Combining Graph Contrastive Embedding and Multi-head Cross-Attention Transfer for Cross-Domain Recommendation

Cross-domain recommendation (CDR) has become an important research direction in the field of recommender systems due to the increasing demand for personalized recommendations across different domains. However, CDR faces multiple challenges, including data sparsity, popularity bias, and long-tail pro...

Full description

Saved in:
Bibliographic Details
Published inData Science and Engineering Vol. 8; no. 3; pp. 247 - 262
Main Authors Xiao, Shuo, Zhu, Dongqing, Tang, Chaogang, Huang, Zhenzhen
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.09.2023
Springer
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cross-domain recommendation (CDR) has become an important research direction in the field of recommender systems due to the increasing demand for personalized recommendations across different domains. However, CDR faces multiple challenges, including data sparsity, popularity bias, and long-tail problems. To address these challenges, we propose a novel framework that combines graph contrastive embedding and multi-head cross-attention transfer for cross-domain recommendation, called GCE-MCAT. Specifically, in the pre-training process, we generate more uniform user and item embeddings through contrastive learning, effectively solving the problem of inconsistent data embedding space distribution and recommendation popularity bias. Moreover, we propose a multi-head cross-attention transfer mechanism that allows the model to extract user common and specific domain features from multiple perspectives and perform cross-domain bidirectional knowledge transfer. Finally, we propose a cross-domain feature fusion mechanism that dynamically assigns weights to common user features and specific domain features. This enables the model to more effectively learn common user interests. We evaluate the proposed framework on three real-world CDR datasets and show that GCE-MCAT consistently and significantly improves recommendation performance compared to state-of-the-art methods. In particular, the proposed framework has demonstrated remarkable effectiveness in addressing long-tail distribution and enhancing recommendation novelty, providing users with more diversified recommendations and reducing popularity bias.
AbstractList Cross-domain recommendation (CDR) has become an important research direction in the field of recommender systems due to the increasing demand for personalized recommendations across different domains. However, CDR faces multiple challenges, including data sparsity, popularity bias, and long-tail problems. To address these challenges, we propose a novel framework that combines graph contrastive embedding and multi-head cross-attention transfer for cross-domain recommendation, called GCE-MCAT. Specifically, in the pre-training process, we generate more uniform user and item embeddings through contrastive learning, effectively solving the problem of inconsistent data embedding space distribution and recommendation popularity bias. Moreover, we propose a multi-head cross-attention transfer mechanism that allows the model to extract user common and specific domain features from multiple perspectives and perform cross-domain bidirectional knowledge transfer. Finally, we propose a cross-domain feature fusion mechanism that dynamically assigns weights to common user features and specific domain features. This enables the model to more effectively learn common user interests. We evaluate the proposed framework on three real-world CDR datasets and show that GCE-MCAT consistently and significantly improves recommendation performance compared to state-of-the-art methods. In particular, the proposed framework has demonstrated remarkable effectiveness in addressing long-tail distribution and enhancing recommendation novelty, providing users with more diversified recommendations and reducing popularity bias.
Abstract Cross-domain recommendation (CDR) has become an important research direction in the field of recommender systems due to the increasing demand for personalized recommendations across different domains. However, CDR faces multiple challenges, including data sparsity, popularity bias, and long-tail problems. To address these challenges, we propose a novel framework that combines graph contrastive embedding and multi-head cross-attention transfer for cross-domain recommendation, called GCE-MCAT. Specifically, in the pre-training process, we generate more uniform user and item embeddings through contrastive learning, effectively solving the problem of inconsistent data embedding space distribution and recommendation popularity bias. Moreover, we propose a multi-head cross-attention transfer mechanism that allows the model to extract user common and specific domain features from multiple perspectives and perform cross-domain bidirectional knowledge transfer. Finally, we propose a cross-domain feature fusion mechanism that dynamically assigns weights to common user features and specific domain features. This enables the model to more effectively learn common user interests. We evaluate the proposed framework on three real-world CDR datasets and show that GCE-MCAT consistently and significantly improves recommendation performance compared to state-of-the-art methods. In particular, the proposed framework has demonstrated remarkable effectiveness in addressing long-tail distribution and enhancing recommendation novelty, providing users with more diversified recommendations and reducing popularity bias.
Audience Academic
Author Tang, Chaogang
Huang, Zhenzhen
Xiao, Shuo
Zhu, Dongqing
Author_xml – sequence: 1
  givenname: Shuo
  surname: Xiao
  fullname: Xiao, Shuo
  organization: School of Computer Science and Technology, China University of Mining and Technology
– sequence: 2
  givenname: Dongqing
  surname: Zhu
  fullname: Zhu, Dongqing
  organization: School of Computer Science and Technology, China University of Mining and Technology
– sequence: 3
  givenname: Chaogang
  surname: Tang
  fullname: Tang, Chaogang
  email: cgtang@cumt.edu.cn
  organization: School of Computer Science and Technology, China University of Mining and Technology
– sequence: 4
  givenname: Zhenzhen
  surname: Huang
  fullname: Huang, Zhenzhen
  organization: School of Computer Science and Technology, China University of Mining and Technology, Library School of Computer Science and Technology, China University of Mining and Technology
BookMark eNp9Uk1v3CAQtapUaprmD_RkqacenAAGbI6rbZqslKpSmp7RmA-H1Rq2wEbtvy9eJ6rSQ4TEx8x7M_B476sTH7ypqo8YXWCEustEMcKiQaRtECKEN92b6pS0nDaYUXzyvMc9e1edp7RFBVVOlPLTalqHaXDe-bG-jrB_qNfB5wgpu0dTX02D0XrOgdf1t8Muu-bBgK7XMaTUrHI2Prvg6_sIPlkTaxviU_JLmMD5-s6oME3Ga5iBH6q3FnbJnD-tZ9XPr1f365vm9vv1Zr26bRRDJJdZIzIMiLOB98ayjgIojqjtNe5ardsBENKCD5ZQYYQidKCGtwSw4sAsbc-qzVJXB9jKfXQTxD8ygJPHQIijhJid2hmJFG4VEIUsFbSnDEAY2lnLgGA9aFFqfVpq7WP4dTApy204RF-uL0kvUMs6geaOFwtqhFLUeRuKiqoMbSanyn9ZV-KrjjNBBcMz4fMLQsFk8zuPcEhJbn7cvcT2C1bN0kZjpXL5KGhp4nYSIzkbQS5GkMUI8mgE2RUq-Y_6rMarpHYhpQL2o4n_nvwK6y-gosbz
CitedBy_id crossref_primary_10_3934_era_2024166
crossref_primary_10_14778_3681954_3681976
crossref_primary_10_14778_3648160_3648176
crossref_primary_10_1007_s40747_024_01590_1
crossref_primary_10_1145_3648358
Cites_doi 10.1109/TKDE.2019.2924656
10.1002/asi.21426
10.24963/ijcai.2020/415
10.1145/3459637.3481952
10.1145/3477495.3531967
10.1145/3447548.3467140
10.1145/3539597.3570379
10.1145/3404835.3462862
10.1145/3357384.3357914
10.1145/3269206.3271684
10.1145/3397271.3401043
10.1145/3340531.3412012
10.1145/3534678.3539125
10.24963/ijcai.2019/587
10.1145/3397271.3401169
10.1145/3485447.3512104
10.1145/3269206.3269264
10.1145/3357384.3357895
10.1109/ICDE53745.2022.00211
10.1007/978-3-319-06028-6_72
10.1145/3289600.3290973
10.1007/978-3-030-15719-7_3
10.1145/3459637.3482388
10.1109/TCSS.2022.3185714
10.1145/3357384.3357992
10.1145/3477495.3531937
10.1145/2736277.2741667
10.1145/3511808.3557266
10.1145/3038912.3052569
10.24963/ijcai.2021/639
10.1145/3485447.3512090
10.1145/3543507.3583263
10.1609/aaai.v35i5.16578
10.1145/3459637.3482429
10.1007/978-3-031-30672-3_30
10.24963/ijcai.2017/447
10.1145/3397271.3401063
10.1145/3336191.3371793
10.1145/1401890.1401969
ContentType Journal Article
Copyright The Author(s) 2023
COPYRIGHT 2023 Springer
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: COPYRIGHT 2023 Springer
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
7SC
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FR3
JQ2
KR7
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/s41019-023-00226-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Science
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
Computer and Information Systems Abstracts Professional
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
Engineering Research Database
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
Computer Science
EISSN 2364-1541
EndPage 262
ExternalDocumentID oai_doaj_org_article_0c13ca2c0f494845aa9e47ff5a21dbd9
A765949514
10_1007_s41019_023_00226_7
GrantInformation_xml – fundername: Practice Innovation Program of Jiangsu Province
  grantid: SJCX23_1277
– fundername: National Natural Science Foundation of China
  grantid: 62071470; 62271486
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID 0R~
AAFWJ
AAKKN
ABEEZ
ABFTD
ACACY
ACGFS
ACULB
ADBBV
ADINQ
AFGXO
AFKRA
AFPKN
AHBYD
AHSBF
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
C24
C6C
CCPQU
EBS
EJD
GROUPED_DOAJ
H13
IAO
ISR
ITC
M~E
OK1
PIMPY
RSV
SOJ
AAYXX
CITATION
PHGZM
PHGZT
ADMLS
ARCSS
7SC
8FD
ABUWG
AZQEC
DWQXO
FR3
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c502t-c5d02bb065b68ef574aac604f8d173dd3ba00d96bf249e9c24b4e632a1c6a5f43
IEDL.DBID BENPR
ISSN 2364-1185
IngestDate Wed Aug 27 01:20:02 EDT 2025
Mon Jun 30 13:29:32 EDT 2025
Wed Feb 12 07:32:57 EST 2025
Fri Feb 14 04:00:06 EST 2025
Thu Apr 24 23:01:33 EDT 2025
Tue Jul 01 04:35:57 EDT 2025
Fri Feb 21 02:42:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Cross-domain recommendation
Long-tail distribution
Multi-head cross-attention
Contrastive learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-c5d02bb065b68ef574aac604f8d173dd3ba00d96bf249e9c24b4e632a1c6a5f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2890357904?pq-origsite=%requestingapplication%
PQID 2890357904
PQPubID 4402891
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_0c13ca2c0f494845aa9e47ff5a21dbd9
proquest_journals_2890357904
gale_infotracacademiconefile_A765949514
gale_incontextgauss_ISR_A765949514
crossref_citationtrail_10_1007_s41019_023_00226_7
crossref_primary_10_1007_s41019_023_00226_7
springer_journals_10_1007_s41019_023_00226_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230900
2023-09-00
20230901
2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 9
  year: 2023
  text: 20230900
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Berlin
PublicationTitle Data Science and Engineering
PublicationTitleAbbrev Data Sci. Eng
PublicationYear 2023
Publisher Springer Nature Singapore
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References Chen, Dong, Wang, Feng, Wang, He (CR21) 2022; 41
CR39
Man, Shen, Jin, Cheng (CR14) 2017; 17
CR38
CR37
CR36
CR35
CR34
CR33
CR32
CR31
CR30
CR2
CR4
CR3
CR6
CR5
CR7
CR9
CR49
CR48
CR47
CR46
CR45
CR44
CR43
CR42
CR41
Milojević (CR8) 2010; 61
CR40
Li, Ke, Huang, Shen (CR15) 2019; 33
CR19
CR18
CR17
CR16
CR12
CR11
CR10
CR29
CR28
CR27
CR26
CR25
CR24
CR23
CR22
Isinkaye, Folajimi, Ojokoh (CR1) 2015; 16
CR20
Li, Tuzhilin (CR13) 2021; 35
226_CR10
226_CR11
226_CR12
226_CR17
226_CR18
226_CR9
226_CR16
T Man (226_CR14) 2017; 17
226_CR42
226_CR43
226_CR40
226_CR41
226_CR46
226_CR47
226_CR44
226_CR45
226_CR48
226_CR49
226_CR7
226_CR6
226_CR5
226_CR4
226_CR3
226_CR2
FO Isinkaye (226_CR1) 2015; 16
J Chen (226_CR21) 2022; 41
226_CR31
226_CR32
226_CR30
S Milojević (226_CR8) 2010; 61
226_CR35
226_CR36
226_CR33
226_CR34
226_CR39
226_CR37
226_CR38
J Li (226_CR15) 2019; 33
226_CR20
226_CR24
226_CR25
226_CR22
P Li (226_CR13) 2021; 35
226_CR23
226_CR28
226_CR29
226_CR26
226_CR27
226_CR19
References_xml – ident: CR45
– ident: CR22
– ident: CR49
– volume: 33
  start-page: 194
  issue: 1
  year: 2019
  end-page: 208
  ident: CR15
  article-title: On both cold-start and long-tail recommendation with social data
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2019.2924656
– ident: CR4
– ident: CR39
– ident: CR16
– ident: CR12
– ident: CR35
– ident: CR29
– ident: CR25
– ident: CR42
– ident: CR46
– ident: CR19
– volume: 41
  start-page: 1
  issue: 3
  year: 2022
  end-page: 39
  ident: CR21
  article-title: Bias and debias in recommender system: a survey and future directions
  publication-title: ACM Trans Inf Syst
– ident: CR11
– ident: CR9
– ident: CR32
– ident: CR36
– ident: CR5
– ident: CR26
– volume: 17
  start-page: 2464
  year: 2017
  end-page: 2470
  ident: CR14
  article-title: Cross-domain recommendation: an embedding and mapping approach
  publication-title: In IJCAI
– ident: CR18
– ident: CR43
– ident: CR47
– ident: CR2
– ident: CR37
– ident: CR30
– ident: CR10
– ident: CR33
– volume: 16
  start-page: 261
  issue: 3
  year: 2015
  end-page: 273
  ident: CR1
  article-title: Recommendation systems: principles, methods and evaluation
  publication-title: Egyp Inf J
– ident: CR6
– ident: CR40
– ident: CR27
– ident: CR23
– ident: CR44
– volume: 61
  start-page: 2417
  issue: 12
  year: 2010
  end-page: 2425
  ident: CR8
  article-title: Power law distributions in information science: making the case for logarithmic binning
  publication-title: J Am Soc Inform Sci Technol
  doi: 10.1002/asi.21426
– volume: 35
  start-page: 321
  issue: 1
  year: 2021
  end-page: 334
  ident: CR13
  article-title: Dual metric learning for effective and efficient cross-domain recommendations
  publication-title: IEEE Trans Knowl Data Eng
– ident: CR48
– ident: CR3
– ident: CR38
– ident: CR17
– ident: CR31
– ident: CR34
– ident: CR7
– ident: CR28
– ident: CR41
– ident: CR24
– ident: CR20
– ident: 226_CR30
  doi: 10.24963/ijcai.2020/415
– ident: 226_CR9
  doi: 10.1145/3459637.3481952
– volume: 35
  start-page: 321
  issue: 1
  year: 2021
  ident: 226_CR13
  publication-title: IEEE Trans Knowl Data Eng
– ident: 226_CR32
  doi: 10.1145/3477495.3531967
– ident: 226_CR7
  doi: 10.1145/3447548.3467140
– ident: 226_CR23
  doi: 10.1145/3539597.3570379
– ident: 226_CR46
  doi: 10.1145/3404835.3462862
– ident: 226_CR27
  doi: 10.1145/3357384.3357914
– ident: 226_CR29
  doi: 10.1145/3269206.3271684
– ident: 226_CR16
  doi: 10.1145/3397271.3401043
– ident: 226_CR37
– volume: 16
  start-page: 261
  issue: 3
  year: 2015
  ident: 226_CR1
  publication-title: Egyp Inf J
– ident: 226_CR31
  doi: 10.1145/3340531.3412012
– ident: 226_CR44
  doi: 10.1145/3534678.3539125
– ident: 226_CR48
  doi: 10.24963/ijcai.2019/587
– ident: 226_CR22
  doi: 10.1145/3397271.3401169
– ident: 226_CR40
  doi: 10.1145/3485447.3512104
– ident: 226_CR10
  doi: 10.1145/3269206.3269264
– ident: 226_CR42
  doi: 10.1145/3357384.3357895
– ident: 226_CR3
  doi: 10.1109/ICDE53745.2022.00211
– ident: 226_CR17
  doi: 10.1007/978-3-319-06028-6_72
– ident: 226_CR25
  doi: 10.1145/3289600.3290973
– ident: 226_CR38
– ident: 226_CR12
  doi: 10.1007/978-3-030-15719-7_3
– ident: 226_CR19
  doi: 10.1145/3459637.3482388
– ident: 226_CR2
  doi: 10.1109/TCSS.2022.3185714
– ident: 226_CR5
  doi: 10.1145/3357384.3357992
– ident: 226_CR20
  doi: 10.1145/3477495.3531937
– ident: 226_CR24
  doi: 10.1145/2736277.2741667
– ident: 226_CR39
– volume: 61
  start-page: 2417
  issue: 12
  year: 2010
  ident: 226_CR8
  publication-title: J Am Soc Inform Sci Technol
  doi: 10.1002/asi.21426
– ident: 226_CR35
– ident: 226_CR18
  doi: 10.1145/3511808.3557266
– volume: 17
  start-page: 2464
  year: 2017
  ident: 226_CR14
  publication-title: In IJCAI
– ident: 226_CR45
  doi: 10.1145/3038912.3052569
– ident: 226_CR4
  doi: 10.24963/ijcai.2021/639
– ident: 226_CR43
  doi: 10.1145/3485447.3512090
– ident: 226_CR33
  doi: 10.1145/3543507.3583263
– ident: 226_CR41
  doi: 10.1609/aaai.v35i5.16578
– volume: 33
  start-page: 194
  issue: 1
  year: 2019
  ident: 226_CR15
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2019.2924656
– ident: 226_CR28
  doi: 10.1145/3459637.3482429
– ident: 226_CR34
  doi: 10.1007/978-3-031-30672-3_30
– ident: 226_CR11
– ident: 226_CR36
– ident: 226_CR49
  doi: 10.24963/ijcai.2017/447
– ident: 226_CR47
  doi: 10.1145/3397271.3401063
– ident: 226_CR6
  doi: 10.1145/3336191.3371793
– volume: 41
  start-page: 1
  issue: 3
  year: 2022
  ident: 226_CR21
  publication-title: ACM Trans Inf Syst
– ident: 226_CR26
  doi: 10.1145/1401890.1401969
SSID ssj0002118446
ssib044734210
ssib048876940
Score 2.312508
Snippet Cross-domain recommendation (CDR) has become an important research direction in the field of recommender systems due to the increasing demand for personalized...
Abstract Cross-domain recommendation (CDR) has become an important research direction in the field of recommender systems due to the increasing demand for...
SourceID doaj
proquest
gale
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 247
SubjectTerms Algorithm Analysis and Problem Complexity
Artificial Intelligence
Bias
Chemistry and Earth Sciences
Computer Science
Contrastive learning
Cross-domain recommendation
Data Mining and Knowledge Discovery
Database Management
Deep learning
Embedding
Knowledge management
Long-tail distribution
Motion picture directors & producers
Multi-head cross-attention
Physics
Popularity
Recommender systems
Research Paper
Sparsity
Statistics for Engineering
Systems and Data Security
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA_SJ1_E-oGnVYIIKrqYTWaT28eztlZBH9RC30K-VgR3T263_78z2dy1pagvvizcJYGdzC_zwWZ-w9izVgqDOReeNPTOmKCEZeUkPlpIxDaG9jCTJH36rE9O4eNZc3ap1RfdCZvpgeeNeyNCrQIuFx0RmUDjXJvAdF3jZB19zKV76PMuJVOIJACjQF44NkSp0VuiOLLRmPYsAebOcxoq_NWUippcVwcI1LbCl63Ix-nKXPFamdz_ugm_9i01u6jj2-xWiS35apZpn91Iwx22X07vyF8UiumXd1mPZsDn1hD8PTFWcyKp2riRbB8_6n2K5NK4GyLPFboVmuzID-ndqtU0zVckefZzXdpwDHzL4Lt1734MnJLavk-lYdM9dnp89O3wpCqNF6rQCDnhMwrpPUYnXi9T1xhwLmgB3TLWRsWovBMittp3mLylNkjwkLSSrg7aNR2o-2xvWA_pAeMK1wdphDNNC1oE36KrVL4m2jgFKS1Yvd1YGworOTXH-Gl3fMpZGRaVYbMyrFmwV7s1v2ZOjr_Ofkv62s0kPu38B6LMFpTZf6FswZ6Sti0xZgx0Jee7Ox9H--HrF7syGkXDQBUW7HmZ1K1RhuBKhQPuBJFsXZl5sEWNLTZjtPTJVzV4cnD49RZJF8N_lvDh_5DwEbspM-Dp-twB25s25-kxxluTf5KP1m87GB0u
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFA5aEXxRuypurRJEUNHBTK47j-vaWgV9UAt9C7mNCM5s6Uz_v-dkM1tqVfBlYJITMplzJ8l3CHnWcGYg5wJNA-8MCUpYVI7Do5EJ0cbAHmaQpE-f9dGx_HiiTgpMDt6F-W3__s0gQWaaCsZV6G50Za6TG6oWBss0rPRqkh0pjZD8wpWBXBo9QcOhVYZEZyHlptaclhW8qXKH5s_TXPJTGc7_qtG-snuandLhXXK7RJN0uWH_LrmW-hm5M1VqoEVxZ-RmPugZhhnZLW0DfVEQp1_eIx2M8LlSBH2PANYUMavO3ICmkB50PkX0cNT1keYLuxVY8EhX-OHVchw3JyZpdnstTAtxcOl8t-7cj55ijtt1qdRvuk-ODw--rY6qUoehCorxEZ6Rce8hWPF6kVplpHNBM9kuYm1EjMI7xmKjfQu5XGoCl14mLbirg3aqleIB2enXfXpIqIDxgRvmjGqkZsE34DmFrxFFTsiU5qSe_roNBaQca2X8tFt45cwpC5yymVPWzMmr7ZjTDUTHP6nfIjO3lAivnRtA6mzRVstCLQLILGsRPUcq55okTdsqx-voYzMnT1EULAJo9HhC57s7Hwb74esXuzQalgZxq5yT54WoXcMagisXHuBPIObWJcr9SaRsMSGDxR1goUCRoPv1JGYX3X9f4d7_kT8it3iWezw3t092xrPz9BgCrdE_yRr2C0gqFeQ
  priority: 102
  providerName: Springer Nature
Title Combining Graph Contrastive Embedding and Multi-head Cross-Attention Transfer for Cross-Domain Recommendation
URI https://link.springer.com/article/10.1007/s41019-023-00226-7
https://www.proquest.com/docview/2890357904
https://doaj.org/article/0c13ca2c0f494845aa9e47ff5a21dbd9
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbo9sIFaAERWlYWQgIEEY7jOMkJbZctBakVKlTqzfIrFRJJ2k165bcz4_VuVVX0YkXJOIk943n48Q0hb2rOSoi5YKSBdYYAxVap5lDUwiPaGOjDAJJ0fCKPzsT38-I8TrgNcVvlWicGRe16i3Pkn3BBLC_gveLz5VWKWaNwdTWm0Ngi26CCq2pCtg8WJz9ON7MsEN5UEPDE0zLhzJwAIaxT-JEU7ZdMy1sWKQD331XPd9ZJg_k5fEIeRb-RzlaM3iEPfLdLHq9zMtA4RHfJTrwa6LuIKP3-KWmBzoRMEPQrAlRTxKRa6gFVHV20xju0YFR3joYDuSloaEfn-LvpbBxXOyJpMGsNfAz83PjwS9_q3x3FGLZtfczP9IycHS5-zY_SmGchtQXjI5SOcWPAGTGy8k1RCq2tZKKpXFbmzuVGM-ZqaRqI1XxtuTDCy5zrzEpdNCJ_TiZd3_kXhOZQ3_KS6bKohWTW1GAZc5MhSlwuvE9Itu5rZSMIOebC-KM28MmBPwr4owJ_VJmQD5s6lysIjnupD5CFG0qEzw43-uWFiqNRMZvlFmSSNYiOIwqtay_Kpik0z5xxdUJeowAoBMjocAfOhb4eBvXt56malRKaBn6pSMjbSNT00Aar44EG6AnE1LpFub8WJBVVxKBuBDohH9fCdfP4_y18ef_b9shDHqQb98Htk8m4vPavwHEazTSOjinZmnOBpZxPwyQElMd_F_8AuvIWZg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N7gFegA0QhQEWAgFiEY7jJM0DQt3W0bKtQmOT9mZsx5mQaDqaToh_ir-RO9fpNE3sbS9RlFzcOvfj88X2dwCvCsFzzLnQ0xCdMUGxvUgLPBTSEdsYxkNPknQwzobH8stJerICf9u9MLSsso2JPlCXU0vfyD_QhFiSYrvy09mviKpG0exqW0JjYRZ77s9vTNmaj6Md1O9rIXYHR9vDKFQViGzKxRyPJRfGIPSarOeqNJda24zLqlfGeVKWidGcl0VmKsxMXGGFNNJlidCxzXRayQTbvQWrMsm46MDq1mD89XD5VQfTqR4mWGF3jt-jJ9Hoiwg7HhFeZlF-CQF9oYCrcHBlXtbD3e59uBvGqay_MKw1WHH1Otxra0CwEBLWYS2cNextYLB-9wAmKGd85Qn2mQixGXFgzXRDoZUNJsaVhJhM1yXzG4AjRISSbdPfjfrz-WIFJvMwWuGP4bg63NyZTvSPmlHOPJm4UA_qIRzfiAYeQaee1u4xsASftyLnOk8LmXFrCkTixMTESpdI57oQt-9a2UB6TrU3fqolXbPXj0L9KK8flXfh_fKZswXlx7XSW6TCpSTRdfsL09mpCt6vuI0Tiz7AK2LjkanWhZN5VaVaxKUpiy68JANQRMhR04qfU33eNGr07VD18wy7huNg2YU3QaiaYh-sDhso8E0Qh9clyY3WkFQISY26cKAubLbGdXH7_z18cn1rL-D28OhgX-2PxntP4Y7wlk5r8DagM5-du2c4aJub58FTGHy_aef8B5FYUDA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGEGgvwAqIwgALgQBBtMRx7OaBh9KurAwmBEzam_GvTJNoOjWZEP8VfyJ3rtNpGiDxsJdIje2kzt3588l33xHytGSpBJ8LLA3QGRwUO0g0g0vJPbKNwXoYSJI-7ovdA_7-sDhcI7-6XJgQ7d4dSS5zGpClqW63T1y1vUp846BJZQJPSxCERCJjWOWe__kDnLbmzXQMEn7G2GTn62g3iXUFElukrIWrS5kxAL5GDHxVSK61FSmvBi6TuXO50WnqSmEq8E18aRk33Iuc6cwKXVQ8h-deIVfBM8rQ3RuJUafBnMucszNABeuQoiOoQ2wAd2vA-bLineAJ_CpiJs-fp3UOLUNRgYvQceEMN0Dj5Ba5Efe0dLhUwk2y5useudnVi6Bx-eiRayHc1DY9shnvNfRF5L1-eZvMYIQJ9SroO6TRpsictdANLsh0Z2a8Q5ylunY0pA0ngCOOjvCPJ8O2XcZt0gC-FbwWduOxcTyf6eOaoqc9m_lYReoOObgUqd0l6_W89vcIzWG8ZTLVsii5SK0pAb9zkyGXXc6975Os--rKRqp0rNjxXa1InoOkFEhKBUkp2SevVmNOlkQh_-z9FoW56okk3-HGfHGk4pqhUpvlFiwnrZDDhxdal57Lqio0y5xxZZ88QVVQSONRY5zQkT5tGjX98lkNpYCpwe6Z98nz2KmawxysjmkX8CWQ-etcz61OpVRcyBqF59B5AeYMza87NTtr_vsM7_9f98fk-qfxRH2Y7u89IBssmAAG8m2R9XZx6h_Czq81j4KxUfLtsq37NxlrW-0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+Graph+Contrastive+Embedding+and+Multi-head+Cross-Attention+Transfer+for+Cross-Domain+Recommendation&rft.jtitle=Data+Science+and+Engineering&rft.au=Xiao%2C+Shuo&rft.au=Zhu%2C+Dongqing&rft.au=Tang%2C+Chaogang&rft.au=Huang%2C+Zhenzhen&rft.date=2023-09-01&rft.pub=Springer&rft.issn=2364-1185&rft.volume=8&rft.issue=3&rft.spage=247&rft_id=info:doi/10.1007%2Fs41019-023-00226-7&rft.externalDBID=ISR&rft.externalDocID=A765949514
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-1185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-1185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-1185&client=summon