Exploration of Interpretability Techniques for Deep COVID-19 Classification Using Chest X-ray Images
The outbreak of COVID-19 has shocked the entire world with its fairly rapid spread, and has challenged different sectors. One of the most effective ways to limit its spread is the early and accurate diagnosing of infected patients. Medical imaging, such as X-ray and computed tomography (CT), combine...
Saved in:
Published in | Journal of imaging Vol. 10; no. 2; p. 45 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The outbreak of COVID-19 has shocked the entire world with its fairly rapid spread, and has challenged different sectors. One of the most effective ways to limit its spread is the early and accurate diagnosing of infected patients. Medical imaging, such as X-ray and computed tomography (CT), combined with the potential of artificial intelligence (AI), plays an essential role in supporting medical personnel in the diagnosis process. Thus, in this article, five different deep learning models (ResNet18, ResNet34, InceptionV3, InceptionResNetV2, and DenseNet161) and their ensemble, using majority voting, have been used to classify COVID-19, pneumoniæ and healthy subjects using chest X-ray images. Multilabel classification was performed to predict multiple pathologies for each patient, if present. Firstly, the interpretability of each of the networks was thoroughly studied using local interpretability methods—occlusion, saliency, input X gradient, guided backpropagation, integrated gradients, and DeepLIFT—and using a global technique—neuron activation profiles. The mean micro F1 score of the models for COVID-19 classifications ranged from 0.66 to 0.875, and was 0.89 for the ensemble of the network models. The qualitative results showed that the ResNets were the most interpretable models. This research demonstrates the importance of using interpretability methods to compare different models before making a decision regarding the best performing model. |
---|---|
AbstractList | The outbreak of COVID-19 has shocked the entire world with its fairly rapid spread, and has challenged different sectors. One of the most effective ways to limit its spread is the early and accurate diagnosing of infected patients. Medical imaging, such as X-ray and computed tomography (CT), combined with the potential of artificial intelligence (AI), plays an essential role in supporting medical personnel in the diagnosis process. Thus, in this article, five different deep learning models (ResNet18, ResNet34, InceptionV3, InceptionResNetV2, and DenseNet161) and their ensemble, using majority voting, have been used to classify COVID-19, pneumoniæ and healthy subjects using chest X-ray images. Multilabel classification was performed to predict multiple pathologies for each patient, if present. Firstly, the interpretability of each of the networks was thoroughly studied using local interpretability methods-occlusion, saliency, input X gradient, guided backpropagation, integrated gradients, and DeepLIFT-and using a global technique-neuron activation profiles. The mean micro F1 score of the models for COVID-19 classifications ranged from 0.66 to 0.875, and was 0.89 for the ensemble of the network models. The qualitative results showed that the ResNets were the most interpretable models. This research demonstrates the importance of using interpretability methods to compare different models before making a decision regarding the best performing model. The outbreak of COVID-19 has shocked the entire world with its fairly rapid spread, and has challenged different sectors. One of the most effective ways to limit its spread is the early and accurate diagnosing of infected patients. Medical imaging, such as X-ray and computed tomography (CT), combined with the potential of artificial intelligence (AI), plays an essential role in supporting medical personnel in the diagnosis process. Thus, in this article, five different deep learning models (ResNet18, ResNet34, InceptionV3, InceptionResNetV2, and DenseNet161) and their ensemble, using majority voting, have been used to classify COVID-19, pneumoniæ and healthy subjects using chest X-ray images. Multilabel classification was performed to predict multiple pathologies for each patient, if present. Firstly, the interpretability of each of the networks was thoroughly studied using local interpretability methods-occlusion, saliency, input X gradient, guided backpropagation, integrated gradients, and DeepLIFT-and using a global technique-neuron activation profiles. The mean micro F1 score of the models for COVID-19 classifications ranged from 0.66 to 0.875, and was 0.89 for the ensemble of the network models. The qualitative results showed that the ResNets were the most interpretable models. This research demonstrates the importance of using interpretability methods to compare different models before making a decision regarding the best performing model.The outbreak of COVID-19 has shocked the entire world with its fairly rapid spread, and has challenged different sectors. One of the most effective ways to limit its spread is the early and accurate diagnosing of infected patients. Medical imaging, such as X-ray and computed tomography (CT), combined with the potential of artificial intelligence (AI), plays an essential role in supporting medical personnel in the diagnosis process. Thus, in this article, five different deep learning models (ResNet18, ResNet34, InceptionV3, InceptionResNetV2, and DenseNet161) and their ensemble, using majority voting, have been used to classify COVID-19, pneumoniæ and healthy subjects using chest X-ray images. Multilabel classification was performed to predict multiple pathologies for each patient, if present. Firstly, the interpretability of each of the networks was thoroughly studied using local interpretability methods-occlusion, saliency, input X gradient, guided backpropagation, integrated gradients, and DeepLIFT-and using a global technique-neuron activation profiles. The mean micro F1 score of the models for COVID-19 classifications ranged from 0.66 to 0.875, and was 0.89 for the ensemble of the network models. The qualitative results showed that the ResNets were the most interpretable models. This research demonstrates the importance of using interpretability methods to compare different models before making a decision regarding the best performing model. |
Audience | Academic |
Author | Saad, Fatima Krug, Valerie Khatun, Rupali Speck, Oliver Radeva, Petia Rose, Georg Ghosh, Suhita Stober, Sebastian Sarasaen, Chompunuch Nürnberger, Andreas Desai, Nirja Chatterjee, Soumick Mishra, Rahul |
Author_xml | – sequence: 1 givenname: Soumick orcidid: 0000-0001-7594-1188 surname: Chatterjee fullname: Chatterjee, Soumick – sequence: 2 givenname: Fatima orcidid: 0000-0002-9732-4292 surname: Saad fullname: Saad, Fatima – sequence: 3 givenname: Chompunuch orcidid: 0000-0003-4760-2263 surname: Sarasaen fullname: Sarasaen, Chompunuch – sequence: 4 givenname: Suhita surname: Ghosh fullname: Ghosh, Suhita – sequence: 5 givenname: Valerie surname: Krug fullname: Krug, Valerie – sequence: 6 givenname: Rupali surname: Khatun fullname: Khatun, Rupali – sequence: 7 givenname: Rahul surname: Mishra fullname: Mishra, Rahul – sequence: 8 givenname: Nirja surname: Desai fullname: Desai, Nirja – sequence: 9 givenname: Petia surname: Radeva fullname: Radeva, Petia – sequence: 10 givenname: Georg surname: Rose fullname: Rose, Georg – sequence: 11 givenname: Sebastian orcidid: 0000-0002-1717-4133 surname: Stober fullname: Stober, Sebastian – sequence: 12 givenname: Oliver orcidid: 0000-0002-6019-5597 surname: Speck fullname: Speck, Oliver – sequence: 13 givenname: Andreas orcidid: 0000-0003-4311-0624 surname: Nürnberger fullname: Nürnberger, Andreas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38392093$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks9rHCEUx6WkNGmae09F6KWXSf0xM-oxbNJ2IJBLUnITR58bl9lxqrOQ_e_rZtO0XVpElMfn-_U933uLjsY4AkLvKTnnXJHPq7A2yzAuKSGMkLp5hU4Yp7yqOb8_-uN-jM5yXhFCqGJlqzfomEte7oqfIHf1OA0xmTnEEUePu3GGNCWYTR-GMG_xLdiHMfzYQMY-JnwJMOHFzffusqIKLwaTc_DB7vV3uaSDFw-QZ3xfJbPFXUkR8jv02pshw9nzeYruvlzdLr5V1zdfu8XFdWUbwuZKMeupVL5WPRVWtLURUnIvnRBCgm-sUtZy2XBrWEtap5oebC-EA0kclYKfom7v66JZ6SmVD0pbHU3QT4GYltqkOdgBdO-4J4aQvuWuFtZI64EJ2fS9aRsHvnh92ntNKe6qn_U6ZAvDYEaIm6w5lUwKRWpa0I8H6Cpu0lgq1UxxohpGOP9NLU15P4w-zsnYnam-ELIuRkw0hTr_B1WWg3WwZQB8KPG_BB-eH9_0a3AvVf9qcQHIHrAp5pzAvyCU6N0g6cNBKpL2QGLD_NTikkwY_i_8CeL6y_w |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_109067 crossref_primary_10_1007_s42519_024_00422_2 |
Cites_doi | 10.1515/dx-2020-0058 10.3389/fimmu.2018.02640 10.1007/s10044-021-00984-y 10.1109/72.279181 10.1007/978-3-319-10590-1_53 10.1016/j.neucom.2014.08.091 10.3390/diagnostics11091732 10.1109/CVPR.2017.634 10.1038/s41598-019-55972-4 10.1109/CVPR.2015.7298594 10.1038/s41598-020-76550-z 10.21037/tcr.2018.05.02 10.1186/s40537-020-00392-9 10.1609/aaai.v31i1.11231 10.1016/j.acra.2010.11.013 10.1007/978-3-319-46466-4_8 10.1056/NEJMoa2001316 10.1148/ryct.2020200034 10.3389/fmicb.2017.01041 10.1007/s00521-021-06806-w 10.1056/NEJMoa2001017 10.1016/S2213-2600(20)30304-0 10.1148/radiol.2020200330 10.12669/pjms.36.COVID19-S4.2778 10.7861/futurehosp.6-2-94 10.1148/radiol.2020200241 10.4018/jdwm.2007070101 10.1007/s13246-020-00865-4 10.1148/radiol.2020200905 10.1148/radiol.2020200463 10.3390/electronics10111350 10.1148/radiol.2020200343 10.1148/radiol.2020200642 10.1109/ACCESS.2021.3087583 10.1504/IJBIC.2019.098405 10.1186/s13054-020-02880-z 10.1145/2939672.2939778 10.5244/C.30.87 10.1016/j.compbiomed.2020.103792 10.1002/mp.13562 10.1109/CVPR.2017.243 10.1056/NEJMoa2002032 10.1513/AnnalsATS.202008-1026OC 10.1148/radiol.2020201365 10.1148/radiol.2020200432 10.1016/j.clinimag.2020.04.001 10.20944/preprints202201.0072.v1 10.1148/radiol.2020201160 10.3233/FAIA230080 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 DOA |
DOI | 10.3390/jimaging10020045 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2313-433X |
ExternalDocumentID | oai_doaj_org_article_bd3f0a00b63d47ca8cfe2785bba65def A784041275 38392093 10_3390_jimaging10020045 |
Genre | Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IHR ITC KQ8 MODMG M~E OK1 P62 PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PQGLB PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI 7X8 PUEGO |
ID | FETCH-LOGICAL-c502t-92cf189f49b17c764a7883f8d7778ef5c99cc3853ca2606d95becb77de80d1873 |
IEDL.DBID | DOA |
ISSN | 2313-433X |
IngestDate | Wed Aug 27 01:23:34 EDT 2025 Fri Jul 11 18:52:38 EDT 2025 Sat Jul 26 00:09:00 EDT 2025 Tue Jun 17 22:17:43 EDT 2025 Tue Jun 10 21:10:04 EDT 2025 Mon Jul 21 05:51:28 EDT 2025 Tue Jul 01 04:20:04 EDT 2025 Thu Apr 24 22:58:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | COVID-19 deep learning interpretability analysis multilabel image classification pneumonia model ensemble chest X-ray |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-92cf189f49b17c764a7883f8d7778ef5c99cc3853ca2606d95becb77de80d1873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9732-4292 0000-0002-6019-5597 0000-0001-7594-1188 0000-0003-4311-0624 0000-0003-4760-2263 0000-0002-1717-4133 |
OpenAccessLink | https://doaj.org/article/bd3f0a00b63d47ca8cfe2785bba65def |
PMID | 38392093 |
PQID | 2930952033 |
PQPubID | 2059558 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bd3f0a00b63d47ca8cfe2785bba65def proquest_miscellaneous_3182879041 proquest_journals_2930952033 gale_infotracmisc_A784041275 gale_infotracacademiconefile_A784041275 pubmed_primary_38392093 crossref_primary_10_3390_jimaging10020045 crossref_citationtrail_10_3390_jimaging10020045 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Journal of imaging |
PublicationTitleAlternate | J Imaging |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 ref_58 ref_57 Li (ref_2) 2020; 382 ref_56 Durrani (ref_18) 2020; 36 Sannino (ref_40) 2023; 35 ref_55 Vial (ref_26) 2018; 7 ref_54 ref_53 ref_52 Ai (ref_4) 2020; 296 Mahadevaiah (ref_29) 2020; 47 Bengio (ref_51) 1994; 5 Guan (ref_17) 2020; 382 Ng (ref_20) 2020; 2 Singh (ref_37) 2021; 9 ref_59 Hanada (ref_81) 2018; 9 Bernheim (ref_10) 2020; 295 Zhu (ref_1) 2020; 382 Sweetlin (ref_31) 2019; 13 ref_61 ref_60 Chen (ref_34) 2020; 10 Fang (ref_5) 2020; 296 ref_25 ref_69 ref_68 ref_23 ref_67 ref_22 ref_66 ref_21 ref_65 Bain (ref_77) 2021; 18 ref_64 ref_63 ref_62 ref_28 Matthay (ref_74) 2019; 5 Apostolopoulos (ref_8) 2020; 43 Li (ref_33) 2020; 296 Fan (ref_75) 2020; 8 ref_72 ref_71 Omer (ref_13) 2020; 323 Yoo (ref_24) 2019; 9 ref_36 ref_35 ref_30 ref_73 Kermany (ref_70) 2018; 2 Xie (ref_11) 2020; 296 Jacobi (ref_16) 2020; 64 ref_38 Shorten (ref_39) 2021; 8 Kanne (ref_9) 2020; 295 Tsoumakas (ref_78) 2007; 3 Rubin (ref_14) 2020; 296 Yao (ref_32) 2011; 18 ref_83 ref_82 ref_80 Charte (ref_79) 2015; 163 Davenport (ref_27) 2019; 6 ref_47 ref_46 ref_45 ref_44 Wong (ref_19) 2020; 296 ref_43 Gattinoni (ref_76) 2020; 24 ref_42 ref_41 Huang (ref_12) 2020; 295 ref_3 ref_49 ref_48 Harahwa (ref_15) 2020; 7 ref_7 ref_6 |
References_xml | – volume: 7 start-page: 349 year: 2020 ident: ref_15 article-title: The optimal diagnostic methods for COVID-19 publication-title: Diagnosis doi: 10.1515/dx-2020-0058 – ident: ref_55 – volume: 9 start-page: 2640 year: 2018 ident: ref_81 article-title: Respiratory Viral Infection-Induced Microbiome Alterations and Secondary Bacterial Pneumonia publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.02640 – volume: 5 start-page: 1 year: 2019 ident: ref_74 article-title: Acute respiratory distress syndrome publication-title: Nat. Rev. Dis. Prim. – ident: ref_7 doi: 10.1007/s10044-021-00984-y – volume: 5 start-page: 157 year: 1994 ident: ref_51 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.279181 – ident: ref_41 doi: 10.1007/978-3-319-10590-1_53 – ident: ref_68 – volume: 163 start-page: 3 year: 2015 ident: ref_79 article-title: Addressing imbalance in multilabel classification: Measures and random resampling algorithms publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.08.091 – ident: ref_38 doi: 10.3390/diagnostics11091732 – ident: ref_47 doi: 10.1109/CVPR.2017.634 – volume: 9 start-page: 19518 year: 2019 ident: ref_24 article-title: Prostate cancer Detection using Deep convolutional neural networks publication-title: Sci. Rep. doi: 10.1038/s41598-019-55972-4 – ident: ref_42 – ident: ref_49 doi: 10.1109/CVPR.2015.7298594 – volume: 323 start-page: 1767 year: 2020 ident: ref_13 article-title: The COVID-19 pandemic in the US: A clinical update publication-title: JAMA – ident: ref_23 – ident: ref_35 doi: 10.1038/s41598-020-76550-z – ident: ref_71 – volume: 7 start-page: 803 year: 2018 ident: ref_26 article-title: The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: A review publication-title: Transl. Cancer Res. doi: 10.21037/tcr.2018.05.02 – volume: 8 start-page: 1 year: 2021 ident: ref_39 article-title: Deep Learning applications for COVID-19 publication-title: J. Big Data doi: 10.1186/s40537-020-00392-9 – ident: ref_58 – ident: ref_54 doi: 10.1609/aaai.v31i1.11231 – volume: 18 start-page: 306 year: 2011 ident: ref_32 article-title: Computer-aided diagnosis of pulmonary infections using texture analysis and support vector machine classification publication-title: Acad. Radiol. doi: 10.1016/j.acra.2010.11.013 – ident: ref_43 doi: 10.1007/978-3-319-46466-4_8 – volume: 382 start-page: 1199 year: 2020 ident: ref_2 article-title: Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001316 – volume: 2 start-page: e200034 year: 2020 ident: ref_20 article-title: Imaging profile of the COVID-19 infection: Radiologic findings and literature review publication-title: Radiol. Cardiothorac. Imaging doi: 10.1148/ryct.2020200034 – ident: ref_80 doi: 10.3389/fmicb.2017.01041 – volume: 35 start-page: 16061 year: 2023 ident: ref_40 article-title: Classification of Covid-19 chest X-ray images by means of an interpretable evolutionary rule-based approach publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06806-w – ident: ref_56 – volume: 382 start-page: 727 year: 2020 ident: ref_1 article-title: A novel coronavirus from patients with pneumonia in China, 2019 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001017 – ident: ref_52 – ident: ref_69 – ident: ref_83 – volume: 8 start-page: 816 year: 2020 ident: ref_75 article-title: COVID-19-associated acute respiratory distress syndrome: Is a different approach to management warranted? publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(20)30304-0 – ident: ref_66 – ident: ref_45 – volume: 295 start-page: 22 year: 2020 ident: ref_12 article-title: Use of chest CT in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion publication-title: Radiology doi: 10.1148/radiol.2020200330 – volume: 36 start-page: S22 year: 2020 ident: ref_18 article-title: Chest X-rays findings in COVID 19 patients at a University Teaching Hospital—A descriptive study publication-title: Pak. J. Med. Sci. doi: 10.12669/pjms.36.COVID19-S4.2778 – volume: 6 start-page: 94 year: 2019 ident: ref_27 article-title: The potential for artificial intelligence in healthcare publication-title: Future Healthc. J. doi: 10.7861/futurehosp.6-2-94 – volume: 10 start-page: 1 year: 2020 ident: ref_34 article-title: Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography publication-title: Sci. Rep. – ident: ref_72 – volume: 295 start-page: 16 year: 2020 ident: ref_9 article-title: Chest CT findings in 2019 novel coronavirus (2019-nCoV) infections from Wuhan, China: Key points for the radiologist publication-title: Radiology doi: 10.1148/radiol.2020200241 – ident: ref_59 – volume: 3 start-page: 1 year: 2007 ident: ref_78 article-title: Multi-label classification: An overview publication-title: Int. J. Data Warehous. Min. IJDWM doi: 10.4018/jdwm.2007070101 – volume: 43 start-page: 635 year: 2020 ident: ref_8 article-title: COVID-19: Automatic detection from x-ray images utilizing transfer learning with convolutional neural networks publication-title: Phys. Eng. Sci. Med. doi: 10.1007/s13246-020-00865-4 – volume: 296 start-page: E65 year: 2020 ident: ref_33 article-title: Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy publication-title: Radiology doi: 10.1148/radiol.2020200905 – volume: 295 start-page: 685 year: 2020 ident: ref_10 article-title: Chest CT findings in coronavirus disease-19 (COVID-19): Relationship to duration of infection publication-title: Radiology doi: 10.1148/radiol.2020200463 – ident: ref_28 – ident: ref_53 – ident: ref_30 – ident: ref_61 doi: 10.3390/electronics10111350 – ident: ref_3 – volume: 296 start-page: E41 year: 2020 ident: ref_11 article-title: Chest CT for typical 2019-nCoV pneumonia: Relationship to negative RT-PCR testing publication-title: Radiology doi: 10.1148/radiol.2020200343 – volume: 296 start-page: E32 year: 2020 ident: ref_4 article-title: Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases publication-title: Radiology doi: 10.1148/radiol.2020200642 – volume: 2 start-page: 651 year: 2018 ident: ref_70 article-title: Labeled optical coherence tomography (oct) and chest X-ray images for classification publication-title: Mendeley Data – volume: 9 start-page: 85198 year: 2021 ident: ref_37 article-title: An interpretable deep learning model for COVID-19 detection with chest X-ray images publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3087583 – volume: 13 start-page: 71 year: 2019 ident: ref_31 article-title: Computer aided diagnosis of drug sensitive pulmonary tuberculosis with cavities, consolidations and nodular manifestations on lung CT images publication-title: Int. J. Bio Inspired Comput. doi: 10.1504/IJBIC.2019.098405 – ident: ref_67 – ident: ref_63 – ident: ref_44 – volume: 24 start-page: 154 year: 2020 ident: ref_76 article-title: COVID-19 pneumonia: ARDS or not? publication-title: Crit. Care doi: 10.1186/s13054-020-02880-z – ident: ref_21 – ident: ref_73 – ident: ref_82 doi: 10.1145/2939672.2939778 – ident: ref_6 – ident: ref_25 – ident: ref_48 doi: 10.5244/C.30.87 – ident: ref_22 doi: 10.1016/j.compbiomed.2020.103792 – volume: 47 start-page: e228 year: 2020 ident: ref_29 article-title: Artificial intelligence-based clinical decision support in modern medical physics: Selection, acceptance, commissioning, and quality assurance publication-title: Med. Phys. doi: 10.1002/mp.13562 – ident: ref_50 doi: 10.1109/CVPR.2017.243 – volume: 382 start-page: 1708 year: 2020 ident: ref_17 article-title: Clinical characteristics of coronavirus disease 2019 in China publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2002032 – ident: ref_46 – volume: 18 start-page: 1202 year: 2021 ident: ref_77 article-title: COVID-19 versus non–COVID-19 acute respiratory distress syndrome: Comparison of demographics, physiologic parameters, inflammatory biomarkers, and clinical outcomes publication-title: Ann. Am. Thorac. Soc. doi: 10.1513/AnnalsATS.202008-1026OC – volume: 296 start-page: 172 year: 2020 ident: ref_14 article-title: The role of chest imaging in patient management during the COVID-19 pandemic: A multinational consensus statement from the Fleischner Society publication-title: Radiology doi: 10.1148/radiol.2020201365 – ident: ref_64 – volume: 296 start-page: E115 year: 2020 ident: ref_5 article-title: Sensitivity of chest CT for COVID-19: Comparison to RT-PCR publication-title: Radiology doi: 10.1148/radiol.2020200432 – volume: 64 start-page: 35 year: 2020 ident: ref_16 article-title: Portable chest X-ray in coronavirus disease-19 (COVID-19): A pictorial review publication-title: Clin. Imaging doi: 10.1016/j.clinimag.2020.04.001 – ident: ref_36 – ident: ref_60 – ident: ref_57 – ident: ref_65 doi: 10.20944/preprints202201.0072.v1 – volume: 296 start-page: E72 year: 2020 ident: ref_19 article-title: Frequency and distribution of chest radiographic findings in COVID-19 positive patients publication-title: Radiology doi: 10.1148/radiol.2020201160 – ident: ref_62 doi: 10.3233/FAIA230080 |
SSID | ssj0001920199 |
Score | 2.3156185 |
Snippet | The outbreak of COVID-19 has shocked the entire world with its fairly rapid spread, and has challenged different sectors. One of the most effective ways to... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 45 |
SubjectTerms | Accuracy Artificial intelligence Back propagation chest X-ray Classification Computed tomography Computer-aided medical diagnosis Coronaviruses COVID-19 Decision making Deep learning Disease transmission Image classification Infections Machine learning Medical imaging Methods model ensemble multilabel image classification Occlusion Pneumonia Tuberculosis X ray imagery |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8SZQKiMhIQ7RJnES26eq3bZqkSgItWhvlp8VCDbLZnvov--M493tFqnXxI5iex7f2ONvCPnoXKmZBeQWPJjA2hibC9tUudWlAPgADsXifsfXs_bkov4yaSZpw61PaZVLmxgNtess7pGPwC0BGqgKxvZm_3KsGoWnq6mExkOyDSZYQPC1fXB09v3HepdFgoOTcjifZBDfj37_-hvL_yD1KOKZDX8Uafv_N853IGd0PcdPyZOEGen-sMjPyAM_fU4e32ISfEHckEsXp5l2ga5zCWPy6zU9X3K19hRgKj30fkbH336eHualpLEyJuYMDf1jGgEdYyUtOsnn-pqewmh8_5JcHB-dj0_yVEAht01RLXJZ2VAKGWppSm55W2sIeFkQjnMufGislNYycNhWQ1jTOtnAihrOnReFKwVnr8jWtJv6N4SawHhpPMebuzWEJKDm3NXSMcNaXWuXkdFyGpVN7OJY5OKPgigDJ17dnfiMfF71mA3MGve0PcCVWbVDTuz4oJtfqqRiyjgWCl0UpmWu5lYLG3zFRWOMbhvnQ0Y-4boq1Fz4NavTBQQYIHJgqX0OwW6NhPcZ2dloCRpnN18vJUMlje_VWj4z8mH1GntiFtvUd1e9AvsJQirhKxl5PUjUakgMkWoh2dv7P_6OPKoAVg154ztkazG_8u8BFi3MbpL9G6n4DGw priority: 102 providerName: ProQuest |
Title | Exploration of Interpretability Techniques for Deep COVID-19 Classification Using Chest X-ray Images |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38392093 https://www.proquest.com/docview/2930952033 https://www.proquest.com/docview/3182879041 https://doaj.org/article/bd3f0a00b63d47ca8cfe2785bba65def |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKe4ED4k2grIyEhDhEm8RObB_bbZcWiYJQi_Zm-Sm1gt2quz303zNjZ5fdIpVLD7nEdmSPZzzfJJNvCPngfW2YA-QWAxyB3FpXStc2pTO1BPgADsXh-46vJ93RGf8yaSdrpb4wJyzTA2fBDa1nsTJVZTvmuXBGuhgaIVtrTdf6EPH0BZ-3FkxdZNwCl8rfJRnE9cOL89-p7A9SjiKO2fBDia7_30P5FtRMLmf8hDzusSLdy3N8SrbC9Bl5tMYg-Jz4nEOXxEtnkf7NIUxJrzf0dMnROqcAT-lBCJd09O3n8UFZK5oqYmKuUB6f0gfoCCto0Ul5ZW7oMawmzF-Qs_Hh6eio7AsnlK6tmkWpGhdrqSJXthZOdNxAoMui9EIIGWLrlHKOgaN2BsKZzqsWdtIK4YOsfC0Fe0m2p7NpeE2ojUzUNgj8Y5dDKALmLTxXnlnWGW58QYZLMWrXs4pjcYtfGqILFLy-LfiCfFqNuMyMGnf03cedWfVDLux0AzRE9xqi_6chBfmI-6rRYmFqzvQ_HsACkftK7wkIcjkS3Rdkd6MnWJrbbF5qhu4tfa4BLgFKbSrGCvJ-1YwjMXttGmbXcw3nJgSmCp5SkFdZo1ZLYohQK8Xe3MdS35KHDYCunFW-S7YXV9fhHYCmhR2QB3L8eUB29g9Pvv8YJGsZpHdbfwBpNRkJ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tywE4IN4EFjASCHGImsRJHB8QWlpKyz64dFFvxq-sFkFb2q5Q_xS_kZk8WrpIe9tr_FDGnsc39ngG4JVzseYWkVvpUQWmxtiwsFkSWh0XCB_QoFg67zg6zgcn6edxNt6BP-1bGAqrbHVipajd1NIZeQfNEqKBJOL8_exXSFWj6Ha1LaFRs8WBX_1Gl23xbtjD_X2dJP2Po-4gbKoKhDaLkmUoE1vGhSxTaWJhRZ5q9AJ5WTghROHLzEppLUcrZjVi_dzJDMk0QjhfRC4uBMd5r8H1lHNJElX0P23OdCSaUynr21Bsjzrfz35WxYYo0Smhpy3rVxUJ-N8UXAC4laHr34HbDUJl-zVL3YUdP7kHt_7JW3gfXB25V20qm5ZsE7lYhdqu2KjNDLtgCIpZz_sZ6375OuyFsWRVHU6KUKrHV0ELrEt1u9g4nOsVGyI1fvEATq5kYR_C7mQ68Y-BmZKL2HhB74RTdIBQqQiXSscNz3WqXQCddhmVbXKZU0mNHwp9Glp4dXHhA3i7HjGr83hc0vcD7cy6H2Xgrj5M56eqEWhlHC8jHUUm5y4VVhe29IkoMmN0njlfBvCG9lWRnsBfs7p57oAEUsYttS_QtU4pvX4Ae1s9Ub7tdnPLGarRLwu1kYYAXq6baSTFzE389HyhUFujOyxxlgAe1Ry1JokTLo4kf3L55C_gxmB0dKgOh8cHT-FmgoCujljfg93l_Nw_Q0C2NM8rKWDw7arF7i_q8kfC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLwxFFgkEOJgxfbaXu8BoTZp1FAIFWpRbtt9olaQhDgVyl_j1zHrR0KK1Fuv3oe8j5n5ZvfbGYDXxsSSakRuzqIKTJXSYaGzJNQyLhA-oEHR_rzj8yg_OEk_jrPxFvxp38J4WmWrEytFbaban5F30SwhGkgiSruuoUUc9QcfZr9Cn0HK37S26TTqLXJol7_RfSvfD_u41m-SZLB_3DsImwwDoc6iZBHyRLu44C7lKmaa5alEj5C6wjDGCusyzbnWFC2aloj7c8MzHLJizNgiMnHBKPZ7A7YZekVRB7b39kdHX9cnPByNK-f13SilPOqen_2sUg_5sKceS23YwiplwP-G4RLcrcze4C7cafAq2a032D3YspP7cPufKIYPwNQ8vmqJydSRNY-xIt4uyXEbJ7YkCJFJ39oZ6X35NuyHMSdVVk7PV6rbVxQG0vNZvMg4nMslGeJobPkQTq5lah9BZzKd2CdAlKMsVpb5V8MpukOoYphJuaGK5jKVJoBuO41CN5HNfYKNHwI9HD_x4vLEB_Bu1WJWR_W4ou6eX5lVPR-Pu_ownX8XjXgLZaiLZBSpnJqUaVloZxNWZErJPDPWBfDWr6vwWgN_Tcvm8QMO0MffErsMHe3UB9sPYGejJkq73ixud4ZotE0p1rIRwKtVsW_pGXQTO70oBepudI459hLA43pHrYZEPUqOOH16decv4SaKnPg0HB0-g1sJoruavr4DncX8wj5HdLZQLxoxIHB63ZL3F6a8TVQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploration+of+Interpretability+Techniques+for+Deep+COVID-19+Classification+Using+Chest+X-ray+Images&rft.jtitle=Journal+of+imaging&rft.au=Soumick+Chatterjee&rft.au=Fatima+Saad&rft.au=Chompunuch+Sarasaen&rft.au=Suhita+Ghosh&rft.date=2024-02-01&rft.pub=MDPI+AG&rft.eissn=2313-433X&rft.volume=10&rft.issue=2&rft.spage=45&rft_id=info:doi/10.3390%2Fjimaging10020045&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bd3f0a00b63d47ca8cfe2785bba65def |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-433X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-433X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-433X&client=summon |