Renal Purge of Hemolymphatic Lipids Prevents the Accumulation of ROS-Induced Inflammatory Oxidized Lipids and Protects Drosophila from Tissue Damage

Animals require complex metabolic and physiological adaptations to maintain the function of vital organs in response to environmental stresses and infection. Here, we found that infection or injury in Drosophila induced the excretion of hemolymphatic lipids by Malpighian tubules, the insect kidney....

Full description

Saved in:
Bibliographic Details
Published inImmunity (Cambridge, Mass.) Vol. 52; no. 2; pp. 374 - 387.e6
Main Authors Li, Xiaoxue, Rommelaere, Samuel, Kondo, Shu, Lemaitre, Bruno
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 18.02.2020
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Animals require complex metabolic and physiological adaptations to maintain the function of vital organs in response to environmental stresses and infection. Here, we found that infection or injury in Drosophila induced the excretion of hemolymphatic lipids by Malpighian tubules, the insect kidney. This lipid purge was mediated by a stress-induced lipid-binding protein, Materazzi, which was enriched in Malpighian tubules. Flies lacking materazzi had higher hemolymph concentrations of reactive oxygen species (ROS) and increased lipid peroxidation. These flies also displayed Malpighian tubule dysfunction and were susceptible to infections and environmental stress. Feeding flies with antioxidants rescued the materazzi phenotype, indicating that the main role of Materazzi is to protect the organism from damage caused by stress-induced ROS. Our findings suggest that purging hemolymphatic lipids presents a physiological adaptation to protect host tissues from excessive ROS during immune and stress responses, a process that is likely to apply to other organisms. [Display omitted] •Hemolymphatic lipids are removed by Malpighian tubules after infection and injury•The lipid-binding protein Materazzi removes lipids from the hemolymph•Materazzi prevents hemolymphatic lipid peroxidation and tubule dysfunction•Lipid removal is a stress response that adjusts ROS level and promotes survival Li et al. show that infection or injury in Drosophila induced the excretion of hemolymphatic lipids by Malpighian tubules, the insect kidney, via a mechanism centered on the stress-induced lipid-binding protein, Materazzi. Thus, lipid removal presents a physiological adaptation to protect host tissues from excessive ROS during immune and stress responses, a process that is likely to apply to other organisms.
AbstractList Animals require complex metabolic and physiological adaptations to maintain the function of vital organs in response to environmental stresses and infection. Here, we found that infection or injury in Drosophila induced the excretion of hemolymphatic lipids by Malpighian tubules, the insect kidney. This lipid purge was mediated by a stress-induced lipid-binding protein, Materazzi, which was enriched in Malpighian tubules. Flies lacking materazzi had higher hemolymph concentrations of reactive oxygen species (ROS) and increased lipid peroxidation. These flies also displayed Malpighian tubule dysfunction and were susceptible to infections and environmental stress. Feeding flies with antioxidants rescued the materazzi phenotype, indicating that the main role of Materazzi is to protect the organism from damage caused by stress-induced ROS. Our findings suggest that purging hemolymphatic lipids presents a physiological adaptation to protect host tissues from excessive ROS during immune and stress responses, a process that is likely to apply to other organisms. [Display omitted] •Hemolymphatic lipids are removed by Malpighian tubules after infection and injury•The lipid-binding protein Materazzi removes lipids from the hemolymph•Materazzi prevents hemolymphatic lipid peroxidation and tubule dysfunction•Lipid removal is a stress response that adjusts ROS level and promotes survival Li et al. show that infection or injury in Drosophila induced the excretion of hemolymphatic lipids by Malpighian tubules, the insect kidney, via a mechanism centered on the stress-induced lipid-binding protein, Materazzi. Thus, lipid removal presents a physiological adaptation to protect host tissues from excessive ROS during immune and stress responses, a process that is likely to apply to other organisms.
Animals require complex metabolic and physiological adaptations to maintain the function of vital organs in response to environmental stresses and infection. Here, we found that infection or injury in Drosophila induced the excretion of hemolymphatic lipids by Malpighian tubules, the insect kidney. This lipid purge was mediated by a stress-induced lipid-binding protein, Materazzi, which was enriched in Malpighian tubules. Flies lacking materazzi had higher hemolymph concentrations of reactive oxygen species (ROS) and increased lipid peroxidation. These flies also displayed Malpighian tubule dysfunction and were susceptible to infections and environmental stress. Feeding flies with antioxidants rescued the materazzi phenotype, indicating that the main role of Materazzi is to protect the organism from damage caused by stress-induced ROS. Our findings suggest that purging hemolymphatic lipids presents a physiological adaptation to protect host tissues from excessive ROS during immune and stress responses, a process that is likely to apply to other organisms.Animals require complex metabolic and physiological adaptations to maintain the function of vital organs in response to environmental stresses and infection. Here, we found that infection or injury in Drosophila induced the excretion of hemolymphatic lipids by Malpighian tubules, the insect kidney. This lipid purge was mediated by a stress-induced lipid-binding protein, Materazzi, which was enriched in Malpighian tubules. Flies lacking materazzi had higher hemolymph concentrations of reactive oxygen species (ROS) and increased lipid peroxidation. These flies also displayed Malpighian tubule dysfunction and were susceptible to infections and environmental stress. Feeding flies with antioxidants rescued the materazzi phenotype, indicating that the main role of Materazzi is to protect the organism from damage caused by stress-induced ROS. Our findings suggest that purging hemolymphatic lipids presents a physiological adaptation to protect host tissues from excessive ROS during immune and stress responses, a process that is likely to apply to other organisms.
Animals require complex metabolic and physiological adaptations to maintain the function of vital organs in response to environmental stresses and infection. Here, we found that infection or injury in Drosophila induced the excretion of hemolymphatic lipids by Malpighian tubules, the insect kidney. This lipid purge was mediated by a stress-induced lipid-binding protein, Materazzi, which was enriched in Malpighian tubules. Flies lacking materazzi had higher hemolymph concentrations of reactive oxygen species (ROS) and increased lipid peroxidation. These flies also displayed Malpighian tubule dysfunction and were susceptible to infections and environmental stress. Feeding flies with antioxidants rescued the materazzi phenotype, indicating that the main role of Materazzi is to protect the organism from damage caused by stress-induced ROS. Our findings suggest that purging hemolymphatic lipids presents a physiological adaptation to protect host tissues from excessive ROS during immune and stress responses, a process that is likely to apply to other organisms.
SummaryAnimals require complex metabolic and physiological adaptations to maintain the function of vital organs in response to environmental stresses and infection. Here, we found that infection or injury in Drosophila induced the excretion of hemolymphatic lipids by Malpighian tubules, the insect kidney. This lipid purge was mediated by a stress-induced lipid-binding protein, Materazzi, which was enriched in Malpighian tubules. Flies lacking materazzi had higher hemolymph concentrations of reactive oxygen species (ROS) and increased lipid peroxidation. These flies also displayed Malpighian tubule dysfunction and were susceptible to infections and environmental stress. Feeding flies with antioxidants rescued the materazzi phenotype, indicating that the main role of Materazzi is to protect the organism from damage caused by stress-induced ROS. Our findings suggest that purging hemolymphatic lipids presents a physiological adaptation to protect host tissues from excessive ROS during immune and stress responses, a process that is likely to apply to other organisms.
Author Lemaitre, Bruno
Li, Xiaoxue
Kondo, Shu
Rommelaere, Samuel
Author_xml – sequence: 1
  givenname: Xiaoxue
  surname: Li
  fullname: Li, Xiaoxue
  email: xiaoxue.li@epfl.ch
  organization: Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
– sequence: 2
  givenname: Samuel
  surname: Rommelaere
  fullname: Rommelaere, Samuel
  organization: Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
– sequence: 3
  givenname: Shu
  surname: Kondo
  fullname: Kondo, Shu
  organization: Invertebrate Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan
– sequence: 4
  givenname: Bruno
  surname: Lemaitre
  fullname: Lemaitre, Bruno
  email: bruno.lemaitre@epfl.ch
  organization: Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32075729$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhSNURH_gDRCyxKabDNeO88cCqWopHWmkqUpZW4590_Eotgc7qRiegweuh5luuoCVI-c7n-RzTrMj5x1m2XsKMwq0-rSeGWsnZ2YMGMyAzgCaV9kJhbbOOW3gaPdd87yuaHGcnca4BqC8bOFNdlwwqMuatSfZnzt0ciC3U3hA4ntyg9YPW7tZydEosjAboyO5DfiIboxkXCG5UGqy05D-e7dL3C2_53OnJ4WazF0_SGvl6MOWLH8ZbX6n24NFOp1MfkSVTFfBR79ZmUGSPnhL7k2ME5IraeUDvs1e93KI-O5wnmU_rr_eX97ki-W3-eXFIlclsDFvmCp6pKyDXndUaoq865D1um0qqmXTI_C2w0r1TcUrpirV1tC1RSFly2vgxVl2vvdugv85YRyFNVHhMEiHfoqCFWXLIXXGEvrxBbr2U0jVJYqzsiqbuoZEfThQU2dRi00wVoateO47AZ_3gErvjwF7ocz4t8oxSDMICmI3rliL_bhiN64AKtK4KcxfhJ_9_4l92ccwVfloMIioDLq0lwlpC6G9-bfgCQ_ewiA
CitedBy_id crossref_primary_10_1016_j_celrep_2024_114109
crossref_primary_10_3390_ijms252111799
crossref_primary_10_1016_j_immuni_2022_07_022
crossref_primary_10_1002_jcp_30861
crossref_primary_10_1371_journal_pone_0235294
crossref_primary_10_37349_emed_2021_00062
crossref_primary_10_1073_pnas_2011828117
crossref_primary_10_1016_j_jcis_2023_05_103
crossref_primary_10_1016_j_cois_2022_100948
crossref_primary_10_1371_journal_pbio_3001635
crossref_primary_10_3390_diseases11030094
crossref_primary_10_7717_peerj_15494
crossref_primary_10_1038_s41467_023_44098_x
crossref_primary_10_1073_pnas_2205140120
crossref_primary_10_4103_bjhs_bjhs_214_23
crossref_primary_10_3389_fimmu_2022_933137
crossref_primary_10_1038_s41536_022_00254_3
crossref_primary_10_1186_s12943_021_01488_3
crossref_primary_10_34133_2022_9897464
crossref_primary_10_3389_fnut_2022_917432
crossref_primary_10_1002_mco2_127
crossref_primary_10_3390_antiox13030305
crossref_primary_10_1016_j_celrep_2024_113973
crossref_primary_10_1016_j_isci_2023_107490
crossref_primary_10_1039_D0NJ02554B
crossref_primary_10_1016_j_semcdb_2022_04_002
crossref_primary_10_1016_j_immuni_2020_01_009
crossref_primary_10_4049_jimmunol_2100343
crossref_primary_10_3389_fgene_2023_1183659
crossref_primary_10_1111_mec_17726
crossref_primary_10_1016_j_cois_2022_100874
crossref_primary_10_1371_journal_ppat_1012797
crossref_primary_10_1016_j_copbio_2021_03_001
crossref_primary_10_1016_j_jhazmat_2020_124666
crossref_primary_10_1073_pnas_2019251118
crossref_primary_10_1111_1744_7917_12868
crossref_primary_10_1016_j_celrep_2024_115081
crossref_primary_10_1016_j_cmet_2021_10_003
crossref_primary_10_1098_rspb_2022_1642
crossref_primary_10_1128_mBio_00276_21
crossref_primary_10_1016_j_celrep_2025_115404
crossref_primary_10_1016_j_bioadv_2022_212821
crossref_primary_10_1242_dev_197343
crossref_primary_10_5483_BMBRep_2023_0021
crossref_primary_10_1016_j_ijbiomac_2023_125152
crossref_primary_10_1371_journal_pgen_1010098
Cites_doi 10.1371/journal.pone.0032577
10.1021/cr200084z
10.1038/nrmicro3074
10.1038/nri3763
10.1073/pnas.97.7.3376
10.1371/journal.pgen.1004659
10.1016/j.jinsphys.2012.01.008
10.1073/pnas.221458698
10.1016/j.jaci.2013.06.014
10.1093/emboj/21.11.2568
10.1038/sj.bjp.0707395
10.1371/journal.pone.0023796
10.1083/jcb.201006039
10.1016/j.cell.2017.04.004
10.1146/annurev.immunol.25.022106.141615
10.1126/science.1117311
10.1146/annurev-cancerbio-041916-065808
10.1111/j.1365-2583.2009.00912.x
10.1016/S0065-308X(09)70004-1
10.1016/j.devcel.2015.01.029
10.1038/nri.2016.70
10.1016/j.peptides.2016.02.004
10.1016/j.cub.2013.09.061
10.1016/j.ymeth.2014.02.023
10.1016/j.celrep.2019.03.074
10.1074/jbc.M110.118182
10.1016/j.cell.2015.09.020
10.1038/ni1356
10.1038/sj.cr.7290257
10.1038/s41581-018-0072-9
10.1038/sj.embor.7400282
10.1016/j.cois.2018.05.010
10.1038/nprot.2015.053
10.1016/j.bbrc.2018.09.126
10.1016/j.redox.2015.01.001
10.1074/jbc.273.46.30801
10.1038/nri1312
10.1603/0022-2585-41.5.953
10.1089/ars.2012.5149
10.1007/s00467-018-4005-4
10.1371/journal.pone.0153522
10.1006/abio.1999.4127
10.1371/journal.pgen.1002828
10.1016/j.cub.2010.01.047
10.1016/j.cellsig.2012.01.008
10.1016/j.cub.2014.03.034
10.1038/s41422-018-0084-9
10.1093/gbe/evt182
10.1016/S0065-2806(01)28008-4
10.1534/genetics.110.121822
10.1038/nmeth.2019
10.1101/gad.314674.118
10.1152/physiolgenomics.00018.2007
10.1038/ncomms11266
10.1016/j.devcel.2004.11.007
10.1016/j.chom.2009.01.003
10.1016/S0022-1910(96)00067-4
10.1534/genetics.113.156737
10.1073/pnas.1009223107
10.1038/s41564-018-0344-y
10.1242/jeb.205.24.3799
10.1242/jeb.024224
10.1242/jeb.197.1.421
10.1093/nar/gkx976
10.1016/j.cois.2018.05.014
10.2174/092986710793348581
10.1146/annurev-immunol-032713-120236
10.1093/emboj/20.19.5421
10.1016/j.chom.2016.10.010
10.1038/emboj.2011.476
10.1146/annurev-pathol-012513-104651
10.1016/j.dci.2019.01.011
10.1038/nrm2256
10.1016/j.ibmb.2005.02.017
10.1155/2014/360438
10.1016/j.ibmb.2005.03.012
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
2020. Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
– notice: 2020. Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
DOI 10.1016/j.immuni.2020.01.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Nursing & Allied Health Premium
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1097-4180
EndPage 387.e6
ExternalDocumentID 32075729
10_1016_j_immuni_2020_01_008
S1074761320300352
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-DZ
0R~
1RT
1~5
2WC
4.4
457
4G.
53G
5GY
62-
7-5
7RV
8C1
8FE
8FH
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFRAH
AFTJW
AGGSO
AGKMS
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BKEYQ
BPHCQ
BVXVI
C45
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HCIFZ
IH2
IHE
IXB
J1W
JIG
LK8
LX5
M2O
M3Z
M41
M7P
N9A
O-L
O9-
OK1
OVD
P2P
PQQKQ
PROAC
RCE
ROL
RPZ
SCP
SES
SSZ
TEORI
TR2
WQ6
ZA5
.55
.GJ
29I
5VS
AAEDT
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AHHHB
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
OHT
OZT
R2-
RIG
UHS
X7M
Y6R
ZGI
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
EFKBS
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
ID FETCH-LOGICAL-c502t-82c3fe12b0fdb1ad1e4bbe2fd9861da8fe049be6cf86462c6c970b933aa947043
IEDL.DBID IXB
ISSN 1074-7613
1097-4180
IngestDate Fri Jul 11 08:00:32 EDT 2025
Fri Jul 25 11:03:55 EDT 2025
Thu Jan 02 22:58:19 EST 2025
Thu Apr 24 23:11:07 EDT 2025
Tue Jul 01 01:58:42 EDT 2025
Fri Feb 23 02:50:19 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords stress
homeostasis
immune adaptation
excretion
Drosophila
ROS
immunity
lipid peroxidation
Malpighian tubules
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-82c3fe12b0fdb1ad1e4bbe2fd9861da8fe049be6cf86462c6c970b933aa947043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://www.cell.com/article/S1074761320300352/pdf
PMID 32075729
PQID 2425658770
PQPubID 2031079
ParticipantIDs proquest_miscellaneous_2359404592
proquest_journals_2425658770
pubmed_primary_32075729
crossref_citationtrail_10_1016_j_immuni_2020_01_008
crossref_primary_10_1016_j_immuni_2020_01_008
elsevier_sciencedirect_doi_10_1016_j_immuni_2020_01_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-18
PublicationDateYYYYMMDD 2020-02-18
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Immunity (Cambridge, Mass.)
PublicationTitleAlternate Immunity
PublicationYear 2020
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Cabrero, Radford, Broderick, Costes, Veenstra, Spana, Davies, Dow (bib7) 2002; 205
Dow, Davies (bib21) 2001; 28
Shao, Devenport, Fujioka, Ghosh, Jacobs-Lorena (bib68) 2005; 35
Kondo, Ueda (bib39) 2013; 195
Moreira, Stramer, Evans, Wood, Martin (bib49) 2010; 20
Zarubin, Han (bib76) 2005; 15
Leader, Krause, Pandit, Davies, Dow (bib42) 2018; 46
Neyen, Bretscher, Binggeli, Lemaitre (bib55) 2014; 68
Shao, Pennathur, Pagani, Oda, Witztum, Oram, Heinecke (bib69) 2010; 285
Inoue, Tateno, Fujimura-Kamada, Takaesu, Adachi-Yamada, Ninomiya-Tsuji, Irie, Nishida, Matsumoto (bib34) 2001; 20
Yang, McCart, Woods, Terhzaz, Greenwood, ffrench-Constant, Dow (bib73) 2007; 30
Craig, Fink, Yagi, Ip, Cagan (bib14) 2004; 5
Nicolson, Isaacson (bib56) 1996; 42
Ha, Oh, Ryu, Bae, Kang, Jang, Brey, Lee (bib30) 2005; 8
Hildebrandt, Bickmeyer, Kühnlein (bib33) 2011; 6
Lambeth, Neish (bib41) 2014; 9
Yin, Xu, Porter (bib75) 2011; 111
Kashihara, Haruna, Kondeti, Kanwar (bib36) 2010; 17
Schieber, Chandel (bib67) 2014; 24
Ayala, Muñoz, Argüelles (bib1) 2014; 2014
Nappi, Poirié, Carton (bib53) 2009; 70
Chapman, Simpson, Douglas (bib10) 2013
Gore, Schal (bib29) 2004; 41
Negre-Salvayre, Coatrieux, Ingueneau, Salvayre (bib54) 2008; 153
Kolahi, Louey, Varlamov, Thornburg (bib38) 2016; 11
Chakrabarti, Poidevin, Lemaitre (bib9) 2014; 10
Plekhanov (bib59) 1999; 271
Reczek, Chandel (bib64) 2017; 1
Buchon, Broderick, Poidevin, Pradervand, Lemaitre (bib3) 2009; 5
Buck, Sowell, Kaech, Pearce (bib6) 2017; 169
Cannell, Dornan, Halberg, Terhzaz, Dow, Davies (bib8) 2016; 80
Xiong, Wang, Ewanek, Bhat, Diantonio, Collins (bib72) 2010; 191
Halberg, Rainey, Veland, Neuert, Dornan, Klämbt, Davies, Dow (bib32) 2016; 7
Sureshbabu, Ryter, Choi (bib71) 2015; 4
Rambold, Cohen, Lippincott-Schwartz (bib61) 2015; 32
Suazo, Gore, Schal (bib70) 2009; 18
Randall, Perera, London, Mueller (bib62) 2013; 5
Basset, Khush, Braun, Gardan, Boccard, Hoffmann, Lemaitre (bib77) 2000; 97
Lesch, Jo, Wu, Fish, Galko (bib46) 2010; 186
Conrad, Kagan, Bayir, Pagnussat, Head, Traber, Stockwell (bib13) 2018; 32
Kelley, Mezulis, Yates, Wass, Sternberg (bib37) 2015; 10
Nam, Jang, You, Lee, Lee (bib52) 2012; 31
Rommelaere, Boquete, Piton, Kondo, Lemaitre (bib66) 2019; 27
Galenza, Foley (bib26) 2019; 94
O’Neill, Kishton, Rathmell (bib57) 2016; 16
Lemaitre, Hoffmann (bib45) 2007; 25
De Gregorio, Spellman, Tzou, Rubin, Lemaitre (bib19) 2002; 21
Yang, Huang, Fu, Wang, Qi, Mao, Shi, Shen, Wang (bib74) 2018; 28
Buchon, Silverman, Cherry (bib5) 2014; 14
Bailey, Koster, Guillermier, Hirst, MacRae, Lechene, Postle, Gould (bib2) 2015; 163
Daenen, Andries, Mekahli, Van Schepdael, Jouret, Bammens (bib16) 2019; 34
Ganeshan, Chawla (bib27) 2014; 32
Gonzalez, Garg, Tang, Nazario-Toole, Wu (bib28) 2013; 23
Schindelin, Arganda-Carreras, Frise, Kaynig, Longair, Pietzsch, Rueden, Saalfeld, Schmid, Tinevez (bib78) 2012; 9
Kaneko, Yano, Aggarwal, Lim, Ueda, Oshima, Peach, Erturk-Hasdemir, Goldman, Oh (bib35) 2006; 7
Davies, Overend, Sebastian, Cundall, Cabrero, Dow, Terhzaz (bib17) 2012; 58
D’Autréaux, Toledano (bib15) 2007; 8
Dow, Maddrell, Görtz, Skaer, Brogan, Kaiser (bib22) 1994; 197
Buchon, Broderick, Lemaitre (bib4) 2013; 11
Dow, Pandit, Davies (bib23) 2018; 29
Repetto, Semprine, Boveris (bib65) 2012
Ha, Oh, Bae, Lee (bib31) 2005; 310
Pomés, Melén, Vailes, Retief, Arruda, Chapman (bib60) 1998; 273
De Gregorio, Spellman, Rubin, Lemaitre (bib18) 2001; 98
Lambeth (bib40) 2004; 4
Franchet, Niehus, Caravello, Ferrandon (bib25) 2019; 4
Mueller, Pedersen, Lih, Glesner, Moon, Chapman, Tomer, London, Pomés (bib50) 2013; 132
Dow (bib20) 2009; 212
Lee, Lee (bib43) 2018; 29
Chen, Xie, Tian, Hong, Wu, Han (bib11) 2010; 107
Mittal, Siddiqui, Tran, Reddy, Malik (bib48) 2014; 20
Chintapalli, Terhzaz, Wang, Al Bratty, Watson, Herzyk, Davies, Dow (bib12) 2012; 7
McGettigan, McLennan, Broderick, Kean, Allan, Cabrero, Regulski, Pollock, Gould, Davies, Dow (bib47) 2005; 35
Ferro, Mark, Kanbay, Sarafidis, Heine, Rossignol, Massy, Mallamaci, Valdivielso, Malyszko (bib24) 2018; 14
Lee, Lestradet, Socha, Schirmeier, Schmitz, Spenlé, Lefebvre, Keime, Yamba, Bou Aoun (bib44) 2016; 20
Palm, Sampaio, Brankatschk, Carvalho, Mahmoud, Shevchenko, Eaton (bib58) 2012; 8
Ray, Huang, Tsuji (bib63) 2012; 24
Myers, Harris, Choe, Brennan (bib51) 2018; 505
Buchon (10.1016/j.immuni.2020.01.008_bib4) 2013; 11
Dow (10.1016/j.immuni.2020.01.008_bib22) 1994; 197
Pomés (10.1016/j.immuni.2020.01.008_bib60) 1998; 273
Sureshbabu (10.1016/j.immuni.2020.01.008_bib71) 2015; 4
De Gregorio (10.1016/j.immuni.2020.01.008_bib19) 2002; 21
Kondo (10.1016/j.immuni.2020.01.008_bib39) 2013; 195
Chintapalli (10.1016/j.immuni.2020.01.008_bib12) 2012; 7
Kaneko (10.1016/j.immuni.2020.01.008_bib35) 2006; 7
Craig (10.1016/j.immuni.2020.01.008_bib14) 2004; 5
De Gregorio (10.1016/j.immuni.2020.01.008_bib18) 2001; 98
Rambold (10.1016/j.immuni.2020.01.008_bib61) 2015; 32
Rommelaere (10.1016/j.immuni.2020.01.008_bib66) 2019; 27
Halberg (10.1016/j.immuni.2020.01.008_bib32) 2016; 7
Myers (10.1016/j.immuni.2020.01.008_bib51) 2018; 505
Buchon (10.1016/j.immuni.2020.01.008_bib3) 2009; 5
Gonzalez (10.1016/j.immuni.2020.01.008_bib28) 2013; 23
Daenen (10.1016/j.immuni.2020.01.008_bib16) 2019; 34
Kelley (10.1016/j.immuni.2020.01.008_bib37) 2015; 10
Randall (10.1016/j.immuni.2020.01.008_bib62) 2013; 5
Yin (10.1016/j.immuni.2020.01.008_bib75) 2011; 111
Lambeth (10.1016/j.immuni.2020.01.008_bib41) 2014; 9
Gore (10.1016/j.immuni.2020.01.008_bib29) 2004; 41
McGettigan (10.1016/j.immuni.2020.01.008_bib47) 2005; 35
Buchon (10.1016/j.immuni.2020.01.008_bib5) 2014; 14
Negre-Salvayre (10.1016/j.immuni.2020.01.008_bib54) 2008; 153
Xiong (10.1016/j.immuni.2020.01.008_bib72) 2010; 191
Leader (10.1016/j.immuni.2020.01.008_bib42) 2018; 46
Repetto (10.1016/j.immuni.2020.01.008_bib65) 2012
Dow (10.1016/j.immuni.2020.01.008_bib20) 2009; 212
Kolahi (10.1016/j.immuni.2020.01.008_bib38) 2016; 11
Nicolson (10.1016/j.immuni.2020.01.008_bib56) 1996; 42
Lee (10.1016/j.immuni.2020.01.008_bib43) 2018; 29
Ha (10.1016/j.immuni.2020.01.008_bib31) 2005; 310
Nam (10.1016/j.immuni.2020.01.008_bib52) 2012; 31
Cabrero (10.1016/j.immuni.2020.01.008_bib7) 2002; 205
Mittal (10.1016/j.immuni.2020.01.008_bib48) 2014; 20
Ganeshan (10.1016/j.immuni.2020.01.008_bib27) 2014; 32
Basset (10.1016/j.immuni.2020.01.008_bib77) 2000; 97
Zarubin (10.1016/j.immuni.2020.01.008_bib76) 2005; 15
Lambeth (10.1016/j.immuni.2020.01.008_bib40) 2004; 4
Lesch (10.1016/j.immuni.2020.01.008_bib46) 2010; 186
Plekhanov (10.1016/j.immuni.2020.01.008_bib59) 1999; 271
Nappi (10.1016/j.immuni.2020.01.008_bib53) 2009; 70
Inoue (10.1016/j.immuni.2020.01.008_bib34) 2001; 20
Chen (10.1016/j.immuni.2020.01.008_bib11) 2010; 107
Dow (10.1016/j.immuni.2020.01.008_bib21) 2001; 28
Lee (10.1016/j.immuni.2020.01.008_bib44) 2016; 20
Cannell (10.1016/j.immuni.2020.01.008_bib8) 2016; 80
Palm (10.1016/j.immuni.2020.01.008_bib58) 2012; 8
Bailey (10.1016/j.immuni.2020.01.008_bib2) 2015; 163
Reczek (10.1016/j.immuni.2020.01.008_bib64) 2017; 1
Galenza (10.1016/j.immuni.2020.01.008_bib26) 2019; 94
Schindelin (10.1016/j.immuni.2020.01.008_bib78) 2012; 9
Conrad (10.1016/j.immuni.2020.01.008_bib13) 2018; 32
Ray (10.1016/j.immuni.2020.01.008_bib63) 2012; 24
Chapman (10.1016/j.immuni.2020.01.008_bib10) 2013
Dow (10.1016/j.immuni.2020.01.008_bib23) 2018; 29
Yang (10.1016/j.immuni.2020.01.008_bib73) 2007; 30
Suazo (10.1016/j.immuni.2020.01.008_bib70) 2009; 18
D’Autréaux (10.1016/j.immuni.2020.01.008_bib15) 2007; 8
Davies (10.1016/j.immuni.2020.01.008_bib17) 2012; 58
Ha (10.1016/j.immuni.2020.01.008_bib30) 2005; 8
Shao (10.1016/j.immuni.2020.01.008_bib68) 2005; 35
Ferro (10.1016/j.immuni.2020.01.008_bib24) 2018; 14
Shao (10.1016/j.immuni.2020.01.008_bib69) 2010; 285
Hildebrandt (10.1016/j.immuni.2020.01.008_bib33) 2011; 6
Mueller (10.1016/j.immuni.2020.01.008_bib50) 2013; 132
Schieber (10.1016/j.immuni.2020.01.008_bib67) 2014; 24
O’Neill (10.1016/j.immuni.2020.01.008_bib57) 2016; 16
Franchet (10.1016/j.immuni.2020.01.008_bib25) 2019; 4
Neyen (10.1016/j.immuni.2020.01.008_bib55) 2014; 68
Chakrabarti (10.1016/j.immuni.2020.01.008_bib9) 2014; 10
Lemaitre (10.1016/j.immuni.2020.01.008_bib45) 2007; 25
Ayala (10.1016/j.immuni.2020.01.008_bib1) 2014; 2014
Moreira (10.1016/j.immuni.2020.01.008_bib49) 2010; 20
Yang (10.1016/j.immuni.2020.01.008_bib74) 2018; 28
Buck (10.1016/j.immuni.2020.01.008_bib6) 2017; 169
Kashihara (10.1016/j.immuni.2020.01.008_bib36) 2010; 17
32075724 - Immunity. 2020 Feb 18;52(2):215-217
References_xml – volume: 6
  start-page: e23796
  year: 2011
  ident: bib33
  article-title: Reliable
  publication-title: PLoS ONE
– volume: 35
  start-page: 741
  year: 2005
  end-page: 754
  ident: bib47
  article-title: Insect renal tubules constitute a cell-autonomous immune system that protects the organism against bacterial infection
  publication-title: Insect Biochem. Mol. Biol.
– volume: 505
  start-page: 726
  year: 2018
  end-page: 732
  ident: bib51
  article-title: Inflammatory production of reactive oxygen species by
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 7
  start-page: 715
  year: 2006
  end-page: 723
  ident: bib35
  article-title: PGRP-LC and PGRP-LE have essential yet distinct functions in the
  publication-title: Nat. Immunol.
– volume: 195
  start-page: 715
  year: 2013
  end-page: 721
  ident: bib39
  article-title: Highly improved gene targeting by germline-specific Cas9 expression in
  publication-title: Genetics
– volume: 58
  start-page: 488
  year: 2012
  end-page: 497
  ident: bib17
  article-title: Immune and stress response ‘cross-talk’ in the
  publication-title: J. Insect Physiol.
– volume: 11
  start-page: 615
  year: 2013
  end-page: 626
  ident: bib4
  article-title: Gut homeostasis in a microbial world: insights from
  publication-title: Nat. Rev. Microbiol.
– volume: 186
  start-page: 943
  year: 2010
  end-page: 957
  ident: bib46
  article-title: A targeted UAS-RNAi screen in
  publication-title: Genetics
– volume: 14
  start-page: 796
  year: 2014
  end-page: 810
  ident: bib5
  article-title: Immunity in
  publication-title: Nat. Rev. Immunol.
– volume: 111
  start-page: 5944
  year: 2011
  end-page: 5972
  ident: bib75
  article-title: Free radical lipid peroxidation: mechanisms and analysis
  publication-title: Chem. Rev.
– year: 2012
  ident: bib65
  article-title: Lipid peroxidation: chemical mechanism, biological implications and analytical determination.
– volume: 153
  start-page: 6
  year: 2008
  end-page: 20
  ident: bib54
  article-title: Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors
  publication-title: Br. J. Pharmacol.
– volume: 31
  start-page: 1253
  year: 2012
  end-page: 1265
  ident: bib52
  article-title: Genetic evidence of a redox-dependent systemic wound response via Hayan protease-phenoloxidase system in
  publication-title: EMBO J.
– volume: 15
  start-page: 11
  year: 2005
  end-page: 18
  ident: bib76
  article-title: Activation and signaling of the p38 MAP kinase pathway
  publication-title: Cell Res.
– volume: 20
  start-page: 5421
  year: 2001
  end-page: 5430
  ident: bib34
  article-title: A
  publication-title: EMBO J.
– volume: 107
  start-page: 20774
  year: 2010
  end-page: 20779
  ident: bib11
  article-title: Participation of the p38 pathway in
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 20
  start-page: 1126
  year: 2014
  end-page: 1167
  ident: bib48
  article-title: Reactive oxygen species in inflammation and tissue injury
  publication-title: Antioxid. Redox Signal.
– volume: 191
  start-page: 211
  year: 2010
  end-page: 223
  ident: bib72
  article-title: Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury
  publication-title: J. Cell Biol.
– volume: 28
  start-page: 1013
  year: 2018
  end-page: 1025
  ident: bib74
  article-title: A post-ingestive amino acid sensor promotes food consumption in
  publication-title: Cell Res.
– volume: 32
  start-page: 602
  year: 2018
  end-page: 619
  ident: bib13
  article-title: Regulation of lipid peroxidation and ferroptosis in diverse species
  publication-title: Genes Dev.
– volume: 4
  start-page: 181
  year: 2004
  end-page: 189
  ident: bib40
  article-title: NOX enzymes and the biology of reactive oxygen
  publication-title: Nat. Rev. Immunol.
– volume: 30
  start-page: 223
  year: 2007
  end-page: 231
  ident: bib73
  article-title: A
  publication-title: Physiol. Genomics
– volume: 94
  start-page: 22
  year: 2019
  end-page: 34
  ident: bib26
  article-title: Immunometabolism: Insights from the
  publication-title: Dev. Comp. Immunol.
– volume: 80
  start-page: 96
  year: 2016
  end-page: 107
  ident: bib8
  article-title: The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in
  publication-title: Peptides
– volume: 20
  start-page: 716
  year: 2016
  end-page: 730
  ident: bib44
  article-title: Enterocyte purge and rapid recovery is a resilience reaction of the gut epithelium to pore-forming toxin attack
  publication-title: Cell Host Microbe
– volume: 32
  start-page: 678
  year: 2015
  end-page: 692
  ident: bib61
  article-title: Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics
  publication-title: Dev. Cell
– volume: 8
  start-page: 125
  year: 2005
  end-page: 132
  ident: bib30
  article-title: An antioxidant system required for host protection against gut infection in
  publication-title: Dev. Cell
– volume: 271
  start-page: 186
  year: 1999
  end-page: 187
  ident: bib59
  article-title: Rapid staining of lipids on thin-layer chromatograms with amido black 10B and other water-soluble stains
  publication-title: Anal. Biochem.
– volume: 8
  start-page: e1002828
  year: 2012
  ident: bib58
  article-title: Lipoproteins in
  publication-title: PLoS Genet.
– volume: 14
  start-page: 727
  year: 2018
  end-page: 749
  ident: bib24
  article-title: Lipid management in patients with chronic kidney disease
  publication-title: Nat. Rev. Nephrol.
– volume: 18
  start-page: 727
  year: 2009
  end-page: 736
  ident: bib70
  article-title: RNA interference-mediated knock-down of Bla g 1 in the German cockroach,
  publication-title: Insect Mol. Biol.
– volume: 2014
  year: 2014
  ident: bib1
  article-title: Lipid peroxidation: production, metabolism, and signaling mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal
  publication-title: Oxid. med. cell. longev.
– volume: 163
  start-page: 340
  year: 2015
  end-page: 353
  ident: bib2
  article-title: Antioxidant role for lipid droplets in a stem cell niche of
  publication-title: Cell
– volume: 20
  start-page: 464
  year: 2010
  end-page: 470
  ident: bib49
  article-title: Prioritization of competing damage and developmental signals by migrating macrophages in the
  publication-title: Curr. Biol.
– volume: 98
  start-page: 12590
  year: 2001
  end-page: 12595
  ident: bib18
  article-title: Genome-wide analysis of the
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 68
  start-page: 116
  year: 2014
  end-page: 128
  ident: bib55
  article-title: Methods to study
  publication-title: Methods
– volume: 16
  start-page: 553
  year: 2016
  end-page: 565
  ident: bib57
  article-title: A guide to immunometabolism for immunologists
  publication-title: Nat. Rev. Immunol.
– volume: 1
  start-page: 79
  year: 2017
  end-page: 98
  ident: bib64
  article-title: The two faces of Reactive Oxygen Species in cancer
  publication-title: Annu. Rev. Cancer Biol.
– volume: 169
  start-page: 570
  year: 2017
  end-page: 586
  ident: bib6
  article-title: Metabolic instruction of immunity
  publication-title: Cell
– volume: 29
  start-page: 7
  year: 2018
  end-page: 11
  ident: bib23
  article-title: New views on the Malpighian tubule from post-genomic technologies
  publication-title: Curr. Opin. Insect Sci.
– volume: 32
  start-page: 609
  year: 2014
  end-page: 634
  ident: bib27
  article-title: Metabolic regulation of immune responses
  publication-title: Annu. Rev. Immunol.
– volume: 132
  start-page: 1420
  year: 2013
  end-page: 1426
  ident: bib50
  article-title: The novel structure of the cockroach allergen Bla g 1 has implications for allergenicity and exposure assessment
  publication-title: J. Allergy Clin. Immunol.
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  ident: bib78
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
– volume: 5
  start-page: 200
  year: 2009
  end-page: 211
  ident: bib3
  article-title: intestinal response to bacterial infection: activation of host defense and stem cell proliferation
  publication-title: Cell Host Microbe
– year: 2013
  ident: bib10
  article-title: The insects: structure and function
– volume: 24
  start-page: R453
  year: 2014
  end-page: R462
  ident: bib67
  article-title: ROS function in redox signaling and oxidative stress
  publication-title: Curr. Biol.
– volume: 35
  start-page: 947
  year: 2005
  end-page: 959
  ident: bib68
  article-title: Identification and characterization of a novel peritrophic matrix protein, Ae-Aper50, and the microvillar membrane protein, AEG12, from the mosquito,
  publication-title: Insect Biochem. Mol. Biol.
– volume: 10
  start-page: e1004659
  year: 2014
  ident: bib9
  article-title: The
  publication-title: PLoS Genet.
– volume: 70
  start-page: 99
  year: 2009
  end-page: 121
  ident: bib53
  article-title: The role of melanization and cytotoxic by‐products in the cellular immune responses of Drosophila against parasitic wasps
  publication-title: Adv. Parasitol.
– volume: 42
  start-page: 1027
  year: 1996
  end-page: 1033
  ident: bib56
  article-title: Mechanism of enhanced secretion in the warmed Malpighian tubule of the tsetse fly,
  publication-title: J. Insect Physiol.
– volume: 28
  start-page: 1
  year: 2001
  end-page: 83
  ident: bib21
  article-title: The
  publication-title: Adv. Insect Physiol.
– volume: 197
  start-page: 421
  year: 1994
  end-page: 428
  ident: bib22
  article-title: The malpighian tubules of
  publication-title: J. Exp. Biol.
– volume: 7
  start-page: 11266
  year: 2016
  ident: bib32
  article-title: The cell adhesion molecule Fasciclin2 regulates brush border length and organization in
  publication-title: Nat. Commun.
– volume: 285
  start-page: 18473
  year: 2010
  end-page: 18484
  ident: bib69
  article-title: Modifying apolipoprotein A-I by malondialdehyde, but not by an array of other reactive carbonyls, blocks cholesterol efflux by the ABCA1 pathway
  publication-title: J. Biol. Chem.
– volume: 34
  start-page: 975
  year: 2019
  end-page: 991
  ident: bib16
  article-title: Oxidative stress in chronic kidney disease
  publication-title: Pediatr. Nephrol.
– volume: 5
  start-page: 1058
  year: 2004
  end-page: 1063
  ident: bib14
  article-title: A
  publication-title: EMBO Rep.
– volume: 9
  start-page: 119
  year: 2014
  end-page: 145
  ident: bib41
  article-title: Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited
  publication-title: Annu. Rev. Pathol.
– volume: 27
  start-page: 886
  year: 2019
  end-page: 899.e6
  ident: bib66
  article-title: The exchangeable apolipoprotein Nplp2 sustains lipid flow and heat acclimation in
  publication-title: Cell Rep.
– volume: 21
  start-page: 2568
  year: 2002
  end-page: 2579
  ident: bib19
  article-title: The Toll and Imd pathways are the major regulators of the immune response in
  publication-title: EMBO J.
– volume: 5
  start-page: 2344
  year: 2013
  end-page: 2358
  ident: bib62
  article-title: Genomic, RNAseq, and molecular modeling evidence suggests that the major allergen domain in insects evolved from a homodimeric origin
  publication-title: Genome Biol. Evol.
– volume: 212
  start-page: 435
  year: 2009
  end-page: 445
  ident: bib20
  article-title: Insights into the Malpighian tubule from functional genomics
  publication-title: J. Exp. Biol.
– volume: 97
  start-page: 3376
  year: 2000
  end-page: 3381
  ident: bib77
  article-title: The phytopathogenic bacteria
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 310
  start-page: 847
  year: 2005
  end-page: 850
  ident: bib31
  article-title: A direct role for dual oxidase in
  publication-title: Science
– volume: 11
  start-page: e0153522
  year: 2016
  ident: bib38
  article-title: Real-time tracking of BODIPY-C12 long-chain fatty acid in human term placenta reveals unique lipid dynamics in cytotrophoblast cells
  publication-title: PLoS ONE
– volume: 23
  start-page: 2319
  year: 2013
  end-page: 2324
  ident: bib28
  article-title: A glutamate-dependent redox system in blood cells is integral for phagocytosis in
  publication-title: Curr. Biol.
– volume: 17
  start-page: 4256
  year: 2010
  end-page: 4269
  ident: bib36
  article-title: Oxidative stress in diabetic nephropathy
  publication-title: Curr. Med. Chem.
– volume: 10
  start-page: 845
  year: 2015
  end-page: 858
  ident: bib37
  article-title: The Phyre2 web portal for protein modeling, prediction and analysis
  publication-title: Nat. Protoc.
– volume: 4
  start-page: 208
  year: 2015
  end-page: 214
  ident: bib71
  article-title: Oxidative stress and autophagy: crucial modulators of kidney injury
  publication-title: Redox Biol.
– volume: 273
  start-page: 30801
  year: 1998
  end-page: 30807
  ident: bib60
  article-title: Novel allergen structures with tandem amino acid repeats derived from German and American cockroach
  publication-title: J. Biol. Chem.
– volume: 46
  start-page: D809
  year: 2018
  end-page: D815
  ident: bib42
  article-title: FlyAtlas 2: a new version of the
  publication-title: Nucleic Acids Res.
– volume: 24
  start-page: 981
  year: 2012
  end-page: 990
  ident: bib63
  article-title: Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling
  publication-title: Cell. Signal.
– volume: 8
  start-page: 813
  year: 2007
  end-page: 824
  ident: bib15
  article-title: ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 205
  start-page: 3799
  year: 2002
  end-page: 3807
  ident: bib7
  article-title: The Dh gene of
  publication-title: J. Exp. Biol.
– volume: 7
  start-page: e32577
  year: 2012
  ident: bib12
  article-title: Functional correlates of positional and gender-specific renal asymmetry in
  publication-title: PLoS ONE
– volume: 41
  start-page: 953
  year: 2004
  end-page: 960
  ident: bib29
  article-title: Gene expression and tissue distribution of the major human allergen Bla g 1 in the German cockroach,
  publication-title: J. Med. Entomol.
– volume: 25
  start-page: 697
  year: 2007
  end-page: 743
  ident: bib45
  article-title: The host defense of
  publication-title: Annu. Rev. Immunol.
– volume: 29
  start-page: 21
  year: 2018
  end-page: 26
  ident: bib43
  article-title: Immune-metabolic interactions during systemic and enteric infection in
  publication-title: Curr. Opin. Insect Sci.
– volume: 4
  start-page: 645
  year: 2019
  end-page: 655
  ident: bib25
  article-title: Phosphatidic acid as a limiting host metabolite for the proliferation of the microsporidium
  publication-title: Nat. Microbiol.
– volume: 7
  start-page: e32577
  year: 2012
  ident: 10.1016/j.immuni.2020.01.008_bib12
  article-title: Functional correlates of positional and gender-specific renal asymmetry in Drosophila
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0032577
– year: 2012
  ident: 10.1016/j.immuni.2020.01.008_bib65
– volume: 111
  start-page: 5944
  year: 2011
  ident: 10.1016/j.immuni.2020.01.008_bib75
  article-title: Free radical lipid peroxidation: mechanisms and analysis
  publication-title: Chem. Rev.
  doi: 10.1021/cr200084z
– volume: 11
  start-page: 615
  year: 2013
  ident: 10.1016/j.immuni.2020.01.008_bib4
  article-title: Gut homeostasis in a microbial world: insights from Drosophila melanogaster
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3074
– volume: 14
  start-page: 796
  year: 2014
  ident: 10.1016/j.immuni.2020.01.008_bib5
  article-title: Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3763
– volume: 97
  start-page: 3376
  year: 2000
  ident: 10.1016/j.immuni.2020.01.008_bib77
  article-title: The phytopathogenic bacteria Erwinia carotovora infects Drosophila and activates an immune response
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.97.7.3376
– volume: 10
  start-page: e1004659
  year: 2014
  ident: 10.1016/j.immuni.2020.01.008_bib9
  article-title: The Drosophila MAPK p38c regulates oxidative stress and lipid homeostasis in the intestine
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004659
– volume: 58
  start-page: 488
  year: 2012
  ident: 10.1016/j.immuni.2020.01.008_bib17
  article-title: Immune and stress response ‘cross-talk’ in the Drosophila Malpighian tubule
  publication-title: J. Insect Physiol.
  doi: 10.1016/j.jinsphys.2012.01.008
– volume: 98
  start-page: 12590
  year: 2001
  ident: 10.1016/j.immuni.2020.01.008_bib18
  article-title: Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.221458698
– volume: 132
  start-page: 1420
  year: 2013
  ident: 10.1016/j.immuni.2020.01.008_bib50
  article-title: The novel structure of the cockroach allergen Bla g 1 has implications for allergenicity and exposure assessment
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2013.06.014
– volume: 21
  start-page: 2568
  year: 2002
  ident: 10.1016/j.immuni.2020.01.008_bib19
  article-title: The Toll and Imd pathways are the major regulators of the immune response in Drosophila
  publication-title: EMBO J.
  doi: 10.1093/emboj/21.11.2568
– volume: 153
  start-page: 6
  year: 2008
  ident: 10.1016/j.immuni.2020.01.008_bib54
  article-title: Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors
  publication-title: Br. J. Pharmacol.
  doi: 10.1038/sj.bjp.0707395
– volume: 6
  start-page: e23796
  year: 2011
  ident: 10.1016/j.immuni.2020.01.008_bib33
  article-title: Reliable Drosophila body fat quantification by a coupled colorimetric assay
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0023796
– volume: 191
  start-page: 211
  year: 2010
  ident: 10.1016/j.immuni.2020.01.008_bib72
  article-title: Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201006039
– volume: 169
  start-page: 570
  year: 2017
  ident: 10.1016/j.immuni.2020.01.008_bib6
  article-title: Metabolic instruction of immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2017.04.004
– volume: 25
  start-page: 697
  year: 2007
  ident: 10.1016/j.immuni.2020.01.008_bib45
  article-title: The host defense of Drosophila melanogaster
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.25.022106.141615
– volume: 310
  start-page: 847
  year: 2005
  ident: 10.1016/j.immuni.2020.01.008_bib31
  article-title: A direct role for dual oxidase in Drosophila gut immunity
  publication-title: Science
  doi: 10.1126/science.1117311
– volume: 1
  start-page: 79
  year: 2017
  ident: 10.1016/j.immuni.2020.01.008_bib64
  article-title: The two faces of Reactive Oxygen Species in cancer
  publication-title: Annu. Rev. Cancer Biol.
  doi: 10.1146/annurev-cancerbio-041916-065808
– volume: 18
  start-page: 727
  year: 2009
  ident: 10.1016/j.immuni.2020.01.008_bib70
  article-title: RNA interference-mediated knock-down of Bla g 1 in the German cockroach, Blattella germanica L., implicates this allergen-encoding gene in digestion and nutrient absorption
  publication-title: Insect Mol. Biol.
  doi: 10.1111/j.1365-2583.2009.00912.x
– volume: 70
  start-page: 99
  year: 2009
  ident: 10.1016/j.immuni.2020.01.008_bib53
  article-title: The role of melanization and cytotoxic by‐products in the cellular immune responses of Drosophila against parasitic wasps
  publication-title: Adv. Parasitol.
  doi: 10.1016/S0065-308X(09)70004-1
– volume: 32
  start-page: 678
  year: 2015
  ident: 10.1016/j.immuni.2020.01.008_bib61
  article-title: Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2015.01.029
– volume: 16
  start-page: 553
  year: 2016
  ident: 10.1016/j.immuni.2020.01.008_bib57
  article-title: A guide to immunometabolism for immunologists
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.70
– volume: 80
  start-page: 96
  year: 2016
  ident: 10.1016/j.immuni.2020.01.008_bib8
  article-title: The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster
  publication-title: Peptides
  doi: 10.1016/j.peptides.2016.02.004
– volume: 23
  start-page: 2319
  year: 2013
  ident: 10.1016/j.immuni.2020.01.008_bib28
  article-title: A glutamate-dependent redox system in blood cells is integral for phagocytosis in Drosophila melanogaster
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2013.09.061
– volume: 68
  start-page: 116
  year: 2014
  ident: 10.1016/j.immuni.2020.01.008_bib55
  article-title: Methods to study Drosophila immunity
  publication-title: Methods
  doi: 10.1016/j.ymeth.2014.02.023
– volume: 27
  start-page: 886
  year: 2019
  ident: 10.1016/j.immuni.2020.01.008_bib66
  article-title: The exchangeable apolipoprotein Nplp2 sustains lipid flow and heat acclimation in Drosophila
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.03.074
– volume: 285
  start-page: 18473
  year: 2010
  ident: 10.1016/j.immuni.2020.01.008_bib69
  article-title: Modifying apolipoprotein A-I by malondialdehyde, but not by an array of other reactive carbonyls, blocks cholesterol efflux by the ABCA1 pathway
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.118182
– volume: 163
  start-page: 340
  year: 2015
  ident: 10.1016/j.immuni.2020.01.008_bib2
  article-title: Antioxidant role for lipid droplets in a stem cell niche of Drosophila
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.020
– year: 2013
  ident: 10.1016/j.immuni.2020.01.008_bib10
– volume: 7
  start-page: 715
  year: 2006
  ident: 10.1016/j.immuni.2020.01.008_bib35
  article-title: PGRP-LC and PGRP-LE have essential yet distinct functions in the drosophila immune response to monomeric DAP-type peptidoglycan
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1356
– volume: 15
  start-page: 11
  year: 2005
  ident: 10.1016/j.immuni.2020.01.008_bib76
  article-title: Activation and signaling of the p38 MAP kinase pathway
  publication-title: Cell Res.
  doi: 10.1038/sj.cr.7290257
– volume: 14
  start-page: 727
  year: 2018
  ident: 10.1016/j.immuni.2020.01.008_bib24
  article-title: Lipid management in patients with chronic kidney disease
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/s41581-018-0072-9
– volume: 5
  start-page: 1058
  year: 2004
  ident: 10.1016/j.immuni.2020.01.008_bib14
  article-title: A Drosophila p38 orthologue is required for environmental stress responses
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7400282
– volume: 29
  start-page: 7
  year: 2018
  ident: 10.1016/j.immuni.2020.01.008_bib23
  article-title: New views on the Malpighian tubule from post-genomic technologies
  publication-title: Curr. Opin. Insect Sci.
  doi: 10.1016/j.cois.2018.05.010
– volume: 10
  start-page: 845
  year: 2015
  ident: 10.1016/j.immuni.2020.01.008_bib37
  article-title: The Phyre2 web portal for protein modeling, prediction and analysis
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2015.053
– volume: 505
  start-page: 726
  year: 2018
  ident: 10.1016/j.immuni.2020.01.008_bib51
  article-title: Inflammatory production of reactive oxygen species by Drosophila hemocytes activates cellular immune defenses
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2018.09.126
– volume: 4
  start-page: 208
  year: 2015
  ident: 10.1016/j.immuni.2020.01.008_bib71
  article-title: Oxidative stress and autophagy: crucial modulators of kidney injury
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2015.01.001
– volume: 273
  start-page: 30801
  year: 1998
  ident: 10.1016/j.immuni.2020.01.008_bib60
  article-title: Novel allergen structures with tandem amino acid repeats derived from German and American cockroach
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.46.30801
– volume: 4
  start-page: 181
  year: 2004
  ident: 10.1016/j.immuni.2020.01.008_bib40
  article-title: NOX enzymes and the biology of reactive oxygen
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1312
– volume: 41
  start-page: 953
  year: 2004
  ident: 10.1016/j.immuni.2020.01.008_bib29
  article-title: Gene expression and tissue distribution of the major human allergen Bla g 1 in the German cockroach, Blattella germanica L. (Dictyoptera: Blattellidae)
  publication-title: J. Med. Entomol.
  doi: 10.1603/0022-2585-41.5.953
– volume: 20
  start-page: 1126
  year: 2014
  ident: 10.1016/j.immuni.2020.01.008_bib48
  article-title: Reactive oxygen species in inflammation and tissue injury
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2012.5149
– volume: 34
  start-page: 975
  year: 2019
  ident: 10.1016/j.immuni.2020.01.008_bib16
  article-title: Oxidative stress in chronic kidney disease
  publication-title: Pediatr. Nephrol.
  doi: 10.1007/s00467-018-4005-4
– volume: 11
  start-page: e0153522
  year: 2016
  ident: 10.1016/j.immuni.2020.01.008_bib38
  article-title: Real-time tracking of BODIPY-C12 long-chain fatty acid in human term placenta reveals unique lipid dynamics in cytotrophoblast cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0153522
– volume: 271
  start-page: 186
  year: 1999
  ident: 10.1016/j.immuni.2020.01.008_bib59
  article-title: Rapid staining of lipids on thin-layer chromatograms with amido black 10B and other water-soluble stains
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.1999.4127
– volume: 8
  start-page: e1002828
  year: 2012
  ident: 10.1016/j.immuni.2020.01.008_bib58
  article-title: Lipoproteins in Drosophila melanogaster--assembly, function, and influence on tissue lipid composition
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002828
– volume: 20
  start-page: 464
  year: 2010
  ident: 10.1016/j.immuni.2020.01.008_bib49
  article-title: Prioritization of competing damage and developmental signals by migrating macrophages in the Drosophila embryo
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2010.01.047
– volume: 24
  start-page: 981
  year: 2012
  ident: 10.1016/j.immuni.2020.01.008_bib63
  article-title: Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2012.01.008
– volume: 24
  start-page: R453
  year: 2014
  ident: 10.1016/j.immuni.2020.01.008_bib67
  article-title: ROS function in redox signaling and oxidative stress
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2014.03.034
– volume: 28
  start-page: 1013
  year: 2018
  ident: 10.1016/j.immuni.2020.01.008_bib74
  article-title: A post-ingestive amino acid sensor promotes food consumption in Drosophila
  publication-title: Cell Res.
  doi: 10.1038/s41422-018-0084-9
– volume: 5
  start-page: 2344
  year: 2013
  ident: 10.1016/j.immuni.2020.01.008_bib62
  article-title: Genomic, RNAseq, and molecular modeling evidence suggests that the major allergen domain in insects evolved from a homodimeric origin
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evt182
– volume: 28
  start-page: 1
  year: 2001
  ident: 10.1016/j.immuni.2020.01.008_bib21
  article-title: The Drosophila melanogaster Malpighian tubule
  publication-title: Adv. Insect Physiol.
  doi: 10.1016/S0065-2806(01)28008-4
– volume: 186
  start-page: 943
  year: 2010
  ident: 10.1016/j.immuni.2020.01.008_bib46
  article-title: A targeted UAS-RNAi screen in Drosophila larvae identifies wound closure genes regulating distinct cellular processes
  publication-title: Genetics
  doi: 10.1534/genetics.110.121822
– volume: 9
  start-page: 676
  year: 2012
  ident: 10.1016/j.immuni.2020.01.008_bib78
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 32
  start-page: 602
  year: 2018
  ident: 10.1016/j.immuni.2020.01.008_bib13
  article-title: Regulation of lipid peroxidation and ferroptosis in diverse species
  publication-title: Genes Dev.
  doi: 10.1101/gad.314674.118
– volume: 30
  start-page: 223
  year: 2007
  ident: 10.1016/j.immuni.2020.01.008_bib73
  article-title: A Drosophila systems approach to xenobiotic metabolism
  publication-title: Physiol. Genomics
  doi: 10.1152/physiolgenomics.00018.2007
– volume: 7
  start-page: 11266
  year: 2016
  ident: 10.1016/j.immuni.2020.01.008_bib32
  article-title: The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11266
– volume: 8
  start-page: 125
  year: 2005
  ident: 10.1016/j.immuni.2020.01.008_bib30
  article-title: An antioxidant system required for host protection against gut infection in Drosophila
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2004.11.007
– volume: 5
  start-page: 200
  year: 2009
  ident: 10.1016/j.immuni.2020.01.008_bib3
  article-title: Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2009.01.003
– volume: 42
  start-page: 1027
  year: 1996
  ident: 10.1016/j.immuni.2020.01.008_bib56
  article-title: Mechanism of enhanced secretion in the warmed Malpighian tubule of the tsetse fly, Glossina morsitans morsitans
  publication-title: J. Insect Physiol.
  doi: 10.1016/S0022-1910(96)00067-4
– volume: 195
  start-page: 715
  year: 2013
  ident: 10.1016/j.immuni.2020.01.008_bib39
  article-title: Highly improved gene targeting by germline-specific Cas9 expression in Drosophila
  publication-title: Genetics
  doi: 10.1534/genetics.113.156737
– volume: 107
  start-page: 20774
  year: 2010
  ident: 10.1016/j.immuni.2020.01.008_bib11
  article-title: Participation of the p38 pathway in Drosophila host defense against pathogenic bacteria and fungi
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1009223107
– volume: 4
  start-page: 645
  year: 2019
  ident: 10.1016/j.immuni.2020.01.008_bib25
  article-title: Phosphatidic acid as a limiting host metabolite for the proliferation of the microsporidium Tubulinosema ratisbonensis in Drosophila flies
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-018-0344-y
– volume: 205
  start-page: 3799
  year: 2002
  ident: 10.1016/j.immuni.2020.01.008_bib7
  article-title: The Dh gene of Drosophila melanogaster encodes a diuretic peptide that acts through cyclic AMP
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.205.24.3799
– volume: 212
  start-page: 435
  year: 2009
  ident: 10.1016/j.immuni.2020.01.008_bib20
  article-title: Insights into the Malpighian tubule from functional genomics
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.024224
– volume: 197
  start-page: 421
  year: 1994
  ident: 10.1016/j.immuni.2020.01.008_bib22
  article-title: The malpighian tubules of Drosophila melanogaster: a novel phenotype for studies of fluid secretion and its control
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.197.1.421
– volume: 46
  start-page: D809
  issue: D1
  year: 2018
  ident: 10.1016/j.immuni.2020.01.008_bib42
  article-title: FlyAtlas 2: a new version of the Drosophila melanogaster expression atlas with RNA-Seq, miRNA-Seq and sex-specific data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx976
– volume: 29
  start-page: 21
  year: 2018
  ident: 10.1016/j.immuni.2020.01.008_bib43
  article-title: Immune-metabolic interactions during systemic and enteric infection in Drosophila
  publication-title: Curr. Opin. Insect Sci.
  doi: 10.1016/j.cois.2018.05.014
– volume: 17
  start-page: 4256
  year: 2010
  ident: 10.1016/j.immuni.2020.01.008_bib36
  article-title: Oxidative stress in diabetic nephropathy
  publication-title: Curr. Med. Chem.
  doi: 10.2174/092986710793348581
– volume: 32
  start-page: 609
  year: 2014
  ident: 10.1016/j.immuni.2020.01.008_bib27
  article-title: Metabolic regulation of immune responses
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-032713-120236
– volume: 20
  start-page: 5421
  year: 2001
  ident: 10.1016/j.immuni.2020.01.008_bib34
  article-title: A Drosophila MAPKKK, D-MEKK1, mediates stress responses through activation of p38 MAPK
  publication-title: EMBO J.
  doi: 10.1093/emboj/20.19.5421
– volume: 20
  start-page: 716
  year: 2016
  ident: 10.1016/j.immuni.2020.01.008_bib44
  article-title: Enterocyte purge and rapid recovery is a resilience reaction of the gut epithelium to pore-forming toxin attack
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.10.010
– volume: 31
  start-page: 1253
  year: 2012
  ident: 10.1016/j.immuni.2020.01.008_bib52
  article-title: Genetic evidence of a redox-dependent systemic wound response via Hayan protease-phenoloxidase system in Drosophila
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.476
– volume: 9
  start-page: 119
  year: 2014
  ident: 10.1016/j.immuni.2020.01.008_bib41
  article-title: Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev-pathol-012513-104651
– volume: 94
  start-page: 22
  year: 2019
  ident: 10.1016/j.immuni.2020.01.008_bib26
  article-title: Immunometabolism: Insights from the Drosophila model
  publication-title: Dev. Comp. Immunol.
  doi: 10.1016/j.dci.2019.01.011
– volume: 8
  start-page: 813
  year: 2007
  ident: 10.1016/j.immuni.2020.01.008_bib15
  article-title: ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2256
– volume: 35
  start-page: 741
  year: 2005
  ident: 10.1016/j.immuni.2020.01.008_bib47
  article-title: Insect renal tubules constitute a cell-autonomous immune system that protects the organism against bacterial infection
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2005.02.017
– volume: 2014
  year: 2014
  ident: 10.1016/j.immuni.2020.01.008_bib1
  article-title: Lipid peroxidation: production, metabolism, and signaling mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal
  publication-title: Oxid. med. cell. longev.
  doi: 10.1155/2014/360438
– volume: 35
  start-page: 947
  year: 2005
  ident: 10.1016/j.immuni.2020.01.008_bib68
  article-title: Identification and characterization of a novel peritrophic matrix protein, Ae-Aper50, and the microvillar membrane protein, AEG12, from the mosquito, Aedes aegypti
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2005.03.012
– reference: 32075724 - Immunity. 2020 Feb 18;52(2):215-217
SSID ssj0014590
Score 2.5036137
Snippet Animals require complex metabolic and physiological adaptations to maintain the function of vital organs in response to environmental stresses and infection....
SummaryAnimals require complex metabolic and physiological adaptations to maintain the function of vital organs in response to environmental stresses and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 374
SubjectTerms Adaptation
Adaptive Immunity
Animal tissues
Animals
Antioxidants
Apoptosis
Carrier Proteins - chemistry
Carrier Proteins - genetics
Carrier Proteins - metabolism
Damage
Diglycerides - metabolism
Drosophila
Drosophila melanogaster - genetics
Drosophila melanogaster - immunology
Drosophila melanogaster - metabolism
Drosophila Proteins - chemistry
Drosophila Proteins - deficiency
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Environmental stress
excretion
Feces
Feces - chemistry
Flies
Hemolymph
Hemolymph - metabolism
Homeostasis
immune adaptation
immunity
Infections
Inflammation
Insects
Kidneys
Lipid metabolism
Lipid Metabolism - immunology
Lipid peroxidation
Lipid Peroxidation - immunology
Lipid-binding protein
Lipids
Malpighian tubules
Malpighian Tubules - immunology
Malpighian Tubules - metabolism
Mammals
MAP Kinase Signaling System - immunology
Metabolism
Organs
Peptides
Peroxidation
Phenotypes
Physiology
Protein Conformation
Purging
Reactive oxygen species
Reactive Oxygen Species - immunology
Reactive Oxygen Species - metabolism
ROS
stress
Stress response
Stress, Physiological - immunology
Wound healing
Title Renal Purge of Hemolymphatic Lipids Prevents the Accumulation of ROS-Induced Inflammatory Oxidized Lipids and Protects Drosophila from Tissue Damage
URI https://dx.doi.org/10.1016/j.immuni.2020.01.008
https://www.ncbi.nlm.nih.gov/pubmed/32075729
https://www.proquest.com/docview/2425658770
https://www.proquest.com/docview/2359404592
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelY2MvY-u-snVFg72ayJJsS49Zu5KtdB1py_ImJFkCl8QpTQJr_47-wTvJsmGwUdij5ZMRutPpzvfxQ-iT5Eb73IqsrL3LOBi4mbSEZDVxBfeCg0oM_ztOv5fTS_5tXsx30GFfCxPSKpPu73R61NZpZJx2c3zdNOPzkEoITjijIKehqyfoYcZFLOKbfx4iCbyQZMg7BOq-fC7meDWxBgO8REpi884AMvn36-lf5me8ho6fo2fJfsSTbokv0I5r99DjDlHydg89OU2x8pfofuYC5Y9Q94xXHk_dcrW4BeaFHq04YFbXa5w6OK0x2IF4Yu12meC8wozZ2XkWoD1gk_DX1oPsLGNMHp_9aurmDkbTV3Rbw5diw4c1PrqJ0AjNQuNQu4IvImvxkV6C6nqFLo-_XBxOs4TBkNmC0E0mqGXe5dQQX5tc17njxjjqaynKvNbCO3AxjCutFyUvqS2trIiRjGkteUU4e41221Xr3iLMhKFgnZiSa8dLRo0UWkjBdE4MFYUdIdZvvbKpQXnAyVioPhPtSnUMU4FhiuQKGDZC2TDrumvQ8QB91XNV_SFoCu6QB2bu90Kg0kFfq-CxgRFXVWSEPg6v4YiGuItu3WoLNKyQHExnSUfoTSc8w1JBeqsCHJx3_72s9-hpeAqZ5LnYR7ubm637AIbSxhygR5OT2c-Tg3gifgNK7RNm
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEJcXBOOywgAjwWNUx3ES-4GHQZlatm5o66S-GdtxpExtOq2toPwO_gl_kGPHiYQEmoS01_giy-f4-DvxOedD6K1gWpWx4VFWlDZiAHAjYQiJCmJTVnIGJtH97xgfZ8Nz9nmaTrfQrzYXxoVVBtvf2HRvrcOXftjN_mVV9c9cKCE44QkFPXVVPUNk5aHdfAO_bfl-NAAhv6P04NPk4zAK1AKRSQldRZyapLQx1aQsdKyK2DKtLS0LwbO4ULy0gJy1zUzJM5ZRkxmREw3Ov1KC5YQlMO8tdBvQR-6swWj6oXu6YKkgXaAjLK_N1_NBZZVP-gC3lBJfLdSxWv79PvwX3vX33sFD9CAAVrzf7MkjtGXrHXSnobDc7KC74_A4_xj9PLWu5xeXaI0XJR7a-WK2AW1xRWGxI8kuljiUjFpiAJ5435j1PPCHuRGnJ2eR4xIBqeBRXYKyzn0QAD75XhXVD_gaZlF1ATP5ChNLPLjyXAzVTGGXLIMnXpfwQM3BVj5B5zcimadou17UdhfhhGsKcEhnTFmWJVQLrrjgiYqJpjw1PZS0Wy9NqIjuiDlmsg19u5CNwKQTmCSxBIH1UNSNumwqglzTP2-lKv_QbAmX1jUj91olkMGyLKVzEQE15jnpoTddM9gE99CjartYQ58kFQywuqA99KxRnm6pcFzyFDyq5_-9rNfo3nAyPpJHo-PDF-i-a3Fh7DHfQ9urq7V9CShtpV_5U4HR15s-hr8BaplQMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Renal+Purge+of+Hemolymphatic+Lipids+Prevents+the+Accumulation+of+ROS-Induced+Inflammatory+Oxidized+Lipids+and+Protects+Drosophila+from+Tissue+Damage&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Li%2C+Xiaoxue&rft.au=Rommelaere%2C+Samuel&rft.au=Kondo%2C+Shu&rft.au=Lemaitre%2C+Bruno&rft.date=2020-02-18&rft.issn=1097-4180&rft.eissn=1097-4180&rft.volume=52&rft.issue=2&rft.spage=374&rft_id=info:doi/10.1016%2Fj.immuni.2020.01.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon