23:12:27 EDT 2025 Thu Feb 27 05:38:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | single-cell RNA sequencing ENSEMBLE batch effect bulk RNA sequencing gene expression deconvolution |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com http://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2020. Published by Oxford University Press. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-d2500c099072be079da3a72986af7c3fcd4b9bab1a33cb7df24f5efe84f8a6d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://dx.doi.org/10.1093/bib/bbz166 |
PMID | 31925417 |
PQID | 2529967904 |
PQPubID | 26846 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7820884 proquest_miscellaneous_2336256514 proquest_journals_2529967904 pubmed_primary_31925417 crossref_citationtrail_10_1093_bib_bbz166 crossref_primary_10_1093_bib_bbz166 oup_primary_10_1093_bib_bbz166 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-18 |
PublicationDateYYYYMMDD | 2021-01-18 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2021 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Vanderbei (2021012203431471000_ref49) 2015 Stuart (2021012203431471000_ref52) 2019; 177 Hou (2021012203431471000_ref35) 2016; 2016 Wang (2021012203431471000_ref10) 2014; 31 Osorio F (2021012203431471000_ref50) 2017 Zhong (2021012203431471000_ref8) 2013; 14 Saliba (2021012203431471000_ref11) 2014; 42 Segerstolpe (2021012203431471000_ref28) 2016; 24 Han (2021012203431471000_ref22) 2018; 172 Vallania (2021012203431471000_ref23) 2018; 9 Ziegenhain (2021012203431471000_ref13) 2017; 65 Patro (2021012203431471000_ref46) 2017; 14 Weinstein (2021012203431471000_ref15) 2013 Cabrera (2021012203431471000_ref32) 2006; 103 Tabula Muris Consortium (2021012203431471000_ref36) 2018; 562 Newman (2021012203431471000_ref7) 2015; 12 Yuchao Jiang (2021012203431471000_ref26) 2017; 18 Shen-Orr (2021012203431471000_ref5) 2010; 7 Newman (2021012203431471000_ref18) 2019; 37 Qin (2021012203431471000_ref42) 2016; 16 Welch (2021012203431471000_ref51) 2019; 177 Butler (2021012203431471000_ref24) 2018; 36 Wang (2021012203431471000_ref17) 2019; 10 Michael Borenstein (2021012203431471000_ref40) 2011 Ritchie (2021012203431471000_ref3) 2015; 43 Baron (2021012203431471000_ref16) 2016; 3 Brissova (2021012203431471000_ref33) 2005; 53 Tsoucas (2021012203431471000_ref20) 2019; 10 Regev (2021012203431471000_ref21) 2017; 6 Hwang (2021012203431471000_ref38) 2018; 50 Alexander Dobin (2021012203431471000_ref43) 2013; 29 Love (2021012203431471000_ref2) 2014; 15 Edgar (2021012203431471000_ref14) 2002; 30 Stegle (2021012203431471000_ref12) 2015; 16 Li (2021012203431471000_ref44) 2009; 25 Cobos (2021012203431471000_ref4) 2018; 34 Fadista (2021012203431471000_ref30) 2014; 111 Nguyen (2021012203431471000_ref37) 2018; 6 Robinson (2021012203431471000_ref1) 2010; 26 DerSimonian (2021012203431471000_ref39) 2015; 45 Huh (2021012203431471000_ref47) 2019 Wilson (2021012203431471000_ref48) 2019; 14 Haghverdi (2021012203431471000_ref25) 2018; 36 Xin (2021012203431471000_ref27) 2016; 24 Deng (2021012203431471000_ref53) 2019; 16 Picelli (2021012203431471000_ref29) 2014; 9 Steiner (2021012203431471000_ref31) 2010; 2 Gong (2021012203431471000_ref6) 2013; 29 Becht (2021012203431471000_ref9) 2016; 17 Picard (2021012203431471000_ref45) 2019 Zhu (2021012203431471000_ref41) 2018; 12 Jew (2021012203431471000_ref19) 2019 Kanat (2021012203431471000_ref34) 2011; 34 |
References_xml | – volume: 172 start-page: 1091 issue: 5 year: 2018 ident: 2021012203431471000_ref22 article-title: Mapping the mouse cell atlas by microwell-seq publication-title: Cell. doi: 10.1016/j.cell.2018.02.001 – volume: 24 start-page: 593 issue: 4 year: 2016 ident: 2021012203431471000_ref28 article-title: Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes publication-title: Cell Metab doi: 10.1016/j.cmet.2016.08.020 – volume: 65 start-page: 631 issue: 4 year: 2017 ident: 2021012203431471000_ref13 article-title: Comparative analysis of single-cell RNA sequencing methods publication-title: Mol Cell doi: 10.1016/j.molcel.2017.01.023 – volume: 10 start-page: 2975 issue: 1 year: 2019 ident: 2021012203431471000_ref20 article-title: Accurate estimation of cell-type composition from gene expression data publication-title: Nat Commun doi: 10.1038/s41467-019-10802-z – volume: 12 start-page: 609 issue: 1 year: 2018 ident: 2021012203431471000_ref41 article-title: A unified statistical framework for single cell and bulk rna sequencing data publication-title: Ann Appl Stat doi: 10.1214/17-AOAS1110 – year: 2015 ident: 2021012203431471000_ref49 article-title: Linear Programming doi: 10.1007/978-3-540-70529-1_419 – volume: 31 start-page: 137 issue: 1 year: 2014 ident: 2021012203431471000_ref10 article-title: Undo: a bioconductor r package for unsupervised deconvolution of mixed gene expressions in tumor samples publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu607 – volume: 6 start-page: 108 issue: 108 year: 2018 ident: 2021012203431471000_ref37 article-title: Experimental considerations for single cell rna sequencing approaches publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2018.00108 – volume: 3 start-page: 346 issue: 4 year: 2016 ident: 2021012203431471000_ref16 article-title: A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure publication-title: Cell Syst doi: 10.1016/j.cels.2016.08.011 – volume: 177 start-page: 1873 issue: 7 year: 2019 ident: 2021012203431471000_ref51 article-title: Single-cell multiomic integration compares and contrasts features of brain cell identity publication-title: Cell doi: 10.1016/j.cell.2019.05.006 – volume: 14 start-page: 89 issue: 1 year: 2013 ident: 2021012203431471000_ref8 article-title: Digital sorting of complex tissues for cell type-specific gene expression profiles publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-89 – volume: 26 start-page: 139 issue: 1 year: 2010 ident: 2021012203431471000_ref1 article-title: edger: a bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 50 start-page: 96 issue: 8 year: 2018 ident: 2021012203431471000_ref38 article-title: Single-cell RNA sequencing technologies and bioinformatics pipelines publication-title: Exp Mol Med doi: 10.1038/s12276-018-0071-8 – start-page: 1113 volume-title: Nature genetics year: 2013 ident: 2021012203431471000_ref15 article-title: Cancer Genome Atlas Research Network. The cancer genome atlas pan-cancer analysis project – volume: 53 start-page: 1087 issue: 9 year: 2005 ident: 2021012203431471000_ref33 article-title: Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy publication-title: J Histochem Cytochem doi: 10.1369/jhc.5C6684.2005 – volume: 2 start-page: 135 issue: 3 year: 2010 ident: 2021012203431471000_ref31 article-title: Pancreatic islet plasticity: interspecies comparison of islet architecture and composition publication-title: Islets doi: 10.4161/isl.2.3.11815 – volume: 43 start-page: e47 issue: 7 year: 2015 ident: 2021012203431471000_ref3 article-title: limma powers differential expression analyses for rna-sequencing and microarray studies publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv007 – year: 2019 ident: 2021012203431471000_ref47 article-title: SAME-clustering: Single-cell Aggregated Clustering via Mixture Model Ensemble. publication-title: Nucleic Acids Research – volume: 34 start-page: 1969 issue: 11 year: 2018 ident: 2021012203431471000_ref4 article-title: Computational deconvolution of transcriptomics data from mixed cell populations publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty019 – volume-title: Introduction to Meta-analysis year: 2011 ident: 2021012203431471000_ref40 – volume: 30 start-page: 207 issue: 1 year: 2002 ident: 2021012203431471000_ref14 article-title: Gene expression omnibus: NCBI gene expression and hybridization array data repository publication-title: Nucleic Acids Res doi: 10.1093/nar/30.1.207 – volume: 36 start-page: 421 issue: 5 year: 2018 ident: 2021012203431471000_ref25 article-title: Batch effects in single-cell rna-sequencing data are corrected by matching mutual nearest neighbors publication-title: Nat Biotechnol doi: 10.1038/nbt.4091 – volume: 34 start-page: 1006 issue: 4 year: 2011 ident: 2021012203431471000_ref34 article-title: The relationship between $\beta $-cell function and glycated hemoglobin: results from the veterans administration genetic epidemiology study publication-title: Diabetes Care doi: 10.2337/dc10-1352 – volume: 45 start-page: 139 year: 2015 ident: 2021012203431471000_ref39 article-title: Meta-analysis in clinical trials revisited publication-title: Contemp Clin Trials doi: 10.1016/j.cct.2015.09.002 – volume: 9 start-page: 4735 issue: 1 year: 2018 ident: 2021012203431471000_ref23 article-title: Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases publication-title: Nat Commun doi: 10.1038/s41467-018-07242-6 – volume: 37 start-page: 773 year: 2019 ident: 2021012203431471000_ref18 article-title: Determining cell type abundance and expression from bulk tissues with digital cytometry publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0114-2 – volume: 18 start-page: 74 issue: 1 year: 2017 ident: 2021012203431471000_ref26 article-title: Zhang, and Mingyao Li. Scale: modeling allele-specific gene expression by single-cell rna sequencing publication-title: Genome Biol doi: 10.1186/s13059-017-1200-8 – volume-title: Package ’l1pack’ year: 2017 ident: 2021012203431471000_ref50 – year: 2019 ident: 2021012203431471000_ref45 – volume: 15 start-page: 550 issue: 12 year: 2014 ident: 2021012203431471000_ref2 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with deseq2 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 42 start-page: 8845 issue: 14 year: 2014 ident: 2021012203431471000_ref11 article-title: Single-cell rna-seq: advances and future challenges publication-title: Nucleic Acids Res doi: 10.1093/nar/gku555 – volume: 10 start-page: 380 issue: 1 year: 2019 ident: 2021012203431471000_ref17 article-title: Bulk tissue cell type deconvolution with multi-subject single-cell expression reference publication-title: Nat Commun doi: 10.1038/s41467-018-08023-x – volume: 2016 start-page: 8797316 year: 2016 ident: 2021012203431471000_ref35 article-title: Relationship of hemoglobin a1c with $\beta $ cell function and insulin resistance in newly diagnosed and drug naive type 2 diabetes patients publication-title: J Diabetes Res doi: 10.1155/2016/8797316 – volume: 7 start-page: 287 issue: 4 year: 2010 ident: 2021012203431471000_ref5 article-title: Cell type–specific gene expression differences in complex tissues publication-title: Nat Methods doi: 10.1038/nmeth.1439 – volume: 16 start-page: 133 issue: 3 year: 2015 ident: 2021012203431471000_ref12 article-title: Computational and analytical challenges in single-cell transcriptomics publication-title: Nat Rev Genet doi: 10.1038/nrg3833 – volume: 177 start-page: 1888 issue: 7 year: 2019 ident: 2021012203431471000_ref52 article-title: Comprehensive Integration of Single-Cell Data publication-title: Cell doi: 10.1016/j.cell.2019.05.031 – volume: 103 start-page: 2334 issue: 7 year: 2006 ident: 2021012203431471000_ref32 article-title: The unique cytoarchitecture of human pancreatic islets has implications for islet cell function publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0510790103 – volume: 16 start-page: 311 year: 2019 ident: 2021012203431471000_ref53 article-title: Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning publication-title: Nat Methods doi: 10.1038/s41592-019-0353-7 – volume: 14 start-page: 1 year: 2019 ident: 2021012203431471000_ref48 article-title: ICeD-T Provides Accurate Estimates of Immune Cell Abundance in Tumor Samples by Allowing for Aberrant Gene Expression Patterns publication-title: Journal of the American Statistical Association – volume: 12 start-page: 453 issue: 5 year: 2015 ident: 2021012203431471000_ref7 article-title: Robust enumeration of cell subsets from tissue expression profiles publication-title: Nat Methods doi: 10.1038/nmeth.3337 – volume: 36 start-page: 411 year: 2018 ident: 2021012203431471000_ref24 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nat Biotechnol doi: 10.1038/nbt.4096 – volume: 29 start-page: 15 issue: 1 year: 2013 ident: 2021012203431471000_ref43 article-title: Star: ultrafast universal rna-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 16 start-page: 26 issue: 1 year: 2016 ident: 2021012203431471000_ref42 article-title: Weight loss reduces basal-like breast cancer through kinome reprogramming publication-title: Cancer Cell Int doi: 10.1186/s12935-016-0300-y – volume: 24 start-page: 608 issue: 4 year: 2016 ident: 2021012203431471000_ref27 article-title: RNA sequencing of single human islet cells reveals type 2 diabetes genes publication-title: Cell Metab doi: 10.1016/j.cmet.2016.08.018 – volume: 6 start-page: e27041 year: 2017 ident: 2021012203431471000_ref21 article-title: Science forum: the human cell atlas publication-title: Elife doi: 10.7554/eLife.27041 – volume: 14 start-page: 417 issue: 4 year: 2017 ident: 2021012203431471000_ref46 article-title: Salmon provides fast and bias-aware quantification of transcript expression publication-title: Nature methods, doi: 10.1038/nmeth.4197 – start-page: 669911 year: 2019 ident: 2021012203431471000_ref19 article-title: Accurate estimation of cell composition in bulk expression through robust integration of single-cell information publication-title: bioRxiv – volume: 562 start-page: 367 issue: 7727 year: 2018 ident: 2021012203431471000_ref36 article-title: Single-cell transcriptomics of 20 mouse organs creates a tabula muris publication-title: Nature doi: 10.1038/s41586-018-0590-4 – volume: 111 start-page: 13924 issue: 38 year: 2014 ident: 2021012203431471000_ref30 article-title: Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1402665111 – volume: 25 start-page: 2078 issue: 16 year: 2009 ident: 2021012203431471000_ref44 article-title: The sequence alignment/map format and samtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 9 start-page: 171 issue: 1 year: 2014 ident: 2021012203431471000_ref29 article-title: Full-length rna-seq from single cells using smart-seq2 publication-title: Nat Protoc doi: 10.1038/nprot.2014.006 – volume: 17 start-page: 218 issue: 1 year: 2016 ident: 2021012203431471000_ref9 article-title: Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression publication-title: Genome Biol doi: 10.1186/s13059-016-1070-5 – volume: 29 start-page: 1083 issue: 8 year: 2013 ident: 2021012203431471000_ref6 article-title: DeconRNAseq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-seq data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt090 |
SSID | ssj0020781 |
Score | 2.6088006 |
Snippet | Abstract
Recent advances in single-cell RNA sequencing (scRNA-seq) enable characterization of transcriptomic profiles with single-cell resolution and... Recent advances in single-cell RNA sequencing (scRNA-seq) enable characterization of transcriptomic profiles with single-cell resolution and circumvent... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 416 |
SubjectTerms | Animals Cell lines Datasets Deconvolution Female Gene expression Gene Expression Regulation, Neoplastic Gene sequencing Humans Islets of Langerhans - metabolism Mammary gland Mammary glands Mammary Glands, Animal - metabolism MCF-7 Cells Mice Pancreas Phenotypes Reference Standards Ribonucleic acid RNA RNA-Seq - methods RNA-Seq - standards Single-Cell Analysis - methods Single-Cell Analysis - standards Software - standards Transcriptomics |
Title | SCDC: bulk gene expression deconvolution by multiple single-cell RNA sequencing references |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31925417 https://www.proquest.com/docview/2529967904 https://www.proquest.com/docview/2336256514 https://pubmed.ncbi.nlm.nih.gov/PMC7820884 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swEBelMOjLWNduS9sFle5lD6a2PixlbyVbKIWmsCUQ9mJ0-mClwSlNUpr-9TvFjqlH6F6tH7K5k3x3utPvCPmSMttzxoUk6Hglh9mQgMxFYizaPiZBhvU55PUwvxyLq4mc1EU08y0p_B4_h1s4B3jO8kisjdY3MuSPbiZNWBXpajbEoy14y9S0rq-98CL_LYZ8YV0G78jb2i2kF5Ue98mOL9-TN1WjyNUB-f2r_73_jcJyekdR4576p7qAtaQuhrSP9QqisKKbGkEajwGmPoln8_Tn8ILWZdP4lDbdReaHZDz4MepfJnVXhMTKlC0Sh05LamM-SzHwqUJRc4Muss5NUJYH6wT0wEBmOLegXGAiSJxUi6BN7lL-geyWs9J_ItSZTHGQkaXLCSG9lhq4g9QyozTPoEO-bgRY2JoyPHaumBZV6poXKOyiEnaHnDXY-4ooYyuqi3p4FXCyUVFR76Z5wSQazVz1UtEhp80w7oMoQFP62RIxHE0xeqcZYj5WGm1eg78ZjIMz1SGqpesGEDm22yPl7Z8113akE9RaHP3vu4_JHovVLmmWZPqE7C4elv4zuisL6K5X619TTuzl |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SCDC%3A+bulk+gene+expression+deconvolution+by+multiple+single-cell+RNA+sequencing+references&rft.jtitle=Briefings+in+bioinformatics&rft.au=Dong%2C+Meichen&rft.au=Thennavan%2C+Aatish&rft.au=Urrutia%2C+Eugene&rft.au=Li%2C+Yun&rft.date=2021-01-18&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=22&rft.issue=1&rft.spage=416&rft.epage=427&rft_id=info:doi/10.1093%2Fbib%2Fbbz166&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-4054&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-4054&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-4054&client=summon |