Combining Graph Contrastive Embedding and Multi-head Cross-Attention Transfer for Cross-Domain Recommendation
Cross-domain recommendation (CDR) has become an important research direction in the field of recommender systems due to the increasing demand for personalized recommendations across different domains. However, CDR faces multiple challenges, including data sparsity, popularity bias, and long-tail pro...
Saved in:
Published in | Data Science and Engineering Vol. 8; no. 3; pp. 247 - 262 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.09.2023
Springer Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cross-domain recommendation (CDR) has become an important research direction in the field of recommender systems due to the increasing demand for personalized recommendations across different domains. However, CDR faces multiple challenges, including data sparsity, popularity bias, and long-tail problems. To address these challenges, we propose a novel framework that combines graph contrastive embedding and multi-head cross-attention transfer for cross-domain recommendation, called GCE-MCAT. Specifically, in the pre-training process, we generate more uniform user and item embeddings through contrastive learning, effectively solving the problem of inconsistent data embedding space distribution and recommendation popularity bias. Moreover, we propose a multi-head cross-attention transfer mechanism that allows the model to extract user common and specific domain features from multiple perspectives and perform cross-domain bidirectional knowledge transfer. Finally, we propose a cross-domain feature fusion mechanism that dynamically assigns weights to common user features and specific domain features. This enables the model to more effectively learn common user interests. We evaluate the proposed framework on three real-world CDR datasets and show that GCE-MCAT consistently and significantly improves recommendation performance compared to state-of-the-art methods. In particular, the proposed framework has demonstrated remarkable effectiveness in addressing long-tail distribution and enhancing recommendation novelty, providing users with more diversified recommendations and reducing popularity bias. |
---|---|
AbstractList | Cross-domain recommendation (CDR) has become an important research direction in the field of recommender systems due to the increasing demand for personalized recommendations across different domains. However, CDR faces multiple challenges, including data sparsity, popularity bias, and long-tail problems. To address these challenges, we propose a novel framework that combines graph contrastive embedding and multi-head cross-attention transfer for cross-domain recommendation, called GCE-MCAT. Specifically, in the pre-training process, we generate more uniform user and item embeddings through contrastive learning, effectively solving the problem of inconsistent data embedding space distribution and recommendation popularity bias. Moreover, we propose a multi-head cross-attention transfer mechanism that allows the model to extract user common and specific domain features from multiple perspectives and perform cross-domain bidirectional knowledge transfer. Finally, we propose a cross-domain feature fusion mechanism that dynamically assigns weights to common user features and specific domain features. This enables the model to more effectively learn common user interests. We evaluate the proposed framework on three real-world CDR datasets and show that GCE-MCAT consistently and significantly improves recommendation performance compared to state-of-the-art methods. In particular, the proposed framework has demonstrated remarkable effectiveness in addressing long-tail distribution and enhancing recommendation novelty, providing users with more diversified recommendations and reducing popularity bias. Abstract Cross-domain recommendation (CDR) has become an important research direction in the field of recommender systems due to the increasing demand for personalized recommendations across different domains. However, CDR faces multiple challenges, including data sparsity, popularity bias, and long-tail problems. To address these challenges, we propose a novel framework that combines graph contrastive embedding and multi-head cross-attention transfer for cross-domain recommendation, called GCE-MCAT. Specifically, in the pre-training process, we generate more uniform user and item embeddings through contrastive learning, effectively solving the problem of inconsistent data embedding space distribution and recommendation popularity bias. Moreover, we propose a multi-head cross-attention transfer mechanism that allows the model to extract user common and specific domain features from multiple perspectives and perform cross-domain bidirectional knowledge transfer. Finally, we propose a cross-domain feature fusion mechanism that dynamically assigns weights to common user features and specific domain features. This enables the model to more effectively learn common user interests. We evaluate the proposed framework on three real-world CDR datasets and show that GCE-MCAT consistently and significantly improves recommendation performance compared to state-of-the-art methods. In particular, the proposed framework has demonstrated remarkable effectiveness in addressing long-tail distribution and enhancing recommendation novelty, providing users with more diversified recommendations and reducing popularity bias. |
Audience | Academic |
Author | Tang, Chaogang Huang, Zhenzhen Xiao, Shuo Zhu, Dongqing |
Author_xml | – sequence: 1 givenname: Shuo surname: Xiao fullname: Xiao, Shuo organization: School of Computer Science and Technology, China University of Mining and Technology – sequence: 2 givenname: Dongqing surname: Zhu fullname: Zhu, Dongqing organization: School of Computer Science and Technology, China University of Mining and Technology – sequence: 3 givenname: Chaogang surname: Tang fullname: Tang, Chaogang email: cgtang@cumt.edu.cn organization: School of Computer Science and Technology, China University of Mining and Technology – sequence: 4 givenname: Zhenzhen surname: Huang fullname: Huang, Zhenzhen organization: School of Computer Science and Technology, China University of Mining and Technology, Library School of Computer Science and Technology, China University of Mining and Technology |
BookMark | eNp9Uk1v3CAQtapUaprmD_RkqacenAAGbI6rbZqslKpSmp7RmA-H1Rq2wEbtvy9eJ6rSQ4TEx8x7M_B476sTH7ypqo8YXWCEustEMcKiQaRtECKEN92b6pS0nDaYUXzyvMc9e1edp7RFBVVOlPLTalqHaXDe-bG-jrB_qNfB5wgpu0dTX02D0XrOgdf1t8Muu-bBgK7XMaTUrHI2Prvg6_sIPlkTaxviU_JLmMD5-s6oME3Ga5iBH6q3FnbJnD-tZ9XPr1f365vm9vv1Zr26bRRDJJdZIzIMiLOB98ayjgIojqjtNe5ardsBENKCD5ZQYYQidKCGtwSw4sAsbc-qzVJXB9jKfXQTxD8ygJPHQIijhJid2hmJFG4VEIUsFbSnDEAY2lnLgGA9aFFqfVpq7WP4dTApy204RF-uL0kvUMs6geaOFwtqhFLUeRuKiqoMbSanyn9ZV-KrjjNBBcMz4fMLQsFk8zuPcEhJbn7cvcT2C1bN0kZjpXL5KGhp4nYSIzkbQS5GkMUI8mgE2RUq-Y_6rMarpHYhpQL2o4n_nvwK6y-gosbz |
CitedBy_id | crossref_primary_10_3934_era_2024166 crossref_primary_10_14778_3681954_3681976 crossref_primary_10_14778_3648160_3648176 crossref_primary_10_1007_s40747_024_01590_1 crossref_primary_10_1145_3648358 |
Cites_doi | 10.1109/TKDE.2019.2924656 10.1002/asi.21426 10.24963/ijcai.2020/415 10.1145/3459637.3481952 10.1145/3477495.3531967 10.1145/3447548.3467140 10.1145/3539597.3570379 10.1145/3404835.3462862 10.1145/3357384.3357914 10.1145/3269206.3271684 10.1145/3397271.3401043 10.1145/3340531.3412012 10.1145/3534678.3539125 10.24963/ijcai.2019/587 10.1145/3397271.3401169 10.1145/3485447.3512104 10.1145/3269206.3269264 10.1145/3357384.3357895 10.1109/ICDE53745.2022.00211 10.1007/978-3-319-06028-6_72 10.1145/3289600.3290973 10.1007/978-3-030-15719-7_3 10.1145/3459637.3482388 10.1109/TCSS.2022.3185714 10.1145/3357384.3357992 10.1145/3477495.3531937 10.1145/2736277.2741667 10.1145/3511808.3557266 10.1145/3038912.3052569 10.24963/ijcai.2021/639 10.1145/3485447.3512090 10.1145/3543507.3583263 10.1609/aaai.v35i5.16578 10.1145/3459637.3482429 10.1007/978-3-031-30672-3_30 10.24963/ijcai.2017/447 10.1145/3397271.3401063 10.1145/3336191.3371793 10.1145/1401890.1401969 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 COPYRIGHT 2023 Springer The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: COPYRIGHT 2023 Springer – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION ISR 7SC 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FR3 JQ2 KR7 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/s41019-023-00226-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science Computer and Information Systems Abstracts Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China Computer and Information Systems Abstracts Professional ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea Engineering Research Database ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics Computer Science |
EISSN | 2364-1541 |
EndPage | 262 |
ExternalDocumentID | oai_doaj_org_article_0c13ca2c0f494845aa9e47ff5a21dbd9 A765949514 10_1007_s41019_023_00226_7 |
GrantInformation_xml | – fundername: Practice Innovation Program of Jiangsu Province grantid: SJCX23_1277 – fundername: National Natural Science Foundation of China grantid: 62071470; 62271486 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | 0R~ AAFWJ AAKKN ABEEZ ABFTD ACACY ACGFS ACULB ADBBV ADINQ AFGXO AFKRA AFPKN AHBYD AHSBF ALMA_UNASSIGNED_HOLDINGS AMKLP ASPBG AVWKF BAPOH BCNDV BENPR C24 C6C CCPQU EBS EJD GROUPED_DOAJ H13 IAO ISR ITC M~E OK1 PIMPY RSV SOJ AAYXX CITATION PHGZM PHGZT ADMLS ARCSS 7SC 8FD ABUWG AZQEC DWQXO FR3 JQ2 KR7 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c502t-c5d02bb065b68ef574aac604f8d173dd3ba00d96bf249e9c24b4e632a1c6a5f43 |
IEDL.DBID | BENPR |
ISSN | 2364-1185 |
IngestDate | Wed Aug 27 01:20:02 EDT 2025 Mon Jun 30 13:29:32 EDT 2025 Wed Feb 12 07:32:57 EST 2025 Fri Feb 14 04:00:06 EST 2025 Thu Apr 24 23:01:33 EDT 2025 Tue Jul 01 04:35:57 EDT 2025 Fri Feb 21 02:42:05 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Cross-domain recommendation Long-tail distribution Multi-head cross-attention Contrastive learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-c5d02bb065b68ef574aac604f8d173dd3ba00d96bf249e9c24b4e632a1c6a5f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2890357904?pq-origsite=%requestingapplication% |
PQID | 2890357904 |
PQPubID | 4402891 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0c13ca2c0f494845aa9e47ff5a21dbd9 proquest_journals_2890357904 gale_infotracacademiconefile_A765949514 gale_incontextgauss_ISR_A765949514 crossref_citationtrail_10_1007_s41019_023_00226_7 crossref_primary_10_1007_s41019_023_00226_7 springer_journals_10_1007_s41019_023_00226_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230900 2023-09-00 20230901 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 9 year: 2023 text: 20230900 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Berlin |
PublicationTitle | Data Science and Engineering |
PublicationTitleAbbrev | Data Sci. Eng |
PublicationYear | 2023 |
Publisher | Springer Nature Singapore Springer Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
References | Chen, Dong, Wang, Feng, Wang, He (CR21) 2022; 41 CR39 Man, Shen, Jin, Cheng (CR14) 2017; 17 CR38 CR37 CR36 CR35 CR34 CR33 CR32 CR31 CR30 CR2 CR4 CR3 CR6 CR5 CR7 CR9 CR49 CR48 CR47 CR46 CR45 CR44 CR43 CR42 CR41 Milojević (CR8) 2010; 61 CR40 Li, Ke, Huang, Shen (CR15) 2019; 33 CR19 CR18 CR17 CR16 CR12 CR11 CR10 CR29 CR28 CR27 CR26 CR25 CR24 CR23 CR22 Isinkaye, Folajimi, Ojokoh (CR1) 2015; 16 CR20 Li, Tuzhilin (CR13) 2021; 35 226_CR10 226_CR11 226_CR12 226_CR17 226_CR18 226_CR9 226_CR16 T Man (226_CR14) 2017; 17 226_CR42 226_CR43 226_CR40 226_CR41 226_CR46 226_CR47 226_CR44 226_CR45 226_CR48 226_CR49 226_CR7 226_CR6 226_CR5 226_CR4 226_CR3 226_CR2 FO Isinkaye (226_CR1) 2015; 16 J Chen (226_CR21) 2022; 41 226_CR31 226_CR32 226_CR30 S Milojević (226_CR8) 2010; 61 226_CR35 226_CR36 226_CR33 226_CR34 226_CR39 226_CR37 226_CR38 J Li (226_CR15) 2019; 33 226_CR20 226_CR24 226_CR25 226_CR22 P Li (226_CR13) 2021; 35 226_CR23 226_CR28 226_CR29 226_CR26 226_CR27 226_CR19 |
References_xml | – ident: CR45 – ident: CR22 – ident: CR49 – volume: 33 start-page: 194 issue: 1 year: 2019 end-page: 208 ident: CR15 article-title: On both cold-start and long-tail recommendation with social data publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2019.2924656 – ident: CR4 – ident: CR39 – ident: CR16 – ident: CR12 – ident: CR35 – ident: CR29 – ident: CR25 – ident: CR42 – ident: CR46 – ident: CR19 – volume: 41 start-page: 1 issue: 3 year: 2022 end-page: 39 ident: CR21 article-title: Bias and debias in recommender system: a survey and future directions publication-title: ACM Trans Inf Syst – ident: CR11 – ident: CR9 – ident: CR32 – ident: CR36 – ident: CR5 – ident: CR26 – volume: 17 start-page: 2464 year: 2017 end-page: 2470 ident: CR14 article-title: Cross-domain recommendation: an embedding and mapping approach publication-title: In IJCAI – ident: CR18 – ident: CR43 – ident: CR47 – ident: CR2 – ident: CR37 – ident: CR30 – ident: CR10 – ident: CR33 – volume: 16 start-page: 261 issue: 3 year: 2015 end-page: 273 ident: CR1 article-title: Recommendation systems: principles, methods and evaluation publication-title: Egyp Inf J – ident: CR6 – ident: CR40 – ident: CR27 – ident: CR23 – ident: CR44 – volume: 61 start-page: 2417 issue: 12 year: 2010 end-page: 2425 ident: CR8 article-title: Power law distributions in information science: making the case for logarithmic binning publication-title: J Am Soc Inform Sci Technol doi: 10.1002/asi.21426 – volume: 35 start-page: 321 issue: 1 year: 2021 end-page: 334 ident: CR13 article-title: Dual metric learning for effective and efficient cross-domain recommendations publication-title: IEEE Trans Knowl Data Eng – ident: CR48 – ident: CR3 – ident: CR38 – ident: CR17 – ident: CR31 – ident: CR34 – ident: CR7 – ident: CR28 – ident: CR41 – ident: CR24 – ident: CR20 – ident: 226_CR30 doi: 10.24963/ijcai.2020/415 – ident: 226_CR9 doi: 10.1145/3459637.3481952 – volume: 35 start-page: 321 issue: 1 year: 2021 ident: 226_CR13 publication-title: IEEE Trans Knowl Data Eng – ident: 226_CR32 doi: 10.1145/3477495.3531967 – ident: 226_CR7 doi: 10.1145/3447548.3467140 – ident: 226_CR23 doi: 10.1145/3539597.3570379 – ident: 226_CR46 doi: 10.1145/3404835.3462862 – ident: 226_CR27 doi: 10.1145/3357384.3357914 – ident: 226_CR29 doi: 10.1145/3269206.3271684 – ident: 226_CR16 doi: 10.1145/3397271.3401043 – ident: 226_CR37 – volume: 16 start-page: 261 issue: 3 year: 2015 ident: 226_CR1 publication-title: Egyp Inf J – ident: 226_CR31 doi: 10.1145/3340531.3412012 – ident: 226_CR44 doi: 10.1145/3534678.3539125 – ident: 226_CR48 doi: 10.24963/ijcai.2019/587 – ident: 226_CR22 doi: 10.1145/3397271.3401169 – ident: 226_CR40 doi: 10.1145/3485447.3512104 – ident: 226_CR10 doi: 10.1145/3269206.3269264 – ident: 226_CR42 doi: 10.1145/3357384.3357895 – ident: 226_CR3 doi: 10.1109/ICDE53745.2022.00211 – ident: 226_CR17 doi: 10.1007/978-3-319-06028-6_72 – ident: 226_CR25 doi: 10.1145/3289600.3290973 – ident: 226_CR38 – ident: 226_CR12 doi: 10.1007/978-3-030-15719-7_3 – ident: 226_CR19 doi: 10.1145/3459637.3482388 – ident: 226_CR2 doi: 10.1109/TCSS.2022.3185714 – ident: 226_CR5 doi: 10.1145/3357384.3357992 – ident: 226_CR20 doi: 10.1145/3477495.3531937 – ident: 226_CR24 doi: 10.1145/2736277.2741667 – ident: 226_CR39 – volume: 61 start-page: 2417 issue: 12 year: 2010 ident: 226_CR8 publication-title: J Am Soc Inform Sci Technol doi: 10.1002/asi.21426 – ident: 226_CR35 – ident: 226_CR18 doi: 10.1145/3511808.3557266 – volume: 17 start-page: 2464 year: 2017 ident: 226_CR14 publication-title: In IJCAI – ident: 226_CR45 doi: 10.1145/3038912.3052569 – ident: 226_CR4 doi: 10.24963/ijcai.2021/639 – ident: 226_CR43 doi: 10.1145/3485447.3512090 – ident: 226_CR33 doi: 10.1145/3543507.3583263 – ident: 226_CR41 doi: 10.1609/aaai.v35i5.16578 – volume: 33 start-page: 194 issue: 1 year: 2019 ident: 226_CR15 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2019.2924656 – ident: 226_CR28 doi: 10.1145/3459637.3482429 – ident: 226_CR34 doi: 10.1007/978-3-031-30672-3_30 – ident: 226_CR11 – ident: 226_CR36 – ident: 226_CR49 doi: 10.24963/ijcai.2017/447 – ident: 226_CR47 doi: 10.1145/3397271.3401063 – ident: 226_CR6 doi: 10.1145/3336191.3371793 – volume: 41 start-page: 1 issue: 3 year: 2022 ident: 226_CR21 publication-title: ACM Trans Inf Syst – ident: 226_CR26 doi: 10.1145/1401890.1401969 |
SSID | ssj0002118446 ssib044734210 ssib048876940 |
Score | 2.312508 |
Snippet | Cross-domain recommendation (CDR) has become an important research direction in the field of recommender systems due to the increasing demand for personalized... Abstract Cross-domain recommendation (CDR) has become an important research direction in the field of recommender systems due to the increasing demand for... |
SourceID | doaj proquest gale crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 247 |
SubjectTerms | Algorithm Analysis and Problem Complexity Artificial Intelligence Bias Chemistry and Earth Sciences Computer Science Contrastive learning Cross-domain recommendation Data Mining and Knowledge Discovery Database Management Deep learning Embedding Knowledge management Long-tail distribution Motion picture directors & producers Multi-head cross-attention Physics Popularity Recommender systems Research Paper Sparsity Statistics for Engineering Systems and Data Security |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA_SJ1_E-oGnVYIIKrqYTWaT28eztlZBH9RC30K-VgR3T263_78z2dy1pagvvizcJYGdzC_zwWZ-w9izVgqDOReeNPTOmKCEZeUkPlpIxDaG9jCTJH36rE9O4eNZc3ap1RfdCZvpgeeNeyNCrQIuFx0RmUDjXJvAdF3jZB19zKV76PMuJVOIJACjQF44NkSp0VuiOLLRmPYsAebOcxoq_NWUippcVwcI1LbCl63Ix-nKXPFamdz_ugm_9i01u6jj2-xWiS35apZpn91Iwx22X07vyF8UiumXd1mPZsDn1hD8PTFWcyKp2riRbB8_6n2K5NK4GyLPFboVmuzID-ndqtU0zVckefZzXdpwDHzL4Lt1734MnJLavk-lYdM9dnp89O3wpCqNF6rQCDnhMwrpPUYnXi9T1xhwLmgB3TLWRsWovBMittp3mLylNkjwkLSSrg7aNR2o-2xvWA_pAeMK1wdphDNNC1oE36KrVL4m2jgFKS1Yvd1YGworOTXH-Gl3fMpZGRaVYbMyrFmwV7s1v2ZOjr_Ofkv62s0kPu38B6LMFpTZf6FswZ6Sti0xZgx0Jee7Ox9H--HrF7syGkXDQBUW7HmZ1K1RhuBKhQPuBJFsXZl5sEWNLTZjtPTJVzV4cnD49RZJF8N_lvDh_5DwEbspM-Dp-twB25s25-kxxluTf5KP1m87GB0u priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFA5aEXxRuypurRJEUNHBTK47j-vaWgV9UAt9C7mNCM5s6Uz_v-dkM1tqVfBlYJITMplzJ8l3CHnWcGYg5wJNA-8MCUpYVI7Do5EJ0cbAHmaQpE-f9dGx_HiiTgpMDt6F-W3__s0gQWaaCsZV6G50Za6TG6oWBss0rPRqkh0pjZD8wpWBXBo9QcOhVYZEZyHlptaclhW8qXKH5s_TXPJTGc7_qtG-snuandLhXXK7RJN0uWH_LrmW-hm5M1VqoEVxZ-RmPugZhhnZLW0DfVEQp1_eIx2M8LlSBH2PANYUMavO3ICmkB50PkX0cNT1keYLuxVY8EhX-OHVchw3JyZpdnstTAtxcOl8t-7cj55ijtt1qdRvuk-ODw--rY6qUoehCorxEZ6Rce8hWPF6kVplpHNBM9kuYm1EjMI7xmKjfQu5XGoCl14mLbirg3aqleIB2enXfXpIqIDxgRvmjGqkZsE34DmFrxFFTsiU5qSe_roNBaQca2X8tFt45cwpC5yymVPWzMmr7ZjTDUTHP6nfIjO3lAivnRtA6mzRVstCLQLILGsRPUcq55okTdsqx-voYzMnT1EULAJo9HhC57s7Hwb74esXuzQalgZxq5yT54WoXcMagisXHuBPIObWJcr9SaRsMSGDxR1goUCRoPv1JGYX3X9f4d7_kT8it3iWezw3t092xrPz9BgCrdE_yRr2C0gqFeQ priority: 102 providerName: Springer Nature |
Title | Combining Graph Contrastive Embedding and Multi-head Cross-Attention Transfer for Cross-Domain Recommendation |
URI | https://link.springer.com/article/10.1007/s41019-023-00226-7 https://www.proquest.com/docview/2890357904 https://doaj.org/article/0c13ca2c0f494845aa9e47ff5a21dbd9 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbo9sIFaAERWlYWQgIEEY7jOMkJbZctBakVKlTqzfIrFRJJ2k165bcz4_VuVVX0YkXJOIk943n48Q0hb2rOSoi5YKSBdYYAxVap5lDUwiPaGOjDAJJ0fCKPzsT38-I8TrgNcVvlWicGRe16i3Pkn3BBLC_gveLz5VWKWaNwdTWm0Ngi26CCq2pCtg8WJz9ON7MsEN5UEPDE0zLhzJwAIaxT-JEU7ZdMy1sWKQD331XPd9ZJg_k5fEIeRb-RzlaM3iEPfLdLHq9zMtA4RHfJTrwa6LuIKP3-KWmBzoRMEPQrAlRTxKRa6gFVHV20xju0YFR3joYDuSloaEfn-LvpbBxXOyJpMGsNfAz83PjwS9_q3x3FGLZtfczP9IycHS5-zY_SmGchtQXjI5SOcWPAGTGy8k1RCq2tZKKpXFbmzuVGM-ZqaRqI1XxtuTDCy5zrzEpdNCJ_TiZd3_kXhOZQ3_KS6bKohWTW1GAZc5MhSlwuvE9Itu5rZSMIOebC-KM28MmBPwr4owJ_VJmQD5s6lysIjnupD5CFG0qEzw43-uWFiqNRMZvlFmSSNYiOIwqtay_Kpik0z5xxdUJeowAoBMjocAfOhb4eBvXt56malRKaBn6pSMjbSNT00Aar44EG6AnE1LpFub8WJBVVxKBuBDohH9fCdfP4_y18ef_b9shDHqQb98Htk8m4vPavwHEazTSOjinZmnOBpZxPwyQElMd_F_8AuvIWZg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N7gFegA0QhQEWAgFiEY7jJM0DQt3W0bKtQmOT9mZsx5mQaDqaToh_ir-RO9fpNE3sbS9RlFzcOvfj88X2dwCvCsFzzLnQ0xCdMUGxvUgLPBTSEdsYxkNPknQwzobH8stJerICf9u9MLSsso2JPlCXU0vfyD_QhFiSYrvy09mviKpG0exqW0JjYRZ77s9vTNmaj6Md1O9rIXYHR9vDKFQViGzKxRyPJRfGIPSarOeqNJda24zLqlfGeVKWidGcl0VmKsxMXGGFNNJlidCxzXRayQTbvQWrMsm46MDq1mD89XD5VQfTqR4mWGF3jt-jJ9Hoiwg7HhFeZlF-CQF9oYCrcHBlXtbD3e59uBvGqay_MKw1WHH1Otxra0CwEBLWYS2cNextYLB-9wAmKGd85Qn2mQixGXFgzXRDoZUNJsaVhJhM1yXzG4AjRISSbdPfjfrz-WIFJvMwWuGP4bg63NyZTvSPmlHOPJm4UA_qIRzfiAYeQaee1u4xsASftyLnOk8LmXFrCkTixMTESpdI57oQt-9a2UB6TrU3fqolXbPXj0L9KK8flXfh_fKZswXlx7XSW6TCpSTRdfsL09mpCt6vuI0Tiz7AK2LjkanWhZN5VaVaxKUpiy68JANQRMhR04qfU33eNGr07VD18wy7huNg2YU3QaiaYh-sDhso8E0Qh9clyY3WkFQISY26cKAubLbGdXH7_z18cn1rL-D28OhgX-2PxntP4Y7wlk5r8DagM5-du2c4aJub58FTGHy_aef8B5FYUDA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGEGgvwAqIwgALgQBBtMRx7OaBh9KurAwmBEzam_GvTJNoOjWZEP8VfyJ3rtNpGiDxsJdIje2kzt3588l33xHytGSpBJ8LLA3QGRwUO0g0g0vJPbKNwXoYSJI-7ovdA_7-sDhcI7-6XJgQ7d4dSS5zGpClqW63T1y1vUp846BJZQJPSxCERCJjWOWe__kDnLbmzXQMEn7G2GTn62g3iXUFElukrIWrS5kxAL5GDHxVSK61FSmvBi6TuXO50WnqSmEq8E18aRk33Iuc6cwKXVQ8h-deIVfBM8rQ3RuJUafBnMucszNABeuQoiOoQ2wAd2vA-bLineAJ_CpiJs-fp3UOLUNRgYvQceEMN0Dj5Ba5Efe0dLhUwk2y5useudnVi6Bx-eiRayHc1DY9shnvNfRF5L1-eZvMYIQJ9SroO6TRpsictdANLsh0Z2a8Q5ylunY0pA0ngCOOjvCPJ8O2XcZt0gC-FbwWduOxcTyf6eOaoqc9m_lYReoOObgUqd0l6_W89vcIzWG8ZTLVsii5SK0pAb9zkyGXXc6975Os--rKRqp0rNjxXa1InoOkFEhKBUkp2SevVmNOlkQh_-z9FoW56okk3-HGfHGk4pqhUpvlFiwnrZDDhxdal57Lqio0y5xxZZ88QVVQSONRY5zQkT5tGjX98lkNpYCpwe6Z98nz2KmawxysjmkX8CWQ-etcz61OpVRcyBqF59B5AeYMza87NTtr_vsM7_9f98fk-qfxRH2Y7u89IBssmAAG8m2R9XZx6h_Czq81j4KxUfLtsq37NxlrW-0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+Graph+Contrastive+Embedding+and+Multi-head+Cross-Attention+Transfer+for+Cross-Domain+Recommendation&rft.jtitle=Data+Science+and+Engineering&rft.au=Xiao%2C+Shuo&rft.au=Zhu%2C+Dongqing&rft.au=Tang%2C+Chaogang&rft.au=Huang%2C+Zhenzhen&rft.date=2023-09-01&rft.pub=Springer&rft.issn=2364-1185&rft.volume=8&rft.issue=3&rft.spage=247&rft_id=info:doi/10.1007%2Fs41019-023-00226-7&rft.externalDBID=ISR&rft.externalDocID=A765949514 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-1185&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-1185&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-1185&client=summon |