DNA Helicase–Polymerase Coupling in Bacteriophage DNA Replication

Bacteriophages have long been model systems to study the molecular mechanisms of DNA replication. During DNA replication, a DNA helicase and a DNA polymerase cooperatively unwind the parental DNA. By surveying recent data from three bacteriophage replication systems, we summarized the mechanistic ba...

Full description

Saved in:
Bibliographic Details
Published inViruses Vol. 13; no. 9; p. 1739
Main Authors Lo, Chen-Yu, Gao, Yang
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 31.08.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bacteriophages have long been model systems to study the molecular mechanisms of DNA replication. During DNA replication, a DNA helicase and a DNA polymerase cooperatively unwind the parental DNA. By surveying recent data from three bacteriophage replication systems, we summarized the mechanistic basis of DNA replication by helicases and polymerases. Kinetic data have suggested that a polymerase or a helicase alone is a passive motor that is sensitive to the base-pairing energy of the DNA. When coupled together, the helicase–polymerase complex is able to unwind DNA actively. In bacteriophage T7, helicase and polymerase reside right at the replication fork where the parental DNA is separated into two daughter strands. The two motors pull the two daughter strands to opposite directions, while the polymerase provides a separation pin to split the fork. Although independently evolved and containing different replisome components, bacteriophage T4 replisome shares mechanistic features of Hel–Pol coupling that are similar to T7. Interestingly, in bacteriophages with a limited size of genome like Φ29, DNA polymerase itself can form a tunnel-like structure, which encircles the DNA template strand and facilitates strand displacement synthesis in the absence of a helicase. Studies on bacteriophage replication provide implications for the more complicated replication systems in bacteria, archaeal, and eukaryotic systems, as well as the RNA genome replication in RNA viruses.
AbstractList Bacteriophages have long been model systems to study the molecular mechanisms of DNA replication. During DNA replication, a DNA helicase and a DNA polymerase cooperatively unwind the parental DNA. By surveying recent data from three bacteriophage replication systems, we summarized the mechanistic basis of DNA replication by helicases and polymerases. Kinetic data have suggested that a polymerase or a helicase alone is a passive motor that is sensitive to the base-pairing energy of the DNA. When coupled together, the helicase-polymerase complex is able to unwind DNA actively. In bacteriophage T7, helicase and polymerase reside right at the replication fork where the parental DNA is separated into two daughter strands. The two motors pull the two daughter strands to opposite directions, while the polymerase provides a separation pin to split the fork. Although independently evolved and containing different replisome components, bacteriophage T4 replisome shares mechanistic features of Hel-Pol coupling that are similar to T7. Interestingly, in bacteriophages with a limited size of genome like Φ29, DNA polymerase itself can form a tunnel-like structure, which encircles the DNA template strand and facilitates strand displacement synthesis in the absence of a helicase. Studies on bacteriophage replication provide implications for the more complicated replication systems in bacteria, archaeal, and eukaryotic systems, as well as the RNA genome replication in RNA viruses.Bacteriophages have long been model systems to study the molecular mechanisms of DNA replication. During DNA replication, a DNA helicase and a DNA polymerase cooperatively unwind the parental DNA. By surveying recent data from three bacteriophage replication systems, we summarized the mechanistic basis of DNA replication by helicases and polymerases. Kinetic data have suggested that a polymerase or a helicase alone is a passive motor that is sensitive to the base-pairing energy of the DNA. When coupled together, the helicase-polymerase complex is able to unwind DNA actively. In bacteriophage T7, helicase and polymerase reside right at the replication fork where the parental DNA is separated into two daughter strands. The two motors pull the two daughter strands to opposite directions, while the polymerase provides a separation pin to split the fork. Although independently evolved and containing different replisome components, bacteriophage T4 replisome shares mechanistic features of Hel-Pol coupling that are similar to T7. Interestingly, in bacteriophages with a limited size of genome like Φ29, DNA polymerase itself can form a tunnel-like structure, which encircles the DNA template strand and facilitates strand displacement synthesis in the absence of a helicase. Studies on bacteriophage replication provide implications for the more complicated replication systems in bacteria, archaeal, and eukaryotic systems, as well as the RNA genome replication in RNA viruses.
Bacteriophages have long been model systems to study the molecular mechanisms of DNA replication. During DNA replication, a DNA helicase and a DNA polymerase cooperatively unwind the parental DNA. By surveying recent data from three bacteriophage replication systems, we summarized the mechanistic basis of DNA replication by helicases and polymerases. Kinetic data have suggested that a polymerase or a helicase alone is a passive motor that is sensitive to the base-pairing energy of the DNA. When coupled together, the helicase–polymerase complex is able to unwind DNA actively. In bacteriophage T7, helicase and polymerase reside right at the replication fork where the parental DNA is separated into two daughter strands. The two motors pull the two daughter strands to opposite directions, while the polymerase provides a separation pin to split the fork. Although independently evolved and containing different replisome components, bacteriophage T4 replisome shares mechanistic features of Hel–Pol coupling that are similar to T7. Interestingly, in bacteriophages with a limited size of genome like Φ29, DNA polymerase itself can form a tunnel-like structure, which encircles the DNA template strand and facilitates strand displacement synthesis in the absence of a helicase. Studies on bacteriophage replication provide implications for the more complicated replication systems in bacteria, archaeal, and eukaryotic systems, as well as the RNA genome replication in RNA viruses.
Author Gao, Yang
Lo, Chen-Yu
AuthorAffiliation Department of BioSciences, Rice University, Houston, TX 77005, USA; cl111@rice.edu
AuthorAffiliation_xml – name: Department of BioSciences, Rice University, Houston, TX 77005, USA; cl111@rice.edu
Author_xml – sequence: 1
  givenname: Chen-Yu
  orcidid: 0000-0003-2938-0986
  surname: Lo
  fullname: Lo, Chen-Yu
– sequence: 2
  givenname: Yang
  surname: Gao
  fullname: Gao, Yang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34578319$$D View this record in MEDLINE/PubMed
BookMark eNqFkt1uFCEUx4mpse3qhS9gJvHGXqzlc4Abk7p-tEmjxug1YZjDls0sTJmZJr3zHfqGPolst27axsQb4MDv_-fAOYdoL6YICL0k-C1jGh9fEYY1kUw_QQdEaz3nmoi9e-t9dDgMK4zrWmP5DO0zLqRiRB-gxYcvJ9UpdMHZAX7_uvmWuus15BJUizT1XYjLKsTqvXUj5JD6C7uEaqP5Dv1GNIYUn6On3nYDvLibZ-jnp48_Fqfz86-fzxYn53MnMB3nWrZMcMl5C54wqwVrXCOck5TrBnwtmWfCaYaVapQlQKVwGJf0vfcKq5bN0NnWt012Zfoc1jZfm2SDud1IeWlsHoPrwCjsKKOUYleurDU0WmnPHKjWscZbX7zebb36qVlD6yCO2XYPTB-exHBhlunKKC6pkLwYvLkzyOlygmE06zA46DobIU2DoTWrFdVEyf-jQkoucCEL-voRukpTjuVXN1QtWC3KMEOv7ie_y_pvWQtwtAVcTsOQwe8Qgs2mZcyuZQp7_Ih1Ybyta3l36P6h-APVAsE3
CitedBy_id crossref_primary_10_1016_j_apcatb_2024_123922
crossref_primary_10_3389_fmicb_2024_1379400
crossref_primary_10_3390_cimb45080406
crossref_primary_10_1002_agt2_569
crossref_primary_10_1128_spectrum_05332_22
crossref_primary_10_51847_0NHpnUOuhG
crossref_primary_10_1016_j_micpath_2024_106891
crossref_primary_10_3390_ijms23031342
crossref_primary_10_1016_j_jbc_2022_102797
Cites_doi 10.1146/annurev.biochem.76.052305.115300
10.1016/j.molcel.2004.10.019
10.1126/science.aav7003
10.1093/nar/gks254
10.1074/jbc.274.38.27287
10.1073/pnas.1701252114
10.1038/nature10409
10.1101/2021.07.07.451541
10.4161/bact.1.1.14942
10.1016/bs.mie.2017.03.002
10.1186/1743-422X-9-9
10.1016/j.celrep.2014.02.025
10.15252/embj.2019103367
10.1073/pnas.1204759109
10.7554/eLife.06562
10.1006/jmbi.1994.1100
10.1038/s41580-020-0257-5
10.1093/nar/13.9.3083
10.1016/S1097-2765(00)80100-8
10.1038/nature07512
10.1128/MMBR.67.1.86-156.2003
10.1073/pnas.0709793104
10.1016/S0065-3233(04)71011-6
10.1016/S0021-9258(19)41211-8
10.1038/ncomms10260
10.1021/bi047296w
10.1016/j.semcdb.2018.03.018
10.1006/jmbi.2000.4216
10.1073/pnas.0500713102
10.1101/cshperspect.a010108
10.1093/nar/gks253
10.1016/j.molcel.2005.11.027
10.1038/nature08611
10.1021/bi001306l
10.1074/jbc.M805062200
10.1093/nar/18.23.7003
10.1021/bi4014215
10.1073/pnas.0501637102
10.1016/j.coviro.2011.06.009
10.1146/annurev.biochem.70.1.181
10.1016/S0021-9258(18)66820-6
10.1073/pnas.1106678108
10.1074/jbc.M605675200
10.1016/0022-2836(84)90458-3
10.1074/jbc.R117.811208
10.1074/jbc.M111951200
10.1073/pnas.1620500114
10.1016/S0021-9258(18)81883-X
10.1016/j.celrep.2014.02.022
10.1085/jgp.36.1.39
10.1016/S0092-8674(00)80296-2
10.1074/jbc.R109.022939
10.1111/j.1574-6976.2006.00015.x
10.1016/j.cell.2006.10.049
10.1093/nar/gkq273
10.1038/s41467-018-04702-x
10.1016/S0021-9258(18)54888-2
10.1016/j.str.2016.11.019
10.1016/j.molcel.2007.06.020
10.1038/34593
10.1146/annurev.biochem.67.1.721
10.1016/0022-2836(69)90373-8
10.1016/j.cell.2007.04.038
10.1093/nar/gkv204
10.1093/nar/17.10.3663
10.3390/v7062766
10.1146/annurev.bi.60.070191.000351
10.1073/pnas.69.4.998
10.1073/pnas.0806908106
10.1146/annurev.biochem.78.072407.103248
10.1038/nature03615
10.1042/BCJ20200922
10.1074/jbc.M112.401158
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7U9
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/v13091739
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

CrossRef

MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1999-4915
ExternalDocumentID oai_doaj_org_article_80c232220c35469eb989f3ce8dc3bfaf
PMC8472574
34578319
10_3390_v13091739
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM142722
– fundername: NIH HHS
  grantid: 1R35GM142722
GroupedDBID ---
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
AFKRA
AFPKN
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
E3Z
EBD
ESX
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M48
M7P
MODMG
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
TR2
TUS
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
3V.
7U9
7XB
8FK
AZQEC
DWQXO
GNUQQ
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c502t-97d354744def13a953bcb5cc7249bef673f35c93088b8a1e275c00491fff808d3
IEDL.DBID M48
ISSN 1999-4915
IngestDate Wed Aug 27 01:20:28 EDT 2025
Thu Aug 21 14:10:12 EDT 2025
Fri Jul 11 03:50:15 EDT 2025
Thu Jul 10 19:03:02 EDT 2025
Fri Jul 25 12:00:48 EDT 2025
Mon Jul 21 06:04:18 EDT 2025
Thu Apr 24 22:58:33 EDT 2025
Tue Jul 01 02:48:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords DNA replication
helicase
bacteriophage T7
polymerase
bacteriophage T4
bacteriophage Φ29
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-97d354744def13a953bcb5cc7249bef673f35c93088b8a1e275c00491fff808d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2938-0986
OpenAccessLink https://www.proquest.com/docview/2576536565?pq-origsite=%requestingapplication%
PMID 34578319
PQID 2576536565
PQPubID 2032319
ParticipantIDs doaj_primary_oai_doaj_org_article_80c232220c35469eb989f3ce8dc3bfaf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8472574
proquest_miscellaneous_2636829187
proquest_miscellaneous_2577450873
proquest_journals_2576536565
pubmed_primary_34578319
crossref_primary_10_3390_v13091739
crossref_citationtrail_10_3390_v13091739
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210831
PublicationDateYYYYMMDD 2021-08-31
PublicationDate_xml – month: 8
  year: 2021
  text: 20210831
  day: 31
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Viruses
PublicationTitleAlternate Viruses
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Johnson (ref_28) 2007; 129
Dressler (ref_14) 1972; 69
Ishmael (ref_53) 2002; 277
Cortez (ref_13) 2017; 591
Kelly (ref_15) 1969; 44
Hamdan (ref_11) 2010; 285
Syed (ref_29) 2014; 6
Hamdan (ref_31) 2009; 457
Hershey (ref_3) 1952; 36
Ghosh (ref_17) 2008; 283
Pandey (ref_22) 2009; 462
Munn (ref_60) 1991; 266
Georgescu (ref_71) 2017; 114
Morin (ref_67) 2012; 109
Singleton (ref_9) 2007; 76
Lee (ref_30) 1998; 1
Clokie (ref_1) 2011; 1
Manosas (ref_54) 2012; 40
ref_24
Pandey (ref_25) 2014; 6
Norcum (ref_57) 2005; 102
ref_21
Zhang (ref_20) 2012; 287
Sun (ref_44) 2018; 9
Kulczyk (ref_45) 2017; 114
Young (ref_51) 1994; 235
Singh (ref_27) 2020; 39
Pastrana (ref_65) 1985; 13
Huber (ref_19) 1986; 261
Sun (ref_43) 2015; 6
Noble (ref_48) 2015; 7
Manosas (ref_42) 2010; 38
Hamdan (ref_34) 2007; 27
Hogg (ref_38) 2007; 282
ref_70
Berti (ref_72) 2020; 21
Delagoutte (ref_61) 2001; 40
Modrich (ref_18) 1975; 250
Zhang (ref_33) 2011; 108
Morin (ref_68) 2015; 43
Manosas (ref_55) 2012; 40
Weigel (ref_5) 2006; 30
Rothwell (ref_10) 2005; 71
Stano (ref_26) 2005; 435
Waga (ref_12) 1998; 67
Jing (ref_52) 1999; 274
Benkovic (ref_49) 2017; 292
Kamtekar (ref_39) 2004; 16
Hamdan (ref_32) 2005; 102
Hamdan (ref_4) 2009; 78
Lee (ref_40) 2006; 127
Salas (ref_64) 1991; 60
Doublie (ref_16) 1998; 391
Wallen (ref_46) 2017; 25
Hernandez (ref_23) 2019; 86
Xia (ref_59) 2014; 53
Sun (ref_37) 2011; 478
Mace (ref_50) 1984; 177
Dufour (ref_69) 2000; 304
Haq (ref_8) 2012; 9
Wang (ref_58) 1997; 89
Ellenberger (ref_35) 2021; 478
Benkovic (ref_6) 2001; 70
Martin (ref_63) 1989; 17
Lionnet (ref_56) 2007; 104
Pike (ref_41) 2009; 106
Xi (ref_62) 2005; 44
Hatfull (ref_2) 2011; 1
Miller (ref_47) 2003; 67
Lain (ref_73) 1990; 18
ref_7
Blanco (ref_66) 1989; 264
Crampton (ref_36) 2006; 21
References_xml – volume: 76
  start-page: 23
  year: 2007
  ident: ref_9
  article-title: Structure and mechanism of helicases and nucleic acid translocases
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.76.052305.115300
– volume: 16
  start-page: 609
  year: 2004
  ident: ref_39
  article-title: Insights into strand displacement and processivity from the crystal structure of the protein-primed DNA polymerase of bacteriophage phi29
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2004.10.019
– ident: ref_21
  doi: 10.1126/science.aav7003
– volume: 40
  start-page: 6187
  year: 2012
  ident: ref_54
  article-title: Collaborative coupling between polymerase and helicase for leading-strand synthesis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks254
– volume: 274
  start-page: 27287
  year: 1999
  ident: ref_52
  article-title: Interactions of bacteriophage T4-coded primase (gp61) with the T4 replication helicase (gp41) and DNA in primosome formation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.38.27287
– volume: 114
  start-page: E1848
  year: 2017
  ident: ref_45
  article-title: Cryo-EM structure of the replisome reveals multiple interactions coordinating DNA synthesis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1701252114
– volume: 478
  start-page: 132
  year: 2011
  ident: ref_37
  article-title: ATP-induced helicase slippage reveals highly coordinated subunits
  publication-title: Nature
  doi: 10.1038/nature10409
– ident: ref_70
  doi: 10.1101/2021.07.07.451541
– volume: 1
  start-page: 31
  year: 2011
  ident: ref_1
  article-title: Phages in nature
  publication-title: Bacteriophage
  doi: 10.4161/bact.1.1.14942
– volume: 591
  start-page: 33
  year: 2017
  ident: ref_13
  article-title: Proteomic Analyses of the Eukaryotic Replication Machinery
  publication-title: Methods. Enzymol.
  doi: 10.1016/bs.mie.2017.03.002
– volume: 9
  start-page: 9
  year: 2012
  ident: ref_8
  article-title: Bacteriophages and their implications on future biotechnology: A review
  publication-title: Virol. J.
  doi: 10.1186/1743-422X-9-9
– volume: 6
  start-page: 1129
  year: 2014
  ident: ref_25
  article-title: Helicase and polymerase move together close to the fork junction and copy DNA in one-nucleotide steps
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.02.025
– volume: 39
  start-page: e103367
  year: 2020
  ident: ref_27
  article-title: Excessive excision of correct nucleotides during DNA synthesis explained by replication hurdles
  publication-title: EMBO J.
  doi: 10.15252/embj.2019103367
– volume: 109
  start-page: 8115
  year: 2012
  ident: ref_67
  article-title: Active DNA unwinding dynamics during processive DNA replication
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1204759109
– ident: ref_24
  doi: 10.7554/eLife.06562
– volume: 235
  start-page: 1447
  year: 1994
  ident: ref_51
  article-title: Kinetic parameters of the translocation of bacteriophage T4 gene 41 protein helicase on single-stranded DNA
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1994.1100
– volume: 21
  start-page: 633
  year: 2020
  ident: ref_72
  article-title: The plasticity of DNA replication forks in response to clinically relevant genotoxic stress
  publication-title: Nat. Rev. Mol. Cell. Biol.
  doi: 10.1038/s41580-020-0257-5
– volume: 13
  start-page: 3083
  year: 1985
  ident: ref_65
  article-title: Overproduction and purification of protein P6 of Bacillus subtilis phage phi 29: Role in the initiation of DNA replication
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/13.9.3083
– volume: 1
  start-page: 1001
  year: 1998
  ident: ref_30
  article-title: Coordinated leading and lagging strand DNA synthesis on a minicircular template
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80100-8
– volume: 457
  start-page: 336
  year: 2009
  ident: ref_31
  article-title: Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis
  publication-title: Nature
  doi: 10.1038/nature07512
– volume: 67
  start-page: 86
  year: 2003
  ident: ref_47
  article-title: Bacteriophage T4 genome
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.67.1.86-156.2003
– volume: 104
  start-page: 19790
  year: 2007
  ident: ref_56
  article-title: Real-time observation of bacteriophage T4 gp41 helicase reveals an unwinding mechanism
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0709793104
– volume: 71
  start-page: 401
  year: 2005
  ident: ref_10
  article-title: Structure and mechanism of DNA polymerases
  publication-title: Adv. Protein. Chem.
  doi: 10.1016/S0065-3233(04)71011-6
– volume: 250
  start-page: 5508
  year: 1975
  ident: ref_18
  article-title: Bacteriophage T7 Deoxyribonucleic acid replication in vitro. A protein of Escherichia coli required for bacteriophage T7 DNA polymerase activity
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)41211-8
– volume: 6
  start-page: 10260
  year: 2015
  ident: ref_43
  article-title: T7 replisome directly overcomes DNA damage
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10260
– volume: 44
  start-page: 7747
  year: 2005
  ident: ref_62
  article-title: Interaction between the T4 helicase loading protein (gp59) and the DNA polymerase (gp43): Unlocking of the gp59-gp43-DNA complex to initiate assembly of a fully functional replisome
  publication-title: Biochemistry
  doi: 10.1021/bi047296w
– volume: 86
  start-page: 92
  year: 2019
  ident: ref_23
  article-title: Gp2.5, the multifunctional bacteriophage T7 single-stranded DNA binding protein
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2018.03.018
– volume: 304
  start-page: 289
  year: 2000
  ident: ref_69
  article-title: An aspartic acid residue in TPR-1, a specific region of protein-priming DNA polymerases, is required for the functional interaction with primer terminal protein
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2000.4216
– volume: 102
  start-page: 3623
  year: 2005
  ident: ref_57
  article-title: Architecture of the bacteriophage T4 primosome: Electron microscopy studies of helicase (gp41) and primase (gp61)
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0500713102
– ident: ref_7
  doi: 10.1101/cshperspect.a010108
– volume: 40
  start-page: 6174
  year: 2012
  ident: ref_55
  article-title: Mechanism of strand displacement synthesis by DNA replicative polymerases
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks253
– volume: 21
  start-page: 165
  year: 2006
  ident: ref_36
  article-title: DNA-induced switch from independent to sequential dTTP hydrolysis in the bacteriophage T7 DNA helicase
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.11.027
– volume: 462
  start-page: 940
  year: 2009
  ident: ref_22
  article-title: Coordinating DNA replication by means of priming loop and differential synthesis rate
  publication-title: Nature
  doi: 10.1038/nature08611
– volume: 40
  start-page: 4459
  year: 2001
  ident: ref_61
  article-title: Molecular mechanisms of the functional coupling of the helicase (gp41) and polymerase (gp43) of bacteriophage T4 within the DNA replication fork
  publication-title: Biochemistry
  doi: 10.1021/bi001306l
– volume: 283
  start-page: 32077
  year: 2008
  ident: ref_17
  article-title: Interactions of Escherichia coli thioredoxin, the processivity factor, with bacteriophage T7 DNA polymerase and helicase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M805062200
– volume: 18
  start-page: 7003
  year: 1990
  ident: ref_73
  article-title: RNA helicase: A novel activity associated with a protein encoded by a positive strand RNA virus
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/18.23.7003
– volume: 53
  start-page: 2752
  year: 2014
  ident: ref_59
  article-title: RB69 DNA polymerase structure, kinetics, and fidelity
  publication-title: Biochemistry
  doi: 10.1021/bi4014215
– volume: 102
  start-page: 5096
  year: 2005
  ident: ref_32
  article-title: A unique loop in T7 DNA polymerase mediates the binding of helicase-primase, DNA binding protein, and processivity factor
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0501637102
– volume: 1
  start-page: 298
  year: 2011
  ident: ref_2
  article-title: Bacteriophages and their genomes
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2011.06.009
– volume: 70
  start-page: 181
  year: 2001
  ident: ref_6
  article-title: Replisome-mediated DNA replication
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.70.1.181
– volume: 261
  start-page: 15006
  year: 1986
  ident: ref_19
  article-title: Interaction of mutant thioredoxins of Escherichia coli with the gene 5 protein of phage T7. The redox capacity of thioredoxin is not required for stimulation of DNA polymerase activity
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)66820-6
– volume: 108
  start-page: 9372
  year: 2011
  ident: ref_33
  article-title: Helicase-DNA polymerase interaction is critical to initiate leading-strand DNA synthesis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1106678108
– volume: 282
  start-page: 1432
  year: 2007
  ident: ref_38
  article-title: Structural and biochemical investigation of the role in proofreading of a beta hairpin loop found in the exonuclease domain of a replicative DNA polymerase of the B family
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M605675200
– volume: 177
  start-page: 295
  year: 1984
  ident: ref_50
  article-title: T4 DNA polymerase. Rates and processivity on single-stranded DNA templates
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(84)90458-3
– volume: 292
  start-page: 18434
  year: 2017
  ident: ref_49
  article-title: Understanding DNA replication by the bacteriophage T4 replisome
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R117.811208
– volume: 277
  start-page: 20555
  year: 2002
  ident: ref_53
  article-title: Assembly of the bacteriophage T4 helicase: Architecture and stoichiometry of the gp41-gp59 complex
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111951200
– volume: 114
  start-page: E697
  year: 2017
  ident: ref_71
  article-title: Structure of eukaryotic CMG helicase at a replication fork and implications to replisome architecture and origin initiation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1620500114
– volume: 264
  start-page: 8935
  year: 1989
  ident: ref_66
  article-title: Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)81883-X
– volume: 6
  start-page: 1037
  year: 2014
  ident: ref_29
  article-title: Single-molecule fluorescence reveals the unwinding stepping mechanism of replicative helicase
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.02.022
– volume: 36
  start-page: 39
  year: 1952
  ident: ref_3
  article-title: Independent functions of viral protein and nucleic acid in growth of bacteriophage
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.36.1.39
– volume: 89
  start-page: 1087
  year: 1997
  ident: ref_58
  article-title: Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80296-2
– volume: 285
  start-page: 18979
  year: 2010
  ident: ref_11
  article-title: Timing, coordination, and rhythm: Acrobatics at the DNA replication fork
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R109.022939
– volume: 30
  start-page: 321
  year: 2006
  ident: ref_5
  article-title: Bacteriophage replication modules
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2006.00015.x
– volume: 127
  start-page: 1349
  year: 2006
  ident: ref_40
  article-title: UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke
  publication-title: Cell
  doi: 10.1016/j.cell.2006.10.049
– volume: 38
  start-page: 5518
  year: 2010
  ident: ref_42
  article-title: Active and passive mechanisms of helicases
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq273
– volume: 9
  start-page: 2306
  year: 2018
  ident: ref_44
  article-title: Helicase promotes replication re-initiation from an RNA transcript
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04702-x
– volume: 266
  start-page: 20034
  year: 1991
  ident: ref_60
  article-title: DNA footprinting studies of the complex formed by the T4 DNA polymerase holoenzyme at a primer-template junction
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)54888-2
– volume: 25
  start-page: 157
  year: 2017
  ident: ref_46
  article-title: Hybrid Methods Reveal Multiple Flexibly Linked DNA Polymerases within the Bacteriophage T7 Replisome
  publication-title: Structure
  doi: 10.1016/j.str.2016.11.019
– volume: 27
  start-page: 539
  year: 2007
  ident: ref_34
  article-title: Dynamic DNA helicase-DNA polymerase interactions assure processive replication fork movement
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.06.020
– volume: 391
  start-page: 251
  year: 1998
  ident: ref_16
  article-title: Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution
  publication-title: Nature
  doi: 10.1038/34593
– volume: 67
  start-page: 721
  year: 1998
  ident: ref_12
  article-title: The DNA replication fork in eukaryotic cells
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.67.1.721
– volume: 44
  start-page: 459
  year: 1969
  ident: ref_15
  article-title: An intermediate in the replication of bacteriophage T7 DNA molecules
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(69)90373-8
– volume: 129
  start-page: 1299
  year: 2007
  ident: ref_28
  article-title: Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase
  publication-title: Cell
  doi: 10.1016/j.cell.2007.04.038
– volume: 43
  start-page: 3643
  year: 2015
  ident: ref_68
  article-title: Mechano-chemical kinetics of DNA replication: Identification of the translocation step of a replicative DNA polymerase
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv204
– volume: 17
  start-page: 3663
  year: 1989
  ident: ref_63
  article-title: Characterization of the phage phi 29 protein p5 as a single-stranded DNA binding protein. Function in phi 29 DNA-protein p3 replication
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/17.10.3663
– volume: 7
  start-page: 3186
  year: 2015
  ident: ref_48
  article-title: Coordinated DNA Replication by the Bacteriophage T4 Replisome
  publication-title: Viruses
  doi: 10.3390/v7062766
– volume: 60
  start-page: 39
  year: 1991
  ident: ref_64
  article-title: Protein-priming of DNA replication
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.60.070191.000351
– volume: 69
  start-page: 998
  year: 1972
  ident: ref_14
  article-title: Initiation and reinitiation of DNA synthesis during replication of bacteriophage T7
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.69.4.998
– volume: 106
  start-page: 1039
  year: 2009
  ident: ref_41
  article-title: Structure of the human RECQ1 helicase reveals a putative strand-separation pin
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0806908106
– volume: 78
  start-page: 205
  year: 2009
  ident: ref_4
  article-title: Motors, switches, and contacts in the replisome
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.78.072407.103248
– volume: 435
  start-page: 370
  year: 2005
  ident: ref_26
  article-title: DNA synthesis provides the driving force to accelerate DNA unwinding by a helicase
  publication-title: Nature
  doi: 10.1038/nature03615
– volume: 478
  start-page: 2665
  year: 2021
  ident: ref_35
  article-title: Structure of an open conformation of T7 DNA polymerase reveals novel structural features regulating primer-template stabilization at the polymerization active site
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20200922
– volume: 287
  start-page: 34273
  year: 2012
  ident: ref_20
  article-title: Heterohexamer of 56- and 63-kDa Gene 4 Helicase-Primase of Bacteriophage T7 in DNA Replication
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.401158
SSID ssj0066907
Score 2.3284674
SecondaryResourceType review_article
Snippet Bacteriophages have long been model systems to study the molecular mechanisms of DNA replication. During DNA replication, a DNA helicase and a DNA polymerase...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1739
SubjectTerms Archaea
bacteriophage T4
Bacteriophage T4 - genetics
bacteriophage T7
Bacteriophage T7 - genetics
bacteriophage Φ29
bacteriophages
Binding sites
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA helicase
DNA helicases
DNA Helicases - chemistry
DNA Helicases - genetics
DNA Helicases - metabolism
DNA replication
DNA Replication - physiology
DNA structure
DNA, Viral - chemistry
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
DNA-directed DNA polymerase
DNA-Directed DNA Polymerase - chemistry
DNA-Directed DNA Polymerase - genetics
DNA-Directed DNA Polymerase - metabolism
energy
Enzymes
genome
Genomes
helicase
Kinetics
Models, Molecular
Molecular modelling
Phages
polymerase
Proteins
Replication
Review
RNA
RNA viruses
Viral Proteins - chemistry
Viral Proteins - genetics
Viral Proteins - metabolism
Virus Replication - physiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcEG8CBQXEgUvUTcaO7WO7UFVIVByo1FsUv2ilKqm6u0i99T_0H_JLmImz0S6q4MIlh3ii2DOex-fHDMAHcuq-isIUtm2rQnhDdtBFpAe2WKNzRvFF4a_H9dGJ-HIqTzdKffGZsJQeODFuT89cxbsBM4eSoFywRpuILmjv0MY2svUln7cGU8kG14z5Uh4hJFC_95MsNeESrgi-4X2GJP13RZZ_HpDc8DiHj-DhGCrm-6mLj-Fe6J7A_VQ88vopzD8d7-fkNYjLi_Dr5vZbf3HNK0yLkM_7FV-0_ZGfd_lBSsfcX56R5cj5G4q51yt1z-Dk8PP3-VExlkQonJxVy8IoT2xQQvgQS2yNROusdE4RirIh1gojSmeQbIfVbRkqJR2DgDLGqGfa43PY6fouvIS8kt5JYovwMZAit1ZFq7wttXE2em8y-LhmVePGfOFctuKiIdzAXG0mrmbwfiK9TEky7iI6YH5PBJzXenhB0m5GaTf_knYGu2tpNaOyLRrGTBIpMJUZvJuaSU1476PtQr8aaJSgYFThX2hqrHVlSq0yeJEmwNRbFGTayFxloLamxtZwtlu687MhXTf5f_q7ePU_xv8aHlR8qGZY1N6FneXVKryhqGhp3w4K8BsVGwzY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB5BERIXxH8DBQXEgUvUTcaO7RNqF6oKiYoDlfYWxX9tpSpZurtIvfUd-oY8CTNJNnRR1UsO8USxxzOfZ8b2DMBHWtR9EYXJbF0XmfCGcNBFpAfWWKJzRvFF4e9H5eGx-DaTsyHgthiOVa4xsQNq3zqOke-yYSyRrA_5ef4r46pRvLs6lNC4Dw84dRlLtZqNDlfJnl-fTQjJtd_9TXhN3gnXBb-xBnWp-m-zL_8_Jnlj3Tl4Ao8HgzHd62f4KdwLzTN42JeQvHwO0y9HeymtHcTrRfhzdf2jPb_kONMipNN2xddtT9KzJt3vkzK381PCj5S_Ict7Ha97AccHX39OD7OhMELm5KRYZkZ5lEIJ4UPMsTYSrbPSOUW-lA2xVBhROoOEIFbXeSiUdOwK5DFGPdEeX8JW0zZhG9JCeieJLcLHQOpcWxWt8jbXxtnovUng05pVlRuyhnPxivOKvAfmajVyNYEPI-m8T5VxG9E-83sk4OzW3Yv24qQalKXSE1fwDtDE0TBLE6zRJqIL2ju0sY4J7KxnqxpUblH9E5AE3o_NpCy8A1I3oV11NEqQSarwDpoSS12YXKsEXvUCMPYWBQEcgVYCakM0Noaz2dKcnXZJu8kKoL-L13d3_Q08KvjQTBe03oGt5cUqvCWrZ2nfdaL9F_ArA-o
  priority: 102
  providerName: ProQuest
Title DNA Helicase–Polymerase Coupling in Bacteriophage DNA Replication
URI https://www.ncbi.nlm.nih.gov/pubmed/34578319
https://www.proquest.com/docview/2576536565
https://www.proquest.com/docview/2577450873
https://www.proquest.com/docview/2636829187
https://pubmed.ncbi.nlm.nih.gov/PMC8472574
https://doaj.org/article/80c232220c35469eb989f3ce8dc3bfaf
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFH7qIiQuCMoWKKOAOHAJTGI7tg8IdaYtFVJHFWKkuUXx1lYaJWUWxNz4D_xDfgnP2dRUI8TFh_hZjp_9ls_LewBv0aibxFEZqTxPImok6kHtCBYkJynRWnL_UPh8kp5N6ZcZm-1Am2OzYeByK7Tz-aSmi_n7n983n1DgP3rEiZD9ww_Uw4g6iNyFfTRI3CcyOKfdYULqAWB1uCx9QrWY1QGG-k17ZqmK3r_N5bx7c_KWKTp9CA8aHzI8qif9EezY4gDu1VklN49hfDw5CtGcIPuX9s-v3xflfOO3npY2HJdr_wL3MrwuwlEdp7m8uUKVEvo26Iy3W3hPYHp68m18FjW5EiLNhskqktwQRjmlxrqY5JIRpRXTmiO8UtalnDjCtCSoVJTIY5twpj06iJ1zYigMeQp7RVnY5xAmzGiGbKHGWZTwXHGnuFGxkFo5Y2QA71pWZboJJO7zWcwzBBSeq1nH1QDedKQ3dfSMbUQjz--OwAe8rj6Ui8uskZ9MDHXiD4WGGoeZSqukkI5oK4wmyuUugMN2trJ2EWUeTDGCHisL4HVXjfLjD0XywpbrioZT9FI5-QdNSlKRyFjwAJ7VC6D7W0JR56EeC4D3lkZvOP2a4vqqiuONjgH2Tl_8R78v4X7iL9NUm9mHsLdarO0r9IZWagC7fMYHsD86mVx8HVR7Clh-nsWDSgr-Ai0dDa4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FIASXiB2HAAaBxMWK3YvbfUAomRBNSDLikEhzM-4tiRTZQ2YGNDf-gf_go_gSqr2RQVFuufhgl-3u6lpe9VIF8BaduiGOyUgVBYmYkWgHtaN4oQVNqdZS-IPCh6N0eMw-j_l4BX53Z2H8tsrOJtaG2lTaz5FvemDMKaIP_nHyLfJVo_zqaldCoxGLfbv4gSHb9MPeDo7vO0J2Px0NhlFbVSDSPCazSApDOROMGesSWkhOlVZca4GBiLIuFdRRriVF9VNZkVgiuPY4OnHOZXFmKH73FtxGxxv7YE-M-wAv9ZFmk72IUhlvfkf_gNGQr0N-yefVpQGuwrP_b8u85Od278NaC1DDrUaiHsCKLR_CnaZk5eIRDHZGWyH6Khzbqf3z89eX6nzh57WmNhxUc3-89yQ8K8PtJgl0NTlFexX6dxDpd_ODj-H4Rlj2BFbLqrTPICTcaI5sYcZZNB-FEk4Jo5JMauWMkQG871iV6zZLuS-WcZ5jtOK5mvdcDeBNTzppUnNcRbTt-d0T-Gza9Y3q4iRvlTPPYk38ilOssZuptEpm0lFtM6OpcoULYKMbrbxV8Wn-TyADeN0_RuX0Ky5Faat5TSMYQmBBr6FJaZoRmWQigKeNAPStpQwNKhrJAMSSaCx1Z_lJeXZaJwlH1IF_Z-vXN_0V3B0eHR7kB3uj_edwj_gNO_WE-Qaszi7m9gUirpl6WYt5CF9vWq_-AhiPQE0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeGAgaBxMWK7d31eg8INUmjlkIUISr15npfbaXKDk0Cyo3_wL_h5_BLmPWLBlW99eKDPbZ3Z-fxzT5mAN6gU9expSKQeR4HVAu0g8oSvJCcJEQpwd1B4c-TZPeAfjxkhxvwuz0L47ZVtjaxMtS6VG6OvO-AMSOIPljfNtsipqPxh9m3wFWQciutbTmNWkT2zeoHhm_z93sjHOu3cTze-TrcDZoKA4FiYbwIBNeEUU6pNjYiuWBEKsmU4hiUSGMTTixhShBURZnmkYk5Uw5TR9baNEw1we_egE3uoqIebA52JtMvrR9IXNxZ5zIiRIT97-gtMDZyVckveMCqUMBl6Pb_TZoXvN74Ltxp4Kq_XcvXPdgwxX24WRewXD2A4Wiy7aPnwpGemz8_f03Ls5Wb5Zobf1gu3WHfY_-08Ad1SuhydoLWy3fvIO5vZwsfwsG1MO0R9IqyME_Aj5lWDNlCtTVoTHLJreRaRqlQ0motPHjXsipTTc5yVzrjLMPYxXE167jqweuOdFYn6riMaOD43RG43NrVjfL8OGtUNUtDFbv1p1BhNxNhpEiFJcqkWhFpc-vBVjtaWaPw8-yfeHrwqnuMqurWX_LClMuKhlMExJxcQZOQJI1FlHIPHtcC0LWWUDSvaDI94Guisdad9SfF6UmVMhwxCP6dPr266S_hFupU9mlvsv8Mbsdu9041e74FvcX50jxH-LWQLxo59-HoulXrL01dReg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+Helicase%E2%80%93Polymerase+Coupling+in+Bacteriophage+DNA+Replication&rft.jtitle=Viruses&rft.au=Luo%2C+Zhenyu&rft.au=Gao%2C+Yang&rft.date=2021-08-31&rft.issn=1999-4915&rft.eissn=1999-4915&rft.volume=13&rft.issue=9&rft_id=info:doi/10.3390%2Fv13091739&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4915&client=summon