Activation in M1 but not M2 Macrophages Contributes to Cardiac Remodeling after Myocardial Infarction in Rats: a Critical Role of the Calcium Sensing Receptor/NRLP3 Inflammasome

Aims: Macrophage (MΦ) infiltration during myocardial infarction (MI) amplifies cardiac inflammation and remodeling. We investigated whether activation of the NRLP3 inflammasome by a calcium sensing receptor (CaSR) in MΦ subsets contributes to cardiac remodeling following MI. Methods and Results: Inf...

Full description

Saved in:
Bibliographic Details
Published inCellular physiology and biochemistry Vol. 35; no. 6; pp. 2483 - 2500
Main Authors Liu, Wenxiu, Zhang, Xin, Zhao, Meng, Zhang, Xiaohui, Chi, Jinyu, Liu, Yue, Lin, Fang, Fu, Yu, Ma, Dandan, Yin, Xinhua
Format Journal Article
LanguageEnglish
Published Basel, Switzerland Cell Physiol Biochem Press GmbH & Co KG 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aims: Macrophage (MΦ) infiltration during myocardial infarction (MI) amplifies cardiac inflammation and remodeling. We investigated whether activation of the NRLP3 inflammasome by a calcium sensing receptor (CaSR) in MΦ subsets contributes to cardiac remodeling following MI. Methods and Results: Infiltrated MΦ exhibited biphasic activation after MI; M1MΦ peaked at MI 3d and decreased until MI 14d, whereas M2MΦ peaked at MI 7d and decreased at MI 14d as shown via immunohistochemistry. IL-1β co-infiltrated with both M1MΦ and M2MΦ; IL-1β exhibited the same infiltrating tendency as M1MΦ, which was detected by immunohistochemistry. Increasing ventricular fibrosis was confirmed by Masson staining. CaSR and NLRP3 inflammasome in the MI group were upregulated in MΦ subsets in myocardium and peritoneal MΦ (p-MΦ) compared with the sham groups which were detected by immunofluorescence and western blotting. CaSR-activated NLRP3 inflammasome played a role in M1MΦ via PLC-IP 3 but did not play a role in M2MΦ which were polarized by the THP-1 as shown by western blotting and intracellular calcium measurement. CaSR/NLRP3 inflammasome activation in M1MΦ led to the following effects: upregulated α-sma, MMP-2 and MMP-9, and collagen secretion; and downregulated TIMP-2 in cardiac fibroblasts via IL-1β-IL-1RI, which was detected by coculturing M1MΦ and cardiac fibroblasts. Conclusions: We suggest that the CaSR/NLRP3 inflammasome plays an essential role via the PLC-IP 3 pathway in M1MΦ to promote cardiac remodeling post-MI in rats, including accelerated cardiac fibroblast phenotypic transversion, increased collagen and extracellular matrix (ECM) secretion; however, the CaSR/NLRP3 inflammasome does not play a role in this process in M2MΦ.
AbstractList Aims: Macrophage (MΦ) infiltration during myocardial infarction (MI) amplifies cardiac inflammation and remodeling. We investigated whether activation of the NRLP3 inflammasome by a calcium sensing receptor (CaSR) in MΦ subsets contributes to cardiac remodeling following MI. Methods and Results: Infiltrated MΦ exhibited biphasic activation after MI; M1MΦ peaked at MI 3d and decreased until MI 14d, whereas M2MΦ peaked at MI 7d and decreased at MI 14d as shown via immunohistochemistry. IL-1β co-infiltrated with both M1MΦ and M2MΦ; IL-1β exhibited the same infiltrating tendency as M1MΦ, which was detected by immunohistochemistry. Increasing ventricular fibrosis was confirmed by Masson staining. CaSR and NLRP3 inflammasome in the MI group were upregulated in MΦ subsets in myocardium and peritoneal MΦ (p-MΦ) compared with the sham groups which were detected by immunofluorescence and western blotting. CaSR-activated NLRP3 inflammasome played a role in M1MΦ via PLC-IP3 but did not play a role in M2MΦ which were polarized by the THP-1 as shown by western blotting and intracellular calcium measurement. CaSR/NLRP3 inflammasome activation in M1MΦ led to the following effects: upregulated α-sma, MMP-2 and MMP-9, and collagen secretion; and downregulated TIMP-2 in cardiac fibroblasts via IL-1β-IL-1RI, which was detected by coculturing M1MΦ and cardiac fibroblasts. Conclusions: We suggest that the CaSR/NLRP3 inflammasome plays an essential role via the PLC-IP3 pathway in M1MΦ to promote cardiac remodeling post-MI in rats, including accelerated cardiac fibroblast phenotypic transversion, increased collagen and extracellular matrix (ECM) secretion; however, the CaSR/NLRP3 inflammasome does not play a role in this process in M2MΦ.
Aims: Macrophage (MΦ) infiltration during myocardial infarction (MI) amplifies cardiac inflammation and remodeling. We investigated whether activation of the NRLP3 inflammasome by a calcium sensing receptor (CaSR) in MΦ subsets contributes to cardiac remodeling following MI. Methods and Results: Infiltrated MΦ exhibited biphasic activation after MI; M1MΦ peaked at MI 3d and decreased until MI 14d, whereas M2MΦ peaked at MI 7d and decreased at MI 14d as shown via immunohistochemistry. IL-1β co-infiltrated with both M1MΦ and M2MΦ; IL-1β exhibited the same infiltrating tendency as M1MΦ, which was detected by immunohistochemistry. Increasing ventricular fibrosis was confirmed by Masson staining. CaSR and NLRP3 inflammasome in the MI group were upregulated in MΦ subsets in myocardium and peritoneal MΦ (p-MΦ) compared with the sham groups which were detected by immunofluorescence and western blotting. CaSR-activated NLRP3 inflammasome played a role in M1MΦ via PLC-IP 3 but did not play a role in M2MΦ which were polarized by the THP-1 as shown by western blotting and intracellular calcium measurement. CaSR/NLRP3 inflammasome activation in M1MΦ led to the following effects: upregulated α-sma, MMP-2 and MMP-9, and collagen secretion; and downregulated TIMP-2 in cardiac fibroblasts via IL-1β-IL-1RI, which was detected by coculturing M1MΦ and cardiac fibroblasts. Conclusions: We suggest that the CaSR/NLRP3 inflammasome plays an essential role via the PLC-IP 3 pathway in M1MΦ to promote cardiac remodeling post-MI in rats, including accelerated cardiac fibroblast phenotypic transversion, increased collagen and extracellular matrix (ECM) secretion; however, the CaSR/NLRP3 inflammasome does not play a role in this process in M2MΦ.
Macrophage (MΦ) infiltration during myocardial infarction (MI) amplifies cardiac inflammation and remodeling. We investigated whether activation of the NRLP3 inflammasome by a calcium sensing receptor (CaSR) in MΦ subsets contributes to cardiac remodeling following MI.AIMSMacrophage (MΦ) infiltration during myocardial infarction (MI) amplifies cardiac inflammation and remodeling. We investigated whether activation of the NRLP3 inflammasome by a calcium sensing receptor (CaSR) in MΦ subsets contributes to cardiac remodeling following MI.Infiltrated MΦ exhibited biphasic activation after MI; M1MΦ peaked at MI 3d and decreased until MI 14d, whereas M2MΦ peaked at MI 7d and decreased at MI 14d as shown via immunohistochemistry. IL-1β co-infiltrated with both M1MΦ and M2MΦ; IL-1β exhibited the same infiltrating tendency as M1MΦ, which was detected by immunohistochemistry. Increasing ventricular fibrosis was confirmed by Masson staining. CaSR and NLRP3 inflammasome in the MI group were upregulated in MΦ subsets in myocardium and peritoneal MΦ (p-MΦ) compared with the sham groups which were detected by immunofluorescence and western blotting. CaSR-activated NLRP3 inflammasome played a role in M1MΦ via PLC-IP3 but did not play a role in M2MΦ which were polarized by the THP-1 as shown by western blotting and intracellular calcium measurement. CaSR/NLRP3 inflammasome activation in M1MΦ led to the following effects: upregulated α-sma, MMP-2 and MMP-9, and collagen secretion; and downregulated TIMP-2 in cardiac fibroblasts via IL-1β-IL-1RI, which was detected by coculturing M1MΦ and cardiac fibroblasts.METHODS AND RESULTSInfiltrated MΦ exhibited biphasic activation after MI; M1MΦ peaked at MI 3d and decreased until MI 14d, whereas M2MΦ peaked at MI 7d and decreased at MI 14d as shown via immunohistochemistry. IL-1β co-infiltrated with both M1MΦ and M2MΦ; IL-1β exhibited the same infiltrating tendency as M1MΦ, which was detected by immunohistochemistry. Increasing ventricular fibrosis was confirmed by Masson staining. CaSR and NLRP3 inflammasome in the MI group were upregulated in MΦ subsets in myocardium and peritoneal MΦ (p-MΦ) compared with the sham groups which were detected by immunofluorescence and western blotting. CaSR-activated NLRP3 inflammasome played a role in M1MΦ via PLC-IP3 but did not play a role in M2MΦ which were polarized by the THP-1 as shown by western blotting and intracellular calcium measurement. CaSR/NLRP3 inflammasome activation in M1MΦ led to the following effects: upregulated α-sma, MMP-2 and MMP-9, and collagen secretion; and downregulated TIMP-2 in cardiac fibroblasts via IL-1β-IL-1RI, which was detected by coculturing M1MΦ and cardiac fibroblasts.We suggest that the CaSR/NLRP3 inflammasome plays an essential role via the PLC-IP3 pathway in M1MΦ to promote cardiac remodeling post-MI in rats, including accelerated cardiac fibroblast phenotypic transversion, increased collagen and extracellular matrix (ECM) secretion; however, the CaSR/NLRP3 inflammasome does not play a role in this process in M2MΦ.CONCLUSIONSWe suggest that the CaSR/NLRP3 inflammasome plays an essential role via the PLC-IP3 pathway in M1MΦ to promote cardiac remodeling post-MI in rats, including accelerated cardiac fibroblast phenotypic transversion, increased collagen and extracellular matrix (ECM) secretion; however, the CaSR/NLRP3 inflammasome does not play a role in this process in M2MΦ.
Macrophage (MΦ) infiltration during myocardial infarction (MI) amplifies cardiac inflammation and remodeling. We investigated whether activation of the NRLP3 inflammasome by a calcium sensing receptor (CaSR) in MΦ subsets contributes to cardiac remodeling following MI. Infiltrated MΦ exhibited biphasic activation after MI; M1MΦ peaked at MI 3d and decreased until MI 14d, whereas M2MΦ peaked at MI 7d and decreased at MI 14d as shown via immunohistochemistry. IL-1β co-infiltrated with both M1MΦ and M2MΦ; IL-1β exhibited the same infiltrating tendency as M1MΦ, which was detected by immunohistochemistry. Increasing ventricular fibrosis was confirmed by Masson staining. CaSR and NLRP3 inflammasome in the MI group were upregulated in MΦ subsets in myocardium and peritoneal MΦ (p-MΦ) compared with the sham groups which were detected by immunofluorescence and western blotting. CaSR-activated NLRP3 inflammasome played a role in M1MΦ via PLC-IP3 but did not play a role in M2MΦ which were polarized by the THP-1 as shown by western blotting and intracellular calcium measurement. CaSR/NLRP3 inflammasome activation in M1MΦ led to the following effects: upregulated α-sma, MMP-2 and MMP-9, and collagen secretion; and downregulated TIMP-2 in cardiac fibroblasts via IL-1β-IL-1RI, which was detected by coculturing M1MΦ and cardiac fibroblasts. We suggest that the CaSR/NLRP3 inflammasome plays an essential role via the PLC-IP3 pathway in M1MΦ to promote cardiac remodeling post-MI in rats, including accelerated cardiac fibroblast phenotypic transversion, increased collagen and extracellular matrix (ECM) secretion; however, the CaSR/NLRP3 inflammasome does not play a role in this process in M2MΦ.
Author Zhang, Xin
Zhao, Meng
Chi, Jinyu
Yin, Xinhua
Zhang, Xiaohui
Liu, Yue
Fu, Yu
Lin, Fang
Ma, Dandan
Liu, Wenxiu
Author_xml – sequence: 1
  givenname: Wenxiu
  surname: Liu
  fullname: Liu, Wenxiu
– sequence: 2
  givenname: Xin
  surname: Zhang
  fullname: Zhang, Xin
– sequence: 3
  givenname: Meng
  surname: Zhao
  fullname: Zhao, Meng
– sequence: 4
  givenname: Xiaohui
  surname: Zhang
  fullname: Zhang, Xiaohui
– sequence: 5
  givenname: Jinyu
  surname: Chi
  fullname: Chi, Jinyu
  email: Xinhua_yin@163.com
– sequence: 6
  givenname: Yue
  surname: Liu
  fullname: Liu, Yue
– sequence: 7
  givenname: Fang
  surname: Lin
  fullname: Lin, Fang
– sequence: 8
  givenname: Yu
  surname: Fu
  fullname: Fu, Yu
– sequence: 9
  givenname: Dandan
  surname: Ma
  fullname: Ma, Dandan
  email: Xinhua_yin@163.com
– sequence: 10
  givenname: Xinhua
  surname: Yin
  fullname: Yin, Xinhua
  email: Xinhua_yin@163.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25967877$$D View this record in MEDLINE/PubMed
BookMark eNptkktvEzEURkeoiD5gwR4hS2xgEWLPy-PuyqhApASqAGvr2nOdusyMg-1U6s_iH-IkTRaoK1_7Oz62dX2enYxuxCx7zehHxioxpZQWvKRl8yw7Y2XOJoLz5iTVlFWTRjT8NDsP4Y6mKRf5i-w0r0TNG87Psr9XOtp7iNaNxI5kwYjaRDK6SBY5WYD2bn0LKwykdWP0NoWpjo604DsLmixxcB32dlwRMBE9WTw4vct6MhsNeH1QLyGGSwKk9TZaneKl65E4Q-ItJl2v7WYgP3AMW9cSNa6j89Nvy_lNsTX1MAwQ3IAvs-cG-oCvHseL7Nfn65_t18n8-5dZezWf6IrmcQJGVXlnqEDeiRqVUo2pK6ZEVVRGKFZDbThFxZoSaKGB0bKoNMtVrrCjHS8ustne2zm4k2tvB_AP0oGVuwXnVxJ8ekmPkjNt6jxdWVem1IY3FAxQxUsQPO9Yk1zv9661d382GKIcbNDY9zCi2wTJ6oaKmoqmSOjbR3SjBuyOBx9aloDpHki9CcGjkdrGXQOjB9tLRuX2U8jjp0g7Pvy34yB9in2zZ3-DX6E_ksf43ZNxe_NpT8h1Z4p_odDMZA
CitedBy_id crossref_primary_10_1007_s00262_020_02623_7
crossref_primary_10_1161_ATVBAHA_118_311916
crossref_primary_10_1016_j_bbrc_2020_07_081
crossref_primary_10_3390_ijms23137074
crossref_primary_10_1016_j_molimm_2017_06_019
crossref_primary_10_1371_journal_pone_0193643
crossref_primary_10_1038_s41392_022_00925_z
crossref_primary_10_1038_s41467_020_17749_6
crossref_primary_10_1111_bph_15026
crossref_primary_10_1152_ajpcell_00163_2015
crossref_primary_10_1016_j_cjca_2019_09_026
crossref_primary_10_1016_j_pharmthera_2021_107880
crossref_primary_10_1128_AAC_00005_17
crossref_primary_10_1038_s41366_022_01135_x
crossref_primary_10_1038_s41374_021_00622_5
crossref_primary_10_1002_jcp_26490
crossref_primary_10_1093_ckj_sfae421
crossref_primary_10_1007_s10787_022_01086_9
crossref_primary_10_1111_jcmm_15969
crossref_primary_10_1016_j_jacbts_2021_08_006
crossref_primary_10_1016_j_yexcr_2019_111779
crossref_primary_10_1155_2019_6847087
crossref_primary_10_3389_fimmu_2019_01592
crossref_primary_10_1007_s12013_023_01167_8
crossref_primary_10_1097_CM9_0000000000000814
crossref_primary_10_1371_journal_pone_0190300
crossref_primary_10_1002_jor_23875
crossref_primary_10_1111_jcmm_14631
crossref_primary_10_3389_fimmu_2024_1402468
crossref_primary_10_3892_ijmm_2018_3924
crossref_primary_10_3389_fphar_2018_00968
crossref_primary_10_3389_fphys_2016_00395
crossref_primary_10_1177_10742484211027405
crossref_primary_10_1016_j_molimm_2019_01_008
crossref_primary_10_1007_s11010_023_04822_z
crossref_primary_10_1016_j_yjmcc_2020_09_009
crossref_primary_10_3390_cells10040916
crossref_primary_10_1186_s12951_024_02410_x
crossref_primary_10_1016_j_yjmcc_2015_11_002
crossref_primary_10_1016_j_biopha_2022_114000
crossref_primary_10_1038_s41392_025_02124_y
crossref_primary_10_3389_fphys_2022_1078569
crossref_primary_10_1007_s00395_023_00999_y
crossref_primary_10_1161_CIRCRESAHA_121_320548
crossref_primary_10_3389_fimmu_2020_570872
crossref_primary_10_3390_toxins11090529
crossref_primary_10_1016_j_jare_2022_11_003
crossref_primary_10_1159_000487685
crossref_primary_10_3389_fphys_2022_1059369
crossref_primary_10_3390_cells12121589
crossref_primary_10_1080_15476278_2024_2356341
crossref_primary_10_1016_j_jare_2023_01_001
crossref_primary_10_1089_jmf_2020_4750
crossref_primary_10_3389_fvets_2019_00517
crossref_primary_10_1111_apha_13926
crossref_primary_10_1186_s12950_016_0131_6
crossref_primary_10_1016_j_ejphar_2020_172915
crossref_primary_10_1111_exd_13484
crossref_primary_10_15212_CVIA_2021_0009
crossref_primary_10_1002_jbt_23362
crossref_primary_10_1038_s41392_024_01840_1
crossref_primary_10_1007_s10753_022_01642_z
crossref_primary_10_1007_s12264_020_00544_0
crossref_primary_10_1155_2022_3311250
crossref_primary_10_1016_j_mce_2019_110654
crossref_primary_10_1172_jci_insight_98268
crossref_primary_10_7555_JBR_36_20220123
crossref_primary_10_1093_cvr_cvz318
crossref_primary_10_3390_ijms24097720
crossref_primary_10_1016_j_pharmthera_2020_107511
ContentType Journal Article
Copyright 2015 S. Karger AG, Basel
2015 S. Karger AG, Basel.
Copyright_xml – notice: 2015 S. Karger AG, Basel
– notice: 2015 S. Karger AG, Basel.
DBID M--
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1159/000374048
DatabaseName Karger Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: M--
  name: Karger Open Access Journals
  url: https://www.karger.com/OpenAccess
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1421-9778
EndPage 2500
ExternalDocumentID oai_doaj_org_article_71cf62ecec5f4cf780afa0b74a972d18
25967877
10_1159_000374048
374048
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
0~B
29B
30W
326
36B
3O.
4.4
53G
5GY
5VS
6J9
8UI
AAFWJ
AAYIC
ACGFO
ACGFS
ADBBV
AENEX
AEYAO
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BCNDV
CS3
CYUIP
DIK
DU5
E0A
E3Z
EBS
EJD
EMB
EMOBN
F5P
FB.
GROUPED_DOAJ
HZ~
IAO
IHR
IPNFZ
KQ8
KUZGX
M--
ML-
N9A
O1H
O9-
OK1
P2P
RIG
RKO
RNS
SV3
UJ6
7X7
88E
8FI
8FJ
AAYXX
ABBTS
ABUWG
ABWCG
ACQXL
ADAGL
AFKRA
AFSIO
AHFRZ
AIOBO
BENPR
BPHCQ
BVXVI
CAG
CCPQU
CITATION
COF
FYUFA
HMCUK
ITC
M1P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
RXVBD
UKHRP
3V.
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c502t-afb52df09e7d96ebbb8f651b9535f9b16a6f70eb184a03ca10435c12b2bed0d73
IEDL.DBID M--
ISSN 1015-8987
1421-9778
IngestDate Wed Aug 27 01:32:36 EDT 2025
Fri Jul 11 06:28:55 EDT 2025
Wed Feb 19 02:35:04 EST 2025
Tue Jul 01 04:55:42 EDT 2025
Thu Apr 24 22:57:50 EDT 2025
Thu Aug 29 12:04:22 EDT 2024
Thu Sep 05 20:30:44 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Myocardial infarction
Cardiac remodeling
NLRP3 inflammasome
Calcium sensing receptor
Macrophage
Language English
License Open Access License: This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported license (CC BY-NC)
applicable to the online version of the article only. Distribution permitted for non-commercial purposes only.
https://creativecommons.org/licenses/by-nc/3.0
2015 S. Karger AG, Basel.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-afb52df09e7d96ebbb8f651b9535f9b16a6f70eb184a03ca10435c12b2bed0d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://karger.com/doi/10.1159/000374048
PMID 25967877
PQID 1680960983
PQPubID 23479
PageCount 18
ParticipantIDs karger_primary_374048
pubmed_primary_25967877
crossref_citationtrail_10_1159_000374048
crossref_primary_10_1159_000374048
proquest_miscellaneous_1680960983
doaj_primary_oai_doaj_org_article_71cf62ecec5f4cf780afa0b74a972d18
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel, Switzerland
PublicationPlace_xml – name: Basel, Switzerland
– name: Germany
PublicationTitle Cellular physiology and biochemistry
PublicationTitleAlternate Cell Physiol Biochem
PublicationYear 2015
Publisher Cell Physiol Biochem Press GmbH & Co KG
Publisher_xml – name: Cell Physiol Biochem Press GmbH & Co KG
References Herskowitz A, Choi S, Ansari AA, Wesselingh S: Cytokine mRNA expression in postischemic/reperfused myocardium. Am J Pathol 1995;146:419-428.
Lu FH, Fu SB, Leng XN, Zhang X, Dong S, Zhao YJ, Ren H, Li H, Zhong X, Xu CQ, Zhang WH: Calcium-sensing Receptor in Cardiomyocyte Apoptosis via the Sarcoplasmic Retiuclum and Mitochondrial Death Pathway in Cardiac hypertrophy and heart Failure. Cell Physiol Bilchem 2013;31:728-743.
Hofer AM, Brown EM: Extracellular calcium sensing and signalling. Nature Rev Mol. Cell Biol 2003;4:530-538.
Tsujita K, Kaikita K, Hayasaki T, Honda T, Kobayashi H, Sakashita N, Suzuki H, Kodama T, Ogawa H, Takeya M: Targeted deletion of class a macrophage scavenger receptor increases the risk of cardiac rupture after experimental myocardial infarction. Circulation 2007;115:1904-1911.
Olson ER, Shamhart PE, Naugle JE, Meszaros JG: Angiotensin II-induced extracellular signal-regulated kinase 1/2 activation is mediated by protein kinase c delta and intracellular calcium in adult rat cardiac fibroblasts. Hypertension 2008;51:704-711.
Yan X, Anzai A, Katsumata Y, Matsuhashi T, Ito K, Endo J, Yamamoto T, Takeshima A, Shinmura K, Shen W, Fukuda K, Sano M: Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J Mol Cell Cardiol 2013;62:24-35.
Brown EM, Vassilev PM, Quinn S, Hebert SC: G-protein-coupled, extracellular Ca2+ -sensing receptor: a versatile regulator of diverse cellular functions. Vitam Horm 1999;55:1-71.
Pelegrin P, Surprenant A: Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 2009;28:2114-2127.
Mehta JL, Li DY: Inflammation in ischemic heart disease: response to tissue injury or a pathogenetic villain? Cardiovasc Res 1999;43:291-299.
Entman ML, Smith CW: Postreperfusion inflammation: a model for reaction to injury in cardiovascular disease. Cardiovasc Res 1994;28:1301-1311.
Rossol M, Pierer M, Raulien N, Quandt D, Meusch U, Rothe K, Schubert K, Schöneberg T, Schaefer M, Krügel U, Smajilovic S, Bräuner-Osborne H, Baerwald C, Wagner U: Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nat Commun 2012;3:1329.
Guillén I, Blanes M, Gómez-Lechón MJ, Castell JV: Cytokine signaling during myocardial infarction: sequential appearance of IL-1 beta and IL-6. Am J Physiol 1995;269:R229-235.
Sandanger ø, Ranheim T, Vinge LE, Bliksøen M, Alfsnes K, Finsen AV, Dah CP, Askevold ET, Florholmen G, Christensen G, Fitzgerald KA, Lien E, Valen G, Espevik T, Aukrust P, Yndestad A: The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischemia-reperfusion injury. Cardiovasc Res 2013;99:164-174.
Wang R, Xu C, Zhao W, Zhang J, Cao K, Yang B, Wu L: Calcium and polyamine regulated calcium-sensing receptors in cardiac tissues. Eur J Biochem 2003;270:2680-2688.
Toldo S, Mezzaroma E, Van Tassell BW, Farkas D, Marchetti C, Voelkel NF, Abbate A: Interleukin-1β blockade improves cardiac remodelling after myocardial infarction without interrupting the inflammasome in the mouse. Exp Physiol 2013;98:734-745.
Van Tassell BW, Varma A, Salloum FN, Das A, Seropian IM, Toldo S, Smithson L, Hoke NN, Chau VQ, Robati R, Abbate A: Interleukin-1 trap attenuates cardiac remodeling after experimental acute myocardial infarction in mice. J Cardiovasc Pharmacol 2010;55:117-122.
Lin KI, Chattopadhyay N, Bai M, Alvarez R, Dang CV, Baraban JM, Brown EM, Ratan RR: Elevated extracellular calcium can prevent apoptosis via the calcium-sensing receptor. Biochem Biophys Res Commun 1998;249:325-331.
Fayyaz SS, Yasunori Ogura, Marian Szczepanik, Lara-Tejero M, Lichtenberger GS, Grant EP, Bertin J, Coyle AJ, Galán JE, Askenase PW, Flavell RA: Critical Role for NALP3/CIAS1/Cryopyrin in Innate and Adaptive Immunity through Its Regulation of Caspase-1. Immunity 2006;24:317-327.
Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V, Latz E: NF-kB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 2009;183:787-791.
Nahrendorf M, Pittet MJ, Swirski FK: Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 2010;121:2437-2445.
Tomoko Satomi, Mikako Ogawa, Ikuo Mori, Ishino S, Kubo K, Magata Y, Nishimoto T: Comparison of Contrast Agents for Atherosclerosis Imaging Using Cultured Macrophages: FDG Versus Ultrasmall Superparamagnetic Iron Oxide. J Nucl Med 2013;54: 999-1004.
Wang YL, Malik AB, Sun Y, Hu S, Reynolds AB, Minshall RD, Hu Gl: Innate immune function of the adherents junction protein p120-catenin in endothelial response to endotoxin. J Immunol 2011;186:3180-3187.
Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, Izawa A, Takahashi Y, Masumoto J, Koyama J, Hongo M, Noda T, Nakayama J, Sagara J, Taniguchi S, Ikeda U: Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 2011;123:594-604.
Huang XR, Chung AC, Yang F, Yue W, Deng C, Lau CP, Tse HF, Lam JY: Smad3 mediates cardiac and fibrosis in angiotensin II-induced hypertensive cardiac remodeling. Hypertension 2010;55:1165-1171.
Swynghedauw B: Molecular mechanisms of myocardial remodeling. Physiol Rev 1999;79:215-262.
Matsuura M, Saito S, Hirai Y, Okamua H: A pathway through interferon-gamma is the main pathway for induction of nitric oxide upon stimulation with bacterial lipopolysaccharide in mouse peritoneal cells. Eur J Biochem 2003;270:4016-4025.
Manable I‚ Shindo T, Nagai R: Gene Expression in Fibroblasts and Fibrosis:Involvement in Cardiac hypertrophy. Circ Res 2002;91:1103-1113.
Sandanger ø, Ranheim T, Vinge LE, BliksØen M, Alfsnes K, Finsen AV, Dahl CP, Askevold ET, Florholmen G, Christensen G, Fitzgerald KA, Lien E, Valen G‚ Espevik T, Aukrust P, Yndestad A: The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovasc Res 2013;99:164-174.
Bujak M, Dobaczewski M, Chatila K, Mendoza LH, Li N, Reddy A, Frangogiannis NG: Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am J Pathol 2008;173:57-67.
Squadrito F, Altavilla D, Squadrito G, Campo GM, Arlotta M, Arcoraci V, Minutoli L, Serrano M, Saitta A, Caputi AP: 17beta-oestradiol reduces cardiac leukocyte accumulation in myocardial ischaemia reperfusion injury in rat. Eur J Pharmacol 1997;335:185-192.
Tjiu JW, Chen JS, Shun CT, Lin SJ, Liao YH, Chu CY, Tsai TF, Chiu HC, Dai YS, Inoue H, Yang PC, Kuo ML, Jee SH: Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. J Invest Dermatol 2009;129:1016-1025.
Cerretti DP, Kozlosky CJ, Mosley B, Nelson N, Van Ness K, Greenstreet TA, March CJ, Kronheim SR, Druck T, Cannizzaro LA, Huebner K, Black RA: Molecular cloning of the interleukin-1 beta converting enzyme. Science 1992;3256:97-100.
Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J, Elliston KO, Ayala JM, Casano FJ‚Chin J, Ding GJF, Egger LA, Gaffney EP, Limjuco G, Palyha OC, Raju SM, Rolando AM, Salley JP, Yamin TT‚ Lee TD, Shively JE, MacCross M, Mumford RA, Schmidt JA, Toccill MJ: A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 1992;30 356:768-774.
Lambert JM, Lopez EF, Lindsey ML: Macrophage roles following myocardial infarction. Int J Cardiol 2008;130:147-158.
Murakami T, Ockinger J, Yu J, Byles V, McColl A, Hofer AM, Horng T: Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc Natl Acad Sci USA 2012;109:11282-11287.
Kate Schroder, Jurg Tschopp: The Inflammasomes. Cell 2010;140:821-832.
Mezzaroma E, Toldo S, Farkas D, Seropian IM, Van Tassell BW, Salloum FN, Kannan HR, Menna AC, Voelkel NF, Abbate A: The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci USA 2011;108:19725-19730.
Sun B, Huo R, Sheng Y, Li Y, Xie X, Chen C, Liu HB, Li N, Li CB, Guo WT, Zhu JX, Yang BF, Dong DL: Bone morphogenetic protein-4 mediates cardiac hypertrophy, apoptosis, and fibrosis in experimentally pathological cardiachypertrophy. Hypertension 2013;61:352-360.
Martinez FO, Sica A, Mantovani A, Locati M: Macrophage activation and polarization. Front Biosci 2008;13:453-461.
Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong TT, Shaw RM, Sricastava D: Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell 2009;16:233-244.
Netea MG, Nold-Petry CA, Nold MF, Joosten LA, Opitz B, van der Meer JH, van de Veerdonk FL, Ferwerda G, Heinhuis B, Devesa I, Funk CJ, Mason RJ‚ Kullberg BJ, Rubartelli A, van der Meer JW, Dinarello CA: Differential requirement for the activation of the inflammasome for processing and release of IL-1 in monocytes and macrophages. Blood 2009;113:2324-2335.
Masafumi Takahashi: NLRP3 in myocardial ischemia reperfusion injury: inflammasomes-dependent or -independent role in different cell type. Cardiovasc Res 2013;99:4-5.
Bujak M, Dobaczewski M, Chatila K‚ Mendoza LH, Li N, Reddy A, Frangogiannis NG: Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am J Pathol 2008;173:57-67.
Latz E, Xiao TS, Stutz A: Activation and regulation of the inflammasomes. Nat Rev Immunol 2013;13:397-411.
Xi YH, Li HZ, Zhang WH, Wang LN, Zhang L, Lin Y, Bai SZ, Li HX, Wu LY, Wang R, Xu CQ: The functional expression of calcium-sensing receptor in the differentiated THP-1 cells. Mol Cell Biochem 2010;342:233-240.
Huang NF, Sievers RE, Park JS, Fang Q, Li S, Lee RJ: A rodent model of myocardial infarction for testing the efficacy of cells and polymers for myocardial reconstruction: Nat Protoc 2006;1:1596-1609.
Frangogiannis NG: The immune syst
References_xml – reference: Van Tassell BW, Varma A, Salloum FN, Das A, Seropian IM, Toldo S, Smithson L, Hoke NN, Chau VQ, Robati R, Abbate A: Interleukin-1 trap attenuates cardiac remodeling after experimental acute myocardial infarction in mice. J Cardiovasc Pharmacol 2010;55:117-122.
– reference: Sun B, Huo R, Sheng Y, Li Y, Xie X, Chen C, Liu HB, Li N, Li CB, Guo WT, Zhu JX, Yang BF, Dong DL: Bone morphogenetic protein-4 mediates cardiac hypertrophy, apoptosis, and fibrosis in experimentally pathological cardiachypertrophy. Hypertension 2013;61:352-360.
– reference: Bujak M, Dobaczewski M, Chatila K‚ Mendoza LH, Li N, Reddy A, Frangogiannis NG: Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am J Pathol 2008;173:57-67.
– reference: Yan X, Anzai A, Katsumata Y, Matsuhashi T, Ito K, Endo J, Yamamoto T, Takeshima A, Shinmura K, Shen W, Fukuda K, Sano M: Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J Mol Cell Cardiol 2013;62:24-35.
– reference: Brown EM, Vassilev PM, Quinn S, Hebert SC: G-protein-coupled, extracellular Ca2+ -sensing receptor: a versatile regulator of diverse cellular functions. Vitam Horm 1999;55:1-71.
– reference: Nahrendorf M, Pittet MJ, Swirski FK: Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 2010;121:2437-2445.
– reference: Netea MG, Nold-Petry CA, Nold MF, Joosten LA, Opitz B, van der Meer JH, van de Veerdonk FL, Ferwerda G, Heinhuis B, Devesa I, Funk CJ, Mason RJ‚ Kullberg BJ, Rubartelli A, van der Meer JW, Dinarello CA: Differential requirement for the activation of the inflammasome for processing and release of IL-1 in monocytes and macrophages. Blood 2009;113:2324-2335.
– reference: Rossol M, Pierer M, Raulien N, Quandt D, Meusch U, Rothe K, Schubert K, Schöneberg T, Schaefer M, Krügel U, Smajilovic S, Bräuner-Osborne H, Baerwald C, Wagner U: Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nat Commun 2012;3:1329.
– reference: Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert S: Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 1993;366:575-580.
– reference: Lin KI, Chattopadhyay N, Bai M, Alvarez R, Dang CV, Baraban JM, Brown EM, Ratan RR: Elevated extracellular calcium can prevent apoptosis via the calcium-sensing receptor. Biochem Biophys Res Commun 1998;249:325-331.
– reference: Herskowitz A, Choi S, Ansari AA, Wesselingh S: Cytokine mRNA expression in postischemic/reperfused myocardium. Am J Pathol 1995;146:419-428.
– reference: Bujak M, Dobaczewski M, Chatila K, Mendoza LH, Li N, Reddy A, Frangogiannis NG: Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am J Pathol 2008;173:57-67.
– reference: Lu FH, Fu SB, Leng XN, Zhang X, Dong S, Zhao YJ, Ren H, Li H, Zhong X, Xu CQ, Zhang WH: Calcium-sensing Receptor in Cardiomyocyte Apoptosis via the Sarcoplasmic Retiuclum and Mitochondrial Death Pathway in Cardiac hypertrophy and heart Failure. Cell Physiol Bilchem 2013;31:728-743.
– reference: Pelegrin P, Surprenant A: Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 2009;28:2114-2127.
– reference: Sandanger ø, Ranheim T, Vinge LE, BliksØen M, Alfsnes K, Finsen AV, Dahl CP, Askevold ET, Florholmen G, Christensen G, Fitzgerald KA, Lien E, Valen G‚ Espevik T, Aukrust P, Yndestad A: The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovasc Res 2013;99:164-174.
– reference: Manable I‚ Shindo T, Nagai R: Gene Expression in Fibroblasts and Fibrosis:Involvement in Cardiac hypertrophy. Circ Res 2002;91:1103-1113.
– reference: Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J, Elliston KO, Ayala JM, Casano FJ‚Chin J, Ding GJF, Egger LA, Gaffney EP, Limjuco G, Palyha OC, Raju SM, Rolando AM, Salley JP, Yamin TT‚ Lee TD, Shively JE, MacCross M, Mumford RA, Schmidt JA, Toccill MJ: A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 1992;30 356:768-774.
– reference: Hofer AM, Brown EM: Extracellular calcium sensing and signalling. Nature Rev Mol. Cell Biol 2003;4:530-538.
– reference: Lee GS, Subramanian N, Kim AI, Aksentijevich I, Goldbach-Mansky R, Sacks DB, Germain RN, Kastner DL, Chae JJ: The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 2012;492:123-127.
– reference: Murakami T, Ockinger J, Yu J, Byles V, McColl A, Hofer AM, Horng T: Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc Natl Acad Sci USA 2012;109:11282-11287.
– reference: Mezzaroma E, Toldo S, Abbate A: Role of NLRP3 (cryopyrin) in acute myocardial infarction. Cardiovasc Res 2013;99:225-226.
– reference: Toldo S, Mezzaroma E, Van Tassell BW, Farkas D, Marchetti C, Voelkel NF, Abbate A: Interleukin-1β blockade improves cardiac remodelling after myocardial infarction without interrupting the inflammasome in the mouse. Exp Physiol 2013;98:734-745.
– reference: Martinez FO, Sica A, Mantovani A, Locati M: Macrophage activation and polarization. Front Biosci 2008;13:453-461.
– reference: Masafumi Takahashi: NLRP3 in myocardial ischemia reperfusion injury: inflammasomes-dependent or -independent role in different cell type. Cardiovasc Res 2013;99:4-5.
– reference: Mezzaroma E, Toldo S, Farkas D, Seropian IM, Van Tassell BW, Salloum FN, Kannan HR, Menna AC, Voelkel NF, Abbate A: The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci USA 2011;108:19725-19730.
– reference: Kate Schroder, Jurg Tschopp: The Inflammasomes. Cell 2010;140:821-832.
– reference: Cerretti DP, Kozlosky CJ, Mosley B, Nelson N, Van Ness K, Greenstreet TA, March CJ, Kronheim SR, Druck T, Cannizzaro LA, Huebner K, Black RA: Molecular cloning of the interleukin-1 beta converting enzyme. Science 1992;3256:97-100.
– reference: Sandanger ø, Ranheim T, Vinge LE, Bliksøen M, Alfsnes K, Finsen AV, Dah CP, Askevold ET, Florholmen G, Christensen G, Fitzgerald KA, Lien E, Valen G, Espevik T, Aukrust P, Yndestad A: The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischemia-reperfusion injury. Cardiovasc Res 2013;99:164-174.
– reference: Wang R, Xu C, Zhao W, Zhang J, Cao K, Yang B, Wu L: Calcium and polyamine regulated calcium-sensing receptors in cardiac tissues. Eur J Biochem 2003;270:2680-2688.
– reference: Matsuura M, Saito S, Hirai Y, Okamua H: A pathway through interferon-gamma is the main pathway for induction of nitric oxide upon stimulation with bacterial lipopolysaccharide in mouse peritoneal cells. Eur J Biochem 2003;270:4016-4025.
– reference: Tomoko Satomi, Mikako Ogawa, Ikuo Mori, Ishino S, Kubo K, Magata Y, Nishimoto T: Comparison of Contrast Agents for Atherosclerosis Imaging Using Cultured Macrophages: FDG Versus Ultrasmall Superparamagnetic Iron Oxide. J Nucl Med 2013;54: 999-1004.
– reference: Franchi L, Eigenbrod T, Núñez G: TNF-α Mediate Sensitization to ATP and Silica via the NLRP3 Inflammasome in the Absence of Microbial Stimulation. J Immunol 2009;183:792-796.
– reference: Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, Izawa A, Takahashi Y, Masumoto J, Koyama J, Hongo M, Noda T, Nakayama J, Sagara J, Taniguchi S, Ikeda U: Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 2011;123:594-604.
– reference: Mehta JL, Li DY: Inflammation in ischemic heart disease: response to tissue injury or a pathogenetic villain? Cardiovasc Res 1999;43:291-299.
– reference: Fayyaz SS, Yasunori Ogura, Marian Szczepanik, Lara-Tejero M, Lichtenberger GS, Grant EP, Bertin J, Coyle AJ, Galán JE, Askenase PW, Flavell RA: Critical Role for NALP3/CIAS1/Cryopyrin in Innate and Adaptive Immunity through Its Regulation of Caspase-1. Immunity 2006;24:317-327.
– reference: Wang YL, Malik AB, Sun Y, Hu S, Reynolds AB, Minshall RD, Hu Gl: Innate immune function of the adherents junction protein p120-catenin in endothelial response to endotoxin. J Immunol 2011;186:3180-3187.
– reference: Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V, Latz E: NF-kB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 2009;183:787-791.
– reference: Frangogiannis NG: The immune system and cardiac repair. Pharmacol Res 2008;58:88-111.
– reference: Squadrito F, Altavilla D, Squadrito G, Campo GM, Arlotta M, Arcoraci V, Minutoli L, Serrano M, Saitta A, Caputi AP: 17beta-oestradiol reduces cardiac leukocyte accumulation in myocardial ischaemia reperfusion injury in rat. Eur J Pharmacol 1997;335:185-192.
– reference: Huang XR, Chung AC, Yang F, Yue W, Deng C, Lau CP, Tse HF, Lam JY: Smad3 mediates cardiac and fibrosis in angiotensin II-induced hypertensive cardiac remodeling. Hypertension 2010;55:1165-1171.
– reference: Olson ER, Shamhart PE, Naugle JE, Meszaros JG: Angiotensin II-induced extracellular signal-regulated kinase 1/2 activation is mediated by protein kinase c delta and intracellular calcium in adult rat cardiac fibroblasts. Hypertension 2008;51:704-711.
– reference: Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong TT, Shaw RM, Sricastava D: Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell 2009;16:233-244.
– reference: Latz E, Xiao TS, Stutz A: Activation and regulation of the inflammasomes. Nat Rev Immunol 2013;13:397-411.
– reference: Tsujita K, Kaikita K, Hayasaki T, Honda T, Kobayashi H, Sakashita N, Suzuki H, Kodama T, Ogawa H, Takeya M: Targeted deletion of class a macrophage scavenger receptor increases the risk of cardiac rupture after experimental myocardial infarction. Circulation 2007;115:1904-1911.
– reference: Abbate A, Van Tassell BW, Seropian IM, Toldo S, Robati R, Varma A, Salloum FN, Smithson L, Dinarello CA: Interleukin-1beta modulation using a genetically engineered antibody prevents adverse cardiac remodelling following acute myocardial infarction in the mouse. Eur J heart Fail 2010;12:319-322.
– reference: Huang NF, Sievers RE, Park JS, Fang Q, Li S, Lee RJ: A rodent model of myocardial infarction for testing the efficacy of cells and polymers for myocardial reconstruction: Nat Protoc 2006;1:1596-1609.
– reference: Guillén I, Blanes M, Gómez-Lechón MJ, Castell JV: Cytokine signaling during myocardial infarction: sequential appearance of IL-1 beta and IL-6. Am J Physiol 1995;269:R229-235.
– reference: Tjiu JW, Chen JS, Shun CT, Lin SJ, Liao YH, Chu CY, Tsai TF, Chiu HC, Dai YS, Inoue H, Yang PC, Kuo ML, Jee SH: Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. J Invest Dermatol 2009;129:1016-1025.
– reference: Swynghedauw B: Molecular mechanisms of myocardial remodeling. Physiol Rev 1999;79:215-262.
– reference: Entman ML, Smith CW: Postreperfusion inflammation: a model for reaction to injury in cardiovascular disease. Cardiovasc Res 1994;28:1301-1311.
– reference: Lambert JM, Lopez EF, Lindsey ML: Macrophage roles following myocardial infarction. Int J Cardiol 2008;130:147-158.
– reference: Xi YH, Li HZ, Zhang WH, Wang LN, Zhang L, Lin Y, Bai SZ, Li HX, Wu LY, Wang R, Xu CQ: The functional expression of calcium-sensing receptor in the differentiated THP-1 cells. Mol Cell Biochem 2010;342:233-240.
SSID ssj0015792
Score 2.3889167
Snippet Aims: Macrophage (MΦ) infiltration during myocardial infarction (MI) amplifies cardiac inflammation and remodeling. We investigated whether activation of the...
Macrophage (MΦ) infiltration during myocardial infarction (MI) amplifies cardiac inflammation and remodeling. We investigated whether activation of the NRLP3...
SourceID doaj
proquest
pubmed
crossref
karger
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2483
SubjectTerms Actins - metabolism
Animals
Calcium sensing receptor
Cardiac remodeling
Carrier Proteins - metabolism
Collagen - metabolism
Down-Regulation - physiology
Extracellular Matrix - metabolism
Fibroblasts - metabolism
Fibrosis - metabolism
Fibrosis - physiopathology
Heart - physiopathology
Heart Ventricles - metabolism
Heart Ventricles - physiopathology
Inflammasomes - metabolism
Interleukin-1beta - metabolism
Macrophage
Macrophages - metabolism
Macrophages - physiology
Male
Matrix Metalloproteinase 2 - metabolism
Matrix Metalloproteinase 9 - metabolism
Myocardial infarction
Myocardial Infarction - metabolism
Myocardial Infarction - physiopathology
Myocardium - metabolism
NLR Family, Pyrin Domain-Containing 3 Protein
NLRP3 inflammasome
Original Paper
Rats
Rats, Wistar
Receptors, Calcium-Sensing - metabolism
Signal Transduction - physiology
Tissue Inhibitor of Metalloproteinase-2 - metabolism
Up-Regulation - physiology
Ventricular Remodeling - physiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJQQXBKXAQkEGceASbezEdsytXVEVRKpqoVJvkT_Vit1k1c0e-rP4h4ztJKoQiAu3KLZGTvzsmck47yH0vnKlV8zLrDChzGiZzqSxJtO09FKE0pUP3zvqM356UX65ZJd3pL7CmbBED5xe3FwQ4zl1xhnmS-NFlSuvci1KJQW1JP7mCz5vTKaG-gETMtU5CcsqSKsHTiHw3fNEuZIHwZ87nigS9oMX-hHOX9_8PdyMbufkMXo0xIv4KI3zCbrn2n10PylI3u6jB4tRsO0p-nlkRq0yfN3immC963Hb9bimuFZBq-sKdo8tDoxUUecKrvsOLyJIDF66KIsDvgxH5XBc34KjC20r_Ln1sCJG00vVbz9ihUedBLzsVg53HkM0CeZW5nq3xt_C0XiwBYGp20BmPz9bfj0vgiUA4Vptu7U7QBcnn74vTrNBkSEzLKd9prxm1PpcOmEld1rrynNGtGQFzLcmXHEvctj-q1LlhVGQ6xXMEKqpdja3oniG9tqudS8QtrogjjAPe4AHn8gl5YUrOa9sCUGc9jP0YZydxgx05UE1Y9XEtIXJZprIGXo3dd0kjo4_dToOUzx1CLTa8QaArRnA1vwLbDN0kAAymRmNH_52f3F-nJqajYVneTvCqQFMhJKMal232zaEV5Hzrypm6HnC2WQCElOIJIR4-T9G_go9pGExxI9Hh2ivv9m51xBO9fpNXDm_ANAYHAM
  priority: 102
  providerName: Directory of Open Access Journals
Title Activation in M1 but not M2 Macrophages Contributes to Cardiac Remodeling after Myocardial Infarction in Rats: a Critical Role of the Calcium Sensing Receptor/NRLP3 Inflammasome
URI https://karger.com/doi/10.1159/000374048
https://www.ncbi.nlm.nih.gov/pubmed/25967877
https://www.proquest.com/docview/1680960983
https://doaj.org/article/71cf62ecec5f4cf780afa0b74a972d18
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Nb9QwELWgCMEFQSmwUCqDOHCJGtuxHXNrV1QFkapaqNRb5E-o2E1W3eyhP4t_yNj5kIrobZV4J8rOs2fG430PoQ-lL4LmQWXMxjaj4yZT1tnM0CIoGVtXIe53VGfi9KL4eskvh_2O-F-Y3_H8c6JGnbgFIOAe9jwpgLb76AHUUSwe3quybOoXcKn6vibhWQll9MAhdOurkfeXK1icpbwVhBJXPwSg_tF3Z5op4pw8RU-GVBEf9b59hu75Zhc97MUjb3bRo_mo1fYc_Tmyo0wZvmpwRbDZdrhpO1xRXOko0_ULFo4NjmRUSeIKPnctnid8WLzwSREHwhhOouG4uoEYF-8t8ZcmwGQYTS90t_mENR4lEvCiXXrcBgyJJJhb2qvtCn-Pp-LBFuSkfg1F_eHZ4ts5i5YAfyu9aVd-D12cfP4xP80GMYbM8px2mQ6GUxdy5aVTwhtjyiA4MYozcLUhQosgc1j5y0LnzGoo8xi3hBpqvMudZC_QTtM2_hXCzjDiCQ8w_QOEQ6GoYL4QonQF5G8mzNDH0Tu1HZjKo2DGsk4VC1f15NMZej8NXff0HP8bdBxdPA2IjNrpQnv9sx4maC2JDYLCz2J5KGyQZa6Dzo0stJLUETCy1wNkMjMa3__n-vz8uL9Vrx28y7sRTjVgInZjdOPb7aYmokx0fyWboZc9ziYTI05f3_HQN-gxjVBPW0H7aKe73vq3kBx15iBtKhyk2fEXxnAH0w
linkProvider Karger AG
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Nb9QwELWgCJULKqWUhRYM4sAlapzEdtxbu2q1hc2qWlqpt8ifULGbrLrZQ38W_5Cx8yEV0VuUOBMl8-wZe5z3EPqS28xJ6kSUal9mNFRFQhsdqSRzgvvSlfPrHcWMTa6zbzf0plvv8P_C_Pb7nwM16sAtAAH3qOVJAbQ9Rc-4YMKz5BdRNNQLKBdtXZPQKIdpdMch9OBWz_tLBQzOnD8IQoGrHwJQ--jHM80Qcc530MsuVcQnrW9foSe22kXPW_HI-120Pe612l6jPye6lynDtxUuCFabBld1g4sEF9LLdP2CgWONPRlVkLiC46bG44APjec2KOJAGMNBNBwX9xDj_LUFvqgcdIbe9Fw262MscS-RgOf1wuLaYUgkwdxC326W-IffFQ-2ICe1K5jUH83m08vUWwL8LeW6Xto9dH1-djWeRJ0YQ6RpnDSRdIomxsXCciOYVUrljlGiBE3B1YowyRyPYeTPMxmnWsI0L6WaJCpR1sSGp2_QVlVX9i3CRqXEEuqg-zsIh0wkLLUZY7nJIH9TboS-9t4pdcdU7gUzFmWYsVBRDj4doc9D01VLz_G_RqfexUMDz6gdTtR3P8uug5acaMcS-Cyaukw7nsfSyVjxTAqeGAJG9lqADGZ64wf_nB9fnraXypWBd_nUw6kETPhqjKxsvVmXhOWB7i9PR2i_xdlgosfpu0ce-hFtT66KaTm9mH1_j14kHvZhWegAbTV3G3sIiVKjPoQ-8hc8TgnW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activation+in+M1+but+not+M2+Macrophages+Contributes+to+Cardiac+Remodeling+after+Myocardial+Infarction+in+Rats%3A+a+Critical+Role+of+the+Calcium+Sensing+Receptor%2FNRLP3+Inflammasome&rft.jtitle=Cellular+physiology+and+biochemistry&rft.au=Liu%2C+Wenxiu&rft.au=Zhang%2C+Xin&rft.au=Zhao%2C+Meng&rft.au=Zhang%2C+Xiaohui&rft.date=2015-01-01&rft.issn=1015-8987&rft.eissn=1421-9778&rft.volume=35&rft.issue=6&rft.spage=2483&rft.epage=2500&rft_id=info:doi/10.1159%2F000374048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1159_000374048
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1015-8987&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1015-8987&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1015-8987&client=summon