Influence of Temperature in the Early-age Elastic Modulus Evolution of Cement Pastes and Concrete

The influence of temperature on the hydration of cementitious materials has been traditionally modelled using the maturity concept and Arrhenius law. This approach yields a single material property, called apparent activation energy (Ea), that describes the whole temperature dependence. Determining...

Full description

Saved in:
Bibliographic Details
Published inJournal of Advanced Concrete Technology Vol. 21; no. 10; pp. 803 - 820
Main Authors Granja, José, Ribeiro, Renan Rocha, Russo, Thomas, Lameiras, Rodrigo, Azenha, Miguel
Format Journal Article
LanguageEnglish
Published Tokyo Japan Concrete Institute 26.10.2023
Japan Concrete Institute (JCI)
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The influence of temperature on the hydration of cementitious materials has been traditionally modelled using the maturity concept and Arrhenius law. This approach yields a single material property, called apparent activation energy (Ea), that describes the whole temperature dependence. Determining Ea experimentally has sparked controversy, such as whether the different properties (e.g., compressive strength, tensile strength, E-modulus) exhibit different Ea, whether a single Ea value exists for the entire hydration process, or whether cement paste and concrete possess the same Ea. Furthermore, studies measuring Ea from elastic modulus measurements are truly scarce, likely due to experimental challenges with measuring this property at early-ages. This work investigated the influence of temperature on the elastic modulus evolution of cement paste and concrete. A single mix for each material was tested with the EMM-ARM (Elasticity Modulus Measurement through Ambient Response Method) methodology under three different isothermal conditions. The resulting elastic modulus evolution curves were used to derive Ea evolution curves from two traditional computation methods: the ‘speed’ method and the ‘derivative of speed’ method. Results showed that the elastic modulus evolution of both materials initially presented a constant Ea, independent of temperature and hydration development as preconized by the classical Arrhenius law. However, as hydration progressed to later stages, the activation energy exhibited evident dependencies on both temperature and hydration levels. Cement paste and concrete consistently exhibited different Ea values throughout hydration, with concrete having higher values. The use of the Ea curves to superimpose the different experimental elastic modulus evolution curves by means of the equivalent age concept led to near-perfect superpositions, strengthening the validity of this concept when applied to elastic modulus evolution.
AbstractList The influence of temperature on the hydration of cementitious materials has been traditionally modelled using the maturity concept and Arrhenius law. This approach yields a single material property, called apparent activation energy (Ea), that describes the whole temperature dependence. Determining Ea experimentally has sparked controversy, such as whether the different properties (e.g., compressive strength, tensile strength, E-modulus) exhibit different Ea, whether a single Ea value exists for the entire hydration process, or whether cement paste and concrete possess the same Ea. Furthermore, studies measuring Ea from elastic modulus measurements are truly scarce, likely due to experimental challenges with measuring this property at early-ages. This work investigated the influence of temperature on the elastic modulus evolution of cement paste and concrete. A single mix for each material was tested with the EMM-ARM (Elasticity Modulus Measurement through Ambient Response Method) methodology under three different isothermal conditions. The resulting elastic modulus evolution curves were used to derive Ea evolution curves from two traditional computation methods: the ‘speed’ method and the ‘derivative of speed’ method. Results showed that the elastic modulus evolution of both materials initially presented a constant Ea, independent of temperature and hydration development as preconized by the classical Arrhenius law. However, as hydration progressed to later stages, the activation energy exhibited evident dependencies on both temperature and hydration levels. Cement paste and concrete consistently exhibited different Ea values throughout hydration, with concrete having higher values. The use of the Ea curves to superimpose the different experimental elastic modulus evolution curves by means of the equivalent age concept led to near-perfect superpositions, strengthening the validity of this concept when applied to elastic modulus evolution.
The influence of temperature on the hydration of cementitious materials has been traditionally modelled using the maturity concept and Arrhenius law. This approach yields a single material property, called apparent activation energy (Ea), that describes the whole temperature dependence. Determining Ea experimentally has sparked controversy, such as whether the different properties (e.g., compressive strength, tensile strength, E-modulus) exhibit different Ea, whether a single Ea value exists for the entire hydration process, or whether cement paste and concrete possess the same Ea. Furthermore, studies measuring Ea from elastic modulus measurements are truly scarce, likely due to experimental challenges with measuring this property at early-ages. This work investigated the influence of temperature on the elastic modulus evolution of cement paste and concrete. A single mix for each material was tested with the EMM-ARM (Elasticity Modulus Measurement through Ambient Response Method) methodology under three different isothermal conditions. The resulting elastic modulus evolution curves were used to derive Ea evolution curves from two traditional computation methods: the ‘speed’ method and the ‘derivative of speed’ method. Results showed that the elastic modulus evolution of both materials initially presented a constant Ea, independent of temperature and hydration development as preconized by the classical Arrhenius law. However, as hydration progressed to later stages, the activation energy exhibited evident dependencies on both temperature and hydration levels. Cement paste and concrete consistently exhibited different Ea values throughout hydration, with concrete having higher values. The use of the Ea curves to superimpose the different experimental elastic modulus evolution curves by means of the equivalent age concept led to near-perfect superpositions, strengthening the validity of this concept when applied to elastic modulus evolution. This work was partly financed by FCT/MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), under reference UIDB/04029/2020, and under the Associate Laboratory Advanced Production and Intelligent Systems ARISE under reference LA/P/0112/2020. This work is financed by national funds through FCT - Foundation for Science and Technology, under grant agreement UI/BD/153378/2022 attributed to the second author.
Author Azenha, Miguel
Granja, José
Russo, Thomas
Lameiras, Rodrigo
Ribeiro, Renan Rocha
Author_xml – sequence: 1
  fullname: Granja, José
  organization: Department of Civil Engineering, University of Minho, ISISE, ARISE, Guimarães, Portugal
– sequence: 2
  fullname: Ribeiro, Renan Rocha
  organization: Department of Civil Engineering, University of Minho, ISISE, ARISE, Guimarães, Portugal
– sequence: 3
  fullname: Russo, Thomas
  organization: Department of Civil Engineering, University of Minho, ISISE, ARISE, Guimarães, Portugal
– sequence: 4
  fullname: Lameiras, Rodrigo
  organization: Department of Civil and Environmental Engineering, Brasília, Brazil
– sequence: 5
  fullname: Azenha, Miguel
  organization: Department of Civil Engineering, Structural Division, University of Minho, Guimarães, Portugal
BookMark eNo9kE1LAzEQhoMo-HnyDwQ8ytZ8bDfZk0ipH6DoQc9hmk50yzapSVbovzd1pad5YZ55Bt5TcuiDR0IuOZtIPuU3K7B5IvhEM3lATrisVSVbLg__clNpxutjcprSijGppFInBJ686wf0Fmlw9B3XG4yQh4i08zR_IZ1D7LcVfJbUQ8qdpS9hOfRDovOf0A-5C353OcM1-kzfCoKJgl_SWfA2YsZzcuSgT3jxP8_Ix_38ffZYPb8-PM3unis7ZSJXGphaOlwobqdWSO0WzUKoVsvacssaJlAAstotlRPAXNvyBSKTXFslZA1MnpGr0buJ4XvAlM0qDNGXl0Zo3eppcTSFuh4pG0NKEZ3ZxG4NcWs4M7sOza5DI7gpHRaajnS0ABsT8adLGZLhWgijdSN2yO2IrMrmE_c6iKWrHve6oh-l-439gmjQy19fq4f9
CitedBy_id crossref_primary_10_3151_jact_22_14
Cites_doi 10.1016/0008-8846(92)90141-H
10.1680/macr.1951.2.6.127
10.1617/s11527-019-1319-z
10.1038/s41586-020-2649-2
10.1016/j.conbuildmat.2003.10.002
10.1111/str.12172
10.1038/s41592-019-0686-2
10.1680/jmacr.16.00268
10.1016/j.cscm.2018.e00183
10.1016/j.compositesb.2015.11.034
10.1016/j.cemconres.2010.09.011
10.1016/j.conbuildmat.2016.02.019
10.1520/ACEM20120011
10.1016/S0008-8846(02)00800-1
10.1016/j.trgeo.2018.09.013
10.1002/9783433604090
10.1007/BF02473733
10.1680/macr.1955.7.20.103
10.6028/NIST.IR.4819
10.1016/j.jobe.2022.105434
10.1016/j.cemconcomp.2016.07.003
10.1061/40558(2001)17
10.14359/18499
10.1016/j.cemconres.2022.106776
10.1016/j.cemconres.2010.02.014
10.1016/j.ijadhadh.2015.02.005
10.1016/j.cemconres.2011.03.008
10.1617/2912143705.011
10.1016/S0008-8846(02)00791-3
10.1115/1.1410370
10.1016/S0008-8846(99)00021-6
10.14359/14246
10.14359/12990
10.1617/2912143632.015
10.1680/geot.13.P.021
10.1111/str.12232
10.1016/S0008-8846(99)00250-1
10.1016/j.cemconres.2004.10.027
10.1061/(ASCE)MT.1943-5533.0000345
10.1617/s11527-011-9750-9
10.14359/2403
10.1016/j.cemconcomp.2012.03.001
10.1016/j.cemconres.2008.08.001
10.1016/j.conbuildmat.2020.118542
ContentType Journal Article
Copyright 2023 by Japan Concrete Institute
Copyright Japan Science and Technology Agency 2023
Copyright_xml – notice: 2023 by Japan Concrete Institute
– notice: Copyright Japan Science and Technology Agency 2023
DBID RCLKO
AAYXX
CITATION
7QQ
7SR
8BQ
8FD
FR3
JG9
KR7
DOI 10.3151/jact.21.803
DatabaseName RCAAP open access repository
CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Ceramic Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DissertationSchool Universidade do Minho
EISSN 1347-3913
EndPage 820
ExternalDocumentID 10_3151_jact_21_803
1822_88623
article_jact_21_10_21_803_article_char_en
GroupedDBID 5GY
ACIWK
ADDVE
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
JSF
JSH
KQ8
OK1
P2P
RJT
RZJ
RCLKO
AAYXX
CITATION
7QQ
7SR
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c502t-8a07dfeb71c5c238fb6b279834c1c0602e2ae04fd7f2a0f991bee0318c7234a03
ISSN 1346-8014
IngestDate Thu Oct 10 17:24:51 EDT 2024
Fri Aug 23 00:45:49 EDT 2024
Fri Nov 08 15:39:33 EST 2024
Thu Nov 09 14:00:39 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c502t-8a07dfeb71c5c238fb6b279834c1c0602e2ae04fd7f2a0f991bee0318c7234a03
OpenAccessLink https://www.jstage.jst.go.jp/article/jact/21/10/21_803/_article/-char/en
PQID 2889856026
PQPubID 1996343
PageCount 18
ParticipantIDs proquest_journals_2889856026
crossref_primary_10_3151_jact_21_803
rcaap_revistas_1822_88623
jstage_primary_article_jact_21_10_21_803_article_char_en
PublicationCentury 2000
PublicationDate 2023-10-26
PublicationDateYYYYMMDD 2023-10-26
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-26
  day: 26
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of Advanced Concrete Technology
PublicationTitleAlternate ACT
PublicationYear 2023
Publisher Japan Concrete Institute
Japan Concrete Institute (JCI)
Japan Science and Technology Agency
Publisher_xml – name: Japan Concrete Institute
– name: Japan Concrete Institute (JCI)
– name: Japan Science and Technology Agency
References 22) fib, (2013). “fib model code for concrete structures 2010.” Lausanne, Switzerland: Fédération Internationale du Béton (fib).
44) Reinhardt, H. W. and Grosse, C. U., (2004). “Continuous monitoring of setting and hardening of mortar and concrete.” Construction and Building Materials, 18(3), 145-154.
2) ASTM, (2004). “Standard practice for estimating concrete strength by the maturity method (ASTM C 1074-04).” West Conshohocken, Pennsylvania: ASTM International.
46) Saul, A. G. A., (1951). “Principles underlying the steam curing of concrete at atmospheric pressure.” Magazine of Concrete Research, 2(6), 127-140.
41) Ramesh, M., Azenha, M. and Lourenço, P. B., (2019). “Mechanical properties of lime-cement masonry mortars in their early ages.” Materials and Structures, 52(1), 1-14.
56) Turcry, P., Loukili, A., Barcelo, L. and Casabonne, J. M., (2002). “Can the maturity concept be used to separate the autogenous shrinkage and thermal deformation of a cement paste at early age?” Cement and Concrete Research, 32(9), 1443-1450.
48) Schindler, A. K. and Folliard, K. J., (2005). “Heat of hydration models for cementitious materials.” Materials Journal, 102(1), 24-33.
34) Maia, L., Azenha, M., Faria, R. and Figueiras, J., (2012). “Identification of the percolation threshold in cementitious pastes by monitoring the E-modulus evolution.” Cement and Concrete Composites, 34(6), 739-745.
16) CEN, (2014). “Testing hardened concrete - Part 13: Determination of secant modulus of elasticity in compression (EN 12390-13:2014).” Brussels: European Committee for Standardization (CEN).
10) Carette, J. and Staquet, S., (2016a). “Monitoring and modelling the early age and hardening behaviour of eco-concrete through continuous non-destructive measurements: Part II. Mechanical behaviour.” Cement and Concrete Composites, 73, 1-19.
19) D’Aloia, A., (2005). “Early age kinetics: Activation energy, maturity and equivalent age.” In: A. Bentur, Ed. Early Age Cracking in Cementitious Systems - Report of RILEM Technical Committee 181-EAS - Early age shrinkage induced stresses and cracking in cementitious systems. Bagneux: RILEM Publications SARL, 127-148.
23) Freiesleben Hansen, P. and Pedersen, J., (1977). “Maturity computer for controlled curing and hardening of concrete.” Nordisk Betong, 21, 19-34.
57) van Breugel, K., (1997). “Simulation of hydration and formation of structure in hardening cement-based materials.” 2nd ed. Delft: Delft University Press.
30) Kada-Benameur, H., Wirquin, E. and Duthoit, B., (2000). “Determination of apparent activation energy of concrete by isothermal calorimetry.” Cement and Concrete Research, 30(2), 301-305.
29) Jensen, O. M. and Hansen, P. F., (1999). “Influence of temperature on autogenous deformation and relative humidity change in hardening cement paste.” Cement and Concrete Research, 29(4), 567-575.
5) Azenha, M., Magalhães, F., Faria, R. and Cunha, Á., (2010). “Measurement of concrete E-modulus evolution since casting: A novel method based on ambient vibration.” Cement and Concrete Research, 40(7), 1096-1105.
38) Peeters, B. and de Roeck, G., (2001). “Stochastic system identification for operational modal analysis: A review.” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 123(4), 659-667.
3) Atkins, P. and de Paula, J., (2006). “Atkins’ physical chemistry.” 8th ed. New York: W. H. Freeman and Company.
47) Schindler, A. K., (2004). “Effect of temperature on hydration of cementitious materials.” ACI Materials Journal, 101(1), 72-81.
28) Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C. and Oliphant, T. E., (2020). “Array programming with NumPy.” Nature, 585, 357-362.
31) Kanavaris, F., Soutsos, M. and Chen, J. F., (2023). “Enabling sustainable rapid construction with high volume GGBS concrete through elevated temperature curing and maturity testing.” Journal of Building Engineering, 63A, 105434.
42) Rastrup, E. and Handcock, M. G., (1955). “Heat of hydration in concrete.” Magazine of Concrete Research, 7(20), 103-105.
50) Siddiqui, S. and Riding, K. A., (2012). “Effect of calculation methods on cement paste and mortar apparent activation energy.” Advances in Civil Engineering Materials, 1(1), 0019.
18) COST Action, (2016). “RRT+ - Main phase of the extended robin testing programme for TU1404 - Testing protocols [online].” Brussels, European Cooperation in Science and Technology. Available from: <https://www.tu1404.eu/wp-content/uploads/2017/12/RRT-Main-phase_Protocols_06112017.pdf>.
52) Silva, J., Azenha, M., Gomes Correia, A. and François, B., (2018). “Two-staged kinetics of moduli evolution with time of a lime treated soil under different curing temperatures.” Transportation Geotechnics, 17(A), 133-140.
21) Delsaute, B., Boulay, C., Granja, J., Carette, J., Azenha, M., Dumoulin, C., Karaiskos, G., Deraemaeker, A. and Staquet, S., (2016). “Testing concrete E-modulus at very early ages through several techniques: An inter-laboratory comparison.” Strain, 52(2), 91-109.
17) CIC, (2021). “Reference materials on maturity method for estimation of concrete strength - Practical Guideline.” Hong Kong: Construction Industry Council (CIC).
27) Han, N., (2005). “Maturity method.” In: H. W. Reinhardt and C. Grosse, Eds. Advanced Testing of Cement-Based Materials during Setting and Hardening - Final Report of RILEM TC 185-ATC. Bagneux: RILEM Publications SARL, 277-296.
33) Maia, L., Azenha, M., Faria, R. and Figueiras, J., (2011). “Influence of the cementitious paste composition on the E-modulus and heat of hydration evolutions.” Cement and Concrete Research, 41(8), 799-807.
53) Soutsos, M., Hatzitheodorou, A., Kanavaris, F. and Kwasny, J., (2017). “Effect of temperature on the strength development of mortar mixes with GGBS and fly ash.” Magazine of Concrete Research, 69(15), 787-801.
20) D’Aloia, L. and Chanvillard, G., (2002). “Determining the ‘apparent’ activation energy of concrete: Ea - Numerical simulations of the heat of hydration of cement.” Cement and Concrete Research, 32(8), 1277-1289.
37) Pang, X., Sun, L., Chen, M., Xian, M., Cheng, G., Liu, Y. and Qin, J., (2022). “Influence of curing temperature on the hydration and strength development of Class G Portland cement.” Cement and Concrete Research, 156, 106776.
49) Serdar, M., Staquet, S., Schlicke, D., Rozière, E., Azenha, M., Nanukuttan, S., Gabrijel, I., Cizer, Ö., Bokan Bosiljkov, V. and Šajna, A., (2020). “Practice on creating a common reference concrete for round robin testing programmes based on the experience from COST Action TU1404.” Construction and Building Materials, 247, 118542.
54) Soutsos, M., Kanavaris, F. and Hatzitheodorou, A., (2018). “Critical analysis of strength estimates from maturity functions.” Case Studies in Construction Materials, 9, e00183.
15) CEN, (2011). “Cement Part 1: Composition, specifications and conformity criteria for common cements (EN 197-1:2011).” Brussels: European Committee for Standardization (CEN).
1) AENOR, (2016). “Determinación de la resistencia del hormigón a edades tempranas - Parte 1: Métodos aplicables (UNE 83160-1:2016).” Madrid: Spanish Association for Standardization and Certification (AENOR). (in Spanish
25) Granja, J. and Azenha, M., (2017). “Towards a robust and versatile method for monitoring E-modulus of concrete since casting: Enhancements and extensions of EMM-ARM.” Strain, 53(4), 1-19.
7) Benedetti, A., Fernandes, P., Granja, J., Sena-Cruz, J. and Azenha, M., (2016). “Influence of temperature on the curing of an epoxy adhesive and its influence on bond behaviour of NSM-CFRP systems.” Composites Part B: Engineering, 89, 219-229.
11) Carette, J. and Staquet, S., (2016b). “Monitoring the setting process of eco-binders by ultrasonic P-wave and S-wave transmission velocity measurement: Mortar vs concrete.” Construction and Building Materials, 110, 32-41.
26) Granja, J., Fernandes, P., Benedetti, A., Azenha, M. and Sena-Cruz, J., (2015). “Monitoring the early stiffness development in epoxy adhesives for structural strengthening.” International Journal of Adhesion and Adhesives, 59, 77-85.
45) Rocha Ribeiro, R., (2023). “activationEnergy_EMMARM [online].” GitHub, San Francisco, California. Available from: <https://github.com/renr3/activationEnergy-EMMARM >(Accessed: 12 June 2023).
4) Azenha, M., Faria, R., Magalhães, F., Ramos, L. and Cunha, Á., (2012). “Measurement of the E-modulus of cement pastes and mortars since casting, using a vibration based technique.” Materials and Structures, 45(1-2), 81-92.
35) Neville, A. M., (2011). “Properties of concrete.” London: Pearson Education PLC.
12) Carino, N. J., Knab, L. I. and Clifton, J. R., (1992). “Applicability of the maturity method to high-performance concrete (NISTIR-4819).” Gaithersburg, Maryland: National Institute of Standards and Technology.
6) Bastgen, K. J. and Hermann, V., (1977). “Experience made in determining the static modulus of elasticity of concrete.” Materials and Structures, 10(6), 357-364.
13) Carino, N. J. and Lew, H. S., (2004). “The maturity method: From theory to application.” In: P. C. Chang, Ed. Proc. 2001 Structures Congress and Exposition, Washington DC 21-23 May 2001. Reston, Virginia: American Society of Civil Engineers, 1-19.
51) Silva, J., Azenha, M., Correia, A. G. and Ferreira, C., (2013). “Continuous stiffness assessment of cement-stabilised soils from early age.” Geotechnique, 63(16), 1419-1432.
55) Tank, R. C. and Carino, N. J., (1991). “Rate constant functions for strength development of concrete.” ACI Materials Journal, 88(1), 74-83.
36) Pane, I. and Hansen, W., (2005). “Investigation of blended cement hydration by isothermal calorimetry and thermal analysis.” Cement and Concrete Research, 35(6), 1155-1164.
58) Virtanen, P., Gommers, R., Oliphan
44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
57
14
58
15
59
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – ident: 2
– ident: 32
  doi: 10.1016/0008-8846(92)90141-H
– ident: 46
  doi: 10.1680/macr.1951.2.6.127
– ident: 41
  doi: 10.1617/s11527-019-1319-z
– ident: 28
  doi: 10.1038/s41586-020-2649-2
– ident: 44
  doi: 10.1016/j.conbuildmat.2003.10.002
– ident: 21
  doi: 10.1111/str.12172
– ident: 58
  doi: 10.1038/s41592-019-0686-2
– ident: 35
– ident: 53
  doi: 10.1680/jmacr.16.00268
– ident: 54
  doi: 10.1016/j.cscm.2018.e00183
– ident: 16
– ident: 7
  doi: 10.1016/j.compositesb.2015.11.034
– ident: 8
  doi: 10.1016/j.cemconres.2010.09.011
– ident: 11
  doi: 10.1016/j.conbuildmat.2016.02.019
– ident: 9
– ident: 50
  doi: 10.1520/ACEM20120011
– ident: 45
– ident: 56
  doi: 10.1016/S0008-8846(02)00800-1
– ident: 52
  doi: 10.1016/j.trgeo.2018.09.013
– ident: 17
– ident: 22
  doi: 10.1002/9783433604090
– ident: 6
  doi: 10.1007/BF02473733
– ident: 42
  doi: 10.1680/macr.1955.7.20.103
– ident: 1
– ident: 12
  doi: 10.6028/NIST.IR.4819
– ident: 31
  doi: 10.1016/j.jobe.2022.105434
– ident: 10
  doi: 10.1016/j.cemconcomp.2016.07.003
– ident: 13
  doi: 10.1061/40558(2001)17
– ident: 39
  doi: 10.14359/18499
– ident: 37
  doi: 10.1016/j.cemconres.2022.106776
– ident: 5
  doi: 10.1016/j.cemconres.2010.02.014
– ident: 26
  doi: 10.1016/j.ijadhadh.2015.02.005
– ident: 33
  doi: 10.1016/j.cemconres.2011.03.008
– ident: 27
  doi: 10.1617/2912143705.011
– ident: 20
  doi: 10.1016/S0008-8846(02)00791-3
– ident: 23
– ident: 38
  doi: 10.1115/1.1410370
– ident: 18
– ident: 43
– ident: 29
  doi: 10.1016/S0008-8846(99)00021-6
– ident: 48
  doi: 10.14359/14246
– ident: 14
– ident: 57
– ident: 47
  doi: 10.14359/12990
– ident: 24
– ident: 19
  doi: 10.1617/2912143632.015
– ident: 51
  doi: 10.1680/geot.13.P.021
– ident: 25
  doi: 10.1111/str.12232
– ident: 3
– ident: 30
  doi: 10.1016/S0008-8846(99)00250-1
– ident: 36
  doi: 10.1016/j.cemconres.2004.10.027
– ident: 40
  doi: 10.1061/(ASCE)MT.1943-5533.0000345
– ident: 4
  doi: 10.1617/s11527-011-9750-9
– ident: 15
– ident: 55
  doi: 10.14359/2403
– ident: 34
  doi: 10.1016/j.cemconcomp.2012.03.001
– ident: 59
  doi: 10.1016/j.cemconres.2008.08.001
– ident: 49
  doi: 10.1016/j.conbuildmat.2020.118542
SSID ssj0037377
Score 2.3620865
Snippet The influence of temperature on the hydration of cementitious materials has been traditionally modelled using the maturity concept and Arrhenius law. This...
SourceID proquest
crossref
rcaap
jstage
SourceType Aggregation Database
Publisher
StartPage 803
SubjectTerms Activation energy
Cement
Cement paste
Compressive strength
Concrete
Evolution
Hydration
Material properties
Modulus of elasticity
Temperature dependence
Tensile strength
Title Influence of Temperature in the Early-age Elastic Modulus Evolution of Cement Pastes and Concrete
URI https://www.jstage.jst.go.jp/article/jact/21/10/21_803/_article/-char/en
http://hdl.handle.net/1822/88623
https://www.proquest.com/docview/2889856026
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Advanced Concrete Technology, 2023/10/26, Vol.21(10), pp.803-820
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKxgEOiE8RGMiH3aoU13G-jtPUMWAbYkql3izbcbZOKJnahAP_Bf8xz3HipDAh4BJViZ2k7_3y_LPfhxE6DGhYFHNT-VEL4TM1D_00zGNfhAUM2FrQNDK5w-cX0emSfVyFq8nkxyhqqanlTH2_M6_kf7QK50CvJkv2HzTrbgon4DfoF46gYTj-lY4_9DuMGMqXaWDAtkJyH7zYVi_2TVTOAkiyKc16XuXN12Y7XXzrXqwNx2iXCIFMbs0irFlJP65KYJP1bpjQQF1d4IDq2k3r31bo38MgeCM6J4N1xzvnji6N46BS12J6uZZ6vancpQZE9kvgki0LCa1s7tlllW_WV9V4uYK2gW82J94OJUABBrtl_tHgQpgetemmI2scMFMt2WaZznR_DqxiahNYexNuk6x7qJK7hoYAqE27JYGqZ3Q-S0gwjIC91__iMz9Znp3xbLHK7qF9CrbLGM1PX5xjKoiDdjNP92Y25dPc_N3o1jsk5_4N8PwrvTOF2d8oIW5HTCZ7jB51esRHFk9P0ESXT9HDUWHKZ0g4ZOGqwCNk4XWJAVnYIQt3yMIdsrBDlulpkYUtsjDoAffIeo6WJ4vs-NTvNuPwVUho7SeCxHmhZTxXoQKeV8hIgoCSAL5vRSJCNRWasCKPCypIAdMOqbUZMVRMAyZI8ALtlVWpXyIMnLOgLFIyjgnTSZ4wSVUasZAQCRN65qHDXnr81tZc4TBXNULmRsiczjkI2UOJlaxr1H2IrhF0sk3dFZPKCJbDQwe9Lnj3PW85TZI0Cc2WbB7yWv1wE2kPj9hymIVTnsDsP3j1566v0YMB9Qdor940-g3Q1lq-bYH0E5mRnSs
link.rule.ids 315,783,787,27936,27937
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Temperature+in+the+Early-age+Elastic+Modulus+Evolution+of+Cement+Pastes+and+Concrete&rft.jtitle=Journal+of+advanced+concrete+technology&rft.au=Granja%2C+Jos%C3%A9&rft.au=Renan+Rocha+Ribeiro&rft.au=Russo%2C+Thomas&rft.au=Lameiras%2C+Rodrigo&rft.date=2023-10-26&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1346-8014&rft.eissn=1347-3913&rft.volume=21&rft.issue=10&rft_id=info:doi/10.3151%2Fjact.21.803&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-8014&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-8014&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-8014&client=summon