Comparison of monocytic cell lines U937 and THP-1 as macrophage models for in vitro studies

Understanding macrophage biology can improve comprehension of diverse biological processes and provide insights into novel therapeutic immunomodulatory strategies. Due to limited yield and technical difficulty in isolating primary macrophages, in vitro studies commonly use monocytes as precursor cel...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry and biophysics reports Vol. 32; p. 101383
Main Authors Nascimento, Camyla Rodrigues, Rodrigues Fernandes, Natalie Ap, Gonzalez Maldonado, Laura Andrea, Rossa Junior, Carlos
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding macrophage biology can improve comprehension of diverse biological processes and provide insights into novel therapeutic immunomodulatory strategies. Due to limited yield and technical difficulty in isolating primary macrophages, in vitro studies commonly use monocytes as precursor cells. Monocytic cell lines are a virtually unlimited source of macrophage precursors and two of the most frequently used cell lines are THP-1 and U937. Besides a great variability in macrophage differentiation protocols there is scarce information on possible differences in the biological responses of these cell lines. In this study, we used a standardized differentiation protocol using PMA and compared the response of macrophages derived from THP-1 and U937 cells to M1-and M2-polarizing conditions. THP-1-derived macrophages are more responsive to M1 stimuli and skewed towards M1 phenotype, whereas U937-derived macrophages were more responsive to M2 stimuli and skewed towards M2 phenotype. THP-1-derived macrophages also had greater production of ROS and phagocytic activity. Under M1-polarizing conditions, macrophages derived from both THP-1 and U937 reduced phagocytosis activity and the increased production of ROS. This information should be considered to make an informed choice on the cell line used as in vitro macrophage model, according to the experimental goals and biological context. •THP-1 and U937 were successfully differentiated in macrophages using 10 ng/mL of PMA.•M-CSF did not promote macrophage differentiation of either THP-1 or U937 cells.•THP-1 cells are skewed to the M1 phenotype.•U937 cells are skewed to the M2 phenotype.
AbstractList Understanding macrophage biology can improve comprehension of diverse biological processes and provide insights into novel therapeutic immunomodulatory strategies. Due to limited yield and technical difficulty in isolating primary macrophages, in vitro studies commonly use monocytes as precursor cells. Monocytic cell lines are a virtually unlimited source of macrophage precursors and two of the most frequently used cell lines are THP-1 and U937. Besides a great variability in macrophage differentiation protocols there is scarce information on possible differences in the biological responses of these cell lines. In this study, we used a standardized differentiation protocol using PMA and compared the response of macrophages derived from THP-1 and U937 cells to M1-and M2-polarizing conditions. THP-1-derived macrophages are more responsive to M1 stimuli and skewed towards M1 phenotype, whereas U937-derived macrophages were more responsive to M2 stimuli and skewed towards M2 phenotype. THP-1-derived macrophages also had greater production of ROS and phagocytic activity. Under M1-polarizing conditions, macrophages derived from both THP-1 and U937 reduced phagocytosis activity and the increased production of ROS. This information should be considered to make an informed choice on the cell line used as in vitro macrophage model, according to the experimental goals and biological context. •THP-1 and U937 were successfully differentiated in macrophages using 10 ng/mL of PMA.•M-CSF did not promote macrophage differentiation of either THP-1 or U937 cells.•THP-1 cells are skewed to the M1 phenotype.•U937 cells are skewed to the M2 phenotype.
Understanding macrophage biology can improve comprehension of diverse biological processes and provide insights into novel therapeutic immunomodulatory strategies. Due to limited yield and technical difficulty in isolating primary macrophages, in vitro studies commonly use monocytes as precursor cells. Monocytic cell lines are a virtually unlimited source of macrophage precursors and two of the most frequently used cell lines are THP-1 and U937. Besides a great variability in macrophage differentiation protocols there is scarce information on possible differences in the biological responses of these cell lines. In this study, we used a standardized differentiation protocol using PMA and compared the response of macrophages derived from THP-1 and U937 cells to M1-and M2-polarizing conditions. THP-1-derived macrophages are more responsive to M1 stimuli and skewed towards M1 phenotype, whereas U937-derived macrophages were more responsive to M2 stimuli and skewed towards M2 phenotype. THP-1-derived macrophages also had greater production of ROS and phagocytic activity. Under M1-polarizing conditions, macrophages derived from both THP-1 and U937 reduced phagocytosis activity and the increased production of ROS. This information should be considered to make an informed choice on the cell line used as in vitro macrophage model, according to the experimental goals and biological context.
Understanding macrophage biology can improve comprehension of diverse biological processes and provide insights into novel therapeutic immunomodulatory strategies. Due to limited yield and technical difficulty in isolating primary macrophages, in vitro studies commonly use monocytes as precursor cells. Monocytic cell lines are a virtually unlimited source of macrophage precursors and two of the most frequently used cell lines are THP-1 and U937. Besides a great variability in macrophage differentiation protocols there is scarce information on possible differences in the biological responses of these cell lines. In this study, we used a standardized differentiation protocol using PMA and compared the response of macrophages derived from THP-1 and U937 cells to M1-and M2-polarizing conditions. THP-1-derived macrophages are more responsive to M1 stimuli and skewed towards M1 phenotype, whereas U937-derived macrophages were more responsive to M2 stimuli and skewed towards M2 phenotype. THP-1-derived macrophages also had greater production of ROS and phagocytic activity. Under M1-polarizing conditions, macrophages derived from both THP-1 and U937 reduced phagocytosis activity and the increased production of ROS. This information should be considered to make an informed choice on the cell line used as in vitro macrophage model, according to the experimental goals and biological context.Understanding macrophage biology can improve comprehension of diverse biological processes and provide insights into novel therapeutic immunomodulatory strategies. Due to limited yield and technical difficulty in isolating primary macrophages, in vitro studies commonly use monocytes as precursor cells. Monocytic cell lines are a virtually unlimited source of macrophage precursors and two of the most frequently used cell lines are THP-1 and U937. Besides a great variability in macrophage differentiation protocols there is scarce information on possible differences in the biological responses of these cell lines. In this study, we used a standardized differentiation protocol using PMA and compared the response of macrophages derived from THP-1 and U937 cells to M1-and M2-polarizing conditions. THP-1-derived macrophages are more responsive to M1 stimuli and skewed towards M1 phenotype, whereas U937-derived macrophages were more responsive to M2 stimuli and skewed towards M2 phenotype. THP-1-derived macrophages also had greater production of ROS and phagocytic activity. Under M1-polarizing conditions, macrophages derived from both THP-1 and U937 reduced phagocytosis activity and the increased production of ROS. This information should be considered to make an informed choice on the cell line used as in vitro macrophage model, according to the experimental goals and biological context.
Understanding macrophage biology can improve comprehension of diverse biological processes and provide insights into novel therapeutic immunomodulatory strategies. Due to limited yield and technical difficulty in isolating primary macrophages, in vitro studies commonly use monocytes as precursor cells. Monocytic cell lines are a virtually unlimited source of macrophage precursors and two of the most frequently used cell lines are THP-1 and U937. Besides a great variability in macrophage differentiation protocols there is scarce information on possible differences in the biological responses of these cell lines. In this study, we used a standardized differentiation protocol using PMA and compared the response of macrophages derived from THP-1 and U937 cells to M1-and M2-polarizing conditions. THP-1-derived macrophages are more responsive to M1 stimuli and skewed towards M1 phenotype, whereas U937-derived macrophages were more responsive to M2 stimuli and skewed towards M2 phenotype. THP-1-derived macrophages also had greater production of ROS and phagocytic activity. Under M1-polarizing conditions, macrophages derived from both THP-1 and U937 reduced phagocytosis activity and the increased production of ROS. This information should be considered to make an informed choice on the cell line used as in vitro macrophage model, according to the experimental goals and biological context. • THP-1 and U937 were successfully differentiated in macrophages using 10 ng/mL of PMA. • M-CSF did not promote macrophage differentiation of either THP-1 or U937 cells. • THP-1 cells are skewed to the M1 phenotype. • U937 cells are skewed to the M2 phenotype.
ArticleNumber 101383
Author Gonzalez Maldonado, Laura Andrea
Nascimento, Camyla Rodrigues
Rodrigues Fernandes, Natalie Ap
Rossa Junior, Carlos
Author_xml – sequence: 1
  givenname: Camyla Rodrigues
  surname: Nascimento
  fullname: Nascimento, Camyla Rodrigues
  organization: Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, SP, Brazil
– sequence: 2
  givenname: Natalie Ap
  surname: Rodrigues Fernandes
  fullname: Rodrigues Fernandes, Natalie Ap
  organization: Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, SP, Brazil
– sequence: 3
  givenname: Laura Andrea
  surname: Gonzalez Maldonado
  fullname: Gonzalez Maldonado, Laura Andrea
  organization: Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, SP, Brazil
– sequence: 4
  givenname: Carlos
  orcidid: 0000-0003-1705-5481
  surname: Rossa Junior
  fullname: Rossa Junior, Carlos
  email: c.rossa@unesp.br
  organization: Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, SP, Brazil
BookMark eNp9kc1u1DAUhSNUJErpE7Dxks0M_o3jBUhoBLRSJVi0KxaW7VxPPUrsYGdG6tvjNEWiLLqydX3Pp-Nz3jZnMUVomvcEbwkm7cfD1toM05ZiSpcJ69ir5pxyLDaiw93ZP_c3zWUpB4wxEbQTtD1vfu3SOJkcSoooeTSmmNzDHBxyMAxoCBEKulNMIhN7dHv1c0OQKWg0Lqfp3uyhKnoYCvIpoxDRKcw5oTIf-wDlXfPam6HA5dN50dx9-3q7u9rc_Ph-vftys3EC03ljDVdYSiJkKywXPVEec--ZYQRbLF3nnPQCWi5xC8z11X7HhcHcUWeBArtorldun8xBTzmMJj_oZIJ-HKS81ybXPw2geSsAW84c4447YTsGSngLnaOt9EpV1ueVNR3tCL2DOGczPIM-f4nhXu_TSatWyuqrAj48AXL6fYQy6zGUJUwTIR2LppIpySlWpK6qdbWGWUoGr12YzRzSQg6DJlgvBeuDfixYLwXrteCqZf9p_1p8WfVpVdXK4BQg6-ICRAd9yODmmld4Uf8HftrB2w
CitedBy_id crossref_primary_10_1111_imr_70021
crossref_primary_10_1016_j_diff_2023_01_001
crossref_primary_10_1080_20002297_2025_2469894
crossref_primary_10_1016_j_jff_2024_106191
crossref_primary_10_3389_fbioe_2024_1361682
crossref_primary_10_3389_fcimb_2024_1384611
crossref_primary_10_2147_IJN_S427350
crossref_primary_10_1021_jacs_4c11058
crossref_primary_10_3390_cells13242062
crossref_primary_10_1002_cti2_1481
crossref_primary_10_3390_ijms24010278
crossref_primary_10_1002_mnfr_202400356
crossref_primary_10_1007_s00018_024_05570_z
crossref_primary_10_31857_S0026898424020089
crossref_primary_10_3390_nutraceuticals4010009
crossref_primary_10_1096_fj_202400240R
crossref_primary_10_2174_0118715230294413240415054610
crossref_primary_10_1016_j_cyto_2024_156757
Cites_doi 10.1007/s11010-014-2323-9
10.4049/jimmunol.1103608
10.1146/annurev-pathmechdis-012418-012718
10.1016/j.jim.2019.112721
10.1016/j.cellimm.2018.07.008
10.1053/j.gastro.2020.07.004
10.1016/j.imbio.2014.12.008
10.1016/j.immuni.2018.10.005
10.1369/jhc.5A6871.2006
10.1016/j.it.2021.04.007
10.1016/j.leukres.2010.07.040
10.1111/imm.12910
10.1371/journal.pone.0008668
10.1016/j.imbio.2014.05.002
10.1002/cti2.1222
10.1007/s13402-021-00597-x
10.1016/j.imbio.2017.02.006
10.1111/aji.12129
10.3389/fimmu.2014.00514
10.1371/journal.ppat.1008971
10.3389/fphar.2018.00071
10.1080/03008207.2018.1530770
10.1038/icb.2008.99
10.1016/j.cellimm.2013.01.010
10.1007/s00262-018-2261-6
10.1186/1471-2172-8-1
10.1111/imcb.12212
10.1089/bio.2015.0104
10.1016/j.intimp.2014.08.002
10.2131/jts.45.751
10.3389/fphys.2020.552569
10.1371/journal.pone.0193643
10.1016/j.morpho.2018.06.001
ContentType Journal Article
Copyright 2022 The Authors
2022 The Authors.
2022 The Authors 2022
Copyright_xml – notice: 2022 The Authors
– notice: 2022 The Authors.
– notice: 2022 The Authors 2022
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.bbrep.2022.101383
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2405-5808
ExternalDocumentID oai_doaj_org_article_465e0b43c34c4c5b83e95fbe8c267f99
PMC9677084
10_1016_j_bbrep_2022_101383
S2405580822001832
GroupedDBID 0R~
0SF
457
53G
5VS
6I.
AACTN
AAEDW
AAFTH
AAFWJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFPKN
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
7X8
5PM
ID FETCH-LOGICAL-c502t-ba4907715765b45d19f04ff3a310b07c8cc7f5e64706e3cd000845a04c2cbe2e3
IEDL.DBID DOA
ISSN 2405-5808
IngestDate Wed Aug 27 01:29:00 EDT 2025
Thu Aug 21 18:39:46 EDT 2025
Fri Jul 11 01:50:27 EDT 2025
Tue Jul 01 03:08:23 EDT 2025
Thu Apr 24 23:05:35 EDT 2025
Tue Jul 25 20:59:46 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords THP-1 cells
Phenotype
Gene expression
U937 cells
Macrophage
Language English
License This is an open access article under the CC BY license.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-ba4907715765b45d19f04ff3a310b07c8cc7f5e64706e3cd000845a04c2cbe2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1705-5481
OpenAccessLink https://doaj.org/article/465e0b43c34c4c5b83e95fbe8c267f99
PQID 2739742091
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_465e0b43c34c4c5b83e95fbe8c267f99
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9677084
proquest_miscellaneous_2739742091
crossref_citationtrail_10_1016_j_bbrep_2022_101383
crossref_primary_10_1016_j_bbrep_2022_101383
elsevier_sciencedirect_doi_10_1016_j_bbrep_2022_101383
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Biochemistry and biophysics reports
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Guilliams, Mildner, Yona (bib12) 2018; 49
Kwak, Wang, Deng, Condamine, Kumar, Perego, Kossenkov, Montaner, Xu, Xu, Schuchter, Amaravadi, Mitchell, Giorgos, Mulligan, Nam, Masters, Hockstein (bib19) 2021; 33
Tedesco, Bolego, Toniolo, Nassi, Fadini, Locati, Cignarella (bib33) 2015; 220
Baine, Mallya, Batra (bib3) 2013
Zhao, Zhang, Liu, Yang, Gao, Liu, Liu, Hayashi, Yamato, Fujisaki, Hattori, Mizuno, Atsuzawa, Tashiro, Onodera, Ikejima (bib39) 2019; 60
Jaguin, Houlbert, Fardel, Lecureur (bib15) 2013; 281
Ma, Wu, Lin, Xiong, Wang, Li, Cheng, Tu (bib22) 2015; 402
Nikfarjam, Farzaneh (bib24) 2012; 13
Funes, Rios, Escobar-vera (bib10) 2018
Valdés López Jf (bib36) 2018; 102
Minafra, Di, Ninfa, Cancemi, Sperimentale, Palermo (bib23) 2011; 35
Aldo, Craveiro, Guller, Mor (bib1) 2013; 70
Jaggi, Yang, Matundan, Hirose, Shah, Sharifi, Ghiasi (bib14) 2020; 16
Posch, Lass-Flörl, Wilflingseder (bib26) 2016; 2016
Komohara, Hirahara, Horikawa, Kawamura, Kiyota, Sakashita, Araki, Takeya (bib16) 2006; 54
Prasad, Sedlářová, Balukova, Ovsii, Rác, Křupka, Kasai, Pospíšil (bib27) 2020; 11
Lurier, Dalton, Dampier, Raman, Nassiri, Ferraro, Rajagopalan, Sarmady, Spiller (bib21) 2017; 222
Denney, Kok, Cole, Sanderson, McMichael, Ho (bib8) 2012; 189
Kuno, Srinoun, Penglong (bib17) 2020; 45
Rios, Touyz, Montezano (bib28) 2017; 1527
Locati, Curtale, Mantovani (bib20) 2020; 15
Nobs, Kopf (bib25) 2021; 42
Baxter, Graham, Re, Carr, Robinson, Mackie, Morgan (bib4) 2020; 478
Morón-Calvente, Romero-Pinedo, Toribio-Castelló, Plaza-Díaz, Abadía-Molina, Rojas-Barros, Beug, LaCasse, MacKenzie, Korneluk, Abadía-Molina (bib29) 2018; 13
Daigneault, Preston, Marriott, Whyte, Dockrell (bib7) 2010; 5
Italiani, Boraschi (bib13) 2014; 5
Spalinger, Sayoc-Becerra, Santos, Shawki, Canale, Krishnan, Niechcial, Obialo, Scharl, Li, Nair, McCole (bib31) 2020; 159
Chanput, Mes, Wichers (bib6) 2014; 23
Forrester, Wassall, Hall, Cao, Wilson, Barker, Vickers (bib9) 2018; 332
Tedesco, De Majo, Kim, Trenti, Trevisi, Fadini, Bolego, Zandstra, Cignarella, Vitiello (bib34) 2018; 9
Benaiges, Ceperuelo-Mallafré, Madeira, Bosch, Núñez-Roa, Ejarque, Maymó-Masip, Huber-Ruano, Lejeune, Vendrell, Fernández-Veledo (bib5) 2021; 44
Kurynina, Erokhina, Makarevich, Sysoeva, Lepekha, Kuznetsov, Onishchenko (bib18) 2018; 83
Sharif, Bolshakov, Raines, Newham, Perkins (bib30) 2007; 8
Tierney, Kharkrang, La Flamme (bib35) 2009; 87
Grievink, Luisman, Kluft, Moerland, M.K (bib11) 2016; 14
Sreejit, Fleetwood, Murphy, Nagareddy (bib32) 2020; 9
Zhang, Du, He, Liu, Zhang, Yang, Gao (bib38) 2019; 68
Ayaub, Tandon, Padwal, Imani, Patel, Dubey, Mekhael, Upagupta, Ayoub, Dvorkin-Gheva, Murphy, Kolb, Lhotak, Dickhout, Austin, Kolb, Richards, Ask (bib2) 2019; 97
Vogel, Glim, Stavenuiter, Breur, Heijnen, Amor, Dijkstra, Beelen (bib37) 2014; 219
Baine (10.1016/j.bbrep.2022.101383_bib3) 2013
Chanput (10.1016/j.bbrep.2022.101383_bib6) 2014; 23
Komohara (10.1016/j.bbrep.2022.101383_bib16) 2006; 54
Prasad (10.1016/j.bbrep.2022.101383_bib27) 2020; 11
Vogel (10.1016/j.bbrep.2022.101383_bib37) 2014; 219
Grievink (10.1016/j.bbrep.2022.101383_bib11) 2016; 14
Tedesco (10.1016/j.bbrep.2022.101383_bib34) 2018; 9
Daigneault (10.1016/j.bbrep.2022.101383_bib7) 2010; 5
Lurier (10.1016/j.bbrep.2022.101383_bib21) 2017; 222
Jaguin (10.1016/j.bbrep.2022.101383_bib15) 2013; 281
Locati (10.1016/j.bbrep.2022.101383_bib20) 2020; 15
Sharif (10.1016/j.bbrep.2022.101383_bib30) 2007; 8
Tierney (10.1016/j.bbrep.2022.101383_bib35) 2009; 87
Forrester (10.1016/j.bbrep.2022.101383_bib9) 2018; 332
Tedesco (10.1016/j.bbrep.2022.101383_bib33) 2015; 220
Kwak (10.1016/j.bbrep.2022.101383_bib19) 2021; 33
Jaggi (10.1016/j.bbrep.2022.101383_bib14) 2020; 16
Funes (10.1016/j.bbrep.2022.101383_bib10) 2018
Kurynina (10.1016/j.bbrep.2022.101383_bib18) 2018; 83
Minafra (10.1016/j.bbrep.2022.101383_bib23) 2011; 35
Denney (10.1016/j.bbrep.2022.101383_bib8) 2012; 189
Morón-Calvente (10.1016/j.bbrep.2022.101383_bib29) 2018; 13
Aldo (10.1016/j.bbrep.2022.101383_bib1) 2013; 70
Rios (10.1016/j.bbrep.2022.101383_bib28) 2017; 1527
Ayaub (10.1016/j.bbrep.2022.101383_bib2) 2019; 97
Baxter (10.1016/j.bbrep.2022.101383_bib4) 2020; 478
Guilliams (10.1016/j.bbrep.2022.101383_bib12) 2018; 49
Valdés López Jf (10.1016/j.bbrep.2022.101383_bib36) 2018; 102
Zhao (10.1016/j.bbrep.2022.101383_bib39) 2019; 60
Nikfarjam (10.1016/j.bbrep.2022.101383_bib24) 2012; 13
Sreejit (10.1016/j.bbrep.2022.101383_bib32) 2020; 9
Spalinger (10.1016/j.bbrep.2022.101383_bib31) 2020; 159
Kuno (10.1016/j.bbrep.2022.101383_bib17) 2020; 45
Ma (10.1016/j.bbrep.2022.101383_bib22) 2015; 402
Italiani (10.1016/j.bbrep.2022.101383_bib13) 2014; 5
Nobs (10.1016/j.bbrep.2022.101383_bib25) 2021; 42
Benaiges (10.1016/j.bbrep.2022.101383_bib5) 2021; 44
Zhang (10.1016/j.bbrep.2022.101383_bib38) 2019; 68
Posch (10.1016/j.bbrep.2022.101383_bib26) 2016; 2016
References_xml – volume: 11
  start-page: 1
  year: 2020
  end-page: 7
  ident: bib27
  article-title: Reactive oxygen species imaging in U937 cells
  publication-title: Front. Physiol.
– volume: 9
  start-page: 1
  year: 2020
  end-page: 19
  ident: bib32
  article-title: Origins and diversity of macrophages in health and disease
  publication-title: Clin. Transl. Immunol.
– volume: 15
  start-page: 123
  year: 2020
  end-page: 147
  ident: bib20
  article-title: Diversity, mechanisms, and significance of macrophage plasticity
  publication-title: Annu. Rev. Pathol.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 13
  ident: bib34
  article-title: Convenience versus biological significance: are PMA-differentiated THP-1 cells a reliable substitute for blood-derived macrophages when studying in vitro polarization?
  publication-title: Front. Pharmacol.
– volume: 5
  start-page: 1
  year: 2014
  end-page: 22
  ident: bib13
  article-title: From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation
  publication-title: Front. Immunol.
– volume: 83
  start-page: 200
  year: 2018
  end-page: 214
  ident: bib18
  article-title: Plasticity of human THP–1 cell phagocytic activity during macrophagic differentiation
  publication-title: Biochemist
– volume: 332
  start-page: 58
  year: 2018
  end-page: 76
  ident: bib9
  article-title: Similarities and differences in surface receptor expression by THP-1 monocytes and differentiated macrophages polarized using seven different conditioning regimens
  publication-title: Cell. Immunol.
– volume: 49
  start-page: 595
  year: 2018
  end-page: 613
  ident: bib12
  article-title: Developmental and functional . Heterogeneity of monocytes
  publication-title: Immunity
– volume: 14
  start-page: 410
  year: 2016
  end-page: 415
  ident: bib11
  article-title: Comparison of three isolation techniques for human
  publication-title: Biopreserv. Biobanking
– volume: 2016
  start-page: 2
  year: 2016
  end-page: 7
  ident: bib26
  article-title: Generation of human monocyte-derived dendritic cells from whole blood
  publication-title: JoVE
– start-page: 186
  year: 2018
  end-page: 195
  ident: bib10
  article-title: Implications of macrophage polarization in autoimmunity
  publication-title: Immunology
– volume: 23
  start-page: 37
  year: 2014
  end-page: 45
  ident: bib6
  article-title: THP-1 cell line: an in vitro cell model for immune modulation approach
  publication-title: Int. Immunopharm.
– volume: 44
  start-page: 777
  year: 2021
  end-page: 792
  ident: bib5
  article-title: Survivin drives tumor-associated macrophage reprogramming: a novel mechanism with potential impact for obesity
  publication-title: Cell. Oncol.
– volume: 16
  start-page: 1
  year: 2020
  end-page: 25
  ident: bib14
  article-title: Increased phagocytosis in the presence of enhanced M2-like macrophage responses correlates with increased primary and latent HSV-1 infection
  publication-title: PLoS Pathog.
– volume: 219
  start-page: 695
  year: 2014
  end-page: 703
  ident: bib37
  article-title: Human macrophage polarization in vitro: maturation and activation methods compared
  publication-title: Immunobiology
– volume: 281
  start-page: 51
  year: 2013
  end-page: 61
  ident: bib15
  article-title: Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin
  publication-title: Cell. Immunol.
– volume: 5
  year: 2010
  ident: bib7
  article-title: The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages
  publication-title: PLoS One
– volume: 478
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib4
  article-title: Standardized protocols for differentiation of THP-1 cells to macrophages with distinct M(IFNγ+LPS), M(IL-4) and M(IL-10) phenotypes
  publication-title: J. Immunol. Methods
– volume: 45
  start-page: 751
  year: 2020
  end-page: 761
  ident: bib17
  article-title: The effects of phorbol 12-myristate 13-acetate concentratioon the expression of miR-155 and miR-125b and their macrophage function-related genes in the U937 cell line
  publication-title: J. Toxicol. Sci.
– volume: 8
  start-page: 1
  year: 2007
  end-page: 17
  ident: bib30
  article-title: Transcriptional profiling of the LPS induced NF-κB response in macrophages
  publication-title: BMC Immunol.
– volume: 222
  start-page: 847
  year: 2017
  end-page: 856
  ident: bib21
  article-title: Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing
  publication-title: Immunobiology
– volume: 97
  start-page: 203
  year: 2019
  end-page: 217
  ident: bib2
  article-title: IL-6 mediates ER expansion during hyperpolarization of alternatively activated macrophages
  publication-title: Immunol. Cell Biol.
– volume: 87
  start-page: 235
  year: 2009
  end-page: 240
  ident: bib35
  article-title: Type II-activated macrophages suppress the development of experimental autoimmune encephalomyelitis
  publication-title: Immunol. Cell Biol.
– start-page: 1
  year: 2013
  end-page: 16
  ident: bib3
  article-title: Quantitative real-time PCR expression analysis of peripheral blood mononuclear cells in pancreatic cancer patients
  publication-title: Methods Mol. Biol.
– volume: 13
  start-page: 203
  year: 2012
  end-page: 212
  ident: bib24
  article-title: Prevention and detection of mycoplasma contamination in cell culture
  publication-title: Cell J
– volume: 42
  start-page: 495
  year: 2021
  end-page: 507
  ident: bib25
  article-title: Tissue-resident macrophages: guardians of organ homeostasis
  publication-title: Trends Immunol.
– volume: 13
  start-page: 1
  year: 2018
  end-page: 19
  ident: bib29
  article-title: Inhibitor of apoptosis proteins, NAIP, cIAP1 and cIAP2 expression during macrophage differentiation and M1/M2 polarization
  publication-title: PLoS One
– volume: 68
  start-page: 189
  year: 2019
  end-page: 200
  ident: bib38
  article-title: INT-HA induces M2-like macrophage differentiation of human monocytes via TLR4-miR-935 pathway
  publication-title: Cancer Immunol. Immunother.
– volume: 35
  start-page: 226
  year: 2011
  end-page: 236
  ident: bib23
  article-title: Proteomic differentiation pattern in the U937 cell line
  publication-title: Leuk. Res.
– volume: 159
  start-page: 1763
  year: 2020
  end-page: 1777
  ident: bib31
  article-title: PTPN2 regulates interactions between macrophages and intestinal epithelial cells to promote intestinal barrier function
  publication-title: Gastroenterology
– volume: 220
  start-page: 545
  year: 2015
  end-page: 554
  ident: bib33
  article-title: Phenotypic activation and pharmacological outcomes of spontaneously differentiated human monocyte-derived macrophages
  publication-title: Immunobiology
– volume: 1527
  start-page: 311
  year: 2017
  end-page: 320
  ident: bib28
  publication-title: Isolation and Differentiation of Human Macrophages
– volume: 54
  start-page: 763
  year: 2006
  end-page: 771
  ident: bib16
  article-title: AM-3K, an anti-macrophage antibody, recognizes CD163, a molecule associated with an anti-inflammatory macrophage phenotype
  publication-title: J. Histochem. Cytochem.
– volume: 70
  start-page: 80
  year: 2013
  end-page: 86
  ident: bib1
  article-title: Effect of culture conditions on the phenotype of THP-1 monocyte cell line
  publication-title: Am. J. Reprod. Immunol.
– volume: 189
  start-page: 551
  year: 2012
  end-page: 557
  ident: bib8
  article-title: Activation of invariant NKT cells in early phase of experimental autoimmune encephalomyelitis results in differentiation of Ly6C hi inflammatory monocyte to M2 macrophages and improved outcome
  publication-title: J. Immunol.
– volume: 33
  year: 2021
  ident: bib19
  article-title: Distinct populations of immune-suppressive macrophages differentiate from monocytic myeloid-derived suppressor cells in cancer
  publication-title: Cell Rep.
– volume: 102
  start-page: 205
  year: 2018
  end-page: 218
  ident: bib36
  article-title: Synergism between phorbol-12-myristate-13-acetate and vitamin D3 in the differentiation of U937 cells to monocytes and macrophages Synergie entre le phorbol-12-myristate-13-acétate et la
  publication-title: Morphologie
– volume: 402
  start-page: 157
  year: 2015
  end-page: 169
  ident: bib22
  article-title: IL-12 could induce monocytic tumor cells directional differentiation
  publication-title: Mol. Cell. Biochem.
– volume: 60
  start-page: 323
  year: 2019
  end-page: 334
  ident: bib39
  article-title: Reactive oxygen species are responsible for the cell aggregation and production of pro-inflammatory mediators in phorbol ester (PMA)-treated U937 cells on gelatin-coated dishes through upregulation of autophagy
  publication-title: Connect. Tissue Res.
– volume: 402
  start-page: 157
  year: 2015
  ident: 10.1016/j.bbrep.2022.101383_bib22
  article-title: IL-12 could induce monocytic tumor cells directional differentiation
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/s11010-014-2323-9
– volume: 189
  start-page: 551
  year: 2012
  ident: 10.1016/j.bbrep.2022.101383_bib8
  article-title: Activation of invariant NKT cells in early phase of experimental autoimmune encephalomyelitis results in differentiation of Ly6C hi inflammatory monocyte to M2 macrophages and improved outcome
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1103608
– volume: 15
  start-page: 123
  year: 2020
  ident: 10.1016/j.bbrep.2022.101383_bib20
  article-title: Diversity, mechanisms, and significance of macrophage plasticity
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev-pathmechdis-012418-012718
– volume: 478
  start-page: 1
  year: 2020
  ident: 10.1016/j.bbrep.2022.101383_bib4
  article-title: Standardized protocols for differentiation of THP-1 cells to macrophages with distinct M(IFNγ+LPS), M(IL-4) and M(IL-10) phenotypes
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2019.112721
– volume: 332
  start-page: 58
  year: 2018
  ident: 10.1016/j.bbrep.2022.101383_bib9
  article-title: Similarities and differences in surface receptor expression by THP-1 monocytes and differentiated macrophages polarized using seven different conditioning regimens
  publication-title: Cell. Immunol.
  doi: 10.1016/j.cellimm.2018.07.008
– volume: 159
  start-page: 1763
  year: 2020
  ident: 10.1016/j.bbrep.2022.101383_bib31
  article-title: PTPN2 regulates interactions between macrophages and intestinal epithelial cells to promote intestinal barrier function
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2020.07.004
– volume: 220
  start-page: 545
  year: 2015
  ident: 10.1016/j.bbrep.2022.101383_bib33
  article-title: Phenotypic activation and pharmacological outcomes of spontaneously differentiated human monocyte-derived macrophages
  publication-title: Immunobiology
  doi: 10.1016/j.imbio.2014.12.008
– volume: 49
  start-page: 595
  year: 2018
  ident: 10.1016/j.bbrep.2022.101383_bib12
  article-title: Developmental and functional . Heterogeneity of monocytes
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.10.005
– volume: 54
  start-page: 763
  year: 2006
  ident: 10.1016/j.bbrep.2022.101383_bib16
  article-title: AM-3K, an anti-macrophage antibody, recognizes CD163, a molecule associated with an anti-inflammatory macrophage phenotype
  publication-title: J. Histochem. Cytochem.
  doi: 10.1369/jhc.5A6871.2006
– volume: 42
  start-page: 495
  year: 2021
  ident: 10.1016/j.bbrep.2022.101383_bib25
  article-title: Tissue-resident macrophages: guardians of organ homeostasis
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2021.04.007
– volume: 35
  start-page: 226
  year: 2011
  ident: 10.1016/j.bbrep.2022.101383_bib23
  article-title: Proteomic differentiation pattern in the U937 cell line
  publication-title: Leuk. Res.
  doi: 10.1016/j.leukres.2010.07.040
– start-page: 186
  year: 2018
  ident: 10.1016/j.bbrep.2022.101383_bib10
  article-title: Implications of macrophage polarization in autoimmunity
  publication-title: Immunology
  doi: 10.1111/imm.12910
– volume: 5
  year: 2010
  ident: 10.1016/j.bbrep.2022.101383_bib7
  article-title: The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0008668
– volume: 219
  start-page: 695
  year: 2014
  ident: 10.1016/j.bbrep.2022.101383_bib37
  article-title: Human macrophage polarization in vitro: maturation and activation methods compared
  publication-title: Immunobiology
  doi: 10.1016/j.imbio.2014.05.002
– volume: 9
  start-page: 1
  year: 2020
  ident: 10.1016/j.bbrep.2022.101383_bib32
  article-title: Origins and diversity of macrophages in health and disease
  publication-title: Clin. Transl. Immunol.
  doi: 10.1002/cti2.1222
– volume: 44
  start-page: 777
  year: 2021
  ident: 10.1016/j.bbrep.2022.101383_bib5
  article-title: Survivin drives tumor-associated macrophage reprogramming: a novel mechanism with potential impact for obesity
  publication-title: Cell. Oncol.
  doi: 10.1007/s13402-021-00597-x
– volume: 222
  start-page: 847
  year: 2017
  ident: 10.1016/j.bbrep.2022.101383_bib21
  article-title: Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing
  publication-title: Immunobiology
  doi: 10.1016/j.imbio.2017.02.006
– volume: 70
  start-page: 80
  year: 2013
  ident: 10.1016/j.bbrep.2022.101383_bib1
  article-title: Effect of culture conditions on the phenotype of THP-1 monocyte cell line
  publication-title: Am. J. Reprod. Immunol.
  doi: 10.1111/aji.12129
– volume: 33
  year: 2021
  ident: 10.1016/j.bbrep.2022.101383_bib19
  article-title: Distinct populations of immune-suppressive macrophages differentiate from monocytic myeloid-derived suppressor cells in cancer
  publication-title: Cell Rep.
– volume: 5
  start-page: 1
  year: 2014
  ident: 10.1016/j.bbrep.2022.101383_bib13
  article-title: From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2014.00514
– volume: 16
  start-page: 1
  year: 2020
  ident: 10.1016/j.bbrep.2022.101383_bib14
  article-title: Increased phagocytosis in the presence of enhanced M2-like macrophage responses correlates with increased primary and latent HSV-1 infection
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1008971
– start-page: 1
  year: 2013
  ident: 10.1016/j.bbrep.2022.101383_bib3
  article-title: Quantitative real-time PCR expression analysis of peripheral blood mononuclear cells in pancreatic cancer patients
  publication-title: Methods Mol. Biol.
– volume: 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.bbrep.2022.101383_bib34
  article-title: Convenience versus biological significance: are PMA-differentiated THP-1 cells a reliable substitute for blood-derived macrophages when studying in vitro polarization?
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.00071
– volume: 60
  start-page: 323
  year: 2019
  ident: 10.1016/j.bbrep.2022.101383_bib39
  article-title: Reactive oxygen species are responsible for the cell aggregation and production of pro-inflammatory mediators in phorbol ester (PMA)-treated U937 cells on gelatin-coated dishes through upregulation of autophagy
  publication-title: Connect. Tissue Res.
  doi: 10.1080/03008207.2018.1530770
– volume: 87
  start-page: 235
  year: 2009
  ident: 10.1016/j.bbrep.2022.101383_bib35
  article-title: Type II-activated macrophages suppress the development of experimental autoimmune encephalomyelitis
  publication-title: Immunol. Cell Biol.
  doi: 10.1038/icb.2008.99
– volume: 281
  start-page: 51
  year: 2013
  ident: 10.1016/j.bbrep.2022.101383_bib15
  article-title: Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin
  publication-title: Cell. Immunol.
  doi: 10.1016/j.cellimm.2013.01.010
– volume: 68
  start-page: 189
  year: 2019
  ident: 10.1016/j.bbrep.2022.101383_bib38
  article-title: INT-HA induces M2-like macrophage differentiation of human monocytes via TLR4-miR-935 pathway
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-018-2261-6
– volume: 8
  start-page: 1
  year: 2007
  ident: 10.1016/j.bbrep.2022.101383_bib30
  article-title: Transcriptional profiling of the LPS induced NF-κB response in macrophages
  publication-title: BMC Immunol.
  doi: 10.1186/1471-2172-8-1
– volume: 97
  start-page: 203
  year: 2019
  ident: 10.1016/j.bbrep.2022.101383_bib2
  article-title: IL-6 mediates ER expansion during hyperpolarization of alternatively activated macrophages
  publication-title: Immunol. Cell Biol.
  doi: 10.1111/imcb.12212
– volume: 2016
  start-page: 2
  year: 2016
  ident: 10.1016/j.bbrep.2022.101383_bib26
  article-title: Generation of human monocyte-derived dendritic cells from whole blood
  publication-title: JoVE
– volume: 14
  start-page: 410
  year: 2016
  ident: 10.1016/j.bbrep.2022.101383_bib11
  article-title: Comparison of three isolation techniques for human
  publication-title: Biopreserv. Biobanking
  doi: 10.1089/bio.2015.0104
– volume: 23
  start-page: 37
  year: 2014
  ident: 10.1016/j.bbrep.2022.101383_bib6
  article-title: THP-1 cell line: an in vitro cell model for immune modulation approach
  publication-title: Int. Immunopharm.
  doi: 10.1016/j.intimp.2014.08.002
– volume: 45
  start-page: 751
  year: 2020
  ident: 10.1016/j.bbrep.2022.101383_bib17
  article-title: The effects of phorbol 12-myristate 13-acetate concentratioon the expression of miR-155 and miR-125b and their macrophage function-related genes in the U937 cell line
  publication-title: J. Toxicol. Sci.
  doi: 10.2131/jts.45.751
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.bbrep.2022.101383_bib27
  article-title: Reactive oxygen species imaging in U937 cells
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2020.552569
– volume: 13
  start-page: 203
  year: 2012
  ident: 10.1016/j.bbrep.2022.101383_bib24
  article-title: Prevention and detection of mycoplasma contamination in cell culture
  publication-title: Cell J
– volume: 13
  start-page: 1
  year: 2018
  ident: 10.1016/j.bbrep.2022.101383_bib29
  article-title: Inhibitor of apoptosis proteins, NAIP, cIAP1 and cIAP2 expression during macrophage differentiation and M1/M2 polarization
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0193643
– volume: 83
  start-page: 200
  year: 2018
  ident: 10.1016/j.bbrep.2022.101383_bib18
  article-title: Plasticity of human THP–1 cell phagocytic activity during macrophagic differentiation
  publication-title: Biochemist
– volume: 102
  start-page: 205
  year: 2018
  ident: 10.1016/j.bbrep.2022.101383_bib36
  article-title: Synergism between phorbol-12-myristate-13-acetate and vitamin D3 in the differentiation of U937 cells to monocytes and macrophages Synergie entre le phorbol-12-myristate-13-acétate et la
  publication-title: Morphologie
  doi: 10.1016/j.morpho.2018.06.001
– volume: 1527
  start-page: 311
  year: 2017
  ident: 10.1016/j.bbrep.2022.101383_bib28
  publication-title: Isolation and Differentiation of Human Macrophages
SSID ssj0001528526
Score 2.4292707
Snippet Understanding macrophage biology can improve comprehension of diverse biological processes and provide insights into novel therapeutic immunomodulatory...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101383
SubjectTerms Gene expression
Macrophage
Phenotype
THP-1 cells
U937 cells
Title Comparison of monocytic cell lines U937 and THP-1 as macrophage models for in vitro studies
URI https://dx.doi.org/10.1016/j.bbrep.2022.101383
https://www.proquest.com/docview/2739742091
https://pubmed.ncbi.nlm.nih.gov/PMC9677084
https://doaj.org/article/465e0b43c34c4c5b83e95fbe8c267f99
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQe4ALonyIhVK5EkcsvPE4do5l1WpFVYRQV1TiYMWOrS6CBDVbJP59x3ay2lzKpdfEcZyZiedNNHmPkPfBq1hoWDa34BmUvma6URWDhnP0csWdjd87Lr6UyxV8vpJXO1JfsScs0wNnw32EUnpuQTgBDpy0WvhKBuu1K0oVqvTrHua8nWIq_x9caJm01jBjSSY11yPlUGruslhvRrbKoohHhBaTtJTY-yfZaQd9Tnsnd5LR2TPydECR9CSv_oA88u1z8ngxire9ID8WW31B2gWKsda5fziYxg_1NELLnq4QM9C6bejl8iub07qnv-so6HWNWwxNCjk9RUhL1y39u97cdLTPPYcvyers9HKxZIOOAnOSFxtma8ASWM2xtJAWZDOvAocQRI3QznLltHMqSF-C4qUXrom4AGTNwRXO-sKLV2Sv7Vr_mlCrLDQgMKdZBd4F3VQOJ8ddwqKvGzcjxWhG4waS8ah18cuM3WQ_TbK9ibY32fYz8mF70Z_MsXH_8E_RP9uhkSA7HcCwMUPYmP-FzYyUo3fNgDUyhsCp1vff_XiMBYM-jV6rW9_d9gaBIBZnMRhnRE2CZLLU6Zl2fZ04vatSKbT6m4d4trfkSVxwbro5JHubm1v_DqHTxh6R_ZPzb9_Pj9Lbcgf4xBcj
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+monocytic+cell+lines+U937+and+THP-1+as+macrophage+models+for+in+vitro+studies&rft.jtitle=Biochemistry+and+biophysics+reports&rft.au=Nascimento%2C+Camyla+Rodrigues&rft.au=Rodrigues+Fernandes%2C+Natalie+Ap&rft.au=Gonzalez+Maldonado%2C+Laura+Andrea&rft.au=Rossa+Junior%2C+Carlos&rft.date=2022-12-01&rft.issn=2405-5808&rft.eissn=2405-5808&rft.volume=32&rft.spage=101383&rft_id=info:doi/10.1016%2Fj.bbrep.2022.101383&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-5808&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-5808&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-5808&client=summon