DNA Helicase–Polymerase Coupling in Bacteriophage DNA Replication
Bacteriophages have long been model systems to study the molecular mechanisms of DNA replication. During DNA replication, a DNA helicase and a DNA polymerase cooperatively unwind the parental DNA. By surveying recent data from three bacteriophage replication systems, we summarized the mechanistic ba...
Saved in:
Published in | Viruses Vol. 13; no. 9; p. 1739 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
31.08.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bacteriophages have long been model systems to study the molecular mechanisms of DNA replication. During DNA replication, a DNA helicase and a DNA polymerase cooperatively unwind the parental DNA. By surveying recent data from three bacteriophage replication systems, we summarized the mechanistic basis of DNA replication by helicases and polymerases. Kinetic data have suggested that a polymerase or a helicase alone is a passive motor that is sensitive to the base-pairing energy of the DNA. When coupled together, the helicase–polymerase complex is able to unwind DNA actively. In bacteriophage T7, helicase and polymerase reside right at the replication fork where the parental DNA is separated into two daughter strands. The two motors pull the two daughter strands to opposite directions, while the polymerase provides a separation pin to split the fork. Although independently evolved and containing different replisome components, bacteriophage T4 replisome shares mechanistic features of Hel–Pol coupling that are similar to T7. Interestingly, in bacteriophages with a limited size of genome like Φ29, DNA polymerase itself can form a tunnel-like structure, which encircles the DNA template strand and facilitates strand displacement synthesis in the absence of a helicase. Studies on bacteriophage replication provide implications for the more complicated replication systems in bacteria, archaeal, and eukaryotic systems, as well as the RNA genome replication in RNA viruses. |
---|---|
AbstractList | Bacteriophages have long been model systems to study the molecular mechanisms of DNA replication. During DNA replication, a DNA helicase and a DNA polymerase cooperatively unwind the parental DNA. By surveying recent data from three bacteriophage replication systems, we summarized the mechanistic basis of DNA replication by helicases and polymerases. Kinetic data have suggested that a polymerase or a helicase alone is a passive motor that is sensitive to the base-pairing energy of the DNA. When coupled together, the helicase-polymerase complex is able to unwind DNA actively. In bacteriophage T7, helicase and polymerase reside right at the replication fork where the parental DNA is separated into two daughter strands. The two motors pull the two daughter strands to opposite directions, while the polymerase provides a separation pin to split the fork. Although independently evolved and containing different replisome components, bacteriophage T4 replisome shares mechanistic features of Hel-Pol coupling that are similar to T7. Interestingly, in bacteriophages with a limited size of genome like Φ29, DNA polymerase itself can form a tunnel-like structure, which encircles the DNA template strand and facilitates strand displacement synthesis in the absence of a helicase. Studies on bacteriophage replication provide implications for the more complicated replication systems in bacteria, archaeal, and eukaryotic systems, as well as the RNA genome replication in RNA viruses.Bacteriophages have long been model systems to study the molecular mechanisms of DNA replication. During DNA replication, a DNA helicase and a DNA polymerase cooperatively unwind the parental DNA. By surveying recent data from three bacteriophage replication systems, we summarized the mechanistic basis of DNA replication by helicases and polymerases. Kinetic data have suggested that a polymerase or a helicase alone is a passive motor that is sensitive to the base-pairing energy of the DNA. When coupled together, the helicase-polymerase complex is able to unwind DNA actively. In bacteriophage T7, helicase and polymerase reside right at the replication fork where the parental DNA is separated into two daughter strands. The two motors pull the two daughter strands to opposite directions, while the polymerase provides a separation pin to split the fork. Although independently evolved and containing different replisome components, bacteriophage T4 replisome shares mechanistic features of Hel-Pol coupling that are similar to T7. Interestingly, in bacteriophages with a limited size of genome like Φ29, DNA polymerase itself can form a tunnel-like structure, which encircles the DNA template strand and facilitates strand displacement synthesis in the absence of a helicase. Studies on bacteriophage replication provide implications for the more complicated replication systems in bacteria, archaeal, and eukaryotic systems, as well as the RNA genome replication in RNA viruses. Bacteriophages have long been model systems to study the molecular mechanisms of DNA replication. During DNA replication, a DNA helicase and a DNA polymerase cooperatively unwind the parental DNA. By surveying recent data from three bacteriophage replication systems, we summarized the mechanistic basis of DNA replication by helicases and polymerases. Kinetic data have suggested that a polymerase or a helicase alone is a passive motor that is sensitive to the base-pairing energy of the DNA. When coupled together, the helicase–polymerase complex is able to unwind DNA actively. In bacteriophage T7, helicase and polymerase reside right at the replication fork where the parental DNA is separated into two daughter strands. The two motors pull the two daughter strands to opposite directions, while the polymerase provides a separation pin to split the fork. Although independently evolved and containing different replisome components, bacteriophage T4 replisome shares mechanistic features of Hel–Pol coupling that are similar to T7. Interestingly, in bacteriophages with a limited size of genome like Φ29, DNA polymerase itself can form a tunnel-like structure, which encircles the DNA template strand and facilitates strand displacement synthesis in the absence of a helicase. Studies on bacteriophage replication provide implications for the more complicated replication systems in bacteria, archaeal, and eukaryotic systems, as well as the RNA genome replication in RNA viruses. |
Author | Gao, Yang Lo, Chen-Yu |
AuthorAffiliation | Department of BioSciences, Rice University, Houston, TX 77005, USA; cl111@rice.edu |
AuthorAffiliation_xml | – name: Department of BioSciences, Rice University, Houston, TX 77005, USA; cl111@rice.edu |
Author_xml | – sequence: 1 givenname: Chen-Yu orcidid: 0000-0003-2938-0986 surname: Lo fullname: Lo, Chen-Yu – sequence: 2 givenname: Yang surname: Gao fullname: Gao, Yang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34578319$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkt1uFCEUx4mpse3qhS9gJvHGXqzlc4Abk7p-tEmjxug1YZjDls0sTJmZJr3zHfqGPolst27axsQb4MDv_-fAOYdoL6YICL0k-C1jGh9fEYY1kUw_QQdEaz3nmoi9e-t9dDgMK4zrWmP5DO0zLqRiRB-gxYcvJ9UpdMHZAX7_uvmWuus15BJUizT1XYjLKsTqvXUj5JD6C7uEaqP5Dv1GNIYUn6On3nYDvLibZ-jnp48_Fqfz86-fzxYn53MnMB3nWrZMcMl5C54wqwVrXCOck5TrBnwtmWfCaYaVapQlQKVwGJf0vfcKq5bN0NnWt012Zfoc1jZfm2SDud1IeWlsHoPrwCjsKKOUYleurDU0WmnPHKjWscZbX7zebb36qVlD6yCO2XYPTB-exHBhlunKKC6pkLwYvLkzyOlygmE06zA46DobIU2DoTWrFdVEyf-jQkoucCEL-voRukpTjuVXN1QtWC3KMEOv7ie_y_pvWQtwtAVcTsOQwe8Qgs2mZcyuZQp7_Ih1Ybyta3l36P6h-APVAsE3 |
CitedBy_id | crossref_primary_10_1016_j_apcatb_2024_123922 crossref_primary_10_3389_fmicb_2024_1379400 crossref_primary_10_3390_cimb45080406 crossref_primary_10_1002_agt2_569 crossref_primary_10_1128_spectrum_05332_22 crossref_primary_10_51847_0NHpnUOuhG crossref_primary_10_1016_j_micpath_2024_106891 crossref_primary_10_3390_ijms23031342 crossref_primary_10_1016_j_jbc_2022_102797 |
Cites_doi | 10.1146/annurev.biochem.76.052305.115300 10.1016/j.molcel.2004.10.019 10.1126/science.aav7003 10.1093/nar/gks254 10.1074/jbc.274.38.27287 10.1073/pnas.1701252114 10.1038/nature10409 10.1101/2021.07.07.451541 10.4161/bact.1.1.14942 10.1016/bs.mie.2017.03.002 10.1186/1743-422X-9-9 10.1016/j.celrep.2014.02.025 10.15252/embj.2019103367 10.1073/pnas.1204759109 10.7554/eLife.06562 10.1006/jmbi.1994.1100 10.1038/s41580-020-0257-5 10.1093/nar/13.9.3083 10.1016/S1097-2765(00)80100-8 10.1038/nature07512 10.1128/MMBR.67.1.86-156.2003 10.1073/pnas.0709793104 10.1016/S0065-3233(04)71011-6 10.1016/S0021-9258(19)41211-8 10.1038/ncomms10260 10.1021/bi047296w 10.1016/j.semcdb.2018.03.018 10.1006/jmbi.2000.4216 10.1073/pnas.0500713102 10.1101/cshperspect.a010108 10.1093/nar/gks253 10.1016/j.molcel.2005.11.027 10.1038/nature08611 10.1021/bi001306l 10.1074/jbc.M805062200 10.1093/nar/18.23.7003 10.1021/bi4014215 10.1073/pnas.0501637102 10.1016/j.coviro.2011.06.009 10.1146/annurev.biochem.70.1.181 10.1016/S0021-9258(18)66820-6 10.1073/pnas.1106678108 10.1074/jbc.M605675200 10.1016/0022-2836(84)90458-3 10.1074/jbc.R117.811208 10.1074/jbc.M111951200 10.1073/pnas.1620500114 10.1016/S0021-9258(18)81883-X 10.1016/j.celrep.2014.02.022 10.1085/jgp.36.1.39 10.1016/S0092-8674(00)80296-2 10.1074/jbc.R109.022939 10.1111/j.1574-6976.2006.00015.x 10.1016/j.cell.2006.10.049 10.1093/nar/gkq273 10.1038/s41467-018-04702-x 10.1016/S0021-9258(18)54888-2 10.1016/j.str.2016.11.019 10.1016/j.molcel.2007.06.020 10.1038/34593 10.1146/annurev.biochem.67.1.721 10.1016/0022-2836(69)90373-8 10.1016/j.cell.2007.04.038 10.1093/nar/gkv204 10.1093/nar/17.10.3663 10.3390/v7062766 10.1146/annurev.bi.60.070191.000351 10.1073/pnas.69.4.998 10.1073/pnas.0806908106 10.1146/annurev.biochem.78.072407.103248 10.1038/nature03615 10.1042/BCJ20200922 10.1074/jbc.M112.401158 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7U9 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/v13091739 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1999-4915 |
ExternalDocumentID | oai_doaj_org_article_80c232220c35469eb989f3ce8dc3bfaf PMC8472574 34578319 10_3390_v13091739 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM142722 – fundername: NIH HHS grantid: 1R35GM142722 |
GroupedDBID | --- 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACUHS AFKRA AFPKN AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK E3Z EBD ESX FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M48 M7P MODMG M~E O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM TR2 TUS UKHRP CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 3V. 7U9 7XB 8FK AZQEC DWQXO GNUQQ H94 K9. PKEHL PQEST PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c502t-97d354744def13a953bcb5cc7249bef673f35c93088b8a1e275c00491fff808d3 |
IEDL.DBID | M48 |
ISSN | 1999-4915 |
IngestDate | Wed Aug 27 01:20:28 EDT 2025 Thu Aug 21 14:10:12 EDT 2025 Fri Jul 11 03:50:15 EDT 2025 Thu Jul 10 19:03:02 EDT 2025 Fri Jul 25 12:00:48 EDT 2025 Mon Jul 21 06:04:18 EDT 2025 Thu Apr 24 22:58:33 EDT 2025 Tue Jul 01 02:48:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | DNA replication helicase bacteriophage T7 polymerase bacteriophage T4 bacteriophage Φ29 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-97d354744def13a953bcb5cc7249bef673f35c93088b8a1e275c00491fff808d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2938-0986 |
OpenAccessLink | https://www.proquest.com/docview/2576536565?pq-origsite=%requestingapplication% |
PMID | 34578319 |
PQID | 2576536565 |
PQPubID | 2032319 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_80c232220c35469eb989f3ce8dc3bfaf pubmedcentral_primary_oai_pubmedcentral_nih_gov_8472574 proquest_miscellaneous_2636829187 proquest_miscellaneous_2577450873 proquest_journals_2576536565 pubmed_primary_34578319 crossref_primary_10_3390_v13091739 crossref_citationtrail_10_3390_v13091739 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210831 |
PublicationDateYYYYMMDD | 2021-08-31 |
PublicationDate_xml | – month: 8 year: 2021 text: 20210831 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Viruses |
PublicationTitleAlternate | Viruses |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Johnson (ref_28) 2007; 129 Dressler (ref_14) 1972; 69 Ishmael (ref_53) 2002; 277 Cortez (ref_13) 2017; 591 Kelly (ref_15) 1969; 44 Hamdan (ref_11) 2010; 285 Syed (ref_29) 2014; 6 Hamdan (ref_31) 2009; 457 Hershey (ref_3) 1952; 36 Ghosh (ref_17) 2008; 283 Pandey (ref_22) 2009; 462 Munn (ref_60) 1991; 266 Georgescu (ref_71) 2017; 114 Morin (ref_67) 2012; 109 Singleton (ref_9) 2007; 76 Lee (ref_30) 1998; 1 Clokie (ref_1) 2011; 1 Manosas (ref_54) 2012; 40 ref_24 Pandey (ref_25) 2014; 6 Norcum (ref_57) 2005; 102 ref_21 Zhang (ref_20) 2012; 287 Sun (ref_44) 2018; 9 Kulczyk (ref_45) 2017; 114 Young (ref_51) 1994; 235 Singh (ref_27) 2020; 39 Pastrana (ref_65) 1985; 13 Huber (ref_19) 1986; 261 Sun (ref_43) 2015; 6 Noble (ref_48) 2015; 7 Manosas (ref_42) 2010; 38 Hamdan (ref_34) 2007; 27 Hogg (ref_38) 2007; 282 ref_70 Berti (ref_72) 2020; 21 Delagoutte (ref_61) 2001; 40 Modrich (ref_18) 1975; 250 Zhang (ref_33) 2011; 108 Morin (ref_68) 2015; 43 Manosas (ref_55) 2012; 40 Weigel (ref_5) 2006; 30 Rothwell (ref_10) 2005; 71 Stano (ref_26) 2005; 435 Waga (ref_12) 1998; 67 Jing (ref_52) 1999; 274 Benkovic (ref_49) 2017; 292 Kamtekar (ref_39) 2004; 16 Hamdan (ref_32) 2005; 102 Hamdan (ref_4) 2009; 78 Lee (ref_40) 2006; 127 Salas (ref_64) 1991; 60 Doublie (ref_16) 1998; 391 Wallen (ref_46) 2017; 25 Hernandez (ref_23) 2019; 86 Xia (ref_59) 2014; 53 Sun (ref_37) 2011; 478 Mace (ref_50) 1984; 177 Dufour (ref_69) 2000; 304 Haq (ref_8) 2012; 9 Wang (ref_58) 1997; 89 Ellenberger (ref_35) 2021; 478 Benkovic (ref_6) 2001; 70 Martin (ref_63) 1989; 17 Lionnet (ref_56) 2007; 104 Pike (ref_41) 2009; 106 Xi (ref_62) 2005; 44 Hatfull (ref_2) 2011; 1 Miller (ref_47) 2003; 67 Lain (ref_73) 1990; 18 ref_7 Blanco (ref_66) 1989; 264 Crampton (ref_36) 2006; 21 |
References_xml | – volume: 76 start-page: 23 year: 2007 ident: ref_9 article-title: Structure and mechanism of helicases and nucleic acid translocases publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.76.052305.115300 – volume: 16 start-page: 609 year: 2004 ident: ref_39 article-title: Insights into strand displacement and processivity from the crystal structure of the protein-primed DNA polymerase of bacteriophage phi29 publication-title: Mol. Cell doi: 10.1016/j.molcel.2004.10.019 – ident: ref_21 doi: 10.1126/science.aav7003 – volume: 40 start-page: 6187 year: 2012 ident: ref_54 article-title: Collaborative coupling between polymerase and helicase for leading-strand synthesis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks254 – volume: 274 start-page: 27287 year: 1999 ident: ref_52 article-title: Interactions of bacteriophage T4-coded primase (gp61) with the T4 replication helicase (gp41) and DNA in primosome formation publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.38.27287 – volume: 114 start-page: E1848 year: 2017 ident: ref_45 article-title: Cryo-EM structure of the replisome reveals multiple interactions coordinating DNA synthesis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1701252114 – volume: 478 start-page: 132 year: 2011 ident: ref_37 article-title: ATP-induced helicase slippage reveals highly coordinated subunits publication-title: Nature doi: 10.1038/nature10409 – ident: ref_70 doi: 10.1101/2021.07.07.451541 – volume: 1 start-page: 31 year: 2011 ident: ref_1 article-title: Phages in nature publication-title: Bacteriophage doi: 10.4161/bact.1.1.14942 – volume: 591 start-page: 33 year: 2017 ident: ref_13 article-title: Proteomic Analyses of the Eukaryotic Replication Machinery publication-title: Methods. Enzymol. doi: 10.1016/bs.mie.2017.03.002 – volume: 9 start-page: 9 year: 2012 ident: ref_8 article-title: Bacteriophages and their implications on future biotechnology: A review publication-title: Virol. J. doi: 10.1186/1743-422X-9-9 – volume: 6 start-page: 1129 year: 2014 ident: ref_25 article-title: Helicase and polymerase move together close to the fork junction and copy DNA in one-nucleotide steps publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.02.025 – volume: 39 start-page: e103367 year: 2020 ident: ref_27 article-title: Excessive excision of correct nucleotides during DNA synthesis explained by replication hurdles publication-title: EMBO J. doi: 10.15252/embj.2019103367 – volume: 109 start-page: 8115 year: 2012 ident: ref_67 article-title: Active DNA unwinding dynamics during processive DNA replication publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1204759109 – ident: ref_24 doi: 10.7554/eLife.06562 – volume: 235 start-page: 1447 year: 1994 ident: ref_51 article-title: Kinetic parameters of the translocation of bacteriophage T4 gene 41 protein helicase on single-stranded DNA publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1994.1100 – volume: 21 start-page: 633 year: 2020 ident: ref_72 article-title: The plasticity of DNA replication forks in response to clinically relevant genotoxic stress publication-title: Nat. Rev. Mol. Cell. Biol. doi: 10.1038/s41580-020-0257-5 – volume: 13 start-page: 3083 year: 1985 ident: ref_65 article-title: Overproduction and purification of protein P6 of Bacillus subtilis phage phi 29: Role in the initiation of DNA replication publication-title: Nucleic Acids Res. doi: 10.1093/nar/13.9.3083 – volume: 1 start-page: 1001 year: 1998 ident: ref_30 article-title: Coordinated leading and lagging strand DNA synthesis on a minicircular template publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80100-8 – volume: 457 start-page: 336 year: 2009 ident: ref_31 article-title: Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis publication-title: Nature doi: 10.1038/nature07512 – volume: 67 start-page: 86 year: 2003 ident: ref_47 article-title: Bacteriophage T4 genome publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.67.1.86-156.2003 – volume: 104 start-page: 19790 year: 2007 ident: ref_56 article-title: Real-time observation of bacteriophage T4 gp41 helicase reveals an unwinding mechanism publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0709793104 – volume: 71 start-page: 401 year: 2005 ident: ref_10 article-title: Structure and mechanism of DNA polymerases publication-title: Adv. Protein. Chem. doi: 10.1016/S0065-3233(04)71011-6 – volume: 250 start-page: 5508 year: 1975 ident: ref_18 article-title: Bacteriophage T7 Deoxyribonucleic acid replication in vitro. A protein of Escherichia coli required for bacteriophage T7 DNA polymerase activity publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)41211-8 – volume: 6 start-page: 10260 year: 2015 ident: ref_43 article-title: T7 replisome directly overcomes DNA damage publication-title: Nat. Commun. doi: 10.1038/ncomms10260 – volume: 44 start-page: 7747 year: 2005 ident: ref_62 article-title: Interaction between the T4 helicase loading protein (gp59) and the DNA polymerase (gp43): Unlocking of the gp59-gp43-DNA complex to initiate assembly of a fully functional replisome publication-title: Biochemistry doi: 10.1021/bi047296w – volume: 86 start-page: 92 year: 2019 ident: ref_23 article-title: Gp2.5, the multifunctional bacteriophage T7 single-stranded DNA binding protein publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2018.03.018 – volume: 304 start-page: 289 year: 2000 ident: ref_69 article-title: An aspartic acid residue in TPR-1, a specific region of protein-priming DNA polymerases, is required for the functional interaction with primer terminal protein publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2000.4216 – volume: 102 start-page: 3623 year: 2005 ident: ref_57 article-title: Architecture of the bacteriophage T4 primosome: Electron microscopy studies of helicase (gp41) and primase (gp61) publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0500713102 – ident: ref_7 doi: 10.1101/cshperspect.a010108 – volume: 40 start-page: 6174 year: 2012 ident: ref_55 article-title: Mechanism of strand displacement synthesis by DNA replicative polymerases publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks253 – volume: 21 start-page: 165 year: 2006 ident: ref_36 article-title: DNA-induced switch from independent to sequential dTTP hydrolysis in the bacteriophage T7 DNA helicase publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.11.027 – volume: 462 start-page: 940 year: 2009 ident: ref_22 article-title: Coordinating DNA replication by means of priming loop and differential synthesis rate publication-title: Nature doi: 10.1038/nature08611 – volume: 40 start-page: 4459 year: 2001 ident: ref_61 article-title: Molecular mechanisms of the functional coupling of the helicase (gp41) and polymerase (gp43) of bacteriophage T4 within the DNA replication fork publication-title: Biochemistry doi: 10.1021/bi001306l – volume: 283 start-page: 32077 year: 2008 ident: ref_17 article-title: Interactions of Escherichia coli thioredoxin, the processivity factor, with bacteriophage T7 DNA polymerase and helicase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M805062200 – volume: 18 start-page: 7003 year: 1990 ident: ref_73 article-title: RNA helicase: A novel activity associated with a protein encoded by a positive strand RNA virus publication-title: Nucleic Acids Res. doi: 10.1093/nar/18.23.7003 – volume: 53 start-page: 2752 year: 2014 ident: ref_59 article-title: RB69 DNA polymerase structure, kinetics, and fidelity publication-title: Biochemistry doi: 10.1021/bi4014215 – volume: 102 start-page: 5096 year: 2005 ident: ref_32 article-title: A unique loop in T7 DNA polymerase mediates the binding of helicase-primase, DNA binding protein, and processivity factor publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0501637102 – volume: 1 start-page: 298 year: 2011 ident: ref_2 article-title: Bacteriophages and their genomes publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2011.06.009 – volume: 70 start-page: 181 year: 2001 ident: ref_6 article-title: Replisome-mediated DNA replication publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.70.1.181 – volume: 261 start-page: 15006 year: 1986 ident: ref_19 article-title: Interaction of mutant thioredoxins of Escherichia coli with the gene 5 protein of phage T7. The redox capacity of thioredoxin is not required for stimulation of DNA polymerase activity publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)66820-6 – volume: 108 start-page: 9372 year: 2011 ident: ref_33 article-title: Helicase-DNA polymerase interaction is critical to initiate leading-strand DNA synthesis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1106678108 – volume: 282 start-page: 1432 year: 2007 ident: ref_38 article-title: Structural and biochemical investigation of the role in proofreading of a beta hairpin loop found in the exonuclease domain of a replicative DNA polymerase of the B family publication-title: J. Biol. Chem. doi: 10.1074/jbc.M605675200 – volume: 177 start-page: 295 year: 1984 ident: ref_50 article-title: T4 DNA polymerase. Rates and processivity on single-stranded DNA templates publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(84)90458-3 – volume: 292 start-page: 18434 year: 2017 ident: ref_49 article-title: Understanding DNA replication by the bacteriophage T4 replisome publication-title: J. Biol. Chem. doi: 10.1074/jbc.R117.811208 – volume: 277 start-page: 20555 year: 2002 ident: ref_53 article-title: Assembly of the bacteriophage T4 helicase: Architecture and stoichiometry of the gp41-gp59 complex publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111951200 – volume: 114 start-page: E697 year: 2017 ident: ref_71 article-title: Structure of eukaryotic CMG helicase at a replication fork and implications to replisome architecture and origin initiation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1620500114 – volume: 264 start-page: 8935 year: 1989 ident: ref_66 article-title: Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)81883-X – volume: 6 start-page: 1037 year: 2014 ident: ref_29 article-title: Single-molecule fluorescence reveals the unwinding stepping mechanism of replicative helicase publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.02.022 – volume: 36 start-page: 39 year: 1952 ident: ref_3 article-title: Independent functions of viral protein and nucleic acid in growth of bacteriophage publication-title: J. Gen. Physiol. doi: 10.1085/jgp.36.1.39 – volume: 89 start-page: 1087 year: 1997 ident: ref_58 article-title: Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69 publication-title: Cell doi: 10.1016/S0092-8674(00)80296-2 – volume: 285 start-page: 18979 year: 2010 ident: ref_11 article-title: Timing, coordination, and rhythm: Acrobatics at the DNA replication fork publication-title: J. Biol. Chem. doi: 10.1074/jbc.R109.022939 – volume: 30 start-page: 321 year: 2006 ident: ref_5 article-title: Bacteriophage replication modules publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2006.00015.x – volume: 127 start-page: 1349 year: 2006 ident: ref_40 article-title: UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke publication-title: Cell doi: 10.1016/j.cell.2006.10.049 – volume: 38 start-page: 5518 year: 2010 ident: ref_42 article-title: Active and passive mechanisms of helicases publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq273 – volume: 9 start-page: 2306 year: 2018 ident: ref_44 article-title: Helicase promotes replication re-initiation from an RNA transcript publication-title: Nat. Commun. doi: 10.1038/s41467-018-04702-x – volume: 266 start-page: 20034 year: 1991 ident: ref_60 article-title: DNA footprinting studies of the complex formed by the T4 DNA polymerase holoenzyme at a primer-template junction publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)54888-2 – volume: 25 start-page: 157 year: 2017 ident: ref_46 article-title: Hybrid Methods Reveal Multiple Flexibly Linked DNA Polymerases within the Bacteriophage T7 Replisome publication-title: Structure doi: 10.1016/j.str.2016.11.019 – volume: 27 start-page: 539 year: 2007 ident: ref_34 article-title: Dynamic DNA helicase-DNA polymerase interactions assure processive replication fork movement publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.06.020 – volume: 391 start-page: 251 year: 1998 ident: ref_16 article-title: Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution publication-title: Nature doi: 10.1038/34593 – volume: 67 start-page: 721 year: 1998 ident: ref_12 article-title: The DNA replication fork in eukaryotic cells publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.67.1.721 – volume: 44 start-page: 459 year: 1969 ident: ref_15 article-title: An intermediate in the replication of bacteriophage T7 DNA molecules publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(69)90373-8 – volume: 129 start-page: 1299 year: 2007 ident: ref_28 article-title: Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase publication-title: Cell doi: 10.1016/j.cell.2007.04.038 – volume: 43 start-page: 3643 year: 2015 ident: ref_68 article-title: Mechano-chemical kinetics of DNA replication: Identification of the translocation step of a replicative DNA polymerase publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv204 – volume: 17 start-page: 3663 year: 1989 ident: ref_63 article-title: Characterization of the phage phi 29 protein p5 as a single-stranded DNA binding protein. Function in phi 29 DNA-protein p3 replication publication-title: Nucleic Acids Res. doi: 10.1093/nar/17.10.3663 – volume: 7 start-page: 3186 year: 2015 ident: ref_48 article-title: Coordinated DNA Replication by the Bacteriophage T4 Replisome publication-title: Viruses doi: 10.3390/v7062766 – volume: 60 start-page: 39 year: 1991 ident: ref_64 article-title: Protein-priming of DNA replication publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.60.070191.000351 – volume: 69 start-page: 998 year: 1972 ident: ref_14 article-title: Initiation and reinitiation of DNA synthesis during replication of bacteriophage T7 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.69.4.998 – volume: 106 start-page: 1039 year: 2009 ident: ref_41 article-title: Structure of the human RECQ1 helicase reveals a putative strand-separation pin publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0806908106 – volume: 78 start-page: 205 year: 2009 ident: ref_4 article-title: Motors, switches, and contacts in the replisome publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.78.072407.103248 – volume: 435 start-page: 370 year: 2005 ident: ref_26 article-title: DNA synthesis provides the driving force to accelerate DNA unwinding by a helicase publication-title: Nature doi: 10.1038/nature03615 – volume: 478 start-page: 2665 year: 2021 ident: ref_35 article-title: Structure of an open conformation of T7 DNA polymerase reveals novel structural features regulating primer-template stabilization at the polymerization active site publication-title: Biochem. J. doi: 10.1042/BCJ20200922 – volume: 287 start-page: 34273 year: 2012 ident: ref_20 article-title: Heterohexamer of 56- and 63-kDa Gene 4 Helicase-Primase of Bacteriophage T7 in DNA Replication publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.401158 |
SSID | ssj0066907 |
Score | 2.3284674 |
SecondaryResourceType | review_article |
Snippet | Bacteriophages have long been model systems to study the molecular mechanisms of DNA replication. During DNA replication, a DNA helicase and a DNA polymerase... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1739 |
SubjectTerms | Archaea bacteriophage T4 Bacteriophage T4 - genetics bacteriophage T7 Bacteriophage T7 - genetics bacteriophage Φ29 bacteriophages Binding sites Deoxyribonucleic acid DNA DNA biosynthesis DNA helicase DNA helicases DNA Helicases - chemistry DNA Helicases - genetics DNA Helicases - metabolism DNA replication DNA Replication - physiology DNA structure DNA, Viral - chemistry DNA-Binding Proteins - chemistry DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism DNA-directed DNA polymerase DNA-Directed DNA Polymerase - chemistry DNA-Directed DNA Polymerase - genetics DNA-Directed DNA Polymerase - metabolism energy Enzymes genome Genomes helicase Kinetics Models, Molecular Molecular modelling Phages polymerase Proteins Replication Review RNA RNA viruses Viral Proteins - chemistry Viral Proteins - genetics Viral Proteins - metabolism Virus Replication - physiology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcEG8CBQXEgUvUTcaO7WO7UFVIVByo1FsUv2ilKqm6u0i99T_0H_JLmImz0S6q4MIlh3ii2DOex-fHDMAHcuq-isIUtm2rQnhDdtBFpAe2WKNzRvFF4a_H9dGJ-HIqTzdKffGZsJQeODFuT89cxbsBM4eSoFywRpuILmjv0MY2svUln7cGU8kG14z5Uh4hJFC_95MsNeESrgi-4X2GJP13RZZ_HpDc8DiHj-DhGCrm-6mLj-Fe6J7A_VQ88vopzD8d7-fkNYjLi_Dr5vZbf3HNK0yLkM_7FV-0_ZGfd_lBSsfcX56R5cj5G4q51yt1z-Dk8PP3-VExlkQonJxVy8IoT2xQQvgQS2yNROusdE4RirIh1gojSmeQbIfVbRkqJR2DgDLGqGfa43PY6fouvIS8kt5JYovwMZAit1ZFq7wttXE2em8y-LhmVePGfOFctuKiIdzAXG0mrmbwfiK9TEky7iI6YH5PBJzXenhB0m5GaTf_knYGu2tpNaOyLRrGTBIpMJUZvJuaSU1476PtQr8aaJSgYFThX2hqrHVlSq0yeJEmwNRbFGTayFxloLamxtZwtlu687MhXTf5f_q7ePU_xv8aHlR8qGZY1N6FneXVKryhqGhp3w4K8BsVGwzY priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB5BERIXxH8DBQXEgUvUTcaO7RNqF6oKiYoDlfYWxX9tpSpZurtIvfUd-oY8CTNJNnRR1UsO8USxxzOfZ8b2DMBHWtR9EYXJbF0XmfCGcNBFpAfWWKJzRvFF4e9H5eGx-DaTsyHgthiOVa4xsQNq3zqOke-yYSyRrA_5ef4r46pRvLs6lNC4Dw84dRlLtZqNDlfJnl-fTQjJtd_9TXhN3gnXBb-xBnWp-m-zL_8_Jnlj3Tl4Ao8HgzHd62f4KdwLzTN42JeQvHwO0y9HeymtHcTrRfhzdf2jPb_kONMipNN2xddtT9KzJt3vkzK381PCj5S_Ict7Ha97AccHX39OD7OhMELm5KRYZkZ5lEIJ4UPMsTYSrbPSOUW-lA2xVBhROoOEIFbXeSiUdOwK5DFGPdEeX8JW0zZhG9JCeieJLcLHQOpcWxWt8jbXxtnovUng05pVlRuyhnPxivOKvAfmajVyNYEPI-m8T5VxG9E-83sk4OzW3Yv24qQalKXSE1fwDtDE0TBLE6zRJqIL2ju0sY4J7KxnqxpUblH9E5AE3o_NpCy8A1I3oV11NEqQSarwDpoSS12YXKsEXvUCMPYWBQEcgVYCakM0Noaz2dKcnXZJu8kKoL-L13d3_Q08KvjQTBe03oGt5cUqvCWrZ2nfdaL9F_ArA-o priority: 102 providerName: ProQuest |
Title | DNA Helicase–Polymerase Coupling in Bacteriophage DNA Replication |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34578319 https://www.proquest.com/docview/2576536565 https://www.proquest.com/docview/2577450873 https://www.proquest.com/docview/2636829187 https://pubmed.ncbi.nlm.nih.gov/PMC8472574 https://doaj.org/article/80c232220c35469eb989f3ce8dc3bfaf |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFH7qIiQuCMoWKKOAOHAJTGI7tg8IdaYtFVJHFWKkuUXx1lYaJWUWxNz4D_xDfgnP2dRUI8TFh_hZjp_9ls_LewBv0aibxFEZqTxPImok6kHtCBYkJynRWnL_UPh8kp5N6ZcZm-1Am2OzYeByK7Tz-aSmi_n7n983n1DgP3rEiZD9ww_Uw4g6iNyFfTRI3CcyOKfdYULqAWB1uCx9QrWY1QGG-k17ZqmK3r_N5bx7c_KWKTp9CA8aHzI8qif9EezY4gDu1VklN49hfDw5CtGcIPuX9s-v3xflfOO3npY2HJdr_wL3MrwuwlEdp7m8uUKVEvo26Iy3W3hPYHp68m18FjW5EiLNhskqktwQRjmlxrqY5JIRpRXTmiO8UtalnDjCtCSoVJTIY5twpj06iJ1zYigMeQp7RVnY5xAmzGiGbKHGWZTwXHGnuFGxkFo5Y2QA71pWZboJJO7zWcwzBBSeq1nH1QDedKQ3dfSMbUQjz--OwAe8rj6Ui8uskZ9MDHXiD4WGGoeZSqukkI5oK4wmyuUugMN2trJ2EWUeTDGCHisL4HVXjfLjD0XywpbrioZT9FI5-QdNSlKRyFjwAJ7VC6D7W0JR56EeC4D3lkZvOP2a4vqqiuONjgH2Tl_8R78v4X7iL9NUm9mHsLdarO0r9IZWagC7fMYHsD86mVx8HVR7Clh-nsWDSgr-Ai0dDa4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FIASXiB2HAAaBxMWK3YvbfUAomRBNSDLikEhzM-4tiRTZQ2YGNDf-gf_go_gSqr2RQVFuufhgl-3u6lpe9VIF8BaduiGOyUgVBYmYkWgHtaN4oQVNqdZS-IPCh6N0eMw-j_l4BX53Z2H8tsrOJtaG2lTaz5FvemDMKaIP_nHyLfJVo_zqaldCoxGLfbv4gSHb9MPeDo7vO0J2Px0NhlFbVSDSPCazSApDOROMGesSWkhOlVZca4GBiLIuFdRRriVF9VNZkVgiuPY4OnHOZXFmKH73FtxGxxv7YE-M-wAv9ZFmk72IUhlvfkf_gNGQr0N-yefVpQGuwrP_b8u85Od278NaC1DDrUaiHsCKLR_CnaZk5eIRDHZGWyH6Khzbqf3z89eX6nzh57WmNhxUc3-89yQ8K8PtJgl0NTlFexX6dxDpd_ODj-H4Rlj2BFbLqrTPICTcaI5sYcZZNB-FEk4Jo5JMauWMkQG871iV6zZLuS-WcZ5jtOK5mvdcDeBNTzppUnNcRbTt-d0T-Gza9Y3q4iRvlTPPYk38ilOssZuptEpm0lFtM6OpcoULYKMbrbxV8Wn-TyADeN0_RuX0Ky5Faat5TSMYQmBBr6FJaZoRmWQigKeNAPStpQwNKhrJAMSSaCx1Z_lJeXZaJwlH1IF_Z-vXN_0V3B0eHR7kB3uj_edwj_gNO_WE-Qaszi7m9gUirpl6WYt5CF9vWq_-AhiPQE0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeGAgaBxMWK7d31eg8INUmjlkIUISr15npfbaXKDk0Cyo3_wL_h5_BLmPWLBlW99eKDPbZ3Z-fxzT5mAN6gU9expSKQeR4HVAu0g8oSvJCcJEQpwd1B4c-TZPeAfjxkhxvwuz0L47ZVtjaxMtS6VG6OvO-AMSOIPljfNtsipqPxh9m3wFWQciutbTmNWkT2zeoHhm_z93sjHOu3cTze-TrcDZoKA4FiYbwIBNeEUU6pNjYiuWBEKsmU4hiUSGMTTixhShBURZnmkYk5Uw5TR9baNEw1we_egE3uoqIebA52JtMvrR9IXNxZ5zIiRIT97-gtMDZyVckveMCqUMBl6Pb_TZoXvN74Ltxp4Kq_XcvXPdgwxX24WRewXD2A4Wiy7aPnwpGemz8_f03Ls5Wb5Zobf1gu3WHfY_-08Ad1SuhydoLWy3fvIO5vZwsfwsG1MO0R9IqyME_Aj5lWDNlCtTVoTHLJreRaRqlQ0motPHjXsipTTc5yVzrjLMPYxXE167jqweuOdFYn6riMaOD43RG43NrVjfL8OGtUNUtDFbv1p1BhNxNhpEiFJcqkWhFpc-vBVjtaWaPw8-yfeHrwqnuMqurWX_LClMuKhlMExJxcQZOQJI1FlHIPHtcC0LWWUDSvaDI94Guisdad9SfF6UmVMhwxCP6dPr266S_hFupU9mlvsv8Mbsdu9041e74FvcX50jxH-LWQLxo59-HoulXrL01dReg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+Helicase%E2%80%93Polymerase+Coupling+in+Bacteriophage+DNA+Replication&rft.jtitle=Viruses&rft.au=Luo%2C+Zhenyu&rft.au=Gao%2C+Yang&rft.date=2021-08-31&rft.issn=1999-4915&rft.eissn=1999-4915&rft.volume=13&rft.issue=9&rft_id=info:doi/10.3390%2Fv13091739&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4915&client=summon |