Fake News Detection Using Machine Learning Ensemble Methods
The advent of the World Wide Web and the rapid adoption of social media platforms (such as Facebook and Twitter) paved the way for information dissemination that has never been witnessed in the human history before. With the current usage of social media platforms, consumers are creating and sharing...
Saved in:
Published in | Complexity (New York, N.Y.) Vol. 2020; no. 2020; pp. 1 - 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
2020
Hindawi John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The advent of the World Wide Web and the rapid adoption of social media platforms (such as Facebook and Twitter) paved the way for information dissemination that has never been witnessed in the human history before. With the current usage of social media platforms, consumers are creating and sharing more information than ever before, some of which are misleading with no relevance to reality. Automated classification of a text article as misinformation or disinformation is a challenging task. Even an expert in a particular domain has to explore multiple aspects before giving a verdict on the truthfulness of an article. In this work, we propose to use machine learning ensemble approach for automated classification of news articles. Our study explores different textual properties that can be used to distinguish fake contents from real. By using those properties, we train a combination of different machine learning algorithms using various ensemble methods and evaluate their performance on 4 real world datasets. Experimental evaluation confirms the superior performance of our proposed ensemble learner approach in comparison to individual learners. |
---|---|
AbstractList | The advent of the World Wide Web and the rapid adoption of social media platforms (such as Facebook and Twitter) paved the way for information dissemination that has never been witnessed in the human history before. With the current usage of social media platforms, consumers are creating and sharing more information than ever before, some of which are misleading with no relevance to reality. Automated classification of a text article as misinformation or disinformation is a challenging task. Even an expert in a particular domain has to explore multiple aspects before giving a verdict on the truthfulness of an article. In this work, we propose to use machine learning ensemble approach for automated classification of news articles. Our study explores different textual properties that can be used to distinguish fake contents from real. By using those properties, we train a combination of different machine learning algorithms using various ensemble methods and evaluate their performance on 4 real world datasets. Experimental evaluation confirms the superior performance of our proposed ensemble learner approach in comparison to individual learners. |
Audience | Academic |
Author | Ahmad, Muhammad Ovais Ahmad, Iftikhar Yousaf, Suhail Yousaf, Muhammad |
Author_xml | – sequence: 1 fullname: Ahmad, Muhammad Ovais – sequence: 2 fullname: Yousaf, Suhail – sequence: 3 fullname: Yousaf, Muhammad – sequence: 4 fullname: Ahmad, Iftikhar |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-82435$$DView record from Swedish Publication Index |
BookMark | eNqFkUtvEzEUhUeoSLSFHWs0Ekua1o_xS6yiPqBSChvK1rpj30mdJuNgTxTx7_F0qlZFQsiLa11_PvfY56g66GOPVfWeklNKhThjhJEzrbXQkr6qDikxZkYEkwfjXskZU1q9qY5yXhFCjOTqsPp8BfdYf8N9ri9wQDeE2Ne3OfTL-gbcXeixXiCkfmxc9hk37RrrGxzuos9vq9cdrDO-e6zH1e3V5Y_zr7PF9y_X5_PFzAnChhk0XnEkDg1DlC1jzIlyQKExSFokinBuVIPKMwbCt1J1UoMxneBoCO34cXU96foIK7tNYQPpt40Q7EMjpqWFNAS3Rks6LRvBJXjiGgKoteddC8QbWYqmRetk0sp73O7aF2oX4ef8Qe0edlazhouCf5zwbYq_dpgHu4q71JfXWtaIhipd_rRQpxO1hOIh9F0cEriyPG6CKxl1ofTn0ihS7Gn57MKlmHPC7skHJXaM0o5R2scoC87-wl0YYIyqzAnrf136NF0qIXrYh_-N-DDRWBjs4JmmjaBC8j9mMbcb |
CitedBy_id | crossref_primary_10_1007_s10489_022_03627_9 crossref_primary_10_1109_ACCESS_2024_3353312 crossref_primary_10_1007_s40745_023_00506_z crossref_primary_10_1371_journal_pgph_0001385 crossref_primary_10_1007_s13278_022_00995_5 crossref_primary_10_1007_s42452_024_06307_0 crossref_primary_10_1080_20479700_2023_2196101 crossref_primary_10_3103_S1060992X2201009X crossref_primary_10_32628_IJSRST52310212 crossref_primary_10_1155_2021_5516945 crossref_primary_10_3390_fi16090322 crossref_primary_10_1007_s12652_023_04562_4 crossref_primary_10_1142_S0218213024500064 crossref_primary_10_17714_gumusfenbil_1396652 crossref_primary_10_1007_s10479_024_06388_5 crossref_primary_10_1080_21670811_2024_2305792 crossref_primary_10_1109_ACCESS_2024_3462151 crossref_primary_10_1080_0952813X_2024_2440665 crossref_primary_10_1109_ACCESS_2024_3354165 crossref_primary_10_34248_bsengineering_1527551 crossref_primary_10_1109_ACCESS_2024_3435497 crossref_primary_10_1109_ACCESS_2024_3490558 crossref_primary_10_1155_2023_9629700 crossref_primary_10_3390_s24196313 crossref_primary_10_3390_e24091242 crossref_primary_10_56038_ejrnd_v4i2_467 crossref_primary_10_1111_exsy_13665 crossref_primary_10_1007_s10489_024_05905_0 crossref_primary_10_2139_ssrn_4763161 crossref_primary_10_1016_j_asoc_2025_112794 crossref_primary_10_1016_j_eswa_2022_119302 crossref_primary_10_1007_s42979_021_00775_6 crossref_primary_10_7717_peerj_cs_961 crossref_primary_10_1007_s41870_024_02017_3 crossref_primary_10_1016_j_inffus_2023_102140 crossref_primary_10_1007_s12046_023_02300_2 crossref_primary_10_1016_j_datak_2022_102103 crossref_primary_10_3390_a17060231 crossref_primary_10_1007_s11115_025_00815_2 crossref_primary_10_3390_app13074207 crossref_primary_10_1155_2021_3434458 crossref_primary_10_55859_ijiss_1231423 crossref_primary_10_1002_mma_10426 crossref_primary_10_1007_s11042_023_17470_8 crossref_primary_10_1108_IJICC_04_2021_0069 crossref_primary_10_1109_ACCESS_2025_3530688 crossref_primary_10_1155_2021_9781923 crossref_primary_10_26599_BDMA_2024_9020015 crossref_primary_10_3390_app112411845 crossref_primary_10_1371_journal_pone_0295414 crossref_primary_10_1007_s11042_024_18320_x crossref_primary_10_1016_j_measen_2022_100495 crossref_primary_10_1007_s10844_022_00769_7 crossref_primary_10_1109_TAI_2022_3224097 crossref_primary_10_3390_electronics12153250 crossref_primary_10_1007_s12065_024_00982_z crossref_primary_10_1109_ACCESS_2023_3278323 crossref_primary_10_1007_s11277_021_08720_9 crossref_primary_10_1109_ACCESS_2022_3195030 crossref_primary_10_1038_s41467_024_48667_6 crossref_primary_10_1007_s42979_024_02943_w crossref_primary_10_1007_s11042_023_16588_z crossref_primary_10_3390_math13061011 crossref_primary_10_1002_spy2_264 crossref_primary_10_1057_s41599_024_03811_x crossref_primary_10_3390_fi13100244 crossref_primary_10_1016_j_neucom_2023_02_005 crossref_primary_10_1007_s11227_022_04851_3 crossref_primary_10_4018_IJSWIS_295553 crossref_primary_10_1080_0952813X_2023_2196986 crossref_primary_10_1016_j_iot_2024_101409 crossref_primary_10_32604_cmc_2023_030551 crossref_primary_10_1080_10586458_2024_2362351 crossref_primary_10_3390_math13030449 crossref_primary_10_15622_ia_22_4_3 crossref_primary_10_1007_s11042_023_17301_w crossref_primary_10_2298_CSIS210501053K crossref_primary_10_3390_su13148018 crossref_primary_10_1007_s12626_022_00127_7 crossref_primary_10_1007_s13278_025_01412_3 crossref_primary_10_33317_ssurj_565 crossref_primary_10_3390_electronics12245041 crossref_primary_10_3390_su141710466 crossref_primary_10_3934_electreng_2022021 crossref_primary_10_1051_bioconf_20249700123 crossref_primary_10_1016_j_jksuci_2023_101571 crossref_primary_10_3390_app132413207 crossref_primary_10_3390_fi16100352 crossref_primary_10_3390_s23041748 crossref_primary_10_3390_info13110527 crossref_primary_10_1007_s11227_024_06216_4 crossref_primary_10_48175_IJARSCT_13607 crossref_primary_10_3934_mbe_2022007 |
Cites_doi | 10.1016/j.inffus.2004.04.008 10.1177/1081180X05284317 10.1214/009053607000000677 10.1257/jep.31.2.211 10.1007/978-3-319-69155-8_9 10.3390/app9194062 10.1017/CBO9780511801389 10.4310/sii.2009.v2.n3.a8 10.3390/electronics9060963 10.1002/pra2.2015.145052010082 10.1145/3137597.3137600 10.1007/978-3-642-21551-3_33 10.1016/j.inffus.2008.11.003 10.1126/science.aao2998 10.1002/spy2.9 10.3390/ijerph17072309 10.1126/science.aap9559 10.1007/s11222-016-9646-1 10.1109/3468.618255 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Iftikhar Ahmad et al. COPYRIGHT 2020 John Wiley & Sons, Inc. Copyright © 2020 Iftikhar Ahmad et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2020 Iftikhar Ahmad et al. – notice: COPYRIGHT 2020 John Wiley & Sons, Inc. – notice: Copyright © 2020 Iftikhar Ahmad et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | ADJCN AHFXO AHMDM RHU RHW RHX AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U AAMOE ADTPV AOWAS D8T DG3 ZZAVC DOA |
DOI | 10.1155/2020/8885861 |
DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete قاعدة العلوم الإنسانية - e-Marefa Humanities Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic SWEPUB Karlstads universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Karlstads universitet SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics Computer Science |
EISSN | 1099-0526 |
Editor | Uddin, M. Irfan |
Editor_xml | – sequence: 1 givenname: M. Irfan surname: Uddin fullname: Uddin, M. Irfan |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_0f864536ad0c40ae88d3fba0d96fba81 oai_DiVA_org_kau_82435 A697086486 10_1155_2020_8885861 1145156 |
GroupedDBID | .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 3R3 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8G5 8UM 930 A03 AAESR AAEVG AAFWJ AAHHS AAJEY AAONW ABCQN ABEML ABIJN ABPVW ABUWG ACBWZ ACCFJ ACSCC ACXQS ADBBV ADIZJ ADJCN ADZOD AEEZP AEIMD AENEX AEQDE AFBPY AFKRA AFPKN AFZJQ AHFXO AHMDM AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ASPBG ATUGU AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BCNDV BDRZF BENPR BFHJK BGLVJ BHBCM BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DU5 DWQXO EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GNUQQ GODZA GROUPED_DOAJ GUQSH H.T H.X H13 HBH HCIFZ HF~ HHY HVGLF HZ~ IAO ITC IX1 J0M JPC K6V K7- KQQ LAW LC2 LC3 LH4 LP6 LP7 LW6 M2O MK4 N04 N05 N9A NF~ NNB O66 O9- OIG OK1 P2P P2W P2X P4D P62 PQQKQ PROAC Q.N Q11 QB0 QRW R.K RHX ROL RWI RX1 RYL SUPJJ TUS V2E W8V W99 WBKPD WIH WQJ WRC WYUIH XBAML XG1 XPP XSW XV2 ~IA ~WT RHU RHW AAYXX ACCMX AMVHM CITATION ICD PHGZM PHGZT PMFND 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U AAMOE AANHP ACRPL ACYXJ ADNMO ADTPV AGQPQ AOWAS D8T DG3 ZZAVC PUEGO |
ID | FETCH-LOGICAL-c502t-a4d73e0ce92ee6b222c55021a49e0be07033974e7d22a5db67f68a99f53e901f3 |
IEDL.DBID | RHX |
ISSN | 1076-2787 1099-0526 |
IngestDate | Wed Aug 27 01:14:09 EDT 2025 Thu Aug 21 06:48:31 EDT 2025 Fri Jul 25 20:58:37 EDT 2025 Tue Jun 10 21:03:04 EDT 2025 Tue Jul 01 02:02:02 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Sun Jun 02 18:51:30 EDT 2024 Thu Nov 28 18:38:02 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2020 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-a4d73e0ce92ee6b222c55021a49e0be07033974e7d22a5db67f68a99f53e901f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5388-0484 0000-0001-7863-3746 0000-0002-7885-0369 |
OpenAccessLink | https://dx.doi.org/10.1155/2020/8885861 |
PQID | 2454178278 |
PQPubID | 2029978 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0f864536ad0c40ae88d3fba0d96fba81 swepub_primary_oai_DiVA_org_kau_82435 proquest_journals_2454178278 gale_infotracacademiconefile_A697086486 crossref_primary_10_1155_2020_8885861 crossref_citationtrail_10_1155_2020_8885861 hindawi_primary_10_1155_2020_8885861 emarefa_primary_1145156 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020 |
PublicationDecade | 2020 |
PublicationPlace | Cairo, Egypt |
PublicationPlace_xml | – name: Cairo, Egypt – name: Hoboken |
PublicationTitle | Complexity (New York, N.Y.) |
PublicationYear | 2020 |
Publisher | Hindawi Publishing Corporation Hindawi John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
References | 23 Kaggle (25) 2018 J. Bergstra (26) 2012; 13 29 N. Ruchansky (20) V. Kecman (30) 2005 N. Cristianini (28) 2000 R. E. Schapire (35) 1999; 99 B. Riedel (19) 2017 T. Chen (37) 31 10 V. Pérez-Rosas (21) 2017 32 S. A. García (4) 2020; 9 33 12 J. Wong (2) 2016 13 14 36 A. Robb (7) 2017; 1301 16 38 F. T. Asr (11) 2019 17 39 V. L. Rubin (15) T. M. Mitchell (27) 2006 S. Kogan (6) 2019 L. Breiman (34) 1984 1 3 J. Soll (8) 2016; 18 P. Bühlmann (22) 2012 9 Kaggle (24) 2018 A. D. Holan (5) 2016 W. Y. Wang (18) 2017 |
References_xml | – ident: 32 doi: 10.1016/j.inffus.2004.04.008 – ident: 1 doi: 10.1177/1081180X05284317 – ident: 29 doi: 10.1214/009053607000000677 – volume: 9 issue: 5 year: 2020 ident: 4 article-title: The impact of term fake news on the scientific community scientific performance and mapping in web of science publication-title: Social Sciences – ident: 14 doi: 10.1257/jep.31.2.211 – ident: 17 doi: 10.1007/978-3-319-69155-8_9 – ident: 16 doi: 10.3390/app9194062 – volume-title: 2016 Lie of the Year: Fake News year: 2016 ident: 5 – volume-title: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods year: 2000 ident: 28 doi: 10.1017/CBO9780511801389 – volume: 18 issue: 12 year: 2016 ident: 8 article-title: The long and brutal history of fake news publication-title: Politico Magazine – ident: 38 doi: 10.4310/sii.2009.v2.n3.a8 – start-page: 785 ident: 37 article-title: Xgboost: a scalable tree boosting system – start-page: 7 ident: 15 article-title: Fake news or truth? using satirical cues to detect potentially misleading news – ident: 31 doi: 10.3390/electronics9060963 – year: 2017 ident: 19 article-title: A simple but tough-to-beat baseline for the fake news challenge stance detection task – ident: 10 doi: 10.1002/pra2.2015.145052010082 – volume-title: Classification and Regression Trees year: 1984 ident: 34 – volume-title: Fake News year: 2018 ident: 24 – volume-title: Liar, Liar Pants on Fire: A New Benchmark Dataset for Fake News Detection year: 2017 ident: 18 – ident: 12 doi: 10.1145/3137597.3137600 – start-page: 985 volume-title: Handbook of Computational Statistics year: 2012 ident: 22 article-title: Bagging, boosting and ensemble methods doi: 10.1007/978-3-642-21551-3_33 – year: 2017 ident: 21 article-title: Automatic detection of fake news – volume-title: The Discipline of Machine Learning year: 2006 ident: 27 – ident: 36 doi: 10.1016/j.inffus.2008.11.003 – ident: 3 doi: 10.1126/science.aao2998 – year: 2016 ident: 2 article-title: Almost all the traffic to fake news sites is from facebook, new data show – ident: 23 doi: 10.1002/spy2.9 – volume-title: Fake News Detection year: 2018 ident: 25 – volume: 1301 start-page: 28 year: 2017 ident: 7 article-title: Anatomy of a fake news scandal publication-title: Rolling Stone – volume-title: Support Vector Machines-An Introduction in “Support Vector Machines: Theory and Applications” year: 2005 ident: 30 – volume: 99 start-page: 1401 year: 1999 ident: 35 article-title: A brief introduction to boosting publication-title: IJCAI – ident: 9 doi: 10.3390/ijerph17072309 – year: 2019 ident: 11 article-title: Misinfotext: a collection of news articles, with false and true labels – ident: 13 doi: 10.1126/science.aap9559 – ident: 33 doi: 10.1007/s11222-016-9646-1 – year: 2019 ident: 6 article-title: Fake News: Evidence from Financial Markets – ident: 39 doi: 10.1109/3468.618255 – start-page: 797 ident: 20 article-title: Csi: a hybrid deep model for fake news detection – volume: 13 start-page: 281 year: 2012 ident: 26 article-title: Random search for hyper-parameter optimization publication-title: Journal of Machine Learning Research |
SSID | ssj0009637 |
Score | 2.6280253 |
Snippet | The advent of the World Wide Web and the rapid adoption of social media platforms (such as Facebook and Twitter) paved the way for information dissemination... |
SourceID | doaj swepub proquest gale crossref hindawi emarefa |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Algorithms Analysis Classification Computational linguistics Computer Science Data mining Datavetenskap Digital media Disinformation Information dissemination Language processing Linguistics Machine learning Metadata Methods Natural language interfaces Performance evaluation Social media Social networks Support vector machines User behavior Web sites World Wide Web |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SEPQgtn49bSWHiooszeZrs3h62j6K8DxZ6S3kY1ZL67a4r_jvO8lmX_sO0ounJUtgZyaTzPyWyW8I2a-hrhunQ-IMNZUUQVUuhFgF7rgEEWsHCSguv-rjE_nlVJ3eavWVasJGeuDRcAesM1oqoV1kQTIHxkTRecdiq_GRL11zjHkTmJrodnVmy0RsoyuOPjmVvCuV0D47QNynjK43glHm7M8Xcx2O3fqMvv8zoeM_Z5s56G1e0RyLFo_Jo5JE0vko_Da5B_0OebhcM7AOO2S7bNqBvivM0u-fkI8Ldw40nWv0EFa5CKunuWiALnNRJdDCt_qDHvUD_PIXQJe5x_TwlJwsjr59Pq5K94QqKMZXlZOxEcACtBxAe8wDAqIRXjvZAvOQtjrmIhKayLlT0eum08a1bacEYJLQiWdkq7_s4QWhApTxXnYJ3mAwYzgw2gkto_I1j25GPkxmtKFQi6cOFxc2QwylbDK6LUafkTfr2VcjpcY_5n1KK7Kek4iw8wt0D1vcw97lHjPyvKznzbdSc2KlZ-RtWl-bNjIKG1y5j4AqJ0osO9dtg3hPGpy5X1zgDnl3J_-w5SAYLJdK1piFNQbVHn1mQ6HDs-_zrNC5u7aGY_L68n-o_Yo8SKKN_4p2ydbq9zXsYfa08q_zRvkL3FUP-Q priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELegExI8IDa-CgP5YQgQipY4tuOIB9SxVhNSJ4QY2pvl2JcxbaRj6cS_z53rtvQBeIocOf6-8_2c8-8Y2yugKCqnPXGGmkyWXmXO-5B54YSEMhQOCChOj_XRifx0qk7TgVuf3CqXOjEq6jDzdEa-L6SSBW5nlflw9TOjqFH0dzWF0LjNtlAFGzNgWwfj489f1rS7OrJmIsbRGX5aLV3flSLUn-8j_lNGFxubUuTujxd0HabdSlff-U4o-df5pi36J79o3JMmD9j9ZEzy0WL2t9kt6HbYvemKibXfYdtJeHv-JjFMv33I3k_cBXDSb_wQ5tEZq-PReYBPo3Ml8MS7esbHXQ8_mkvg0xhrun_ETibjrx-PshRFIfMqF_PMyVCVkHuoBYBu0B7wiEpE4WQNeQMk8miTSKiCEE6FRletNq6uW1UCGgtt-ZgNulkHTxkvQZmmkS3BHNzUckwY7Uotg2oKEdyQvVsOo_WJYpwiXVzaCDWUsjToNg36kL1a5b5aUGv8Jd8BzcgqDxFixxez6zOb5MvmrdFSldqF3MvcgTGhbBuXh1rjw2AhT9J8ruuiIMVKD9lrml9LAo2N9S7dS8AuEzWWHem6QtwnDebcS0vgP-3dXa4PmxRCb9fLF7u9WDMbHTo8_zaKHbpwN9YINGKf_buY5-wuVbo4Ddplg_n1DbxA-2jevExC8BvGWAgd priority: 102 providerName: ProQuest |
Title | Fake News Detection Using Machine Learning Ensemble Methods |
URI | https://search.emarefa.net/detail/BIM-1145156 https://dx.doi.org/10.1155/2020/8885861 https://www.proquest.com/docview/2454178278 https://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-82435 https://doaj.org/article/0f864536ad0c40ae88d3fba0d96fba81 |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgCAkeEBtfhVH5YQgQinD8FUc8daylQuqEEEN9sxz7sk0bAZFO-_d3dt2OghA8RY6cxOe7893PsX8mZK-Esqyc9pEz1BRSeFU470PhueMSRCgdRKA4O9TTI_lxruaZJKn_8xc-RrsIz9lbBGrKRJhzEw0sgvLp_JpbVydqTAQyuuBogKv17b89uxF5EkF_2oXrsOzWA_LtkwiFL083E85fSURT4JncJ_dyxkhHSxVvkxvQ7ZC7szXdar9DtrOH9vRVppF-_YC8m7gzoHEQowewSCuuOppWCNBZWkEJNJOrHtNx18O35hzoLB0o3T8kR5Pxl_fTIh-VUHjF-KJwMlQCmIeaA-gGg75H6MFLJ2tgDUS_xsRDQhU4dyo0umq1cXXdKgGYEbTiEdnqvnfwhFAByjSNbCOWwcjFsGC0E1oG1ZQ8uAF5s-pG6zOPeDzO4twmPKGUjZ1uc6cPyIt17R9L_oy_1NuPGlnXiazX6QZags1OZFlrtFRCu8C8ZA6MCaJtHAu1xovBlzzO-rz-VjyJWOkBeRn1a6PXYmO9y5sPUOTIf2VHuq4Q3EmDNfeyCfyjvbsr-7DZ63vLpZIlplyVQbGXNrMh0MHp11ES6MxdWMMxU336f197Ru7E4nLqZ5dsLX5ewHNMhhbNEB1i8mFIbu2PDz99HqYphWFyjytlmf_i |
linkProvider | Hindawi Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGEAIOiI2vwgAfNgFC0RLHdhwhhApd6di60zbtZhz7ZUwb7Vg6TfxT_I08u05LD8Bpp8jRk-OP9-k8_x4h6xlkWWGk9ZihKuG5FYmx1iWWGcYhd5kBHygO9-TggH85EkdL5Fd7F8anVbY6MShqN7b-jHyTccEzNGeF-nD-I_FVo_zf1baExpQtduDnFYZszfvtHu7vBmP9rf1PgyRWFUisSNkkMdwVOaQWSgYgK7SPFr10lhleQlqBFwG00RwKx5gRrpJFLZUpy1rkgMazzrHfG-Qm91T-Znr_8xzkVwaMToyoZIIDLdpEeyH8GUO6idGmUDJbMIGhUkC4DmywbWaW4dY3H5NfnSx6vn-imQYL2L9P7kXXlXanvLZClmC0Su4OZ7ivzSpZiaqioa8jnvWbB-Rd35wC9dqU9mASUr9GNKQq0GFI5QQaUV6P6daoge_VGdBhqGzdPCQH17K6j8jyaDyCJ4TmIFRV8doHVWhCU2woaXLJnagy5kyHvG2XUdsIaO7rapzpENgIof2i67joHbIxoz6fAnn8he6j35EZjYffDi_GF8c6SrNOayW5yKVxqeWpAaVcXlcmdaXEh8JOHsf9nH_Ll0QWskNe-f3VXn3gYK2JtyBwyh6IS3dlWWCUyRVSrkcW-M9411r-0FH9NHouLDjtKc8sTKh3ctgNEzo1l1oxdJmf_rubl-T2YH-4q3e393aekTt-ANNzqDWyPLm4hOfomU2qF0EcKPl63fL3G4zfQvk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fake+News+Detection+Using+Machine+Learning+Ensemble+Methods&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Ahmad%2C+Iftikhar&rft.au=Yousaf%2C+Muhammad&rft.au=Yousaf%2C+Suhail&rft.au=Ahmad%2C+Muhammad+Ovais&rft.date=2020&rft.pub=Hindawi&rft.issn=1076-2787&rft.eissn=1099-0526&rft.volume=2020&rft_id=info:doi/10.1155%2F2020%2F8885861&rft.externalDocID=10_1155_2020_8885861 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon |