Development of empirical models for chloride binding in cementitious systems containing admixed chlorides

•Binding behavior of admixed chlorides in various cementitious systems are studied.•Free chlorides were measured using water-soluble and pore press testing procedures.•An interaction between w/b, SCM, SCM level, and admixed chloride level exists.•Three empirical binding isotherms are developed.•Chlo...

Full description

Saved in:
Bibliographic Details
Published inConstruction & building materials Vol. 189; pp. 157 - 169
Main Authors Trejo, David, Shakouri, Mahmoud, Vaddey, Naga Pavan, Isgor, O. Burkan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 20.11.2018
Reed Business Information, Inc. (US)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Binding behavior of admixed chlorides in various cementitious systems are studied.•Free chlorides were measured using water-soluble and pore press testing procedures.•An interaction between w/b, SCM, SCM level, and admixed chloride level exists.•Three empirical binding isotherms are developed.•Chloride testing method influences the concentration of measured bound chlorides. The binding of admixed chlorides in the concrete can delay the corrosion of reinforcing steel and extend the service life of reinforced concrete structures. Although extensive research has been conducted to study the chloride binding capacity of cementitious systems subject to external chlorides, there is little information available on the chloride binding capacity of cementitious systems containing admixed chlorides. In this paper, the chloride binding capacity of several cementitious systems containing ordinary portland cement (OPC), Type C and F fly ashes, slag, and silica fume with different replacement levels is studied using acid-soluble, water-soluble, and pore-pressed testing procedures. In addition, the influence of water-to-binder ratio and admixed chloride levels on the percentages of bound chlorides is explored and discussed. The experimental results indicate that, on average, the concentration of pore-pressed chlorides is significantly lower than the concentration of water-soluble chlorides. Furthermore, the estimated bound chlorides using the pore-pressed chlorides are significantly higher than the bound chloride estimated using water-soluble chlorides. Results show that the Langmuir isotherm can be used to explain the relationship between free and bound chlorides in OPC paste samples containing admixed chlorides. Results of this study also suggest that chloride testing procedures can be very influential in quantifying the concentration of bound chlorides. Therefore, there is a need to standardize the process used for measuring the chlorides in cementitious systems for assessing chloride binding.
AbstractList •Binding behavior of admixed chlorides in various cementitious systems are studied.•Free chlorides were measured using water-soluble and pore press testing procedures.•An interaction between w/b, SCM, SCM level, and admixed chloride level exists.•Three empirical binding isotherms are developed.•Chloride testing method influences the concentration of measured bound chlorides. The binding of admixed chlorides in the concrete can delay the corrosion of reinforcing steel and extend the service life of reinforced concrete structures. Although extensive research has been conducted to study the chloride binding capacity of cementitious systems subject to external chlorides, there is little information available on the chloride binding capacity of cementitious systems containing admixed chlorides. In this paper, the chloride binding capacity of several cementitious systems containing ordinary portland cement (OPC), Type C and F fly ashes, slag, and silica fume with different replacement levels is studied using acid-soluble, water-soluble, and pore-pressed testing procedures. In addition, the influence of water-to-binder ratio and admixed chloride levels on the percentages of bound chlorides is explored and discussed. The experimental results indicate that, on average, the concentration of pore-pressed chlorides is significantly lower than the concentration of water-soluble chlorides. Furthermore, the estimated bound chlorides using the pore-pressed chlorides are significantly higher than the bound chloride estimated using water-soluble chlorides. Results show that the Langmuir isotherm can be used to explain the relationship between free and bound chlorides in OPC paste samples containing admixed chlorides. Results of this study also suggest that chloride testing procedures can be very influential in quantifying the concentration of bound chlorides. Therefore, there is a need to standardize the process used for measuring the chlorides in cementitious systems for assessing chloride binding.
Audience Trade
Author Trejo, David
Isgor, O. Burkan
Vaddey, Naga Pavan
Shakouri, Mahmoud
Author_xml – sequence: 1
  givenname: David
  surname: Trejo
  fullname: Trejo, David
  organization: School of Civil and Construction Engineering, Oregon State University, Corvallis, OR, USA
– sequence: 2
  givenname: Mahmoud
  surname: Shakouri
  fullname: Shakouri, Mahmoud
  email: shakourim2@unk.edu
  organization: Department of Industrial Technology, University of Nebraska Kearney, Kearney, NE, USA
– sequence: 3
  givenname: Naga Pavan
  surname: Vaddey
  fullname: Vaddey, Naga Pavan
  organization: School of Civil and Construction Engineering, Oregon State University, Corvallis, OR, USA
– sequence: 4
  givenname: O. Burkan
  orcidid: 0000-0002-0554-3501
  surname: Isgor
  fullname: Isgor, O. Burkan
  organization: School of Civil and Construction Engineering, Oregon State University, Corvallis, OR, USA
BookMark eNqNkV1rHCEUhqWk0E3a_2DpbWeqszuOXpWw_QoEetNei6PHyVlmdFE3NP--LltKEvYiCAryPK8f7yW5CDEAIe85aznj4tOutTGMB5zdYkrbMS5bJluuhldkxeWgGtZ34oKsmOpZwwSXb8hlzjvGmOhEtyL4Be5hjvsFQqHRU1j2mNCamS7RwZypj4nauzkmdEBHDA7DRDFQC0cFC8ZDpvkhF1gyrXcpBsMRMW7BP-D-u_ktee3NnOHdv_WK_P729df2R3P78_vN9vq2sT3rSqO6UXkJg7dMDMZ0A--FYhvJjFCDBW8G5TZWOi4YmLFfK5BSqUGajbR2A_36inw45U5mBo3Bx5KMXTBbfd2LvqtPXw-Vas5QEwRIZq5f7LFuP-HbM3wdDha0Z4WPj4TxkDFArlPG6a7kyRxyfop_PuE2xZwTeG2xmPq7oZ6Ds-ZMH_vWO_2ob33sWzOpa981QT1L2CdcTHp4kbs9ubVxuEdIOluEYMFhAlu0i_iClL9vFtBu
CitedBy_id crossref_primary_10_1021_acssuschemeng_4c00708
crossref_primary_10_1016_j_apsusc_2024_159610
crossref_primary_10_1016_j_cemconres_2020_106010
crossref_primary_10_1080_23789689_2024_2328979
crossref_primary_10_1080_21650373_2021_1880982
crossref_primary_10_1016_j_conbuildmat_2021_126190
crossref_primary_10_14359_51712240
crossref_primary_10_1016_j_conbuildmat_2020_118944
crossref_primary_10_1016_j_conbuildmat_2023_130667
crossref_primary_10_1016_j_conbuildmat_2023_134067
crossref_primary_10_1080_23789689_2021_1917059
crossref_primary_10_1016_j_cemconcomp_2018_09_006
crossref_primary_10_1016_j_conbuildmat_2021_122806
crossref_primary_10_1016_j_icheatmasstransfer_2024_107283
crossref_primary_10_3390_cryst12020153
crossref_primary_10_1016_j_clema_2022_100098
crossref_primary_10_14359_51719149
crossref_primary_10_1016_j_conbuildmat_2021_125415
crossref_primary_10_1061__ASCE_MT_1943_5533_0004188
crossref_primary_10_14359_51716996
crossref_primary_10_14359_51731547
crossref_primary_10_14359_51716833
crossref_primary_10_1016_j_conbuildmat_2020_118171
crossref_primary_10_1016_j_cscm_2022_e01305
Cites_doi 10.1016/S0008-8846(99)00249-5
10.1061/(ASCE)0733-9399(2002)128:10(1024)
10.1016/0008-8846(90)90083-A
10.1016/j.cemconres.2011.01.001
10.1016/0008-8846(95)00042-B
10.1016/S0008-8846(96)85009-5
10.1680/macr.1962.14.42.143
10.1680/macr.14.00327
10.1016/0008-8846(96)00115-9
10.1016/S0008-8846(96)85010-1
10.1680/macr.1995.47.172.235
10.1016/j.conbuildmat.2016.02.194
10.1016/j.cemconcomp.2009.11.010
10.1016/S0010-938X(99)00083-9
10.1016/j.conbuildmat.2016.10.059
10.1016/0008-8846(89)90039-2
10.1016/S0958-9465(98)00018-3
10.1680/macr.1994.46.169.269
10.1016/0008-8846(86)90050-5
10.1016/j.conbuildmat.2008.02.004
10.1016/j.conbuildmat.2014.05.049
10.1016/0008-8846(91)90173-F
10.1016/S0008-8846(03)00065-6
10.1016/j.cemconres.2017.02.032
10.1177/0361198106197900109
10.1016/j.cemconres.2009.08.006
10.1007/BF02479635
10.1016/j.conbuildmat.2017.02.053
10.1016/j.conbuildmat.2016.02.034
10.1155/2016/5962821
10.1016/0008-8846(93)90089-R
10.1016/S1065-7355(97)90003-1
10.1016/j.cemconres.2012.05.008
10.1016/j.cemconres.2017.02.003
10.1016/j.conbuildmat.2013.03.068
10.1016/j.conbuildmat.2016.08.075
10.1007/BF02472078
10.3151/jact.3.77
10.1680/jmacr.15.00234
10.1016/j.conbuildmat.2017.07.097
10.1016/j.cemconres.2011.09.016
10.4324/9781315142074-21
10.1016/0008-8846(95)00047-G
10.1617/13840
10.1016/0008-8846(87)90079-2
10.1016/j.cemconcomp.2017.08.008
ContentType Journal Article
Copyright 2018 Elsevier Ltd
COPYRIGHT 2018 Reed Business Information, Inc. (US)
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: COPYRIGHT 2018 Reed Business Information, Inc. (US)
DBID AAYXX
CITATION
N95
DOI 10.1016/j.conbuildmat.2018.08.197
DatabaseName CrossRef
Gale Business: Insights
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0526
EndPage 169
ExternalDocumentID A565200037
10_1016_j_conbuildmat_2018_08_197
S0950061818321342
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BAAKF
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IAO
IEA
IGG
IHE
IHM
IOF
ISM
ITC
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N95
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PV9
Q38
RIG
ROL
RPZ
RZL
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
UNMZH
XI7
~G-
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHDLI
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RNS
SET
SEW
SMS
SSH
VH1
WUQ
ZMT
ID FETCH-LOGICAL-c502t-92b9f8e7fc067aa2715690480a697cefa79d4c8d160eab539e889978a48cc4e53
IEDL.DBID .~1
ISSN 0950-0618
IngestDate Tue Jun 17 21:40:14 EDT 2025
Thu Jun 12 23:35:19 EDT 2025
Tue Jun 10 20:19:55 EDT 2025
Fri Jun 27 03:09:35 EDT 2025
Tue Jul 01 04:33:44 EDT 2025
Thu Apr 24 23:11:02 EDT 2025
Fri Feb 23 02:49:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Chloride binding
Admixed chlorides
Concrete durability
Corrosion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-92b9f8e7fc067aa2715690480a697cefa79d4c8d160eab539e889978a48cc4e53
ORCID 0000-0002-0554-3501
PageCount 13
ParticipantIDs gale_infotracmisc_A565200037
gale_infotracgeneralonefile_A565200037
gale_infotracacademiconefile_A565200037
gale_businessinsightsgauss_A565200037
crossref_citationtrail_10_1016_j_conbuildmat_2018_08_197
crossref_primary_10_1016_j_conbuildmat_2018_08_197
elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2018_08_197
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-20
PublicationDateYYYYMMDD 2018-11-20
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-20
  day: 20
PublicationDecade 2010
PublicationTitle Construction & building materials
PublicationYear 2018
Publisher Elsevier Ltd
Reed Business Information, Inc. (US)
Publisher_xml – name: Elsevier Ltd
– name: Reed Business Information, Inc. (US)
References Gardoni, Der Kiureghian, Mosalam (b0310) 2002; 128
Zhu, Zi, Cao, Cheng (b0215) 2016; 110
Shakouri, Trejo (b0005) 2017; 84
American Concrete Institute Committee 222, Provisional Standard Test Method for Water-Soluble Chloride Available for Corrosion of Embedded Steel in Mortar and Concrete Using the Soxhlet Extractor. 1996, ACI 222.1–96.
Vaddey, Trejo, Shakouri (b0315) 2018
Geng, Easterbrook, Liu, Li (b0060) 2016; 68
Tritthart (b0145) 1989; 19
Arya, Buenfeld, Newman (b0100) 1990; 20
Mazarei, Trejo, Ideker, Isgor (b0025) 2017; 153
Ye, Jin, Jin, Fu, Chen (b0265) 2016; 127
Xu, Feng, Jiang, Xu, Song, Cao, Tan (b0260) 2016; 125
Hussain, Al-Saadoun (b0165) 1991; 21
Mohammed, Hamada (b0120) 2003; 33
Trejo, Mazarei, Ideker, Isgor (b0020) 2017; 144
D. Trejo, M. Shakouri, N.P. Vaddey. The Need for Standardized Testing of Input Variables for Reliable Service Life Prediction of Reinforced Concrete Structures, in: International Conference on Advances in Construction Materials and Systems. 2017. Chennai, Inida.
Kayyali, Haque (b0055) 1995; 47
Delagrave, Marchand, Ollivier, Julien, Hazrati (b0245) 1997; 6
Angst, Elsener, Larsen, Vennesland (b0040) 2009; 39
Thomas, Hooton, Scott, Zibara (b0075) 2012; 42
Rilem (b0130) 2002; 35
J. Neter, M.H. Kutner, C.J. Nachtsheim, W. Wasserman, Applied linear statistical models. Vol. 4. 1996: Irwin Chicago.
Shakouri, Trejo (b0035) 2017
Arya, Buenfeld, Newman (b0105) 1987; 17
Papadakis (b0185) 2000; 30
Kim, Kim, Ann (b0160) 2016; 2016
Sutter, Dam, Peterson, Johnston (b0080) 2006; 1979
Yuan, Shi, De Schutter, Audenaert, Deng (b0045) 2009; 23
M. Shakouri, D. Trejo, P. Gardoni, A risk-based model for determining allowable admixed chloride limits in concrete, in International RILEM Conference on Materials, Systems and Structures in Civil Engineering: Conference segment on service life of cement-based materials and structures. 2016: Lyngby, Denmark. p. 631–640.
Glass, Buenfeld (b0300) 2000; 42
ASTM
Shakouri, Trejo, Gardoni (b0015) 2017; 139
Standard Test Method for Water-Soluble Chloride in Mortar and Concrete. 2015, ASTM International: West Conshohocken, PA.
Blunk (b0150) 1986
Saillio, Baroghel-Bouny, Barberon (b0195) 2014; 68
test for rapid determination of chloride concentrations of ordinary portland cement systems. Journal of Testing and Evaluation, 2018. Under Review.
Suryavanshi, Scantlebury, Lyon (b0170) 1995; 25
Liu, Qiu, Chen, Xing, Han, He, Ma (b0205) 2017; 95
Suryavanshi, Scantlebury, Lyon (b0050) 1998; 20
Sumranwanich, Tangtermsirikul (b0175) 2004; 37
Ye, Jin, Fu, Jin, Xu, Huang (b0210) 2016; 112
P.F. McGrath, Development of test methods for predicting chloride penetration into high performance concrete. 1997: National Library of Canada = Bibliothèque nationale du Canada.
Glass, Wang, Buenfeld (b0110) 1996; 26
Luping, Nilsson (b0095) 1993; 23
Standard Test Method for Acid-Soluble Chloride in Mortar and Concrete. 2004, ASTM International: West Conshohocken, PA.
Holden, Page, Short (b0235) 1983
Xu, Zhang, Jiang, Tang, Gao, Xu (b0065) 2013; 45
Byfors, Hansson, Tritthart (b0230) 1986; 16
Shi, Geiker, De Weerdt, Østnor, Lothenbach, Winnefeld, Skibsted (b0240) 2017; 95
Roberts (b0275) 1962; 14
Jain, Neithalath (b0200) 2010; 32
Page, Lambert, Vassie (b0270) 1991; 24
Suryavanshi, Scantlebury, Lyon (b0280) 1996; 26
Florea, Brouwers (b0085) 2012; 42
Haque, Kayyali (b0090) 1995; 25
Ramachandran, Seeley, Polomark (b0180) 1984; 17
Dousti, Shekarchi (b0255) 2015; 67
D. Trejo, A.A. Ahmed, Assessing the automation of the ASTM
Suryavanshi, Swamy (b0220) 1996; 26
Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM International, 2014.
Baroghel-Bouny, Wang, Thiery, Saillio, Barberon (b0190) 2012; 42
Kato, Naomachi, Kato (b0225) 2015
Hirao, Yamada, Takahashi, Zibara (b0070) 2005; 3
AASHTO T260, Standard method of test for sampling and testing for chloride ion in concrete and concrete raw materials. American Association of State Highway and Transportation Offi cials.
Wowra, Setzer, Setzer, Auberg (b0250) 1997
Dhir, Jones, McCarthy (b0155) 1994; 46
10.1016/j.conbuildmat.2018.08.197_b0305
Thomas (10.1016/j.conbuildmat.2018.08.197_b0075) 2012; 42
Xu (10.1016/j.conbuildmat.2018.08.197_b0065) 2013; 45
Mohammed (10.1016/j.conbuildmat.2018.08.197_b0120) 2003; 33
Liu (10.1016/j.conbuildmat.2018.08.197_b0205) 2017; 95
Geng (10.1016/j.conbuildmat.2018.08.197_b0060) 2016; 68
Zhu (10.1016/j.conbuildmat.2018.08.197_b0215) 2016; 110
Roberts (10.1016/j.conbuildmat.2018.08.197_b0275) 1962; 14
Kim (10.1016/j.conbuildmat.2018.08.197_b0160) 2016; 2016
Hussain (10.1016/j.conbuildmat.2018.08.197_b0165) 1991; 21
Sutter (10.1016/j.conbuildmat.2018.08.197_b0080) 2006; 1979
Suryavanshi (10.1016/j.conbuildmat.2018.08.197_b0280) 1996; 26
10.1016/j.conbuildmat.2018.08.197_b0030
Baroghel-Bouny (10.1016/j.conbuildmat.2018.08.197_b0190) 2012; 42
Trejo (10.1016/j.conbuildmat.2018.08.197_b0020) 2017; 144
Kato (10.1016/j.conbuildmat.2018.08.197_b0225) 2015
Rilem (10.1016/j.conbuildmat.2018.08.197_b0130) 2002; 35
Dousti (10.1016/j.conbuildmat.2018.08.197_b0255) 2015; 67
Suryavanshi (10.1016/j.conbuildmat.2018.08.197_b0170) 1995; 25
Xu (10.1016/j.conbuildmat.2018.08.197_b0260) 2016; 125
Dhir (10.1016/j.conbuildmat.2018.08.197_b0155) 1994; 46
Shakouri (10.1016/j.conbuildmat.2018.08.197_b0035) 2017
Shi (10.1016/j.conbuildmat.2018.08.197_b0240) 2017; 95
Papadakis (10.1016/j.conbuildmat.2018.08.197_b0185) 2000; 30
Suryavanshi (10.1016/j.conbuildmat.2018.08.197_b0050) 1998; 20
Page (10.1016/j.conbuildmat.2018.08.197_b0270) 1991; 24
10.1016/j.conbuildmat.2018.08.197_b0140
Shakouri (10.1016/j.conbuildmat.2018.08.197_b0005) 2017; 84
Hirao (10.1016/j.conbuildmat.2018.08.197_b0070) 2005; 3
Luping (10.1016/j.conbuildmat.2018.08.197_b0095) 1993; 23
Mazarei (10.1016/j.conbuildmat.2018.08.197_b0025) 2017; 153
Glass (10.1016/j.conbuildmat.2018.08.197_b0110) 1996; 26
Kayyali (10.1016/j.conbuildmat.2018.08.197_b0055) 1995; 47
Blunk (10.1016/j.conbuildmat.2018.08.197_b0150) 1986
Shakouri (10.1016/j.conbuildmat.2018.08.197_b0015) 2017; 139
Ramachandran (10.1016/j.conbuildmat.2018.08.197_b0180) 1984; 17
Arya (10.1016/j.conbuildmat.2018.08.197_b0100) 1990; 20
Saillio (10.1016/j.conbuildmat.2018.08.197_b0195) 2014; 68
Angst (10.1016/j.conbuildmat.2018.08.197_b0040) 2009; 39
Arya (10.1016/j.conbuildmat.2018.08.197_b0105) 1987; 17
10.1016/j.conbuildmat.2018.08.197_b0290
Gardoni (10.1016/j.conbuildmat.2018.08.197_b0310) 2002; 128
10.1016/j.conbuildmat.2018.08.197_b0010
10.1016/j.conbuildmat.2018.08.197_b0295
Sumranwanich (10.1016/j.conbuildmat.2018.08.197_b0175) 2004; 37
10.1016/j.conbuildmat.2018.08.197_b0135
Delagrave (10.1016/j.conbuildmat.2018.08.197_b0245) 1997; 6
Tritthart (10.1016/j.conbuildmat.2018.08.197_b0145) 1989; 19
Ye (10.1016/j.conbuildmat.2018.08.197_b0210) 2016; 112
10.1016/j.conbuildmat.2018.08.197_b0115
Jain (10.1016/j.conbuildmat.2018.08.197_b0200) 2010; 32
Suryavanshi (10.1016/j.conbuildmat.2018.08.197_b0220) 1996; 26
Vaddey (10.1016/j.conbuildmat.2018.08.197_b0315) 2018
Holden (10.1016/j.conbuildmat.2018.08.197_b0235) 1983
Florea (10.1016/j.conbuildmat.2018.08.197_b0085) 2012; 42
Haque (10.1016/j.conbuildmat.2018.08.197_b0090) 1995; 25
Yuan (10.1016/j.conbuildmat.2018.08.197_b0045) 2009; 23
10.1016/j.conbuildmat.2018.08.197_b0285
10.1016/j.conbuildmat.2018.08.197_b0125
Ye (10.1016/j.conbuildmat.2018.08.197_b0265) 2016; 127
Byfors (10.1016/j.conbuildmat.2018.08.197_b0230) 1986; 16
Glass (10.1016/j.conbuildmat.2018.08.197_b0300) 2000; 42
Wowra (10.1016/j.conbuildmat.2018.08.197_b0250) 1997
References_xml – volume: 39
  start-page: 1122
  year: 2009
  end-page: 1138
  ident: b0040
  article-title: Critical chloride content in reinforced concrete–a review
  publication-title: Cem. Concr. Res.
– volume: 35
  start-page: 583
  year: 2002
  end-page: 585
  ident: b0130
  article-title: 178-TMC. Analysis of chloride content in concrete
  publication-title: Mater. Struct.
– volume: 42
  start-page: 1207
  year: 2012
  end-page: 1224
  ident: b0190
  article-title: Prediction of chloride binding isotherms of cementitious materials by analytical model or numerical inverse analysis
  publication-title: Cem. Concr. Res.
– year: 2015
  ident: b0225
  article-title: Changes in chloride penetration properties caused by reaction between sulfate ions and cement hydrates
  publication-title: International Conference on Concrete Sustainability
– volume: 14
  start-page: 143
  year: 1962
  end-page: 154
  ident: b0275
  article-title: Effect of calcium chloride on the durability of pre-tensioned wire in prestressed concrete
  publication-title: Mag. Concr. Res.
– volume: 47
  start-page: 235
  year: 1995
  end-page: 242
  ident: b0055
  article-title: The C1−/OH− ratio in chloride-contaminated concrete — a most important criterion
  publication-title: Mag. Concr. Res.
– reference: , Standard Test Method for Water-Soluble Chloride in Mortar and Concrete. 2015, ASTM International: West Conshohocken, PA.
– volume: 26
  start-page: 729
  year: 1996
  end-page: 741
  ident: b0220
  article-title: Stability of Friedel's salt in carbonated concrete structural elements
  publication-title: Cem. Concr. Res.
– volume: 26
  start-page: 717
  year: 1996
  end-page: 727
  ident: b0280
  article-title: Mechanism of Friedel's salt formation in cements rich in tri-calcium aluminate
  publication-title: Cem. Concr. Res.
– volume: 68
  start-page: 82
  year: 2014
  end-page: 91
  ident: b0195
  article-title: Chloride binding in sound and carbonated cementitious materials with various types of binder
  publication-title: Constr. Build. Mater.
– volume: 127
  start-page: 733
  year: 2016
  end-page: 742
  ident: b0265
  article-title: Chloride ingress profiles and binding capacity of mortar in cyclic drying-wetting salt fog environments
  publication-title: Constr. Build. Mater.
– volume: 67
  start-page: 821
  year: 2015
  end-page: 832
  ident: b0255
  article-title: Effect of exposure temperature on chloride-binding capacity of cementing materials
  publication-title: Mag. Concr. Res.
– volume: 32
  start-page: 148
  year: 2010
  end-page: 156
  ident: b0200
  article-title: Chloride transport in fly ash and glass powder modified concretes–influence of test methods on microstructure
  publication-title: Cem. Concr. Compos.
– volume: 84
  start-page: 99
  year: 2017
  end-page: 110
  ident: b0005
  article-title: A time-variant model of surface chloride build-up for improved service life predictions
  publication-title: Cem. Concr. Compos.
– start-page: 1
  year: 2017
  end-page: 21
  ident: b0035
  article-title: Estimating the critical chloride threshold of reinforcing steel in concrete using a hierarchical Bayesian model
  publication-title: Sust. Resil. Infra.
– volume: 19
  start-page: 683
  year: 1989
  end-page: 691
  ident: b0145
  article-title: Chloride binding in cement II. The influence of the hydroxide concentration in the pore solution of hardened cement paste on chloride binding
  publication-title: Cem. Concr. Res.
– volume: 68
  start-page: 353
  year: 2016
  end-page: 363
  ident: b0060
  article-title: Effect of carbonation on release of bound chlorides in chloride-contaminated concrete
  publication-title: Mag. Concr. Res.
– volume: 37
  start-page: 387
  year: 2004
  ident: b0175
  article-title: A model for predicting time-dependent chloride binding capacity of cement-fly ash cementitious system
  publication-title: Mater. Struct.
– volume: 112
  start-page: 457
  year: 2016
  end-page: 463
  ident: b0210
  article-title: Chloride penetration in concrete exposed to cyclic drying-wetting and carbonation
  publication-title: Constr. Build. Mater.
– volume: 17
  start-page: 907
  year: 1987
  end-page: 918
  ident: b0105
  article-title: Assessment of simple methods of determining the free chloride ion content of cement paste
  publication-title: Cem. Concr. Res.
– volume: 30
  start-page: 291
  year: 2000
  end-page: 299
  ident: b0185
  article-title: Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress
  publication-title: Cem. Concr. Res.
– reference: , Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM International, 2014.
– volume: 128
  start-page: 1024
  year: 2002
  end-page: 1038
  ident: b0310
  article-title: Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations
  publication-title: J. Eng. Mech.
– volume: 17
  start-page: 285
  year: 1984
  end-page: 289
  ident: b0180
  article-title: Free and combined chloride in hydrating cement and cement components
  publication-title: Mater. Struct.
– volume: 139
  start-page: 490
  year: 2017
  end-page: 500
  ident: b0015
  article-title: A probabilistic framework to justify allowable admixed chloride limits in concrete
  publication-title: Constr. Build. Mater.
– reference: J. Neter, M.H. Kutner, C.J. Nachtsheim, W. Wasserman, Applied linear statistical models. Vol. 4. 1996: Irwin Chicago.
– volume: 42
  start-page: 282
  year: 2012
  end-page: 290
  ident: b0085
  article-title: Chloride binding related to hydration products: part I: ordinary Portland cement
  publication-title: Cem. Concr. Res.
– reference: M. Shakouri, D. Trejo, P. Gardoni, A risk-based model for determining allowable admixed chloride limits in concrete, in International RILEM Conference on Materials, Systems and Structures in Civil Engineering: Conference segment on service life of cement-based materials and structures. 2016: Lyngby, Denmark. p. 631–640.
– volume: 153
  start-page: 647
  year: 2017
  end-page: 655
  ident: b0025
  article-title: Synergistic effects of ASR and fly ash on the corrosion characteristics of RC systems
  publication-title: Constr. Build. Mater.
– volume: 33
  start-page: 1487
  year: 2003
  end-page: 1490
  ident: b0120
  article-title: Relationship between free chloride and total chloride contents in concrete
  publication-title: Cem. Concr. Res.
– volume: 2016
  year: 2016
  ident: b0160
  article-title: The influence of C3A content in cement on the chloride transport
  publication-title: Adv. Mater. Sci. Eng.
– volume: 45
  start-page: 53
  year: 2013
  end-page: 59
  ident: b0065
  article-title: Releases of bound chlorides from chloride-admixed plain and blended cement pastes subjected to sulfate attacks
  publication-title: Constr. Build. Mater.
– start-page: 85
  year: 1986
  end-page: 90
  ident: b0150
  article-title: On the distribution of chloride between the hardening cement paste and its pore solution
  publication-title: 8th Int’l Cong. Chem. Cement
– volume: 24
  start-page: 243
  year: 1991
  end-page: 252
  ident: b0270
  article-title: Investigations of reinforcement corrosion. 1. The pore electrolyte phase in chloride-contaminated concrete
  publication-title: Mater. Struct.
– volume: 110
  start-page: 369
  year: 2016
  end-page: 380
  ident: b0215
  article-title: Combined effect of carbonation and chloride ingress in concrete
  publication-title: Constr. Build. Mater.
– volume: 25
  start-page: 531
  year: 1995
  end-page: 542
  ident: b0090
  article-title: Free and water soluble chloride in concrete
  publication-title: Cem. Concr. Res.
– volume: 3
  start-page: 77
  year: 2005
  end-page: 84
  ident: b0070
  article-title: Chloride binding of cement estimated by binding isotherms of hydrates
  publication-title: J. Adv. Concr. Technol.
– start-page: 143
  year: 1983
  end-page: 150
  ident: b0235
  article-title: The influence of chlorides and sulphates on durability
  publication-title: Corros. Reinforcement Concr. Constr.
– volume: 21
  start-page: 777
  year: 1991
  end-page: 794
  ident: b0165
  article-title: Effect of cement composition on chloride binding and corrosion of reinforcing steel in concrete
  publication-title: Cem. Concr. Res.
– volume: 95
  start-page: 217
  year: 2017
  end-page: 225
  ident: b0205
  article-title: Understanding the interacted mechanism between carbonation and chloride aerosol attack in ordinary Portland cement concrete
  publication-title: Cem. Concr. Res.
– volume: 6
  start-page: 28
  year: 1997
  end-page: 35
  ident: b0245
  article-title: Chloride binding capacity of various hydrated cement paste systems
  publication-title: Adv. Cem. Based Mater.
– reference: , Standard Test Method for Acid-Soluble Chloride in Mortar and Concrete. 2004, ASTM International: West Conshohocken, PA.
– start-page: 146
  year: 1997
  end-page: 153
  ident: b0250
  article-title: Sorption of chlorides on hydrated cements and C3S pastes
  publication-title: Frost Resist. Concr.
– volume: 125
  start-page: 369
  year: 2016
  end-page: 374
  ident: b0260
  article-title: Influence of surfactants on chloride binding in cement paste
  publication-title: Constr. Build. Mater.
– volume: 23
  start-page: 1
  year: 2009
  end-page: 13
  ident: b0045
  article-title: Chloride binding of cement-based materials subjected to external chloride environment–a review
  publication-title: Constr. Build. Mater.
– volume: 1979
  start-page: 60
  year: 2006
  end-page: 68
  ident: b0080
  article-title: Long-term effects of magnesium chloride and other concentrated salt solutions on pavement and structural portland cement concrete: Phase I results
  publication-title: Trans. Res. Re.: J. Trans. Res. Board
– volume: 95
  start-page: 205
  year: 2017
  end-page: 216
  ident: b0240
  article-title: Role of calcium on chloride binding in hydrated Portland cement–metakaolin–limestone blends
  publication-title: Cem. Concr. Res.
– volume: 23
  start-page: 247
  year: 1993
  end-page: 253
  ident: b0095
  article-title: Chloride binding capacity and binding isotherms of OPC pastes and mortars
  publication-title: Cem. Concr. Res.
– reference: American Concrete Institute Committee 222, Provisional Standard Test Method for Water-Soluble Chloride Available for Corrosion of Embedded Steel in Mortar and Concrete Using the Soxhlet Extractor. 1996, ACI 222.1–96.
– volume: 46
  start-page: 269
  year: 1994
  end-page: 277
  ident: b0155
  article-title: PFA concrete: chloride-induced reinforcement corrosion
  publication-title: Mag. Concr. Res.
– reference: test for rapid determination of chloride concentrations of ordinary portland cement systems. Journal of Testing and Evaluation, 2018. Under Review.
– volume: 20
  start-page: 263
  year: 1998
  end-page: 281
  ident: b0050
  article-title: Corrosion of reinforcement steel embedded in high water-cement ratio concrete contaminated with chloride
  publication-title: Cem. Concr. Compos.
– reference: AASHTO T260, Standard method of test for sampling and testing for chloride ion in concrete and concrete raw materials. American Association of State Highway and Transportation Offi cials.
– reference: D. Trejo, M. Shakouri, N.P. Vaddey. The Need for Standardized Testing of Input Variables for Reliable Service Life Prediction of Reinforced Concrete Structures, in: International Conference on Advances in Construction Materials and Systems. 2017. Chennai, Inida.
– volume: 20
  start-page: 291
  year: 1990
  end-page: 300
  ident: b0100
  article-title: Factors influencing chloride-binding in concrete
  publication-title: Cem. Concr. Res.
– year: 2018
  ident: b0315
  article-title: Factors influencing chloride test results of cementitious systems
  publication-title: ACI J. Mater.
– reference: D. Trejo, A.A. Ahmed, Assessing the automation of the ASTM
– volume: 42
  start-page: 329
  year: 2000
  end-page: 344
  ident: b0300
  article-title: The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete
  publication-title: Corros. Sci.
– volume: 16
  start-page: 760
  year: 1986
  end-page: 770
  ident: b0230
  article-title: Pore solution expression as a method to determine the influence of mineral additives on chloride binding
  publication-title: Cem. Concr. Res.
– volume: 26
  start-page: 1443
  year: 1996
  end-page: 1449
  ident: b0110
  article-title: An investigation of experimental methods used to determine free and total chloride contents
  publication-title: Cem. Concr. Res.
– reference: P.F. McGrath, Development of test methods for predicting chloride penetration into high performance concrete. 1997: National Library of Canada = Bibliothèque nationale du Canada.
– reference: ASTM
– volume: 144
  year: 2017
  ident: b0020
  article-title: Influence of alkali-silica reaction reactivity on corrosion in reinforced concrete
  publication-title: ACI Mater. J.
– volume: 42
  start-page: 1
  year: 2012
  end-page: 7
  ident: b0075
  article-title: The effect of supplementary cementitious materials on chloride binding in hardened cement paste
  publication-title: Cem. Concr. Res.
– volume: 25
  start-page: 581
  year: 1995
  end-page: 592
  ident: b0170
  article-title: The binding of chloride ions by sulphate resistant Portland cement
  publication-title: Cem. Concr. Res.
– volume: 30
  start-page: 291
  issue: 2
  year: 2000
  ident: 10.1016/j.conbuildmat.2018.08.197_b0185
  article-title: Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(99)00249-5
– ident: 10.1016/j.conbuildmat.2018.08.197_b0305
– volume: 128
  start-page: 1024
  issue: 10
  year: 2002
  ident: 10.1016/j.conbuildmat.2018.08.197_b0310
  article-title: Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(2002)128:10(1024)
– ident: 10.1016/j.conbuildmat.2018.08.197_b0135
– volume: 20
  start-page: 291
  issue: 2
  year: 1990
  ident: 10.1016/j.conbuildmat.2018.08.197_b0100
  article-title: Factors influencing chloride-binding in concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/0008-8846(90)90083-A
– volume: 42
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.conbuildmat.2018.08.197_b0075
  article-title: The effect of supplementary cementitious materials on chloride binding in hardened cement paste
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2011.01.001
– volume: 25
  start-page: 531
  issue: 3
  year: 1995
  ident: 10.1016/j.conbuildmat.2018.08.197_b0090
  article-title: Free and water soluble chloride in concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/0008-8846(95)00042-B
– ident: 10.1016/j.conbuildmat.2018.08.197_b0125
– start-page: 143
  year: 1983
  ident: 10.1016/j.conbuildmat.2018.08.197_b0235
  article-title: The influence of chlorides and sulphates on durability
  publication-title: Corros. Reinforcement Concr. Constr.
– volume: 26
  start-page: 717
  issue: 5
  year: 1996
  ident: 10.1016/j.conbuildmat.2018.08.197_b0280
  article-title: Mechanism of Friedel's salt formation in cements rich in tri-calcium aluminate
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(96)85009-5
– volume: 14
  start-page: 143
  issue: 42
  year: 1962
  ident: 10.1016/j.conbuildmat.2018.08.197_b0275
  article-title: Effect of calcium chloride on the durability of pre-tensioned wire in prestressed concrete
  publication-title: Mag. Concr. Res.
  doi: 10.1680/macr.1962.14.42.143
– volume: 67
  start-page: 821
  issue: 15
  year: 2015
  ident: 10.1016/j.conbuildmat.2018.08.197_b0255
  article-title: Effect of exposure temperature on chloride-binding capacity of cementing materials
  publication-title: Mag. Concr. Res.
  doi: 10.1680/macr.14.00327
– volume: 26
  start-page: 1443
  issue: 9
  year: 1996
  ident: 10.1016/j.conbuildmat.2018.08.197_b0110
  article-title: An investigation of experimental methods used to determine free and total chloride contents
  publication-title: Cem. Concr. Res.
  doi: 10.1016/0008-8846(96)00115-9
– ident: 10.1016/j.conbuildmat.2018.08.197_b0115
– volume: 26
  start-page: 729
  issue: 5
  year: 1996
  ident: 10.1016/j.conbuildmat.2018.08.197_b0220
  article-title: Stability of Friedel's salt in carbonated concrete structural elements
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(96)85010-1
– volume: 47
  start-page: 235
  issue: 172
  year: 1995
  ident: 10.1016/j.conbuildmat.2018.08.197_b0055
  article-title: The C1−/OH− ratio in chloride-contaminated concrete — a most important criterion
  publication-title: Mag. Concr. Res.
  doi: 10.1680/macr.1995.47.172.235
– start-page: 1
  year: 2017
  ident: 10.1016/j.conbuildmat.2018.08.197_b0035
  article-title: Estimating the critical chloride threshold of reinforcing steel in concrete using a hierarchical Bayesian model
  publication-title: Sust. Resil. Infra.
– volume: 112
  start-page: 457
  year: 2016
  ident: 10.1016/j.conbuildmat.2018.08.197_b0210
  article-title: Chloride penetration in concrete exposed to cyclic drying-wetting and carbonation
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.02.194
– volume: 32
  start-page: 148
  issue: 2
  year: 2010
  ident: 10.1016/j.conbuildmat.2018.08.197_b0200
  article-title: Chloride transport in fly ash and glass powder modified concretes–influence of test methods on microstructure
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2009.11.010
– volume: 42
  start-page: 329
  issue: 2
  year: 2000
  ident: 10.1016/j.conbuildmat.2018.08.197_b0300
  article-title: The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete
  publication-title: Corros. Sci.
  doi: 10.1016/S0010-938X(99)00083-9
– volume: 127
  start-page: 733
  year: 2016
  ident: 10.1016/j.conbuildmat.2018.08.197_b0265
  article-title: Chloride ingress profiles and binding capacity of mortar in cyclic drying-wetting salt fog environments
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.10.059
– start-page: 146
  year: 1997
  ident: 10.1016/j.conbuildmat.2018.08.197_b0250
  article-title: Sorption of chlorides on hydrated cements and C3S pastes
  publication-title: Frost Resist. Concr.
– volume: 19
  start-page: 683
  issue: 5
  year: 1989
  ident: 10.1016/j.conbuildmat.2018.08.197_b0145
  article-title: Chloride binding in cement II. The influence of the hydroxide concentration in the pore solution of hardened cement paste on chloride binding
  publication-title: Cem. Concr. Res.
  doi: 10.1016/0008-8846(89)90039-2
– ident: 10.1016/j.conbuildmat.2018.08.197_b0290
– year: 2015
  ident: 10.1016/j.conbuildmat.2018.08.197_b0225
  article-title: Changes in chloride penetration properties caused by reaction between sulfate ions and cement hydrates
– volume: 20
  start-page: 263
  issue: 4
  year: 1998
  ident: 10.1016/j.conbuildmat.2018.08.197_b0050
  article-title: Corrosion of reinforcement steel embedded in high water-cement ratio concrete contaminated with chloride
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/S0958-9465(98)00018-3
– volume: 46
  start-page: 269
  issue: 169
  year: 1994
  ident: 10.1016/j.conbuildmat.2018.08.197_b0155
  article-title: PFA concrete: chloride-induced reinforcement corrosion
  publication-title: Mag. Concr. Res.
  doi: 10.1680/macr.1994.46.169.269
– volume: 16
  start-page: 760
  issue: 5
  year: 1986
  ident: 10.1016/j.conbuildmat.2018.08.197_b0230
  article-title: Pore solution expression as a method to determine the influence of mineral additives on chloride binding
  publication-title: Cem. Concr. Res.
  doi: 10.1016/0008-8846(86)90050-5
– volume: 23
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.conbuildmat.2018.08.197_b0045
  article-title: Chloride binding of cement-based materials subjected to external chloride environment–a review
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2008.02.004
– volume: 68
  start-page: 82
  year: 2014
  ident: 10.1016/j.conbuildmat.2018.08.197_b0195
  article-title: Chloride binding in sound and carbonated cementitious materials with various types of binder
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.05.049
– volume: 21
  start-page: 777
  issue: 5
  year: 1991
  ident: 10.1016/j.conbuildmat.2018.08.197_b0165
  article-title: Effect of cement composition on chloride binding and corrosion of reinforcing steel in concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/0008-8846(91)90173-F
– volume: 33
  start-page: 1487
  issue: 9
  year: 2003
  ident: 10.1016/j.conbuildmat.2018.08.197_b0120
  article-title: Relationship between free chloride and total chloride contents in concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(03)00065-6
– year: 2018
  ident: 10.1016/j.conbuildmat.2018.08.197_b0315
  article-title: Factors influencing chloride test results of cementitious systems
  publication-title: ACI J. Mater.
– volume: 95
  start-page: 217
  year: 2017
  ident: 10.1016/j.conbuildmat.2018.08.197_b0205
  article-title: Understanding the interacted mechanism between carbonation and chloride aerosol attack in ordinary Portland cement concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2017.02.032
– volume: 1979
  start-page: 60
  year: 2006
  ident: 10.1016/j.conbuildmat.2018.08.197_b0080
  article-title: Long-term effects of magnesium chloride and other concentrated salt solutions on pavement and structural portland cement concrete: Phase I results
  publication-title: Trans. Res. Re.: J. Trans. Res. Board
  doi: 10.1177/0361198106197900109
– volume: 39
  start-page: 1122
  issue: 12
  year: 2009
  ident: 10.1016/j.conbuildmat.2018.08.197_b0040
  article-title: Critical chloride content in reinforced concrete–a review
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2009.08.006
– volume: 37
  start-page: 387
  issue: 6
  year: 2004
  ident: 10.1016/j.conbuildmat.2018.08.197_b0175
  article-title: A model for predicting time-dependent chloride binding capacity of cement-fly ash cementitious system
  publication-title: Mater. Struct.
  doi: 10.1007/BF02479635
– start-page: 85
  year: 1986
  ident: 10.1016/j.conbuildmat.2018.08.197_b0150
  article-title: On the distribution of chloride between the hardening cement paste and its pore solution
  publication-title: 8th Int’l Cong. Chem. Cement
– volume: 17
  start-page: 285
  issue: 4
  year: 1984
  ident: 10.1016/j.conbuildmat.2018.08.197_b0180
  article-title: Free and combined chloride in hydrating cement and cement components
  publication-title: Mater. Struct.
– volume: 139
  start-page: 490
  year: 2017
  ident: 10.1016/j.conbuildmat.2018.08.197_b0015
  article-title: A probabilistic framework to justify allowable admixed chloride limits in concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.02.053
– volume: 110
  start-page: 369
  year: 2016
  ident: 10.1016/j.conbuildmat.2018.08.197_b0215
  article-title: Combined effect of carbonation and chloride ingress in concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.02.034
– ident: 10.1016/j.conbuildmat.2018.08.197_b0010
– volume: 2016
  year: 2016
  ident: 10.1016/j.conbuildmat.2018.08.197_b0160
  article-title: The influence of C3A content in cement on the chloride transport
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2016/5962821
– volume: 23
  start-page: 247
  issue: 2
  year: 1993
  ident: 10.1016/j.conbuildmat.2018.08.197_b0095
  article-title: Chloride binding capacity and binding isotherms of OPC pastes and mortars
  publication-title: Cem. Concr. Res.
  doi: 10.1016/0008-8846(93)90089-R
– volume: 6
  start-page: 28
  issue: 1
  year: 1997
  ident: 10.1016/j.conbuildmat.2018.08.197_b0245
  article-title: Chloride binding capacity of various hydrated cement paste systems
  publication-title: Adv. Cem. Based Mater.
  doi: 10.1016/S1065-7355(97)90003-1
– volume: 144
  issue: 5
  year: 2017
  ident: 10.1016/j.conbuildmat.2018.08.197_b0020
  article-title: Influence of alkali-silica reaction reactivity on corrosion in reinforced concrete
  publication-title: ACI Mater. J.
– volume: 42
  start-page: 1207
  issue: 9
  year: 2012
  ident: 10.1016/j.conbuildmat.2018.08.197_b0190
  article-title: Prediction of chloride binding isotherms of cementitious materials by analytical model or numerical inverse analysis
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2012.05.008
– volume: 95
  start-page: 205
  year: 2017
  ident: 10.1016/j.conbuildmat.2018.08.197_b0240
  article-title: Role of calcium on chloride binding in hydrated Portland cement–metakaolin–limestone blends
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2017.02.003
– ident: 10.1016/j.conbuildmat.2018.08.197_b0295
– ident: 10.1016/j.conbuildmat.2018.08.197_b0140
– volume: 45
  start-page: 53
  year: 2013
  ident: 10.1016/j.conbuildmat.2018.08.197_b0065
  article-title: Releases of bound chlorides from chloride-admixed plain and blended cement pastes subjected to sulfate attacks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.03.068
– volume: 125
  start-page: 369
  year: 2016
  ident: 10.1016/j.conbuildmat.2018.08.197_b0260
  article-title: Influence of surfactants on chloride binding in cement paste
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.08.075
– volume: 24
  start-page: 243
  issue: 4
  year: 1991
  ident: 10.1016/j.conbuildmat.2018.08.197_b0270
  article-title: Investigations of reinforcement corrosion. 1. The pore electrolyte phase in chloride-contaminated concrete
  publication-title: Mater. Struct.
  doi: 10.1007/BF02472078
– volume: 3
  start-page: 77
  issue: 1
  year: 2005
  ident: 10.1016/j.conbuildmat.2018.08.197_b0070
  article-title: Chloride binding of cement estimated by binding isotherms of hydrates
  publication-title: J. Adv. Concr. Technol.
  doi: 10.3151/jact.3.77
– volume: 68
  start-page: 353
  issue: 7
  year: 2016
  ident: 10.1016/j.conbuildmat.2018.08.197_b0060
  article-title: Effect of carbonation on release of bound chlorides in chloride-contaminated concrete
  publication-title: Mag. Concr. Res.
  doi: 10.1680/jmacr.15.00234
– volume: 153
  start-page: 647
  year: 2017
  ident: 10.1016/j.conbuildmat.2018.08.197_b0025
  article-title: Synergistic effects of ASR and fly ash on the corrosion characteristics of RC systems
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.07.097
– volume: 42
  start-page: 282
  issue: 2
  year: 2012
  ident: 10.1016/j.conbuildmat.2018.08.197_b0085
  article-title: Chloride binding related to hydration products: part I: ordinary Portland cement
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2011.09.016
– ident: 10.1016/j.conbuildmat.2018.08.197_b0030
  doi: 10.4324/9781315142074-21
– volume: 25
  start-page: 581
  issue: 3
  year: 1995
  ident: 10.1016/j.conbuildmat.2018.08.197_b0170
  article-title: The binding of chloride ions by sulphate resistant Portland cement
  publication-title: Cem. Concr. Res.
  doi: 10.1016/0008-8846(95)00047-G
– volume: 35
  start-page: 583
  year: 2002
  ident: 10.1016/j.conbuildmat.2018.08.197_b0130
  article-title: 178-TMC. Analysis of chloride content in concrete
  publication-title: Mater. Struct.
  doi: 10.1617/13840
– volume: 17
  start-page: 907
  issue: 6
  year: 1987
  ident: 10.1016/j.conbuildmat.2018.08.197_b0105
  article-title: Assessment of simple methods of determining the free chloride ion content of cement paste
  publication-title: Cem. Concr. Res.
  doi: 10.1016/0008-8846(87)90079-2
– ident: 10.1016/j.conbuildmat.2018.08.197_b0285
– volume: 84
  start-page: 99
  year: 2017
  ident: 10.1016/j.conbuildmat.2018.08.197_b0005
  article-title: A time-variant model of surface chloride build-up for improved service life predictions
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2017.08.008
SSID ssj0006262
Score 2.3841486
Snippet •Binding behavior of admixed chlorides in various cementitious systems are studied.•Free chlorides were measured using water-soluble and pore press testing...
SourceID gale
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 157
SubjectTerms Admixed chlorides
Analysis
Building materials durability
Cements (Building materials)
Chemical properties
Chloride binding
Chlorides
Concrete durability
Corrosion
Corrosion (Chemistry)
Educational assessment
Mechanical properties
Reinforced concrete
Silicon dioxide
Steel corrosion
Title Development of empirical models for chloride binding in cementitious systems containing admixed chlorides
URI https://dx.doi.org/10.1016/j.conbuildmat.2018.08.197
Volume 189
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7CBkp7KH3STdOgQpue3LVleSVBL0to2HZpDnnQ3IQsy6lLslnqXeipvz0zspzsQg6BXmxsj8AaPWZGfPMNwIeiTnMtcCHh-IpE1N4mqpLjxKtSyNw6XgXi-R9H4-mZ-H5enG_BQZ8LQ7DKuPd3e3rYreObUdTmaNE0oxN0DsgAK5qUWS5oHxZC0iz__O8O5oEOO-_49qjASqYewfs7jBeGnCVVn0bnkFBeitg8M-J_ut9GDXrAXDQ_h8_gafQb2aT7teew5ecv4Mkam-BLaNYAQOy6Zv5q0QQCEBbK3bQM_VPmfhHkrvKsbEI-C2vmzIUjQsJurVrWUTu3jDDsXfUIZqur5q-vbtu2r-Ds8OvpwTSJlRQSV6R8mWhe6lp5WTs0TtZyiVGbpmxyO9bS-dpKXQmnqmycelsWufYK4zCprFDOCV_kr2Ewv577N8BqodGieZTQAtVNjHZcYsyUuZoXOXdDUL3ujIs041Tt4tL0eLLfZk3thtRuUmVQ7UPgt00XHdfGQxp96QfIbEwcgzbhIc0_0qCaWPITLy0dirQXdtW2ZoLuLg8cPUP4FORo2WN3nI3ZC6gUItDakNzfkLzo6MPvE9zdEMR17dY-7_xfx97CY3qitEme7sJg-Wfl36H_tCz3wgLZg-3Jt9n0iO6z45-zG1sZHpE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED5KCt32MNZ1Y1nbVYN2ezKxZTmSYC-hrKS_8tIW-iZkWe481jTMCezP750tpwn0obAXP1h3YJ-ku5P47juAw6yMUy1wI-H8ikiU3kaqkMPIq1zI1DpeNMTzl5Ph-Eac3Wa3G3Dc1cIQrDL4_tanN946vBkEaw5mVTW4wuSAArCiRZmkAv3wJrFTZT3YHJ2ejydLh4w5O28p96jHSqK24OsTzAtPnTk1oMb8kIBeigg9E6KAej5M9TrMXIhAJ-_gbUgd2aj9um3Y8NP38GaFUHAHqhUMEHsomb-fVQ0HCGs63tQMU1TmfhHqrvAsr5qSFlZNmWtuCQm-tahZy-5cM4Kxtw0kmC3uq3--WOrWH-Dm5Of18TgKzRQil8V8Hmme61J5WTqMT9ZyiQc3TQXldqil86WVuhBOFckw9jbPUu0VHsWkskI5J3yWfoTe9GHqPwErhcag5lFCCyEkkdpxicemxJU8S7nrg-psZ1xgGqeGF39MByn7bVbMbsjsJlYGzd4HvlSdtXQbL1H60U2QWVs7BsPCS9SPaFJN6PqJj5ruReo7u6hrM8KMlzc0PX343sjRzsffcTYUMKBRiENrTfLbmuRdyyD-nODemiBubbcy_Pn_fuwAXo2vLy_MxenkfBde0whVUfJ4D3rzvwu_j-nUPP8StssjF2Afnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+empirical+models+for+chloride+binding+in+cementitious+systems+containing+admixed+chlorides&rft.jtitle=Construction+%26+building+materials&rft.au=Trejo%2C+David&rft.au=Shakouri%2C+Mahmoud&rft.au=Vaddey%2C+Naga+Pavan&rft.au=Isgor%2C+O.+Burkan&rft.date=2018-11-20&rft.pub=Elsevier+Ltd&rft.issn=0950-0618&rft.eissn=1879-0526&rft.volume=189&rft.spage=157&rft.epage=169&rft_id=info:doi/10.1016%2Fj.conbuildmat.2018.08.197&rft.externalDocID=S0950061818321342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon