Exploration of Interpretability Techniques for Deep COVID-19 Classification Using Chest X-ray Images

The outbreak of COVID-19 has shocked the entire world with its fairly rapid spread, and has challenged different sectors. One of the most effective ways to limit its spread is the early and accurate diagnosing of infected patients. Medical imaging, such as X-ray and computed tomography (CT), combine...

Full description

Saved in:
Bibliographic Details
Published inJournal of imaging Vol. 10; no. 2; p. 45
Main Authors Chatterjee, Soumick, Saad, Fatima, Sarasaen, Chompunuch, Ghosh, Suhita, Krug, Valerie, Khatun, Rupali, Mishra, Rahul, Desai, Nirja, Radeva, Petia, Rose, Georg, Stober, Sebastian, Speck, Oliver, Nürnberger, Andreas
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The outbreak of COVID-19 has shocked the entire world with its fairly rapid spread, and has challenged different sectors. One of the most effective ways to limit its spread is the early and accurate diagnosing of infected patients. Medical imaging, such as X-ray and computed tomography (CT), combined with the potential of artificial intelligence (AI), plays an essential role in supporting medical personnel in the diagnosis process. Thus, in this article, five different deep learning models (ResNet18, ResNet34, InceptionV3, InceptionResNetV2, and DenseNet161) and their ensemble, using majority voting, have been used to classify COVID-19, pneumoniæ and healthy subjects using chest X-ray images. Multilabel classification was performed to predict multiple pathologies for each patient, if present. Firstly, the interpretability of each of the networks was thoroughly studied using local interpretability methods—occlusion, saliency, input X gradient, guided backpropagation, integrated gradients, and DeepLIFT—and using a global technique—neuron activation profiles. The mean micro F1 score of the models for COVID-19 classifications ranged from 0.66 to 0.875, and was 0.89 for the ensemble of the network models. The qualitative results showed that the ResNets were the most interpretable models. This research demonstrates the importance of using interpretability methods to compare different models before making a decision regarding the best performing model.
AbstractList The outbreak of COVID-19 has shocked the entire world with its fairly rapid spread, and has challenged different sectors. One of the most effective ways to limit its spread is the early and accurate diagnosing of infected patients. Medical imaging, such as X-ray and computed tomography (CT), combined with the potential of artificial intelligence (AI), plays an essential role in supporting medical personnel in the diagnosis process. Thus, in this article, five different deep learning models (ResNet18, ResNet34, InceptionV3, InceptionResNetV2, and DenseNet161) and their ensemble, using majority voting, have been used to classify COVID-19, pneumoniæ and healthy subjects using chest X-ray images. Multilabel classification was performed to predict multiple pathologies for each patient, if present. Firstly, the interpretability of each of the networks was thoroughly studied using local interpretability methods-occlusion, saliency, input X gradient, guided backpropagation, integrated gradients, and DeepLIFT-and using a global technique-neuron activation profiles. The mean micro F1 score of the models for COVID-19 classifications ranged from 0.66 to 0.875, and was 0.89 for the ensemble of the network models. The qualitative results showed that the ResNets were the most interpretable models. This research demonstrates the importance of using interpretability methods to compare different models before making a decision regarding the best performing model.
The outbreak of COVID-19 has shocked the entire world with its fairly rapid spread, and has challenged different sectors. One of the most effective ways to limit its spread is the early and accurate diagnosing of infected patients. Medical imaging, such as X-ray and computed tomography (CT), combined with the potential of artificial intelligence (AI), plays an essential role in supporting medical personnel in the diagnosis process. Thus, in this article, five different deep learning models (ResNet18, ResNet34, InceptionV3, InceptionResNetV2, and DenseNet161) and their ensemble, using majority voting, have been used to classify COVID-19, pneumoniæ and healthy subjects using chest X-ray images. Multilabel classification was performed to predict multiple pathologies for each patient, if present. Firstly, the interpretability of each of the networks was thoroughly studied using local interpretability methods-occlusion, saliency, input X gradient, guided backpropagation, integrated gradients, and DeepLIFT-and using a global technique-neuron activation profiles. The mean micro F1 score of the models for COVID-19 classifications ranged from 0.66 to 0.875, and was 0.89 for the ensemble of the network models. The qualitative results showed that the ResNets were the most interpretable models. This research demonstrates the importance of using interpretability methods to compare different models before making a decision regarding the best performing model.The outbreak of COVID-19 has shocked the entire world with its fairly rapid spread, and has challenged different sectors. One of the most effective ways to limit its spread is the early and accurate diagnosing of infected patients. Medical imaging, such as X-ray and computed tomography (CT), combined with the potential of artificial intelligence (AI), plays an essential role in supporting medical personnel in the diagnosis process. Thus, in this article, five different deep learning models (ResNet18, ResNet34, InceptionV3, InceptionResNetV2, and DenseNet161) and their ensemble, using majority voting, have been used to classify COVID-19, pneumoniæ and healthy subjects using chest X-ray images. Multilabel classification was performed to predict multiple pathologies for each patient, if present. Firstly, the interpretability of each of the networks was thoroughly studied using local interpretability methods-occlusion, saliency, input X gradient, guided backpropagation, integrated gradients, and DeepLIFT-and using a global technique-neuron activation profiles. The mean micro F1 score of the models for COVID-19 classifications ranged from 0.66 to 0.875, and was 0.89 for the ensemble of the network models. The qualitative results showed that the ResNets were the most interpretable models. This research demonstrates the importance of using interpretability methods to compare different models before making a decision regarding the best performing model.
Audience Academic
Author Saad, Fatima
Krug, Valerie
Khatun, Rupali
Speck, Oliver
Radeva, Petia
Rose, Georg
Ghosh, Suhita
Stober, Sebastian
Sarasaen, Chompunuch
Nürnberger, Andreas
Desai, Nirja
Chatterjee, Soumick
Mishra, Rahul
Author_xml – sequence: 1
  givenname: Soumick
  orcidid: 0000-0001-7594-1188
  surname: Chatterjee
  fullname: Chatterjee, Soumick
– sequence: 2
  givenname: Fatima
  orcidid: 0000-0002-9732-4292
  surname: Saad
  fullname: Saad, Fatima
– sequence: 3
  givenname: Chompunuch
  orcidid: 0000-0003-4760-2263
  surname: Sarasaen
  fullname: Sarasaen, Chompunuch
– sequence: 4
  givenname: Suhita
  surname: Ghosh
  fullname: Ghosh, Suhita
– sequence: 5
  givenname: Valerie
  surname: Krug
  fullname: Krug, Valerie
– sequence: 6
  givenname: Rupali
  surname: Khatun
  fullname: Khatun, Rupali
– sequence: 7
  givenname: Rahul
  surname: Mishra
  fullname: Mishra, Rahul
– sequence: 8
  givenname: Nirja
  surname: Desai
  fullname: Desai, Nirja
– sequence: 9
  givenname: Petia
  surname: Radeva
  fullname: Radeva, Petia
– sequence: 10
  givenname: Georg
  surname: Rose
  fullname: Rose, Georg
– sequence: 11
  givenname: Sebastian
  orcidid: 0000-0002-1717-4133
  surname: Stober
  fullname: Stober, Sebastian
– sequence: 12
  givenname: Oliver
  orcidid: 0000-0002-6019-5597
  surname: Speck
  fullname: Speck, Oliver
– sequence: 13
  givenname: Andreas
  orcidid: 0000-0003-4311-0624
  surname: Nürnberger
  fullname: Nürnberger, Andreas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38392093$$D View this record in MEDLINE/PubMed
BookMark eNp1ks9rHCEUx6WkNGmae09F6KWXSf0xM-oxbNJ2IJBLUnITR58bl9lxqrOQ_e_rZtO0XVpElMfn-_U933uLjsY4AkLvKTnnXJHPq7A2yzAuKSGMkLp5hU4Yp7yqOb8_-uN-jM5yXhFCqGJlqzfomEte7oqfIHf1OA0xmTnEEUePu3GGNCWYTR-GMG_xLdiHMfzYQMY-JnwJMOHFzffusqIKLwaTc_DB7vV3uaSDFw-QZ3xfJbPFXUkR8jv02pshw9nzeYruvlzdLr5V1zdfu8XFdWUbwuZKMeupVL5WPRVWtLURUnIvnRBCgm-sUtZy2XBrWEtap5oebC-EA0kclYKfom7v66JZ6SmVD0pbHU3QT4GYltqkOdgBdO-4J4aQvuWuFtZI64EJ2fS9aRsHvnh92ntNKe6qn_U6ZAvDYEaIm6w5lUwKRWpa0I8H6Cpu0lgq1UxxohpGOP9NLU15P4w-zsnYnam-ELIuRkw0hTr_B1WWg3WwZQB8KPG_BB-eH9_0a3AvVf9qcQHIHrAp5pzAvyCU6N0g6cNBKpL2QGLD_NTikkwY_i_8CeL6y_w
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_109067
crossref_primary_10_1007_s42519_024_00422_2
Cites_doi 10.1515/dx-2020-0058
10.3389/fimmu.2018.02640
10.1007/s10044-021-00984-y
10.1109/72.279181
10.1007/978-3-319-10590-1_53
10.1016/j.neucom.2014.08.091
10.3390/diagnostics11091732
10.1109/CVPR.2017.634
10.1038/s41598-019-55972-4
10.1109/CVPR.2015.7298594
10.1038/s41598-020-76550-z
10.21037/tcr.2018.05.02
10.1186/s40537-020-00392-9
10.1609/aaai.v31i1.11231
10.1016/j.acra.2010.11.013
10.1007/978-3-319-46466-4_8
10.1056/NEJMoa2001316
10.1148/ryct.2020200034
10.3389/fmicb.2017.01041
10.1007/s00521-021-06806-w
10.1056/NEJMoa2001017
10.1016/S2213-2600(20)30304-0
10.1148/radiol.2020200330
10.12669/pjms.36.COVID19-S4.2778
10.7861/futurehosp.6-2-94
10.1148/radiol.2020200241
10.4018/jdwm.2007070101
10.1007/s13246-020-00865-4
10.1148/radiol.2020200905
10.1148/radiol.2020200463
10.3390/electronics10111350
10.1148/radiol.2020200343
10.1148/radiol.2020200642
10.1109/ACCESS.2021.3087583
10.1504/IJBIC.2019.098405
10.1186/s13054-020-02880-z
10.1145/2939672.2939778
10.5244/C.30.87
10.1016/j.compbiomed.2020.103792
10.1002/mp.13562
10.1109/CVPR.2017.243
10.1056/NEJMoa2002032
10.1513/AnnalsATS.202008-1026OC
10.1148/radiol.2020201365
10.1148/radiol.2020200432
10.1016/j.clinimag.2020.04.001
10.20944/preprints202201.0072.v1
10.1148/radiol.2020201160
10.3233/FAIA230080
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
DOA
DOI 10.3390/jimaging10020045
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef


Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2313-433X
ExternalDocumentID oai_doaj_org_article_bd3f0a00b63d47ca8cfe2785bba65def
A784041275
38392093
10_3390_jimaging10020045
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IHR
ITC
KQ8
MODMG
M~E
OK1
P62
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PQGLB
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
7X8
PUEGO
ID FETCH-LOGICAL-c502t-92cf189f49b17c764a7883f8d7778ef5c99cc3853ca2606d95becb77de80d1873
IEDL.DBID DOA
ISSN 2313-433X
IngestDate Wed Aug 27 01:23:34 EDT 2025
Fri Jul 11 18:52:38 EDT 2025
Sat Jul 26 00:09:00 EDT 2025
Tue Jun 17 22:17:43 EDT 2025
Tue Jun 10 21:10:04 EDT 2025
Mon Jul 21 05:51:28 EDT 2025
Tue Jul 01 04:20:04 EDT 2025
Thu Apr 24 22:58:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords COVID-19
deep learning
interpretability analysis
multilabel image classification
pneumonia
model ensemble
chest X-ray
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-92cf189f49b17c764a7883f8d7778ef5c99cc3853ca2606d95becb77de80d1873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9732-4292
0000-0002-6019-5597
0000-0001-7594-1188
0000-0003-4311-0624
0000-0003-4760-2263
0000-0002-1717-4133
OpenAccessLink https://doaj.org/article/bd3f0a00b63d47ca8cfe2785bba65def
PMID 38392093
PQID 2930952033
PQPubID 2059558
ParticipantIDs doaj_primary_oai_doaj_org_article_bd3f0a00b63d47ca8cfe2785bba65def
proquest_miscellaneous_3182879041
proquest_journals_2930952033
gale_infotracmisc_A784041275
gale_infotracacademiconefile_A784041275
pubmed_primary_38392093
crossref_primary_10_3390_jimaging10020045
crossref_citationtrail_10_3390_jimaging10020045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of imaging
PublicationTitleAlternate J Imaging
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
ref_58
ref_57
Li (ref_2) 2020; 382
ref_56
Durrani (ref_18) 2020; 36
Sannino (ref_40) 2023; 35
ref_55
Vial (ref_26) 2018; 7
ref_54
ref_53
ref_52
Ai (ref_4) 2020; 296
Mahadevaiah (ref_29) 2020; 47
Bengio (ref_51) 1994; 5
Guan (ref_17) 2020; 382
Ng (ref_20) 2020; 2
Singh (ref_37) 2021; 9
ref_59
Hanada (ref_81) 2018; 9
Bernheim (ref_10) 2020; 295
Zhu (ref_1) 2020; 382
Sweetlin (ref_31) 2019; 13
ref_61
ref_60
Chen (ref_34) 2020; 10
Fang (ref_5) 2020; 296
ref_25
ref_69
ref_68
ref_23
ref_67
ref_22
ref_66
ref_21
ref_65
Bain (ref_77) 2021; 18
ref_64
ref_63
ref_62
ref_28
Matthay (ref_74) 2019; 5
Apostolopoulos (ref_8) 2020; 43
Li (ref_33) 2020; 296
Fan (ref_75) 2020; 8
ref_72
ref_71
Omer (ref_13) 2020; 323
Yoo (ref_24) 2019; 9
ref_36
ref_35
ref_30
ref_73
Kermany (ref_70) 2018; 2
Xie (ref_11) 2020; 296
Jacobi (ref_16) 2020; 64
ref_38
Shorten (ref_39) 2021; 8
Kanne (ref_9) 2020; 295
Tsoumakas (ref_78) 2007; 3
Rubin (ref_14) 2020; 296
Yao (ref_32) 2011; 18
ref_83
ref_82
ref_80
Charte (ref_79) 2015; 163
Davenport (ref_27) 2019; 6
ref_47
ref_46
ref_45
ref_44
Wong (ref_19) 2020; 296
ref_43
Gattinoni (ref_76) 2020; 24
ref_42
ref_41
Huang (ref_12) 2020; 295
ref_3
ref_49
ref_48
Harahwa (ref_15) 2020; 7
ref_7
ref_6
References_xml – volume: 7
  start-page: 349
  year: 2020
  ident: ref_15
  article-title: The optimal diagnostic methods for COVID-19
  publication-title: Diagnosis
  doi: 10.1515/dx-2020-0058
– ident: ref_55
– volume: 9
  start-page: 2640
  year: 2018
  ident: ref_81
  article-title: Respiratory Viral Infection-Induced Microbiome Alterations and Secondary Bacterial Pneumonia
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.02640
– volume: 5
  start-page: 1
  year: 2019
  ident: ref_74
  article-title: Acute respiratory distress syndrome
  publication-title: Nat. Rev. Dis. Prim.
– ident: ref_7
  doi: 10.1007/s10044-021-00984-y
– volume: 5
  start-page: 157
  year: 1994
  ident: ref_51
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.279181
– ident: ref_41
  doi: 10.1007/978-3-319-10590-1_53
– ident: ref_68
– volume: 163
  start-page: 3
  year: 2015
  ident: ref_79
  article-title: Addressing imbalance in multilabel classification: Measures and random resampling algorithms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.08.091
– ident: ref_38
  doi: 10.3390/diagnostics11091732
– ident: ref_47
  doi: 10.1109/CVPR.2017.634
– volume: 9
  start-page: 19518
  year: 2019
  ident: ref_24
  article-title: Prostate cancer Detection using Deep convolutional neural networks
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-55972-4
– ident: ref_42
– ident: ref_49
  doi: 10.1109/CVPR.2015.7298594
– volume: 323
  start-page: 1767
  year: 2020
  ident: ref_13
  article-title: The COVID-19 pandemic in the US: A clinical update
  publication-title: JAMA
– ident: ref_23
– ident: ref_35
  doi: 10.1038/s41598-020-76550-z
– ident: ref_71
– volume: 7
  start-page: 803
  year: 2018
  ident: ref_26
  article-title: The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: A review
  publication-title: Transl. Cancer Res.
  doi: 10.21037/tcr.2018.05.02
– volume: 8
  start-page: 1
  year: 2021
  ident: ref_39
  article-title: Deep Learning applications for COVID-19
  publication-title: J. Big Data
  doi: 10.1186/s40537-020-00392-9
– ident: ref_58
– ident: ref_54
  doi: 10.1609/aaai.v31i1.11231
– volume: 18
  start-page: 306
  year: 2011
  ident: ref_32
  article-title: Computer-aided diagnosis of pulmonary infections using texture analysis and support vector machine classification
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2010.11.013
– ident: ref_43
  doi: 10.1007/978-3-319-46466-4_8
– volume: 382
  start-page: 1199
  year: 2020
  ident: ref_2
  article-title: Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001316
– volume: 2
  start-page: e200034
  year: 2020
  ident: ref_20
  article-title: Imaging profile of the COVID-19 infection: Radiologic findings and literature review
  publication-title: Radiol. Cardiothorac. Imaging
  doi: 10.1148/ryct.2020200034
– ident: ref_80
  doi: 10.3389/fmicb.2017.01041
– volume: 35
  start-page: 16061
  year: 2023
  ident: ref_40
  article-title: Classification of Covid-19 chest X-ray images by means of an interpretable evolutionary rule-based approach
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06806-w
– ident: ref_56
– volume: 382
  start-page: 727
  year: 2020
  ident: ref_1
  article-title: A novel coronavirus from patients with pneumonia in China, 2019
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001017
– ident: ref_52
– ident: ref_69
– ident: ref_83
– volume: 8
  start-page: 816
  year: 2020
  ident: ref_75
  article-title: COVID-19-associated acute respiratory distress syndrome: Is a different approach to management warranted?
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(20)30304-0
– ident: ref_66
– ident: ref_45
– volume: 295
  start-page: 22
  year: 2020
  ident: ref_12
  article-title: Use of chest CT in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion
  publication-title: Radiology
  doi: 10.1148/radiol.2020200330
– volume: 36
  start-page: S22
  year: 2020
  ident: ref_18
  article-title: Chest X-rays findings in COVID 19 patients at a University Teaching Hospital—A descriptive study
  publication-title: Pak. J. Med. Sci.
  doi: 10.12669/pjms.36.COVID19-S4.2778
– volume: 6
  start-page: 94
  year: 2019
  ident: ref_27
  article-title: The potential for artificial intelligence in healthcare
  publication-title: Future Healthc. J.
  doi: 10.7861/futurehosp.6-2-94
– volume: 10
  start-page: 1
  year: 2020
  ident: ref_34
  article-title: Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography
  publication-title: Sci. Rep.
– ident: ref_72
– volume: 295
  start-page: 16
  year: 2020
  ident: ref_9
  article-title: Chest CT findings in 2019 novel coronavirus (2019-nCoV) infections from Wuhan, China: Key points for the radiologist
  publication-title: Radiology
  doi: 10.1148/radiol.2020200241
– ident: ref_59
– volume: 3
  start-page: 1
  year: 2007
  ident: ref_78
  article-title: Multi-label classification: An overview
  publication-title: Int. J. Data Warehous. Min. IJDWM
  doi: 10.4018/jdwm.2007070101
– volume: 43
  start-page: 635
  year: 2020
  ident: ref_8
  article-title: COVID-19: Automatic detection from x-ray images utilizing transfer learning with convolutional neural networks
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-020-00865-4
– volume: 296
  start-page: E65
  year: 2020
  ident: ref_33
  article-title: Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy
  publication-title: Radiology
  doi: 10.1148/radiol.2020200905
– volume: 295
  start-page: 685
  year: 2020
  ident: ref_10
  article-title: Chest CT findings in coronavirus disease-19 (COVID-19): Relationship to duration of infection
  publication-title: Radiology
  doi: 10.1148/radiol.2020200463
– ident: ref_28
– ident: ref_53
– ident: ref_30
– ident: ref_61
  doi: 10.3390/electronics10111350
– ident: ref_3
– volume: 296
  start-page: E41
  year: 2020
  ident: ref_11
  article-title: Chest CT for typical 2019-nCoV pneumonia: Relationship to negative RT-PCR testing
  publication-title: Radiology
  doi: 10.1148/radiol.2020200343
– volume: 296
  start-page: E32
  year: 2020
  ident: ref_4
  article-title: Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases
  publication-title: Radiology
  doi: 10.1148/radiol.2020200642
– volume: 2
  start-page: 651
  year: 2018
  ident: ref_70
  article-title: Labeled optical coherence tomography (oct) and chest X-ray images for classification
  publication-title: Mendeley Data
– volume: 9
  start-page: 85198
  year: 2021
  ident: ref_37
  article-title: An interpretable deep learning model for COVID-19 detection with chest X-ray images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3087583
– volume: 13
  start-page: 71
  year: 2019
  ident: ref_31
  article-title: Computer aided diagnosis of drug sensitive pulmonary tuberculosis with cavities, consolidations and nodular manifestations on lung CT images
  publication-title: Int. J. Bio Inspired Comput.
  doi: 10.1504/IJBIC.2019.098405
– ident: ref_67
– ident: ref_63
– ident: ref_44
– volume: 24
  start-page: 154
  year: 2020
  ident: ref_76
  article-title: COVID-19 pneumonia: ARDS or not?
  publication-title: Crit. Care
  doi: 10.1186/s13054-020-02880-z
– ident: ref_21
– ident: ref_73
– ident: ref_82
  doi: 10.1145/2939672.2939778
– ident: ref_6
– ident: ref_25
– ident: ref_48
  doi: 10.5244/C.30.87
– ident: ref_22
  doi: 10.1016/j.compbiomed.2020.103792
– volume: 47
  start-page: e228
  year: 2020
  ident: ref_29
  article-title: Artificial intelligence-based clinical decision support in modern medical physics: Selection, acceptance, commissioning, and quality assurance
  publication-title: Med. Phys.
  doi: 10.1002/mp.13562
– ident: ref_50
  doi: 10.1109/CVPR.2017.243
– volume: 382
  start-page: 1708
  year: 2020
  ident: ref_17
  article-title: Clinical characteristics of coronavirus disease 2019 in China
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2002032
– ident: ref_46
– volume: 18
  start-page: 1202
  year: 2021
  ident: ref_77
  article-title: COVID-19 versus non–COVID-19 acute respiratory distress syndrome: Comparison of demographics, physiologic parameters, inflammatory biomarkers, and clinical outcomes
  publication-title: Ann. Am. Thorac. Soc.
  doi: 10.1513/AnnalsATS.202008-1026OC
– volume: 296
  start-page: 172
  year: 2020
  ident: ref_14
  article-title: The role of chest imaging in patient management during the COVID-19 pandemic: A multinational consensus statement from the Fleischner Society
  publication-title: Radiology
  doi: 10.1148/radiol.2020201365
– ident: ref_64
– volume: 296
  start-page: E115
  year: 2020
  ident: ref_5
  article-title: Sensitivity of chest CT for COVID-19: Comparison to RT-PCR
  publication-title: Radiology
  doi: 10.1148/radiol.2020200432
– volume: 64
  start-page: 35
  year: 2020
  ident: ref_16
  article-title: Portable chest X-ray in coronavirus disease-19 (COVID-19): A pictorial review
  publication-title: Clin. Imaging
  doi: 10.1016/j.clinimag.2020.04.001
– ident: ref_36
– ident: ref_60
– ident: ref_57
– ident: ref_65
  doi: 10.20944/preprints202201.0072.v1
– volume: 296
  start-page: E72
  year: 2020
  ident: ref_19
  article-title: Frequency and distribution of chest radiographic findings in COVID-19 positive patients
  publication-title: Radiology
  doi: 10.1148/radiol.2020201160
– ident: ref_62
  doi: 10.3233/FAIA230080
SSID ssj0001920199
Score 2.3156185
Snippet The outbreak of COVID-19 has shocked the entire world with its fairly rapid spread, and has challenged different sectors. One of the most effective ways to...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 45
SubjectTerms Accuracy
Artificial intelligence
Back propagation
chest X-ray
Classification
Computed tomography
Computer-aided medical diagnosis
Coronaviruses
COVID-19
Decision making
Deep learning
Disease transmission
Image classification
Infections
Machine learning
Medical imaging
Methods
model ensemble
multilabel image classification
Occlusion
Pneumonia
Tuberculosis
X ray imagery
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8SZQKiMhIQ7RJnES26eq3bZqkSgItWhvlp8VCDbLZnvov--M493tFqnXxI5iex7f2ONvCPnoXKmZBeQWPJjA2hibC9tUudWlAPgADsXifsfXs_bkov4yaSZpw61PaZVLmxgNtess7pGPwC0BGqgKxvZm_3KsGoWnq6mExkOyDSZYQPC1fXB09v3HepdFgoOTcjifZBDfj37_-hvL_yD1KOKZDX8Uafv_N853IGd0PcdPyZOEGen-sMjPyAM_fU4e32ISfEHckEsXp5l2ga5zCWPy6zU9X3K19hRgKj30fkbH336eHualpLEyJuYMDf1jGgEdYyUtOsnn-pqewmh8_5JcHB-dj0_yVEAht01RLXJZ2VAKGWppSm55W2sIeFkQjnMufGislNYycNhWQ1jTOtnAihrOnReFKwVnr8jWtJv6N4SawHhpPMebuzWEJKDm3NXSMcNaXWuXkdFyGpVN7OJY5OKPgigDJ17dnfiMfF71mA3MGve0PcCVWbVDTuz4oJtfqqRiyjgWCl0UpmWu5lYLG3zFRWOMbhvnQ0Y-4boq1Fz4NavTBQQYIHJgqX0OwW6NhPcZ2dloCRpnN18vJUMlje_VWj4z8mH1GntiFtvUd1e9AvsJQirhKxl5PUjUakgMkWoh2dv7P_6OPKoAVg154ztkazG_8u8BFi3MbpL9G6n4DGw
  priority: 102
  providerName: ProQuest
Title Exploration of Interpretability Techniques for Deep COVID-19 Classification Using Chest X-ray Images
URI https://www.ncbi.nlm.nih.gov/pubmed/38392093
https://www.proquest.com/docview/2930952033
https://www.proquest.com/docview/3182879041
https://doaj.org/article/bd3f0a00b63d47ca8cfe2785bba65def
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKe4ED4k2grIyEhDhEm8RObB_bbZcWiYJQi_Zm-Sm1gt2quz303zNjZ5fdIpVLD7nEdmSPZzzfJJNvCPngfW2YA-QWAxyB3FpXStc2pTO1BPgADsXh-46vJ93RGf8yaSdrpb4wJyzTA2fBDa1nsTJVZTvmuXBGuhgaIVtrTdf6EPH0BZ-3FkxdZNwCl8rfJRnE9cOL89-p7A9SjiKO2fBDia7_30P5FtRMLmf8hDzusSLdy3N8SrbC9Bl5tMYg-Jz4nEOXxEtnkf7NIUxJrzf0dMnROqcAT-lBCJd09O3n8UFZK5oqYmKuUB6f0gfoCCto0Ul5ZW7oMawmzF-Qs_Hh6eio7AsnlK6tmkWpGhdrqSJXthZOdNxAoMui9EIIGWLrlHKOgaN2BsKZzqsWdtIK4YOsfC0Fe0m2p7NpeE2ojUzUNgj8Y5dDKALmLTxXnlnWGW58QYZLMWrXs4pjcYtfGqILFLy-LfiCfFqNuMyMGnf03cedWfVDLux0AzRE9xqi_6chBfmI-6rRYmFqzvQ_HsACkftK7wkIcjkS3Rdkd6MnWJrbbF5qhu4tfa4BLgFKbSrGCvJ-1YwjMXttGmbXcw3nJgSmCp5SkFdZo1ZLYohQK8Xe3MdS35KHDYCunFW-S7YXV9fhHYCmhR2QB3L8eUB29g9Pvv8YJGsZpHdbfwBpNRkJ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tywE4IN4EFjASCHGImsRJHB8QWlpKyz64dFFvxq-sFkFb2q5Q_xS_kZk8WrpIe9tr_FDGnsc39ngG4JVzseYWkVvpUQWmxtiwsFkSWh0XCB_QoFg67zg6zgcn6edxNt6BP-1bGAqrbHVipajd1NIZeQfNEqKBJOL8_exXSFWj6Ha1LaFRs8WBX_1Gl23xbtjD_X2dJP2Po-4gbKoKhDaLkmUoE1vGhSxTaWJhRZ5q9AJ5WTghROHLzEppLUcrZjVi_dzJDMk0QjhfRC4uBMd5r8H1lHNJElX0P23OdCSaUynr21Bsjzrfz35WxYYo0Smhpy3rVxUJ-N8UXAC4laHr34HbDUJl-zVL3YUdP7kHt_7JW3gfXB25V20qm5ZsE7lYhdqu2KjNDLtgCIpZz_sZ6375OuyFsWRVHU6KUKrHV0ELrEt1u9g4nOsVGyI1fvEATq5kYR_C7mQ68Y-BmZKL2HhB74RTdIBQqQiXSscNz3WqXQCddhmVbXKZU0mNHwp9Glp4dXHhA3i7HjGr83hc0vcD7cy6H2Xgrj5M56eqEWhlHC8jHUUm5y4VVhe29IkoMmN0njlfBvCG9lWRnsBfs7p57oAEUsYttS_QtU4pvX4Ae1s9Ub7tdnPLGarRLwu1kYYAXq6baSTFzE389HyhUFujOyxxlgAe1Ry1JokTLo4kf3L55C_gxmB0dKgOh8cHT-FmgoCujljfg93l_Nw_Q0C2NM8rKWDw7arF7i_q8kfC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLwxFFgkEOJgxfbaXu8BoTZp1FAIFWpRbtt9olaQhDgVyl_j1zHrR0KK1Fuv3oe8j5n5ZvfbGYDXxsSSakRuzqIKTJXSYaGzJNQyLhA-oEHR_rzj8yg_OEk_jrPxFvxp38J4WmWrEytFbaban5F30SwhGkgiSruuoUUc9QcfZr9Cn0HK37S26TTqLXJol7_RfSvfD_u41m-SZLB_3DsImwwDoc6iZBHyRLu44C7lKmaa5alEj5C6wjDGCusyzbnWFC2aloj7c8MzHLJizNgiMnHBKPZ7A7YZekVRB7b39kdHX9cnPByNK-f13SilPOqen_2sUg_5sKceS23YwiplwP-G4RLcrcze4C7cafAq2a032D3YspP7cPufKIYPwNQ8vmqJydSRNY-xIt4uyXEbJ7YkCJFJ39oZ6X35NuyHMSdVVk7PV6rbVxQG0vNZvMg4nMslGeJobPkQTq5lah9BZzKd2CdAlKMsVpb5V8MpukOoYphJuaGK5jKVJoBuO41CN5HNfYKNHwI9HD_x4vLEB_Bu1WJWR_W4ou6eX5lVPR-Pu_ownX8XjXgLZaiLZBSpnJqUaVloZxNWZErJPDPWBfDWr6vwWgN_Tcvm8QMO0MffErsMHe3UB9sPYGejJkq73ixud4ZotE0p1rIRwKtVsW_pGXQTO70oBepudI459hLA43pHrYZEPUqOOH16decv4SaKnPg0HB0-g1sJoruavr4DncX8wj5HdLZQLxoxIHB63ZL3F6a8TVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploration+of+Interpretability+Techniques+for+Deep+COVID-19+Classification+Using+Chest+X-ray+Images&rft.jtitle=Journal+of+imaging&rft.au=Soumick+Chatterjee&rft.au=Fatima+Saad&rft.au=Chompunuch+Sarasaen&rft.au=Suhita+Ghosh&rft.date=2024-02-01&rft.pub=MDPI+AG&rft.eissn=2313-433X&rft.volume=10&rft.issue=2&rft.spage=45&rft_id=info:doi/10.3390%2Fjimaging10020045&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bd3f0a00b63d47ca8cfe2785bba65def
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-433X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-433X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-433X&client=summon