Renal Purge of Hemolymphatic Lipids Prevents the Accumulation of ROS-Induced Inflammatory Oxidized Lipids and Protects Drosophila from Tissue Damage
Animals require complex metabolic and physiological adaptations to maintain the function of vital organs in response to environmental stresses and infection. Here, we found that infection or injury in Drosophila induced the excretion of hemolymphatic lipids by Malpighian tubules, the insect kidney....
Saved in:
Published in | Immunity (Cambridge, Mass.) Vol. 52; no. 2; pp. 374 - 387.e6 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
18.02.2020
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Animals require complex metabolic and physiological adaptations to maintain the function of vital organs in response to environmental stresses and infection. Here, we found that infection or injury in Drosophila induced the excretion of hemolymphatic lipids by Malpighian tubules, the insect kidney. This lipid purge was mediated by a stress-induced lipid-binding protein, Materazzi, which was enriched in Malpighian tubules. Flies lacking materazzi had higher hemolymph concentrations of reactive oxygen species (ROS) and increased lipid peroxidation. These flies also displayed Malpighian tubule dysfunction and were susceptible to infections and environmental stress. Feeding flies with antioxidants rescued the materazzi phenotype, indicating that the main role of Materazzi is to protect the organism from damage caused by stress-induced ROS. Our findings suggest that purging hemolymphatic lipids presents a physiological adaptation to protect host tissues from excessive ROS during immune and stress responses, a process that is likely to apply to other organisms.
[Display omitted]
•Hemolymphatic lipids are removed by Malpighian tubules after infection and injury•The lipid-binding protein Materazzi removes lipids from the hemolymph•Materazzi prevents hemolymphatic lipid peroxidation and tubule dysfunction•Lipid removal is a stress response that adjusts ROS level and promotes survival
Li et al. show that infection or injury in Drosophila induced the excretion of hemolymphatic lipids by Malpighian tubules, the insect kidney, via a mechanism centered on the stress-induced lipid-binding protein, Materazzi. Thus, lipid removal presents a physiological adaptation to protect host tissues from excessive ROS during immune and stress responses, a process that is likely to apply to other organisms. |
---|---|
AbstractList | Animals require complex metabolic and physiological adaptations to maintain the function of vital organs in response to environmental stresses and infection. Here, we found that infection or injury in Drosophila induced the excretion of hemolymphatic lipids by Malpighian tubules, the insect kidney. This lipid purge was mediated by a stress-induced lipid-binding protein, Materazzi, which was enriched in Malpighian tubules. Flies lacking materazzi had higher hemolymph concentrations of reactive oxygen species (ROS) and increased lipid peroxidation. These flies also displayed Malpighian tubule dysfunction and were susceptible to infections and environmental stress. Feeding flies with antioxidants rescued the materazzi phenotype, indicating that the main role of Materazzi is to protect the organism from damage caused by stress-induced ROS. Our findings suggest that purging hemolymphatic lipids presents a physiological adaptation to protect host tissues from excessive ROS during immune and stress responses, a process that is likely to apply to other organisms.
[Display omitted]
•Hemolymphatic lipids are removed by Malpighian tubules after infection and injury•The lipid-binding protein Materazzi removes lipids from the hemolymph•Materazzi prevents hemolymphatic lipid peroxidation and tubule dysfunction•Lipid removal is a stress response that adjusts ROS level and promotes survival
Li et al. show that infection or injury in Drosophila induced the excretion of hemolymphatic lipids by Malpighian tubules, the insect kidney, via a mechanism centered on the stress-induced lipid-binding protein, Materazzi. Thus, lipid removal presents a physiological adaptation to protect host tissues from excessive ROS during immune and stress responses, a process that is likely to apply to other organisms. Animals require complex metabolic and physiological adaptations to maintain the function of vital organs in response to environmental stresses and infection. Here, we found that infection or injury in Drosophila induced the excretion of hemolymphatic lipids by Malpighian tubules, the insect kidney. This lipid purge was mediated by a stress-induced lipid-binding protein, Materazzi, which was enriched in Malpighian tubules. Flies lacking materazzi had higher hemolymph concentrations of reactive oxygen species (ROS) and increased lipid peroxidation. These flies also displayed Malpighian tubule dysfunction and were susceptible to infections and environmental stress. Feeding flies with antioxidants rescued the materazzi phenotype, indicating that the main role of Materazzi is to protect the organism from damage caused by stress-induced ROS. Our findings suggest that purging hemolymphatic lipids presents a physiological adaptation to protect host tissues from excessive ROS during immune and stress responses, a process that is likely to apply to other organisms.Animals require complex metabolic and physiological adaptations to maintain the function of vital organs in response to environmental stresses and infection. Here, we found that infection or injury in Drosophila induced the excretion of hemolymphatic lipids by Malpighian tubules, the insect kidney. This lipid purge was mediated by a stress-induced lipid-binding protein, Materazzi, which was enriched in Malpighian tubules. Flies lacking materazzi had higher hemolymph concentrations of reactive oxygen species (ROS) and increased lipid peroxidation. These flies also displayed Malpighian tubule dysfunction and were susceptible to infections and environmental stress. Feeding flies with antioxidants rescued the materazzi phenotype, indicating that the main role of Materazzi is to protect the organism from damage caused by stress-induced ROS. Our findings suggest that purging hemolymphatic lipids presents a physiological adaptation to protect host tissues from excessive ROS during immune and stress responses, a process that is likely to apply to other organisms. Animals require complex metabolic and physiological adaptations to maintain the function of vital organs in response to environmental stresses and infection. Here, we found that infection or injury in Drosophila induced the excretion of hemolymphatic lipids by Malpighian tubules, the insect kidney. This lipid purge was mediated by a stress-induced lipid-binding protein, Materazzi, which was enriched in Malpighian tubules. Flies lacking materazzi had higher hemolymph concentrations of reactive oxygen species (ROS) and increased lipid peroxidation. These flies also displayed Malpighian tubule dysfunction and were susceptible to infections and environmental stress. Feeding flies with antioxidants rescued the materazzi phenotype, indicating that the main role of Materazzi is to protect the organism from damage caused by stress-induced ROS. Our findings suggest that purging hemolymphatic lipids presents a physiological adaptation to protect host tissues from excessive ROS during immune and stress responses, a process that is likely to apply to other organisms. SummaryAnimals require complex metabolic and physiological adaptations to maintain the function of vital organs in response to environmental stresses and infection. Here, we found that infection or injury in Drosophila induced the excretion of hemolymphatic lipids by Malpighian tubules, the insect kidney. This lipid purge was mediated by a stress-induced lipid-binding protein, Materazzi, which was enriched in Malpighian tubules. Flies lacking materazzi had higher hemolymph concentrations of reactive oxygen species (ROS) and increased lipid peroxidation. These flies also displayed Malpighian tubule dysfunction and were susceptible to infections and environmental stress. Feeding flies with antioxidants rescued the materazzi phenotype, indicating that the main role of Materazzi is to protect the organism from damage caused by stress-induced ROS. Our findings suggest that purging hemolymphatic lipids presents a physiological adaptation to protect host tissues from excessive ROS during immune and stress responses, a process that is likely to apply to other organisms. |
Author | Lemaitre, Bruno Li, Xiaoxue Kondo, Shu Rommelaere, Samuel |
Author_xml | – sequence: 1 givenname: Xiaoxue surname: Li fullname: Li, Xiaoxue email: xiaoxue.li@epfl.ch organization: Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland – sequence: 2 givenname: Samuel surname: Rommelaere fullname: Rommelaere, Samuel organization: Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland – sequence: 3 givenname: Shu surname: Kondo fullname: Kondo, Shu organization: Invertebrate Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan – sequence: 4 givenname: Bruno surname: Lemaitre fullname: Lemaitre, Bruno email: bruno.lemaitre@epfl.ch organization: Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32075729$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhSNURH_gDRCyxKabDNeO88cCqWopHWmkqUpZW4590_Eotgc7qRiegweuh5luuoCVI-c7n-RzTrMj5x1m2XsKMwq0-rSeGWsnZ2YMGMyAzgCaV9kJhbbOOW3gaPdd87yuaHGcnca4BqC8bOFNdlwwqMuatSfZnzt0ciC3U3hA4ntyg9YPW7tZydEosjAboyO5DfiIboxkXCG5UGqy05D-e7dL3C2_53OnJ4WazF0_SGvl6MOWLH8ZbX6n24NFOp1MfkSVTFfBR79ZmUGSPnhL7k2ME5IraeUDvs1e93KI-O5wnmU_rr_eX97ki-W3-eXFIlclsDFvmCp6pKyDXndUaoq865D1um0qqmXTI_C2w0r1TcUrpirV1tC1RSFly2vgxVl2vvdugv85YRyFNVHhMEiHfoqCFWXLIXXGEvrxBbr2U0jVJYqzsiqbuoZEfThQU2dRi00wVoateO47AZ_3gErvjwF7ocz4t8oxSDMICmI3rliL_bhiN64AKtK4KcxfhJ_9_4l92ccwVfloMIioDLq0lwlpC6G9-bfgCQ_ewiA |
CitedBy_id | crossref_primary_10_1016_j_celrep_2024_114109 crossref_primary_10_3390_ijms252111799 crossref_primary_10_1016_j_immuni_2022_07_022 crossref_primary_10_1002_jcp_30861 crossref_primary_10_1371_journal_pone_0235294 crossref_primary_10_37349_emed_2021_00062 crossref_primary_10_1073_pnas_2011828117 crossref_primary_10_1016_j_jcis_2023_05_103 crossref_primary_10_1016_j_cois_2022_100948 crossref_primary_10_1371_journal_pbio_3001635 crossref_primary_10_3390_diseases11030094 crossref_primary_10_7717_peerj_15494 crossref_primary_10_1038_s41467_023_44098_x crossref_primary_10_1073_pnas_2205140120 crossref_primary_10_4103_bjhs_bjhs_214_23 crossref_primary_10_3389_fimmu_2022_933137 crossref_primary_10_1038_s41536_022_00254_3 crossref_primary_10_1186_s12943_021_01488_3 crossref_primary_10_34133_2022_9897464 crossref_primary_10_3389_fnut_2022_917432 crossref_primary_10_1002_mco2_127 crossref_primary_10_3390_antiox13030305 crossref_primary_10_1016_j_celrep_2024_113973 crossref_primary_10_1016_j_isci_2023_107490 crossref_primary_10_1039_D0NJ02554B crossref_primary_10_1016_j_semcdb_2022_04_002 crossref_primary_10_1016_j_immuni_2020_01_009 crossref_primary_10_4049_jimmunol_2100343 crossref_primary_10_3389_fgene_2023_1183659 crossref_primary_10_1111_mec_17726 crossref_primary_10_1016_j_cois_2022_100874 crossref_primary_10_1371_journal_ppat_1012797 crossref_primary_10_1016_j_copbio_2021_03_001 crossref_primary_10_1016_j_jhazmat_2020_124666 crossref_primary_10_1073_pnas_2019251118 crossref_primary_10_1111_1744_7917_12868 crossref_primary_10_1016_j_celrep_2024_115081 crossref_primary_10_1016_j_cmet_2021_10_003 crossref_primary_10_1098_rspb_2022_1642 crossref_primary_10_1128_mBio_00276_21 crossref_primary_10_1016_j_celrep_2025_115404 crossref_primary_10_1016_j_bioadv_2022_212821 crossref_primary_10_1242_dev_197343 crossref_primary_10_5483_BMBRep_2023_0021 crossref_primary_10_1016_j_ijbiomac_2023_125152 crossref_primary_10_1371_journal_pgen_1010098 |
Cites_doi | 10.1371/journal.pone.0032577 10.1021/cr200084z 10.1038/nrmicro3074 10.1038/nri3763 10.1073/pnas.97.7.3376 10.1371/journal.pgen.1004659 10.1016/j.jinsphys.2012.01.008 10.1073/pnas.221458698 10.1016/j.jaci.2013.06.014 10.1093/emboj/21.11.2568 10.1038/sj.bjp.0707395 10.1371/journal.pone.0023796 10.1083/jcb.201006039 10.1016/j.cell.2017.04.004 10.1146/annurev.immunol.25.022106.141615 10.1126/science.1117311 10.1146/annurev-cancerbio-041916-065808 10.1111/j.1365-2583.2009.00912.x 10.1016/S0065-308X(09)70004-1 10.1016/j.devcel.2015.01.029 10.1038/nri.2016.70 10.1016/j.peptides.2016.02.004 10.1016/j.cub.2013.09.061 10.1016/j.ymeth.2014.02.023 10.1016/j.celrep.2019.03.074 10.1074/jbc.M110.118182 10.1016/j.cell.2015.09.020 10.1038/ni1356 10.1038/sj.cr.7290257 10.1038/s41581-018-0072-9 10.1038/sj.embor.7400282 10.1016/j.cois.2018.05.010 10.1038/nprot.2015.053 10.1016/j.bbrc.2018.09.126 10.1016/j.redox.2015.01.001 10.1074/jbc.273.46.30801 10.1038/nri1312 10.1603/0022-2585-41.5.953 10.1089/ars.2012.5149 10.1007/s00467-018-4005-4 10.1371/journal.pone.0153522 10.1006/abio.1999.4127 10.1371/journal.pgen.1002828 10.1016/j.cub.2010.01.047 10.1016/j.cellsig.2012.01.008 10.1016/j.cub.2014.03.034 10.1038/s41422-018-0084-9 10.1093/gbe/evt182 10.1016/S0065-2806(01)28008-4 10.1534/genetics.110.121822 10.1038/nmeth.2019 10.1101/gad.314674.118 10.1152/physiolgenomics.00018.2007 10.1038/ncomms11266 10.1016/j.devcel.2004.11.007 10.1016/j.chom.2009.01.003 10.1016/S0022-1910(96)00067-4 10.1534/genetics.113.156737 10.1073/pnas.1009223107 10.1038/s41564-018-0344-y 10.1242/jeb.205.24.3799 10.1242/jeb.024224 10.1242/jeb.197.1.421 10.1093/nar/gkx976 10.1016/j.cois.2018.05.014 10.2174/092986710793348581 10.1146/annurev-immunol-032713-120236 10.1093/emboj/20.19.5421 10.1016/j.chom.2016.10.010 10.1038/emboj.2011.476 10.1146/annurev-pathol-012513-104651 10.1016/j.dci.2019.01.011 10.1038/nrm2256 10.1016/j.ibmb.2005.02.017 10.1155/2014/360438 10.1016/j.ibmb.2005.03.012 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. 2020. Elsevier Inc. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. – notice: 2020. Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 |
DOI | 10.1016/j.immuni.2020.01.008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Nursing & Allied Health Premium Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1097-4180 |
EndPage | 387.e6 |
ExternalDocumentID | 32075729 10_1016_j_immuni_2020_01_008 S1074761320300352 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K -DZ 0R~ 1RT 1~5 2WC 4.4 457 4G. 53G 5GY 62- 7-5 7RV 8C1 8FE 8FH AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACIWK ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFRAH AFTJW AGGSO AGKMS AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BKEYQ BPHCQ BVXVI C45 CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HCIFZ IH2 IHE IXB J1W JIG LK8 LX5 M2O M3Z M41 M7P N9A O-L O9- OK1 OVD P2P PQQKQ PROAC RCE ROL RPZ SCP SES SSZ TEORI TR2 WQ6 ZA5 .55 .GJ 29I 5VS AAEDT AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABJNI ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AHHHB AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ OHT OZT R2- RIG UHS X7M Y6R ZGI 0SF CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K EFKBS FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 |
ID | FETCH-LOGICAL-c502t-82c3fe12b0fdb1ad1e4bbe2fd9861da8fe049be6cf86462c6c970b933aa947043 |
IEDL.DBID | IXB |
ISSN | 1074-7613 1097-4180 |
IngestDate | Fri Jul 11 08:00:32 EDT 2025 Fri Jul 25 11:03:55 EDT 2025 Thu Jan 02 22:58:19 EST 2025 Thu Apr 24 23:11:07 EDT 2025 Tue Jul 01 01:58:42 EDT 2025 Fri Feb 23 02:50:19 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | stress homeostasis immune adaptation excretion Drosophila ROS immunity lipid peroxidation Malpighian tubules |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-82c3fe12b0fdb1ad1e4bbe2fd9861da8fe049be6cf86462c6c970b933aa947043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://www.cell.com/article/S1074761320300352/pdf |
PMID | 32075729 |
PQID | 2425658770 |
PQPubID | 2031079 |
ParticipantIDs | proquest_miscellaneous_2359404592 proquest_journals_2425658770 pubmed_primary_32075729 crossref_citationtrail_10_1016_j_immuni_2020_01_008 crossref_primary_10_1016_j_immuni_2020_01_008 elsevier_sciencedirect_doi_10_1016_j_immuni_2020_01_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-18 |
PublicationDateYYYYMMDD | 2020-02-18 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Immunity (Cambridge, Mass.) |
PublicationTitleAlternate | Immunity |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Cabrero, Radford, Broderick, Costes, Veenstra, Spana, Davies, Dow (bib7) 2002; 205 Dow, Davies (bib21) 2001; 28 Shao, Devenport, Fujioka, Ghosh, Jacobs-Lorena (bib68) 2005; 35 Kondo, Ueda (bib39) 2013; 195 Moreira, Stramer, Evans, Wood, Martin (bib49) 2010; 20 Zarubin, Han (bib76) 2005; 15 Leader, Krause, Pandit, Davies, Dow (bib42) 2018; 46 Neyen, Bretscher, Binggeli, Lemaitre (bib55) 2014; 68 Shao, Pennathur, Pagani, Oda, Witztum, Oram, Heinecke (bib69) 2010; 285 Inoue, Tateno, Fujimura-Kamada, Takaesu, Adachi-Yamada, Ninomiya-Tsuji, Irie, Nishida, Matsumoto (bib34) 2001; 20 Yang, McCart, Woods, Terhzaz, Greenwood, ffrench-Constant, Dow (bib73) 2007; 30 Craig, Fink, Yagi, Ip, Cagan (bib14) 2004; 5 Nicolson, Isaacson (bib56) 1996; 42 Ha, Oh, Ryu, Bae, Kang, Jang, Brey, Lee (bib30) 2005; 8 Hildebrandt, Bickmeyer, Kühnlein (bib33) 2011; 6 Lambeth, Neish (bib41) 2014; 9 Yin, Xu, Porter (bib75) 2011; 111 Kashihara, Haruna, Kondeti, Kanwar (bib36) 2010; 17 Schieber, Chandel (bib67) 2014; 24 Ayala, Muñoz, Argüelles (bib1) 2014; 2014 Nappi, Poirié, Carton (bib53) 2009; 70 Chapman, Simpson, Douglas (bib10) 2013 Gore, Schal (bib29) 2004; 41 Negre-Salvayre, Coatrieux, Ingueneau, Salvayre (bib54) 2008; 153 Kolahi, Louey, Varlamov, Thornburg (bib38) 2016; 11 Chakrabarti, Poidevin, Lemaitre (bib9) 2014; 10 Plekhanov (bib59) 1999; 271 Reczek, Chandel (bib64) 2017; 1 Buchon, Broderick, Poidevin, Pradervand, Lemaitre (bib3) 2009; 5 Buck, Sowell, Kaech, Pearce (bib6) 2017; 169 Cannell, Dornan, Halberg, Terhzaz, Dow, Davies (bib8) 2016; 80 Xiong, Wang, Ewanek, Bhat, Diantonio, Collins (bib72) 2010; 191 Halberg, Rainey, Veland, Neuert, Dornan, Klämbt, Davies, Dow (bib32) 2016; 7 Sureshbabu, Ryter, Choi (bib71) 2015; 4 Rambold, Cohen, Lippincott-Schwartz (bib61) 2015; 32 Suazo, Gore, Schal (bib70) 2009; 18 Randall, Perera, London, Mueller (bib62) 2013; 5 Basset, Khush, Braun, Gardan, Boccard, Hoffmann, Lemaitre (bib77) 2000; 97 Lesch, Jo, Wu, Fish, Galko (bib46) 2010; 186 Conrad, Kagan, Bayir, Pagnussat, Head, Traber, Stockwell (bib13) 2018; 32 Kelley, Mezulis, Yates, Wass, Sternberg (bib37) 2015; 10 Nam, Jang, You, Lee, Lee (bib52) 2012; 31 Rommelaere, Boquete, Piton, Kondo, Lemaitre (bib66) 2019; 27 Galenza, Foley (bib26) 2019; 94 O’Neill, Kishton, Rathmell (bib57) 2016; 16 Lemaitre, Hoffmann (bib45) 2007; 25 De Gregorio, Spellman, Tzou, Rubin, Lemaitre (bib19) 2002; 21 Yang, Huang, Fu, Wang, Qi, Mao, Shi, Shen, Wang (bib74) 2018; 28 Buchon, Silverman, Cherry (bib5) 2014; 14 Bailey, Koster, Guillermier, Hirst, MacRae, Lechene, Postle, Gould (bib2) 2015; 163 Daenen, Andries, Mekahli, Van Schepdael, Jouret, Bammens (bib16) 2019; 34 Ganeshan, Chawla (bib27) 2014; 32 Gonzalez, Garg, Tang, Nazario-Toole, Wu (bib28) 2013; 23 Schindelin, Arganda-Carreras, Frise, Kaynig, Longair, Pietzsch, Rueden, Saalfeld, Schmid, Tinevez (bib78) 2012; 9 Kaneko, Yano, Aggarwal, Lim, Ueda, Oshima, Peach, Erturk-Hasdemir, Goldman, Oh (bib35) 2006; 7 Davies, Overend, Sebastian, Cundall, Cabrero, Dow, Terhzaz (bib17) 2012; 58 D’Autréaux, Toledano (bib15) 2007; 8 Dow, Maddrell, Görtz, Skaer, Brogan, Kaiser (bib22) 1994; 197 Buchon, Broderick, Lemaitre (bib4) 2013; 11 Dow, Pandit, Davies (bib23) 2018; 29 Repetto, Semprine, Boveris (bib65) 2012 Ha, Oh, Bae, Lee (bib31) 2005; 310 Pomés, Melén, Vailes, Retief, Arruda, Chapman (bib60) 1998; 273 De Gregorio, Spellman, Rubin, Lemaitre (bib18) 2001; 98 Lambeth (bib40) 2004; 4 Franchet, Niehus, Caravello, Ferrandon (bib25) 2019; 4 Mueller, Pedersen, Lih, Glesner, Moon, Chapman, Tomer, London, Pomés (bib50) 2013; 132 Dow (bib20) 2009; 212 Lee, Lee (bib43) 2018; 29 Chen, Xie, Tian, Hong, Wu, Han (bib11) 2010; 107 Mittal, Siddiqui, Tran, Reddy, Malik (bib48) 2014; 20 Chintapalli, Terhzaz, Wang, Al Bratty, Watson, Herzyk, Davies, Dow (bib12) 2012; 7 McGettigan, McLennan, Broderick, Kean, Allan, Cabrero, Regulski, Pollock, Gould, Davies, Dow (bib47) 2005; 35 Ferro, Mark, Kanbay, Sarafidis, Heine, Rossignol, Massy, Mallamaci, Valdivielso, Malyszko (bib24) 2018; 14 Lee, Lestradet, Socha, Schirmeier, Schmitz, Spenlé, Lefebvre, Keime, Yamba, Bou Aoun (bib44) 2016; 20 Palm, Sampaio, Brankatschk, Carvalho, Mahmoud, Shevchenko, Eaton (bib58) 2012; 8 Ray, Huang, Tsuji (bib63) 2012; 24 Myers, Harris, Choe, Brennan (bib51) 2018; 505 Buchon (10.1016/j.immuni.2020.01.008_bib4) 2013; 11 Dow (10.1016/j.immuni.2020.01.008_bib22) 1994; 197 Pomés (10.1016/j.immuni.2020.01.008_bib60) 1998; 273 Sureshbabu (10.1016/j.immuni.2020.01.008_bib71) 2015; 4 De Gregorio (10.1016/j.immuni.2020.01.008_bib19) 2002; 21 Kondo (10.1016/j.immuni.2020.01.008_bib39) 2013; 195 Chintapalli (10.1016/j.immuni.2020.01.008_bib12) 2012; 7 Kaneko (10.1016/j.immuni.2020.01.008_bib35) 2006; 7 Craig (10.1016/j.immuni.2020.01.008_bib14) 2004; 5 De Gregorio (10.1016/j.immuni.2020.01.008_bib18) 2001; 98 Rambold (10.1016/j.immuni.2020.01.008_bib61) 2015; 32 Rommelaere (10.1016/j.immuni.2020.01.008_bib66) 2019; 27 Halberg (10.1016/j.immuni.2020.01.008_bib32) 2016; 7 Myers (10.1016/j.immuni.2020.01.008_bib51) 2018; 505 Buchon (10.1016/j.immuni.2020.01.008_bib3) 2009; 5 Gonzalez (10.1016/j.immuni.2020.01.008_bib28) 2013; 23 Daenen (10.1016/j.immuni.2020.01.008_bib16) 2019; 34 Kelley (10.1016/j.immuni.2020.01.008_bib37) 2015; 10 Randall (10.1016/j.immuni.2020.01.008_bib62) 2013; 5 Yin (10.1016/j.immuni.2020.01.008_bib75) 2011; 111 Lambeth (10.1016/j.immuni.2020.01.008_bib41) 2014; 9 Gore (10.1016/j.immuni.2020.01.008_bib29) 2004; 41 McGettigan (10.1016/j.immuni.2020.01.008_bib47) 2005; 35 Buchon (10.1016/j.immuni.2020.01.008_bib5) 2014; 14 Negre-Salvayre (10.1016/j.immuni.2020.01.008_bib54) 2008; 153 Xiong (10.1016/j.immuni.2020.01.008_bib72) 2010; 191 Leader (10.1016/j.immuni.2020.01.008_bib42) 2018; 46 Repetto (10.1016/j.immuni.2020.01.008_bib65) 2012 Dow (10.1016/j.immuni.2020.01.008_bib20) 2009; 212 Kolahi (10.1016/j.immuni.2020.01.008_bib38) 2016; 11 Nicolson (10.1016/j.immuni.2020.01.008_bib56) 1996; 42 Lee (10.1016/j.immuni.2020.01.008_bib43) 2018; 29 Ha (10.1016/j.immuni.2020.01.008_bib31) 2005; 310 Nam (10.1016/j.immuni.2020.01.008_bib52) 2012; 31 Cabrero (10.1016/j.immuni.2020.01.008_bib7) 2002; 205 Mittal (10.1016/j.immuni.2020.01.008_bib48) 2014; 20 Ganeshan (10.1016/j.immuni.2020.01.008_bib27) 2014; 32 Basset (10.1016/j.immuni.2020.01.008_bib77) 2000; 97 Zarubin (10.1016/j.immuni.2020.01.008_bib76) 2005; 15 Lambeth (10.1016/j.immuni.2020.01.008_bib40) 2004; 4 Lesch (10.1016/j.immuni.2020.01.008_bib46) 2010; 186 Plekhanov (10.1016/j.immuni.2020.01.008_bib59) 1999; 271 Nappi (10.1016/j.immuni.2020.01.008_bib53) 2009; 70 Inoue (10.1016/j.immuni.2020.01.008_bib34) 2001; 20 Chen (10.1016/j.immuni.2020.01.008_bib11) 2010; 107 Dow (10.1016/j.immuni.2020.01.008_bib21) 2001; 28 Lee (10.1016/j.immuni.2020.01.008_bib44) 2016; 20 Cannell (10.1016/j.immuni.2020.01.008_bib8) 2016; 80 Palm (10.1016/j.immuni.2020.01.008_bib58) 2012; 8 Bailey (10.1016/j.immuni.2020.01.008_bib2) 2015; 163 Reczek (10.1016/j.immuni.2020.01.008_bib64) 2017; 1 Galenza (10.1016/j.immuni.2020.01.008_bib26) 2019; 94 Schindelin (10.1016/j.immuni.2020.01.008_bib78) 2012; 9 Conrad (10.1016/j.immuni.2020.01.008_bib13) 2018; 32 Ray (10.1016/j.immuni.2020.01.008_bib63) 2012; 24 Chapman (10.1016/j.immuni.2020.01.008_bib10) 2013 Dow (10.1016/j.immuni.2020.01.008_bib23) 2018; 29 Yang (10.1016/j.immuni.2020.01.008_bib73) 2007; 30 Suazo (10.1016/j.immuni.2020.01.008_bib70) 2009; 18 D’Autréaux (10.1016/j.immuni.2020.01.008_bib15) 2007; 8 Davies (10.1016/j.immuni.2020.01.008_bib17) 2012; 58 Ha (10.1016/j.immuni.2020.01.008_bib30) 2005; 8 Shao (10.1016/j.immuni.2020.01.008_bib68) 2005; 35 Ferro (10.1016/j.immuni.2020.01.008_bib24) 2018; 14 Shao (10.1016/j.immuni.2020.01.008_bib69) 2010; 285 Hildebrandt (10.1016/j.immuni.2020.01.008_bib33) 2011; 6 Mueller (10.1016/j.immuni.2020.01.008_bib50) 2013; 132 Schieber (10.1016/j.immuni.2020.01.008_bib67) 2014; 24 O’Neill (10.1016/j.immuni.2020.01.008_bib57) 2016; 16 Franchet (10.1016/j.immuni.2020.01.008_bib25) 2019; 4 Neyen (10.1016/j.immuni.2020.01.008_bib55) 2014; 68 Chakrabarti (10.1016/j.immuni.2020.01.008_bib9) 2014; 10 Lemaitre (10.1016/j.immuni.2020.01.008_bib45) 2007; 25 Ayala (10.1016/j.immuni.2020.01.008_bib1) 2014; 2014 Moreira (10.1016/j.immuni.2020.01.008_bib49) 2010; 20 Yang (10.1016/j.immuni.2020.01.008_bib74) 2018; 28 Buck (10.1016/j.immuni.2020.01.008_bib6) 2017; 169 Kashihara (10.1016/j.immuni.2020.01.008_bib36) 2010; 17 32075724 - Immunity. 2020 Feb 18;52(2):215-217 |
References_xml | – volume: 6 start-page: e23796 year: 2011 ident: bib33 article-title: Reliable publication-title: PLoS ONE – volume: 35 start-page: 741 year: 2005 end-page: 754 ident: bib47 article-title: Insect renal tubules constitute a cell-autonomous immune system that protects the organism against bacterial infection publication-title: Insect Biochem. Mol. Biol. – volume: 505 start-page: 726 year: 2018 end-page: 732 ident: bib51 article-title: Inflammatory production of reactive oxygen species by publication-title: Biochem. Biophys. Res. Commun. – volume: 7 start-page: 715 year: 2006 end-page: 723 ident: bib35 article-title: PGRP-LC and PGRP-LE have essential yet distinct functions in the publication-title: Nat. Immunol. – volume: 195 start-page: 715 year: 2013 end-page: 721 ident: bib39 article-title: Highly improved gene targeting by germline-specific Cas9 expression in publication-title: Genetics – volume: 58 start-page: 488 year: 2012 end-page: 497 ident: bib17 article-title: Immune and stress response ‘cross-talk’ in the publication-title: J. Insect Physiol. – volume: 11 start-page: 615 year: 2013 end-page: 626 ident: bib4 article-title: Gut homeostasis in a microbial world: insights from publication-title: Nat. Rev. Microbiol. – volume: 186 start-page: 943 year: 2010 end-page: 957 ident: bib46 article-title: A targeted UAS-RNAi screen in publication-title: Genetics – volume: 14 start-page: 796 year: 2014 end-page: 810 ident: bib5 article-title: Immunity in publication-title: Nat. Rev. Immunol. – volume: 111 start-page: 5944 year: 2011 end-page: 5972 ident: bib75 article-title: Free radical lipid peroxidation: mechanisms and analysis publication-title: Chem. Rev. – year: 2012 ident: bib65 article-title: Lipid peroxidation: chemical mechanism, biological implications and analytical determination. – volume: 153 start-page: 6 year: 2008 end-page: 20 ident: bib54 article-title: Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors publication-title: Br. J. Pharmacol. – volume: 31 start-page: 1253 year: 2012 end-page: 1265 ident: bib52 article-title: Genetic evidence of a redox-dependent systemic wound response via Hayan protease-phenoloxidase system in publication-title: EMBO J. – volume: 15 start-page: 11 year: 2005 end-page: 18 ident: bib76 article-title: Activation and signaling of the p38 MAP kinase pathway publication-title: Cell Res. – volume: 20 start-page: 5421 year: 2001 end-page: 5430 ident: bib34 article-title: A publication-title: EMBO J. – volume: 107 start-page: 20774 year: 2010 end-page: 20779 ident: bib11 article-title: Participation of the p38 pathway in publication-title: Proc. Natl. Acad. Sci. USA – volume: 20 start-page: 1126 year: 2014 end-page: 1167 ident: bib48 article-title: Reactive oxygen species in inflammation and tissue injury publication-title: Antioxid. Redox Signal. – volume: 191 start-page: 211 year: 2010 end-page: 223 ident: bib72 article-title: Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury publication-title: J. Cell Biol. – volume: 28 start-page: 1013 year: 2018 end-page: 1025 ident: bib74 article-title: A post-ingestive amino acid sensor promotes food consumption in publication-title: Cell Res. – volume: 32 start-page: 602 year: 2018 end-page: 619 ident: bib13 article-title: Regulation of lipid peroxidation and ferroptosis in diverse species publication-title: Genes Dev. – volume: 4 start-page: 181 year: 2004 end-page: 189 ident: bib40 article-title: NOX enzymes and the biology of reactive oxygen publication-title: Nat. Rev. Immunol. – volume: 30 start-page: 223 year: 2007 end-page: 231 ident: bib73 article-title: A publication-title: Physiol. Genomics – volume: 94 start-page: 22 year: 2019 end-page: 34 ident: bib26 article-title: Immunometabolism: Insights from the publication-title: Dev. Comp. Immunol. – volume: 80 start-page: 96 year: 2016 end-page: 107 ident: bib8 article-title: The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in publication-title: Peptides – volume: 20 start-page: 716 year: 2016 end-page: 730 ident: bib44 article-title: Enterocyte purge and rapid recovery is a resilience reaction of the gut epithelium to pore-forming toxin attack publication-title: Cell Host Microbe – volume: 32 start-page: 678 year: 2015 end-page: 692 ident: bib61 article-title: Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics publication-title: Dev. Cell – volume: 8 start-page: 125 year: 2005 end-page: 132 ident: bib30 article-title: An antioxidant system required for host protection against gut infection in publication-title: Dev. Cell – volume: 271 start-page: 186 year: 1999 end-page: 187 ident: bib59 article-title: Rapid staining of lipids on thin-layer chromatograms with amido black 10B and other water-soluble stains publication-title: Anal. Biochem. – volume: 8 start-page: e1002828 year: 2012 ident: bib58 article-title: Lipoproteins in publication-title: PLoS Genet. – volume: 14 start-page: 727 year: 2018 end-page: 749 ident: bib24 article-title: Lipid management in patients with chronic kidney disease publication-title: Nat. Rev. Nephrol. – volume: 18 start-page: 727 year: 2009 end-page: 736 ident: bib70 article-title: RNA interference-mediated knock-down of Bla g 1 in the German cockroach, publication-title: Insect Mol. Biol. – volume: 2014 year: 2014 ident: bib1 article-title: Lipid peroxidation: production, metabolism, and signaling mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal publication-title: Oxid. med. cell. longev. – volume: 163 start-page: 340 year: 2015 end-page: 353 ident: bib2 article-title: Antioxidant role for lipid droplets in a stem cell niche of publication-title: Cell – volume: 20 start-page: 464 year: 2010 end-page: 470 ident: bib49 article-title: Prioritization of competing damage and developmental signals by migrating macrophages in the publication-title: Curr. Biol. – volume: 98 start-page: 12590 year: 2001 end-page: 12595 ident: bib18 article-title: Genome-wide analysis of the publication-title: Proc. Natl. Acad. Sci. USA – volume: 68 start-page: 116 year: 2014 end-page: 128 ident: bib55 article-title: Methods to study publication-title: Methods – volume: 16 start-page: 553 year: 2016 end-page: 565 ident: bib57 article-title: A guide to immunometabolism for immunologists publication-title: Nat. Rev. Immunol. – volume: 1 start-page: 79 year: 2017 end-page: 98 ident: bib64 article-title: The two faces of Reactive Oxygen Species in cancer publication-title: Annu. Rev. Cancer Biol. – volume: 169 start-page: 570 year: 2017 end-page: 586 ident: bib6 article-title: Metabolic instruction of immunity publication-title: Cell – volume: 29 start-page: 7 year: 2018 end-page: 11 ident: bib23 article-title: New views on the Malpighian tubule from post-genomic technologies publication-title: Curr. Opin. Insect Sci. – volume: 32 start-page: 609 year: 2014 end-page: 634 ident: bib27 article-title: Metabolic regulation of immune responses publication-title: Annu. Rev. Immunol. – volume: 132 start-page: 1420 year: 2013 end-page: 1426 ident: bib50 article-title: The novel structure of the cockroach allergen Bla g 1 has implications for allergenicity and exposure assessment publication-title: J. Allergy Clin. Immunol. – volume: 9 start-page: 676 year: 2012 end-page: 682 ident: bib78 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods – volume: 5 start-page: 200 year: 2009 end-page: 211 ident: bib3 article-title: intestinal response to bacterial infection: activation of host defense and stem cell proliferation publication-title: Cell Host Microbe – year: 2013 ident: bib10 article-title: The insects: structure and function – volume: 24 start-page: R453 year: 2014 end-page: R462 ident: bib67 article-title: ROS function in redox signaling and oxidative stress publication-title: Curr. Biol. – volume: 35 start-page: 947 year: 2005 end-page: 959 ident: bib68 article-title: Identification and characterization of a novel peritrophic matrix protein, Ae-Aper50, and the microvillar membrane protein, AEG12, from the mosquito, publication-title: Insect Biochem. Mol. Biol. – volume: 10 start-page: e1004659 year: 2014 ident: bib9 article-title: The publication-title: PLoS Genet. – volume: 70 start-page: 99 year: 2009 end-page: 121 ident: bib53 article-title: The role of melanization and cytotoxic by‐products in the cellular immune responses of Drosophila against parasitic wasps publication-title: Adv. Parasitol. – volume: 42 start-page: 1027 year: 1996 end-page: 1033 ident: bib56 article-title: Mechanism of enhanced secretion in the warmed Malpighian tubule of the tsetse fly, publication-title: J. Insect Physiol. – volume: 28 start-page: 1 year: 2001 end-page: 83 ident: bib21 article-title: The publication-title: Adv. Insect Physiol. – volume: 197 start-page: 421 year: 1994 end-page: 428 ident: bib22 article-title: The malpighian tubules of publication-title: J. Exp. Biol. – volume: 7 start-page: 11266 year: 2016 ident: bib32 article-title: The cell adhesion molecule Fasciclin2 regulates brush border length and organization in publication-title: Nat. Commun. – volume: 285 start-page: 18473 year: 2010 end-page: 18484 ident: bib69 article-title: Modifying apolipoprotein A-I by malondialdehyde, but not by an array of other reactive carbonyls, blocks cholesterol efflux by the ABCA1 pathway publication-title: J. Biol. Chem. – volume: 34 start-page: 975 year: 2019 end-page: 991 ident: bib16 article-title: Oxidative stress in chronic kidney disease publication-title: Pediatr. Nephrol. – volume: 5 start-page: 1058 year: 2004 end-page: 1063 ident: bib14 article-title: A publication-title: EMBO Rep. – volume: 9 start-page: 119 year: 2014 end-page: 145 ident: bib41 article-title: Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited publication-title: Annu. Rev. Pathol. – volume: 27 start-page: 886 year: 2019 end-page: 899.e6 ident: bib66 article-title: The exchangeable apolipoprotein Nplp2 sustains lipid flow and heat acclimation in publication-title: Cell Rep. – volume: 21 start-page: 2568 year: 2002 end-page: 2579 ident: bib19 article-title: The Toll and Imd pathways are the major regulators of the immune response in publication-title: EMBO J. – volume: 5 start-page: 2344 year: 2013 end-page: 2358 ident: bib62 article-title: Genomic, RNAseq, and molecular modeling evidence suggests that the major allergen domain in insects evolved from a homodimeric origin publication-title: Genome Biol. Evol. – volume: 212 start-page: 435 year: 2009 end-page: 445 ident: bib20 article-title: Insights into the Malpighian tubule from functional genomics publication-title: J. Exp. Biol. – volume: 97 start-page: 3376 year: 2000 end-page: 3381 ident: bib77 article-title: The phytopathogenic bacteria publication-title: Proc. Natl. Acad. Sci. USA – volume: 310 start-page: 847 year: 2005 end-page: 850 ident: bib31 article-title: A direct role for dual oxidase in publication-title: Science – volume: 11 start-page: e0153522 year: 2016 ident: bib38 article-title: Real-time tracking of BODIPY-C12 long-chain fatty acid in human term placenta reveals unique lipid dynamics in cytotrophoblast cells publication-title: PLoS ONE – volume: 23 start-page: 2319 year: 2013 end-page: 2324 ident: bib28 article-title: A glutamate-dependent redox system in blood cells is integral for phagocytosis in publication-title: Curr. Biol. – volume: 17 start-page: 4256 year: 2010 end-page: 4269 ident: bib36 article-title: Oxidative stress in diabetic nephropathy publication-title: Curr. Med. Chem. – volume: 10 start-page: 845 year: 2015 end-page: 858 ident: bib37 article-title: The Phyre2 web portal for protein modeling, prediction and analysis publication-title: Nat. Protoc. – volume: 4 start-page: 208 year: 2015 end-page: 214 ident: bib71 article-title: Oxidative stress and autophagy: crucial modulators of kidney injury publication-title: Redox Biol. – volume: 273 start-page: 30801 year: 1998 end-page: 30807 ident: bib60 article-title: Novel allergen structures with tandem amino acid repeats derived from German and American cockroach publication-title: J. Biol. Chem. – volume: 46 start-page: D809 year: 2018 end-page: D815 ident: bib42 article-title: FlyAtlas 2: a new version of the publication-title: Nucleic Acids Res. – volume: 24 start-page: 981 year: 2012 end-page: 990 ident: bib63 article-title: Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling publication-title: Cell. Signal. – volume: 8 start-page: 813 year: 2007 end-page: 824 ident: bib15 article-title: ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis publication-title: Nat. Rev. Mol. Cell Biol. – volume: 205 start-page: 3799 year: 2002 end-page: 3807 ident: bib7 article-title: The Dh gene of publication-title: J. Exp. Biol. – volume: 7 start-page: e32577 year: 2012 ident: bib12 article-title: Functional correlates of positional and gender-specific renal asymmetry in publication-title: PLoS ONE – volume: 41 start-page: 953 year: 2004 end-page: 960 ident: bib29 article-title: Gene expression and tissue distribution of the major human allergen Bla g 1 in the German cockroach, publication-title: J. Med. Entomol. – volume: 25 start-page: 697 year: 2007 end-page: 743 ident: bib45 article-title: The host defense of publication-title: Annu. Rev. Immunol. – volume: 29 start-page: 21 year: 2018 end-page: 26 ident: bib43 article-title: Immune-metabolic interactions during systemic and enteric infection in publication-title: Curr. Opin. Insect Sci. – volume: 4 start-page: 645 year: 2019 end-page: 655 ident: bib25 article-title: Phosphatidic acid as a limiting host metabolite for the proliferation of the microsporidium publication-title: Nat. Microbiol. – volume: 7 start-page: e32577 year: 2012 ident: 10.1016/j.immuni.2020.01.008_bib12 article-title: Functional correlates of positional and gender-specific renal asymmetry in Drosophila publication-title: PLoS ONE doi: 10.1371/journal.pone.0032577 – year: 2012 ident: 10.1016/j.immuni.2020.01.008_bib65 – volume: 111 start-page: 5944 year: 2011 ident: 10.1016/j.immuni.2020.01.008_bib75 article-title: Free radical lipid peroxidation: mechanisms and analysis publication-title: Chem. Rev. doi: 10.1021/cr200084z – volume: 11 start-page: 615 year: 2013 ident: 10.1016/j.immuni.2020.01.008_bib4 article-title: Gut homeostasis in a microbial world: insights from Drosophila melanogaster publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3074 – volume: 14 start-page: 796 year: 2014 ident: 10.1016/j.immuni.2020.01.008_bib5 article-title: Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3763 – volume: 97 start-page: 3376 year: 2000 ident: 10.1016/j.immuni.2020.01.008_bib77 article-title: The phytopathogenic bacteria Erwinia carotovora infects Drosophila and activates an immune response publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.97.7.3376 – volume: 10 start-page: e1004659 year: 2014 ident: 10.1016/j.immuni.2020.01.008_bib9 article-title: The Drosophila MAPK p38c regulates oxidative stress and lipid homeostasis in the intestine publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004659 – volume: 58 start-page: 488 year: 2012 ident: 10.1016/j.immuni.2020.01.008_bib17 article-title: Immune and stress response ‘cross-talk’ in the Drosophila Malpighian tubule publication-title: J. Insect Physiol. doi: 10.1016/j.jinsphys.2012.01.008 – volume: 98 start-page: 12590 year: 2001 ident: 10.1016/j.immuni.2020.01.008_bib18 article-title: Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.221458698 – volume: 132 start-page: 1420 year: 2013 ident: 10.1016/j.immuni.2020.01.008_bib50 article-title: The novel structure of the cockroach allergen Bla g 1 has implications for allergenicity and exposure assessment publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2013.06.014 – volume: 21 start-page: 2568 year: 2002 ident: 10.1016/j.immuni.2020.01.008_bib19 article-title: The Toll and Imd pathways are the major regulators of the immune response in Drosophila publication-title: EMBO J. doi: 10.1093/emboj/21.11.2568 – volume: 153 start-page: 6 year: 2008 ident: 10.1016/j.immuni.2020.01.008_bib54 article-title: Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors publication-title: Br. J. Pharmacol. doi: 10.1038/sj.bjp.0707395 – volume: 6 start-page: e23796 year: 2011 ident: 10.1016/j.immuni.2020.01.008_bib33 article-title: Reliable Drosophila body fat quantification by a coupled colorimetric assay publication-title: PLoS ONE doi: 10.1371/journal.pone.0023796 – volume: 191 start-page: 211 year: 2010 ident: 10.1016/j.immuni.2020.01.008_bib72 article-title: Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury publication-title: J. Cell Biol. doi: 10.1083/jcb.201006039 – volume: 169 start-page: 570 year: 2017 ident: 10.1016/j.immuni.2020.01.008_bib6 article-title: Metabolic instruction of immunity publication-title: Cell doi: 10.1016/j.cell.2017.04.004 – volume: 25 start-page: 697 year: 2007 ident: 10.1016/j.immuni.2020.01.008_bib45 article-title: The host defense of Drosophila melanogaster publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.25.022106.141615 – volume: 310 start-page: 847 year: 2005 ident: 10.1016/j.immuni.2020.01.008_bib31 article-title: A direct role for dual oxidase in Drosophila gut immunity publication-title: Science doi: 10.1126/science.1117311 – volume: 1 start-page: 79 year: 2017 ident: 10.1016/j.immuni.2020.01.008_bib64 article-title: The two faces of Reactive Oxygen Species in cancer publication-title: Annu. Rev. Cancer Biol. doi: 10.1146/annurev-cancerbio-041916-065808 – volume: 18 start-page: 727 year: 2009 ident: 10.1016/j.immuni.2020.01.008_bib70 article-title: RNA interference-mediated knock-down of Bla g 1 in the German cockroach, Blattella germanica L., implicates this allergen-encoding gene in digestion and nutrient absorption publication-title: Insect Mol. Biol. doi: 10.1111/j.1365-2583.2009.00912.x – volume: 70 start-page: 99 year: 2009 ident: 10.1016/j.immuni.2020.01.008_bib53 article-title: The role of melanization and cytotoxic by‐products in the cellular immune responses of Drosophila against parasitic wasps publication-title: Adv. Parasitol. doi: 10.1016/S0065-308X(09)70004-1 – volume: 32 start-page: 678 year: 2015 ident: 10.1016/j.immuni.2020.01.008_bib61 article-title: Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics publication-title: Dev. Cell doi: 10.1016/j.devcel.2015.01.029 – volume: 16 start-page: 553 year: 2016 ident: 10.1016/j.immuni.2020.01.008_bib57 article-title: A guide to immunometabolism for immunologists publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.70 – volume: 80 start-page: 96 year: 2016 ident: 10.1016/j.immuni.2020.01.008_bib8 article-title: The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster publication-title: Peptides doi: 10.1016/j.peptides.2016.02.004 – volume: 23 start-page: 2319 year: 2013 ident: 10.1016/j.immuni.2020.01.008_bib28 article-title: A glutamate-dependent redox system in blood cells is integral for phagocytosis in Drosophila melanogaster publication-title: Curr. Biol. doi: 10.1016/j.cub.2013.09.061 – volume: 68 start-page: 116 year: 2014 ident: 10.1016/j.immuni.2020.01.008_bib55 article-title: Methods to study Drosophila immunity publication-title: Methods doi: 10.1016/j.ymeth.2014.02.023 – volume: 27 start-page: 886 year: 2019 ident: 10.1016/j.immuni.2020.01.008_bib66 article-title: The exchangeable apolipoprotein Nplp2 sustains lipid flow and heat acclimation in Drosophila publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.03.074 – volume: 285 start-page: 18473 year: 2010 ident: 10.1016/j.immuni.2020.01.008_bib69 article-title: Modifying apolipoprotein A-I by malondialdehyde, but not by an array of other reactive carbonyls, blocks cholesterol efflux by the ABCA1 pathway publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.118182 – volume: 163 start-page: 340 year: 2015 ident: 10.1016/j.immuni.2020.01.008_bib2 article-title: Antioxidant role for lipid droplets in a stem cell niche of Drosophila publication-title: Cell doi: 10.1016/j.cell.2015.09.020 – year: 2013 ident: 10.1016/j.immuni.2020.01.008_bib10 – volume: 7 start-page: 715 year: 2006 ident: 10.1016/j.immuni.2020.01.008_bib35 article-title: PGRP-LC and PGRP-LE have essential yet distinct functions in the drosophila immune response to monomeric DAP-type peptidoglycan publication-title: Nat. Immunol. doi: 10.1038/ni1356 – volume: 15 start-page: 11 year: 2005 ident: 10.1016/j.immuni.2020.01.008_bib76 article-title: Activation and signaling of the p38 MAP kinase pathway publication-title: Cell Res. doi: 10.1038/sj.cr.7290257 – volume: 14 start-page: 727 year: 2018 ident: 10.1016/j.immuni.2020.01.008_bib24 article-title: Lipid management in patients with chronic kidney disease publication-title: Nat. Rev. Nephrol. doi: 10.1038/s41581-018-0072-9 – volume: 5 start-page: 1058 year: 2004 ident: 10.1016/j.immuni.2020.01.008_bib14 article-title: A Drosophila p38 orthologue is required for environmental stress responses publication-title: EMBO Rep. doi: 10.1038/sj.embor.7400282 – volume: 29 start-page: 7 year: 2018 ident: 10.1016/j.immuni.2020.01.008_bib23 article-title: New views on the Malpighian tubule from post-genomic technologies publication-title: Curr. Opin. Insect Sci. doi: 10.1016/j.cois.2018.05.010 – volume: 10 start-page: 845 year: 2015 ident: 10.1016/j.immuni.2020.01.008_bib37 article-title: The Phyre2 web portal for protein modeling, prediction and analysis publication-title: Nat. Protoc. doi: 10.1038/nprot.2015.053 – volume: 505 start-page: 726 year: 2018 ident: 10.1016/j.immuni.2020.01.008_bib51 article-title: Inflammatory production of reactive oxygen species by Drosophila hemocytes activates cellular immune defenses publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2018.09.126 – volume: 4 start-page: 208 year: 2015 ident: 10.1016/j.immuni.2020.01.008_bib71 article-title: Oxidative stress and autophagy: crucial modulators of kidney injury publication-title: Redox Biol. doi: 10.1016/j.redox.2015.01.001 – volume: 273 start-page: 30801 year: 1998 ident: 10.1016/j.immuni.2020.01.008_bib60 article-title: Novel allergen structures with tandem amino acid repeats derived from German and American cockroach publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.46.30801 – volume: 4 start-page: 181 year: 2004 ident: 10.1016/j.immuni.2020.01.008_bib40 article-title: NOX enzymes and the biology of reactive oxygen publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1312 – volume: 41 start-page: 953 year: 2004 ident: 10.1016/j.immuni.2020.01.008_bib29 article-title: Gene expression and tissue distribution of the major human allergen Bla g 1 in the German cockroach, Blattella germanica L. (Dictyoptera: Blattellidae) publication-title: J. Med. Entomol. doi: 10.1603/0022-2585-41.5.953 – volume: 20 start-page: 1126 year: 2014 ident: 10.1016/j.immuni.2020.01.008_bib48 article-title: Reactive oxygen species in inflammation and tissue injury publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2012.5149 – volume: 34 start-page: 975 year: 2019 ident: 10.1016/j.immuni.2020.01.008_bib16 article-title: Oxidative stress in chronic kidney disease publication-title: Pediatr. Nephrol. doi: 10.1007/s00467-018-4005-4 – volume: 11 start-page: e0153522 year: 2016 ident: 10.1016/j.immuni.2020.01.008_bib38 article-title: Real-time tracking of BODIPY-C12 long-chain fatty acid in human term placenta reveals unique lipid dynamics in cytotrophoblast cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0153522 – volume: 271 start-page: 186 year: 1999 ident: 10.1016/j.immuni.2020.01.008_bib59 article-title: Rapid staining of lipids on thin-layer chromatograms with amido black 10B and other water-soluble stains publication-title: Anal. Biochem. doi: 10.1006/abio.1999.4127 – volume: 8 start-page: e1002828 year: 2012 ident: 10.1016/j.immuni.2020.01.008_bib58 article-title: Lipoproteins in Drosophila melanogaster--assembly, function, and influence on tissue lipid composition publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002828 – volume: 20 start-page: 464 year: 2010 ident: 10.1016/j.immuni.2020.01.008_bib49 article-title: Prioritization of competing damage and developmental signals by migrating macrophages in the Drosophila embryo publication-title: Curr. Biol. doi: 10.1016/j.cub.2010.01.047 – volume: 24 start-page: 981 year: 2012 ident: 10.1016/j.immuni.2020.01.008_bib63 article-title: Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2012.01.008 – volume: 24 start-page: R453 year: 2014 ident: 10.1016/j.immuni.2020.01.008_bib67 article-title: ROS function in redox signaling and oxidative stress publication-title: Curr. Biol. doi: 10.1016/j.cub.2014.03.034 – volume: 28 start-page: 1013 year: 2018 ident: 10.1016/j.immuni.2020.01.008_bib74 article-title: A post-ingestive amino acid sensor promotes food consumption in Drosophila publication-title: Cell Res. doi: 10.1038/s41422-018-0084-9 – volume: 5 start-page: 2344 year: 2013 ident: 10.1016/j.immuni.2020.01.008_bib62 article-title: Genomic, RNAseq, and molecular modeling evidence suggests that the major allergen domain in insects evolved from a homodimeric origin publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evt182 – volume: 28 start-page: 1 year: 2001 ident: 10.1016/j.immuni.2020.01.008_bib21 article-title: The Drosophila melanogaster Malpighian tubule publication-title: Adv. Insect Physiol. doi: 10.1016/S0065-2806(01)28008-4 – volume: 186 start-page: 943 year: 2010 ident: 10.1016/j.immuni.2020.01.008_bib46 article-title: A targeted UAS-RNAi screen in Drosophila larvae identifies wound closure genes regulating distinct cellular processes publication-title: Genetics doi: 10.1534/genetics.110.121822 – volume: 9 start-page: 676 year: 2012 ident: 10.1016/j.immuni.2020.01.008_bib78 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 32 start-page: 602 year: 2018 ident: 10.1016/j.immuni.2020.01.008_bib13 article-title: Regulation of lipid peroxidation and ferroptosis in diverse species publication-title: Genes Dev. doi: 10.1101/gad.314674.118 – volume: 30 start-page: 223 year: 2007 ident: 10.1016/j.immuni.2020.01.008_bib73 article-title: A Drosophila systems approach to xenobiotic metabolism publication-title: Physiol. Genomics doi: 10.1152/physiolgenomics.00018.2007 – volume: 7 start-page: 11266 year: 2016 ident: 10.1016/j.immuni.2020.01.008_bib32 article-title: The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules publication-title: Nat. Commun. doi: 10.1038/ncomms11266 – volume: 8 start-page: 125 year: 2005 ident: 10.1016/j.immuni.2020.01.008_bib30 article-title: An antioxidant system required for host protection against gut infection in Drosophila publication-title: Dev. Cell doi: 10.1016/j.devcel.2004.11.007 – volume: 5 start-page: 200 year: 2009 ident: 10.1016/j.immuni.2020.01.008_bib3 article-title: Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation publication-title: Cell Host Microbe doi: 10.1016/j.chom.2009.01.003 – volume: 42 start-page: 1027 year: 1996 ident: 10.1016/j.immuni.2020.01.008_bib56 article-title: Mechanism of enhanced secretion in the warmed Malpighian tubule of the tsetse fly, Glossina morsitans morsitans publication-title: J. Insect Physiol. doi: 10.1016/S0022-1910(96)00067-4 – volume: 195 start-page: 715 year: 2013 ident: 10.1016/j.immuni.2020.01.008_bib39 article-title: Highly improved gene targeting by germline-specific Cas9 expression in Drosophila publication-title: Genetics doi: 10.1534/genetics.113.156737 – volume: 107 start-page: 20774 year: 2010 ident: 10.1016/j.immuni.2020.01.008_bib11 article-title: Participation of the p38 pathway in Drosophila host defense against pathogenic bacteria and fungi publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1009223107 – volume: 4 start-page: 645 year: 2019 ident: 10.1016/j.immuni.2020.01.008_bib25 article-title: Phosphatidic acid as a limiting host metabolite for the proliferation of the microsporidium Tubulinosema ratisbonensis in Drosophila flies publication-title: Nat. Microbiol. doi: 10.1038/s41564-018-0344-y – volume: 205 start-page: 3799 year: 2002 ident: 10.1016/j.immuni.2020.01.008_bib7 article-title: The Dh gene of Drosophila melanogaster encodes a diuretic peptide that acts through cyclic AMP publication-title: J. Exp. Biol. doi: 10.1242/jeb.205.24.3799 – volume: 212 start-page: 435 year: 2009 ident: 10.1016/j.immuni.2020.01.008_bib20 article-title: Insights into the Malpighian tubule from functional genomics publication-title: J. Exp. Biol. doi: 10.1242/jeb.024224 – volume: 197 start-page: 421 year: 1994 ident: 10.1016/j.immuni.2020.01.008_bib22 article-title: The malpighian tubules of Drosophila melanogaster: a novel phenotype for studies of fluid secretion and its control publication-title: J. Exp. Biol. doi: 10.1242/jeb.197.1.421 – volume: 46 start-page: D809 issue: D1 year: 2018 ident: 10.1016/j.immuni.2020.01.008_bib42 article-title: FlyAtlas 2: a new version of the Drosophila melanogaster expression atlas with RNA-Seq, miRNA-Seq and sex-specific data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx976 – volume: 29 start-page: 21 year: 2018 ident: 10.1016/j.immuni.2020.01.008_bib43 article-title: Immune-metabolic interactions during systemic and enteric infection in Drosophila publication-title: Curr. Opin. Insect Sci. doi: 10.1016/j.cois.2018.05.014 – volume: 17 start-page: 4256 year: 2010 ident: 10.1016/j.immuni.2020.01.008_bib36 article-title: Oxidative stress in diabetic nephropathy publication-title: Curr. Med. Chem. doi: 10.2174/092986710793348581 – volume: 32 start-page: 609 year: 2014 ident: 10.1016/j.immuni.2020.01.008_bib27 article-title: Metabolic regulation of immune responses publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-032713-120236 – volume: 20 start-page: 5421 year: 2001 ident: 10.1016/j.immuni.2020.01.008_bib34 article-title: A Drosophila MAPKKK, D-MEKK1, mediates stress responses through activation of p38 MAPK publication-title: EMBO J. doi: 10.1093/emboj/20.19.5421 – volume: 20 start-page: 716 year: 2016 ident: 10.1016/j.immuni.2020.01.008_bib44 article-title: Enterocyte purge and rapid recovery is a resilience reaction of the gut epithelium to pore-forming toxin attack publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.10.010 – volume: 31 start-page: 1253 year: 2012 ident: 10.1016/j.immuni.2020.01.008_bib52 article-title: Genetic evidence of a redox-dependent systemic wound response via Hayan protease-phenoloxidase system in Drosophila publication-title: EMBO J. doi: 10.1038/emboj.2011.476 – volume: 9 start-page: 119 year: 2014 ident: 10.1016/j.immuni.2020.01.008_bib41 article-title: Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev-pathol-012513-104651 – volume: 94 start-page: 22 year: 2019 ident: 10.1016/j.immuni.2020.01.008_bib26 article-title: Immunometabolism: Insights from the Drosophila model publication-title: Dev. Comp. Immunol. doi: 10.1016/j.dci.2019.01.011 – volume: 8 start-page: 813 year: 2007 ident: 10.1016/j.immuni.2020.01.008_bib15 article-title: ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2256 – volume: 35 start-page: 741 year: 2005 ident: 10.1016/j.immuni.2020.01.008_bib47 article-title: Insect renal tubules constitute a cell-autonomous immune system that protects the organism against bacterial infection publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2005.02.017 – volume: 2014 year: 2014 ident: 10.1016/j.immuni.2020.01.008_bib1 article-title: Lipid peroxidation: production, metabolism, and signaling mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal publication-title: Oxid. med. cell. longev. doi: 10.1155/2014/360438 – volume: 35 start-page: 947 year: 2005 ident: 10.1016/j.immuni.2020.01.008_bib68 article-title: Identification and characterization of a novel peritrophic matrix protein, Ae-Aper50, and the microvillar membrane protein, AEG12, from the mosquito, Aedes aegypti publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2005.03.012 – reference: 32075724 - Immunity. 2020 Feb 18;52(2):215-217 |
SSID | ssj0014590 |
Score | 2.5036137 |
Snippet | Animals require complex metabolic and physiological adaptations to maintain the function of vital organs in response to environmental stresses and infection.... SummaryAnimals require complex metabolic and physiological adaptations to maintain the function of vital organs in response to environmental stresses and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 374 |
SubjectTerms | Adaptation Adaptive Immunity Animal tissues Animals Antioxidants Apoptosis Carrier Proteins - chemistry Carrier Proteins - genetics Carrier Proteins - metabolism Damage Diglycerides - metabolism Drosophila Drosophila melanogaster - genetics Drosophila melanogaster - immunology Drosophila melanogaster - metabolism Drosophila Proteins - chemistry Drosophila Proteins - deficiency Drosophila Proteins - genetics Drosophila Proteins - metabolism Environmental stress excretion Feces Feces - chemistry Flies Hemolymph Hemolymph - metabolism Homeostasis immune adaptation immunity Infections Inflammation Insects Kidneys Lipid metabolism Lipid Metabolism - immunology Lipid peroxidation Lipid Peroxidation - immunology Lipid-binding protein Lipids Malpighian tubules Malpighian Tubules - immunology Malpighian Tubules - metabolism Mammals MAP Kinase Signaling System - immunology Metabolism Organs Peptides Peroxidation Phenotypes Physiology Protein Conformation Purging Reactive oxygen species Reactive Oxygen Species - immunology Reactive Oxygen Species - metabolism ROS stress Stress response Stress, Physiological - immunology Wound healing |
Title | Renal Purge of Hemolymphatic Lipids Prevents the Accumulation of ROS-Induced Inflammatory Oxidized Lipids and Protects Drosophila from Tissue Damage |
URI | https://dx.doi.org/10.1016/j.immuni.2020.01.008 https://www.ncbi.nlm.nih.gov/pubmed/32075729 https://www.proquest.com/docview/2425658770 https://www.proquest.com/docview/2359404592 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelY2MvY-u-snVFg72ayJJsS49Zu5KtdB1py_ImJFkCl8QpTQJr_47-wTvJsmGwUdij5ZMRutPpzvfxQ-iT5Eb73IqsrL3LOBi4mbSEZDVxBfeCg0oM_ztOv5fTS_5tXsx30GFfCxPSKpPu73R61NZpZJx2c3zdNOPzkEoITjijIKehqyfoYcZFLOKbfx4iCbyQZMg7BOq-fC7meDWxBgO8REpi884AMvn36-lf5me8ho6fo2fJfsSTbokv0I5r99DjDlHydg89OU2x8pfofuYC5Y9Q94xXHk_dcrW4BeaFHq04YFbXa5w6OK0x2IF4Yu12meC8wozZ2XkWoD1gk_DX1oPsLGNMHp_9aurmDkbTV3Rbw5diw4c1PrqJ0AjNQuNQu4IvImvxkV6C6nqFLo-_XBxOs4TBkNmC0E0mqGXe5dQQX5tc17njxjjqaynKvNbCO3AxjCutFyUvqS2trIiRjGkteUU4e41221Xr3iLMhKFgnZiSa8dLRo0UWkjBdE4MFYUdIdZvvbKpQXnAyVioPhPtSnUMU4FhiuQKGDZC2TDrumvQ8QB91XNV_SFoCu6QB2bu90Kg0kFfq-CxgRFXVWSEPg6v4YiGuItu3WoLNKyQHExnSUfoTSc8w1JBeqsCHJx3_72s9-hpeAqZ5LnYR7ubm637AIbSxhygR5OT2c-Tg3gifgNK7RNm |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEJcXBOOywgAjwWNUx3ES-4GHQZlatm5o66S-GdtxpExtOq2toPwO_gl_kGPHiYQEmoS01_giy-f4-DvxOedD6K1gWpWx4VFWlDZiAHAjYQiJCmJTVnIGJtH97xgfZ8Nz9nmaTrfQrzYXxoVVBtvf2HRvrcOXftjN_mVV9c9cKCE44QkFPXVVPUNk5aHdfAO_bfl-NAAhv6P04NPk4zAK1AKRSQldRZyapLQx1aQsdKyK2DKtLS0LwbO4ULy0gJy1zUzJM5ZRkxmREw3Ov1KC5YQlMO8tdBvQR-6swWj6oXu6YKkgXaAjLK_N1_NBZZVP-gC3lBJfLdSxWv79PvwX3vX33sFD9CAAVrzf7MkjtGXrHXSnobDc7KC74_A4_xj9PLWu5xeXaI0XJR7a-WK2AW1xRWGxI8kuljiUjFpiAJ5435j1PPCHuRGnJ2eR4xIBqeBRXYKyzn0QAD75XhXVD_gaZlF1ATP5ChNLPLjyXAzVTGGXLIMnXpfwQM3BVj5B5zcimadou17UdhfhhGsKcEhnTFmWJVQLrrjgiYqJpjw1PZS0Wy9NqIjuiDlmsg19u5CNwKQTmCSxBIH1UNSNumwqglzTP2-lKv_QbAmX1jUj91olkMGyLKVzEQE15jnpoTddM9gE99CjartYQ58kFQywuqA99KxRnm6pcFzyFDyq5_-9rNfo3nAyPpJHo-PDF-i-a3Fh7DHfQ9urq7V9CShtpV_5U4HR15s-hr8BaplQMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Renal+Purge+of+Hemolymphatic+Lipids+Prevents+the+Accumulation+of+ROS-Induced+Inflammatory+Oxidized+Lipids+and+Protects+Drosophila+from+Tissue+Damage&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Li%2C+Xiaoxue&rft.au=Rommelaere%2C+Samuel&rft.au=Kondo%2C+Shu&rft.au=Lemaitre%2C+Bruno&rft.date=2020-02-18&rft.issn=1097-4180&rft.eissn=1097-4180&rft.volume=52&rft.issue=2&rft.spage=374&rft_id=info:doi/10.1016%2Fj.immuni.2020.01.008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon |