Encoding of Discriminative Fear Memory by Input-Specific LTP in the Amygdala

In auditory fear conditioning, experimental subjects learn to associate an auditory conditioned stimulus (CS) with an aversive unconditioned stimulus. With sufficient training, animals fear conditioned to an auditory CS show fear response to the CS, but not to irrelevant auditory stimuli. Although l...

Full description

Saved in:
Bibliographic Details
Published inNeuron (Cambridge, Mass.) Vol. 95; no. 5; pp. 1129 - 1146.e5
Main Authors Kim, Woong Bin, Cho, Jun-Hyeong
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 30.08.2017
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In auditory fear conditioning, experimental subjects learn to associate an auditory conditioned stimulus (CS) with an aversive unconditioned stimulus. With sufficient training, animals fear conditioned to an auditory CS show fear response to the CS, but not to irrelevant auditory stimuli. Although long-term potentiation (LTP) in the lateral amygdala (LA) plays an essential role in auditory fear conditioning, it is unknown whether LTP is induced selectively in the neural pathways conveying specific CS information to the LA in discriminative fear learning. Here, we show that postsynaptically expressed LTP is induced selectively in the CS-specific auditory pathways to the LA in a mouse model of auditory discriminative fear conditioning. Moreover, optogenetically induced depotentiation of the CS-specific auditory pathways to the LA suppressed conditioned fear responses to the CS. Our results suggest that input-specific LTP in the LA contributes to fear memory specificity, enabling adaptive fear responses only to the relevant sensory cue. [Display omitted] •LTP is not induced globally in ACx/MGN-LA pathways in discriminative fear learning•LTP is induced in CS+, but not CS–, pathways to LA in discriminative fear learning•Synapses in CS+ pathways to LA remain potentiated after fear extinction•Depotentiation of CS+, but not CS–, pathways to LA prevents the recall of fear memory Kim and Cho demonstrate that the formation of fear memory associated with a specific auditory cue requires selective synaptic strengthening in functionally defined neural pathways that convey the auditory signals to the amygdala.
AbstractList In auditory fear conditioning, experimental subjects learn to associate an auditory conditioned stimulus (CS) with an aversive unconditioned stimulus. With sufficient training, animals fear conditioned to an auditory CS show fear response to the CS, but not to irrelevant auditory stimuli. Although long-term potentiation (LTP) in the lateral amygdala (LA) plays an essential role in auditory fear conditioning, it is unknown whether LTP is induced selectively in the neural pathways conveying specific CS information to the LA in discriminative fear learning. Here, we show that postsynaptically expressed LTP is induced selectively in the CS-specific auditory pathways to the LA in a mouse model of auditory discriminative fear conditioning. Moreover, optogenetically induced depotentiation of the CS-specific auditory pathways to the LA suppressed conditioned fear responses to the CS. Our results suggest that input-specific LTP in the LA contributes to fear memory specificity, enabling adaptive fear responses only to the relevant sensory cue. [Display omitted] •LTP is not induced globally in ACx/MGN-LA pathways in discriminative fear learning•LTP is induced in CS+, but not CS–, pathways to LA in discriminative fear learning•Synapses in CS+ pathways to LA remain potentiated after fear extinction•Depotentiation of CS+, but not CS–, pathways to LA prevents the recall of fear memory Kim and Cho demonstrate that the formation of fear memory associated with a specific auditory cue requires selective synaptic strengthening in functionally defined neural pathways that convey the auditory signals to the amygdala.
In auditory fear conditioning, experimental subjects learn to associate an auditory conditioned stimulus (CS) with an aversive unconditioned stimulus. With sufficient training, animals fear conditioned to an auditory CS show fear response to the CS, but not to irrelevant auditory stimuli. Although long-term potentiation (LTP) in the lateral amygdala (LA) plays an essential role in auditory fear conditioning, it is unknown whether LTP is induced selectively in the neural pathways conveying specific CS information to the LA in discriminative fear learning. Here, we show that postsynaptically expressed LTP is induced selectively in the CS-specific auditory pathways to the LA in a mouse model of auditory discriminative fear conditioning. Moreover, optogenetically induced depotentiation of the CS-specific auditory pathways to the LA suppressed conditioned fear responses to the CS. Our results suggest that input-specific LTP in the LA contributes to fear memory specificity, enabling adaptive fear responses only to the relevant sensory cue. VIDEO ABSTRACT.In auditory fear conditioning, experimental subjects learn to associate an auditory conditioned stimulus (CS) with an aversive unconditioned stimulus. With sufficient training, animals fear conditioned to an auditory CS show fear response to the CS, but not to irrelevant auditory stimuli. Although long-term potentiation (LTP) in the lateral amygdala (LA) plays an essential role in auditory fear conditioning, it is unknown whether LTP is induced selectively in the neural pathways conveying specific CS information to the LA in discriminative fear learning. Here, we show that postsynaptically expressed LTP is induced selectively in the CS-specific auditory pathways to the LA in a mouse model of auditory discriminative fear conditioning. Moreover, optogenetically induced depotentiation of the CS-specific auditory pathways to the LA suppressed conditioned fear responses to the CS. Our results suggest that input-specific LTP in the LA contributes to fear memory specificity, enabling adaptive fear responses only to the relevant sensory cue. VIDEO ABSTRACT.
Our results demonstrate that LTP in the CS-specific ACx/MGN-LA pathways could contribute to encoding discriminative fear memory for the CS. Our neural activity-dependent behavioral labeling approach enabled the recording of synaptic responses in the CS-specific pathways and revealed a population of LA neurons that preferentially receives presynaptic inputs conveying specific auditory information. With this approach, we found that postsynaptically expressed LTP was induced selectively in the pathways conveying auditory CS+ information to the LA, whereas LTP was not detected in either the CS- pathways or randomly selected ACx/MGN-LA synapses in discriminative fear conditioning. Input-specific LTP was induced preferentially in a subset of LA neurons activated during auditory fear conditioning. CS-specific ACx/MGN-LA synapses remained potentiated after fear extinction. Moreover, depotentiation of the CS-specific ACx/MGN-LA pathways prevented the recall of fear memory for the CS, suggesting that input-specific LTP is necessary for conditioned fear responses to a specific auditory cue.
In auditory fear conditioning, experimental subjects learn to associate an auditory conditioned stimulus (CS) with an aversive unconditioned stimulus. With sufficient training, animals fear conditioned to an auditory CS show fear response to the CS, but not to irrelevant auditory stimuli. Although long-term potentiation (LTP) in the lateral amygdala (LA) plays an essential role in auditory fear conditioning, it is unknown whether LTP is induced selectively in the neural pathways conveying specific CS information to the LA in discriminative fear learning. Here, we show that postsynaptically expressed LTP is induced selectively in the CS-specific auditory pathways to the LA in a mouse model of auditory discriminative fear conditioning. Moreover, optogenetically induced depotentiation of the CS-specific auditory pathways to the LA suppressed conditioned fear responses to the CS. Our results suggest that input-specific LTP in the LA contributes to fear memory specificity, enabling adaptive fear responses only to the relevant sensory cue. VIDEO ABSTRACT.
Author Cho, Jun-Hyeong
Kim, Woong Bin
Author_xml – sequence: 1
  givenname: Woong Bin
  surname: Kim
  fullname: Kim, Woong Bin
  organization: Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
– sequence: 2
  givenname: Jun-Hyeong
  surname: Cho
  fullname: Cho, Jun-Hyeong
  email: juncho@ucr.edu
  organization: Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28823727$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URLcL_wAhS1x6SRjHzoc5IFWlLZUWgUQ5W44zLl4l9mInlfbf49W2HHqAw2guzzsaPe8ZOfHBIyFvGZQMWPNhW3pcYvBlBawtoSsBxAuyYiDbQjApT8gKOtkUTdXyU3KW0haAiVqyV-S06rqKt1W7Ipsrb8Lg_D0Nln52yUQ3Oa9n94D0GnWkX3EKcU_7Pb31u2UufuzQOOsM3dx9p87T-RfSi2l_P-hRvyYvrR4Tvnnca_Lz-uru8kux-XZze3mxKUwN1Vy0gx6s5La2bdP2VvQ92KG2FrTuUNhacxTABm6QNVI2vNYCMA9oyXoUhq_J-fHuLobfC6ZZTflzHEftMSxJMclB8qYWdUbfP0O3YYk-f3egat7BQcWavHukln7CQe2yBR336slTBsQRMDGkFNH-RRioQx1qq451qEMdCjqV68ixj89ixs1ZbvBz1G78X_jTMYxZ5YPDqJJx6A0OLqKZ1RDcvw_8ASWUp1M
CitedBy_id crossref_primary_10_1016_j_neures_2019_12_020
crossref_primary_10_1101_cshperspect_a039743
crossref_primary_10_1038_s41539_019_0048_y
crossref_primary_10_3389_fncel_2022_874310
crossref_primary_10_1038_s41398_023_02384_8
crossref_primary_10_1007_s00213_018_5104_4
crossref_primary_10_1016_j_tins_2023_08_003
crossref_primary_10_1038_s41386_022_01480_5
crossref_primary_10_1523_JNEUROSCI_1741_21_2022
crossref_primary_10_1111_ejn_14839
crossref_primary_10_1126_science_aat3810
crossref_primary_10_1016_j_semcdb_2021_05_033
crossref_primary_10_1177_10738584221108083
crossref_primary_10_1371_journal_pone_0226211
crossref_primary_10_3389_fncel_2021_685838
crossref_primary_10_2174_0115665232269742231213110937
crossref_primary_10_1093_nsr_nwab004
crossref_primary_10_1016_j_neubiorev_2021_11_009
crossref_primary_10_1016_j_conb_2018_08_012
crossref_primary_10_1016_j_celrep_2019_01_098
crossref_primary_10_1016_j_neubiorev_2021_03_009
crossref_primary_10_3238_PersNeuro_2017_09_15_08
crossref_primary_10_1038_s41586_019_1433_7
crossref_primary_10_1093_cercor_bhx353
crossref_primary_10_1016_j_heares_2017_10_011
crossref_primary_10_1016_j_neuropharm_2022_109298
crossref_primary_10_1016_j_conb_2021_01_006
crossref_primary_10_7554_eLife_50601
crossref_primary_10_1016_j_nlm_2023_107845
crossref_primary_10_7554_eLife_69333
crossref_primary_10_1002_cbf_4100
crossref_primary_10_3389_fnsyn_2021_634558
crossref_primary_10_1523_JNEUROSCI_1941_20_2020
crossref_primary_10_1038_s41380_023_02137_5
crossref_primary_10_1038_s41593_019_0524_y
crossref_primary_10_1523_JNEUROSCI_1944_20_2020
crossref_primary_10_1038_s41598_018_36023_w
crossref_primary_10_1016_j_neuroscience_2024_10_017
crossref_primary_10_1152_physrev_00016_2020
crossref_primary_10_1101_lm_047555_118
crossref_primary_10_1177_10738584211069977
crossref_primary_10_3389_fncel_2023_1292822
crossref_primary_10_1016_j_biopsych_2023_02_013
crossref_primary_10_1523_JNEUROSCI_2252_22_2023
crossref_primary_10_1098_rstb_2023_0228
crossref_primary_10_1007_s12264_023_01129_3
crossref_primary_10_3390_ijms21083008
crossref_primary_10_7554_eLife_99988
crossref_primary_10_3389_fnsyn_2018_00005
crossref_primary_10_1155_2020_8858415
crossref_primary_10_3389_fnbeh_2022_936036
crossref_primary_10_1016_j_neuron_2021_07_003
crossref_primary_10_1073_pnas_2107661119
crossref_primary_10_1016_j_neuron_2022_07_004
crossref_primary_10_1016_j_neubiorev_2021_04_036
crossref_primary_10_1016_j_neuron_2024_09_012
crossref_primary_10_1038_s41593_021_00856_y
crossref_primary_10_1016_j_conb_2022_102552
crossref_primary_10_1146_annurev_neuro_090919_022842
crossref_primary_10_1088_2516_1091_ac23e6
crossref_primary_10_3389_fnsys_2020_569108
crossref_primary_10_3389_fnsyn_2021_661476
crossref_primary_10_1523_ENEURO_0113_19_2019
crossref_primary_10_1016_j_cub_2023_10_074
crossref_primary_10_1016_j_jbc_2021_101044
crossref_primary_10_1523_ENEURO_0538_20_2021
crossref_primary_10_3389_fcell_2019_00236
crossref_primary_10_1016_j_brainresbull_2017_12_004
crossref_primary_10_1016_j_brainresbull_2020_12_015
crossref_primary_10_1016_j_neuron_2017_08_020
crossref_primary_10_1016_j_nlm_2021_107526
crossref_primary_10_4103_NRR_NRR_D_24_00054
crossref_primary_10_1016_j_conb_2023_102723
crossref_primary_10_1016_j_pnpbp_2025_111310
crossref_primary_10_3389_fncir_2019_00082
crossref_primary_10_1038_s41467_020_15121_2
crossref_primary_10_3390_biology12101274
crossref_primary_10_1016_j_celrep_2025_115320
crossref_primary_10_3389_fnins_2020_569517
crossref_primary_10_1002_cne_25149
crossref_primary_10_7554_eLife_99988_3
crossref_primary_10_1016_j_neulet_2020_135456
crossref_primary_10_1002_hipo_23213
crossref_primary_10_1016_j_neuron_2023_11_012
crossref_primary_10_1016_j_jbc_2022_101866
crossref_primary_10_1523_ENEURO_0133_18_2018
crossref_primary_10_7554_eLife_91421_3
crossref_primary_10_1002_advs_202300189
crossref_primary_10_1016_j_celrep_2023_112678
crossref_primary_10_1126_science_aaw0474
crossref_primary_10_1016_j_nlm_2021_107504
crossref_primary_10_1007_s00429_021_02326_4
crossref_primary_10_1016_j_bbr_2020_112907
crossref_primary_10_1186_s13041_023_01067_1
crossref_primary_10_3389_fnsyn_2023_1146665
crossref_primary_10_1016_j_nlm_2020_107164
crossref_primary_10_1016_j_cub_2024_05_008
crossref_primary_10_1016_j_jbc_2021_101034
crossref_primary_10_1016_j_conb_2018_02_010
crossref_primary_10_1523_ENEURO_0113_21_2021
crossref_primary_10_7554_eLife_91421
crossref_primary_10_1016_j_neuron_2019_03_017
crossref_primary_10_1101_lm_053612_122
crossref_primary_10_3389_fnsys_2022_832484
crossref_primary_10_1038_s41401_021_00661_0
Cites_doi 10.1101/lm.7.2.97
10.1016/j.conb.2015.10.005
10.1038/nn.2993
10.1038/nature13294
10.1016/j.cub.2012.11.019
10.1038/nn1678
10.1126/science.1143839
10.1016/j.neuron.2011.06.004
10.1016/0896-6273(88)90148-1
10.1073/pnas.0710548105
10.1126/sciadv.1500251
10.1038/mp.2016.91
10.1038/37605
10.1126/science.1139438
10.1146/annurev.neuro.23.1.155
10.1038/37601
10.1038/366569a0
10.1126/science.1195298
10.1016/S0896-6273(03)00728-1
10.1016/j.neuron.2013.03.025
10.1038/nrn4000
10.1016/j.neuron.2013.09.025
10.1016/j.neuron.2004.12.019
10.1523/JNEUROSCI.3137-14.2015
10.1016/j.neuron.2014.07.017
10.1038/nature17996
10.1126/science.2904701
10.1111/j.1460-9568.2010.07101.x
10.1016/S0896-6273(02)00645-1
10.1038/nn.3888
10.1038/nn.3322
10.1146/annurev.physiol.64.092501.114547
10.1126/science.1103944
10.1126/science.7901909
10.1016/j.neuron.2006.10.010
10.1523/JNEUROSCI.4233-13.2014
10.1523/JNEUROSCI.1037-10.2010
10.1038/nrn3945
10.1146/annurev.neuro.24.1.897
10.1016/j.neuron.2011.04.023
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright © 2017 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Aug 30, 2017
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Copyright © 2017 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Aug 30, 2017
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
DOI 10.1016/j.neuron.2017.08.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Nursing & Allied Health Premium
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
EndPage 1146.e5
ExternalDocumentID 28823727
10_1016_j_neuron_2017_08_004
S0896627317306955
Genre Video-Audio Media
Journal Article
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1RT
1~5
26-
2WC
3V.
4.4
457
4G.
53G
5RE
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFKRA
AFTJW
AGKMS
AHHHB
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKNYI
BPHCQ
BVXVI
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HCIFZ
HVGLF
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M0R
M0T
M2M
M2O
M3Z
M41
M7P
N9A
NCXOZ
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
WQ6
ZA5
.55
.GJ
29N
3O-
5VS
AAEDT
AAFWJ
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
G-2
HZ~
ITC
MVM
OZT
R2-
X7M
ZGI
ZKB
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
EFKBS
FR3
K9.
NAPCQ
P64
RC3
7X8
ID FETCH-LOGICAL-c502t-7dadf93f5f767bf4bb0fd5ff0aa8e4f5a3e401d3ce1699635a40ea400a91be4c3
IEDL.DBID IXB
ISSN 0896-6273
1097-4199
IngestDate Sun Aug 24 04:08:24 EDT 2025
Fri Jul 25 11:05:41 EDT 2025
Thu Jan 02 22:41:23 EST 2025
Tue Jul 01 01:16:16 EDT 2025
Thu Apr 24 23:11:59 EDT 2025
Fri Feb 23 02:22:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords neuromodulation
amygdala
fear conditioning
learning and memory
electrophysiology
fear extinction
optogenetics
engram
depotentiation
long-term potentiation
Language English
License This article is made available under the Elsevier license.
Copyright © 2017 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-7dadf93f5f767bf4bb0fd5ff0aa8e4f5a3e401d3ce1699635a40ea400a91be4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0896627317306955
PMID 28823727
PQID 1935380882
PQPubID 2031076
ParticipantIDs proquest_miscellaneous_1930936545
proquest_journals_1935380882
pubmed_primary_28823727
crossref_primary_10_1016_j_neuron_2017_08_004
crossref_citationtrail_10_1016_j_neuron_2017_08_004
elsevier_sciencedirect_doi_10_1016_j_neuron_2017_08_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-30
PublicationDateYYYYMMDD 2017-08-30
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-30
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2017
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Collins, Paré (bib6) 2000; 7
Humeau, Herry, Kemp, Shaban, Fourcaudot, Bissière, Lüthi (bib16) 2005; 45
Tovote, Esposito, Botta, Chaudun, Fadok, Markovic, Wolff, Ramakrishnan, Fenno, Deisseroth (bib36) 2016; 534
Nonaka, Toyoda, Miura, Hitora-Imamura, Naka, Eguchi, Yamaguchi, Ikegaya, Matsuki, Nomura (bib27) 2014; 34
Bukalo, Pinard, Silverstein, Brehm, Hartley, Whittle, Colacicco, Busch, Patel, Singewald, Holmes (bib2) 2015; 1
Gründemann, Lüthi (bib11) 2015; 35
Do-Monte, Manzano-Nieves, Quiñones-Laracuente, Ramos-Medina, Quirk (bib7) 2015; 35
Rogan, Stäubli, LeDoux (bib30) 1997; 390
Shin, Tsvetkov, Bolshakov (bib33) 2006; 52
Antunes, Moita (bib1) 2010; 30
Hessler, Shirke, Malinow (bib15) 1993; 366
Zucker, Regehr (bib40) 2002; 64
Han, Kushner, Yiu, Cole, Matynia, Brown, Neve, Guzowski, Silva, Josselyn (bib13) 2007; 316
Maren (bib22) 2001; 24
Gouty-Colomer, Hosseini, Marcelo, Schreiber, Slump, Yamaguchi, Houweling, Jaarsma, Elgersma, Kushner (bib10) 2016; 21
Nabavi, Fox, Proulx, Lin, Tsien, Malinow (bib26) 2014; 511
Rumpel, LeDoux, Zador, Malinow (bib32) 2005; 308
Kim, Lee, Park, Hong, Song, Son, Park, Kim, Park, Choe (bib19) 2007; 104
Tayler, Tanaka, Reijmers, Wiltgen (bib34) 2013; 23
Muller, Joly, Lynch (bib25) 1988; 242
Rosenmund, Clements, Westbrook (bib31) 1993; 262
Goosens, Hobin, Maren (bib9) 2003; 40
Guenthner, Miyamichi, Yang, Heller, Luo (bib12) 2013; 78
LeDoux (bib20) 2000; 23
Clem, Huganir (bib5) 2010; 330
Josselyn, Köhler, Frankland (bib17) 2015; 16
McKernan, Shinnick-Gallagher (bib24) 1997; 390
Kauer, Malenka, Nicoll (bib18) 1988; 1
Tsvetkov, Carlezon, Benes, Kandel, Bolshakov (bib37) 2002; 34
Yiu, Mercaldo, Yan, Richards, Rashid, Hsiang, Pressey, Mahadevan, Tran, Kushner (bib38) 2014; 83
Yizhar, Fenno, Davidson, Mogri, Deisseroth (bib39) 2011; 71
Maren (bib23) 2011; 70
Cho, Bayazitov, Meloni, Myers, Carlezon, Zakharenko, Bolshakov (bib3) 2011; 15
Reijmers, Perkins, Matsuo, Mayford (bib29) 2007; 317
Cho, Deisseroth, Bolshakov (bib4) 2013; 80
Plant, Pelkey, Bortolotto, Morita, Terashima, McBain, Collingridge, Isaac (bib28) 2006; 9
Tovote, Fadok, Lüthi (bib35) 2015; 16
Ghosh, Chattarji (bib8) 2015; 18
Li, Penzo, Taniguchi, Kopec, Huang, Li (bib21) 2013; 16
Herry, Ferraguti, Singewald, Letzkus, Ehrlich, Lüthi (bib14) 2010; 31
Do-Monte (10.1016/j.neuron.2017.08.004_bib7) 2015; 35
Yizhar (10.1016/j.neuron.2017.08.004_bib39) 2011; 71
Collins (10.1016/j.neuron.2017.08.004_bib6) 2000; 7
Rumpel (10.1016/j.neuron.2017.08.004_bib32) 2005; 308
LeDoux (10.1016/j.neuron.2017.08.004_bib20) 2000; 23
Nonaka (10.1016/j.neuron.2017.08.004_bib27) 2014; 34
Rosenmund (10.1016/j.neuron.2017.08.004_bib31) 1993; 262
McKernan (10.1016/j.neuron.2017.08.004_bib24) 1997; 390
Goosens (10.1016/j.neuron.2017.08.004_bib9) 2003; 40
Bukalo (10.1016/j.neuron.2017.08.004_bib2) 2015; 1
Shin (10.1016/j.neuron.2017.08.004_bib33) 2006; 52
Gouty-Colomer (10.1016/j.neuron.2017.08.004_bib10) 2016; 21
Plant (10.1016/j.neuron.2017.08.004_bib28) 2006; 9
Herry (10.1016/j.neuron.2017.08.004_bib14) 2010; 31
Gründemann (10.1016/j.neuron.2017.08.004_bib11) 2015; 35
Guenthner (10.1016/j.neuron.2017.08.004_bib12) 2013; 78
Rogan (10.1016/j.neuron.2017.08.004_bib30) 1997; 390
Tovote (10.1016/j.neuron.2017.08.004_bib35) 2015; 16
Antunes (10.1016/j.neuron.2017.08.004_bib1) 2010; 30
Kauer (10.1016/j.neuron.2017.08.004_bib18) 1988; 1
Tovote (10.1016/j.neuron.2017.08.004_bib36) 2016; 534
Muller (10.1016/j.neuron.2017.08.004_bib25) 1988; 242
Maren (10.1016/j.neuron.2017.08.004_bib22) 2001; 24
Humeau (10.1016/j.neuron.2017.08.004_bib16) 2005; 45
Nabavi (10.1016/j.neuron.2017.08.004_bib26) 2014; 511
Tayler (10.1016/j.neuron.2017.08.004_bib34) 2013; 23
Yiu (10.1016/j.neuron.2017.08.004_bib38) 2014; 83
Cho (10.1016/j.neuron.2017.08.004_bib4) 2013; 80
Kim (10.1016/j.neuron.2017.08.004_bib19) 2007; 104
Maren (10.1016/j.neuron.2017.08.004_bib23) 2011; 70
Tsvetkov (10.1016/j.neuron.2017.08.004_bib37) 2002; 34
Zucker (10.1016/j.neuron.2017.08.004_bib40) 2002; 64
Josselyn (10.1016/j.neuron.2017.08.004_bib17) 2015; 16
Li (10.1016/j.neuron.2017.08.004_bib21) 2013; 16
Cho (10.1016/j.neuron.2017.08.004_bib3) 2011; 15
Clem (10.1016/j.neuron.2017.08.004_bib5) 2010; 330
Ghosh (10.1016/j.neuron.2017.08.004_bib8) 2015; 18
Han (10.1016/j.neuron.2017.08.004_bib13) 2007; 316
Hessler (10.1016/j.neuron.2017.08.004_bib15) 1993; 366
Reijmers (10.1016/j.neuron.2017.08.004_bib29) 2007; 317
References_xml – volume: 1
  start-page: 911
  year: 1988
  end-page: 917
  ident: bib18
  article-title: A persistent postsynaptic modification mediates long-term potentiation in the hippocampus
  publication-title: Neuron
– volume: 70
  start-page: 830
  year: 2011
  end-page: 845
  ident: bib23
  article-title: Seeking a spotless mind: extinction, deconsolidation, and erasure of fear memory
  publication-title: Neuron
– volume: 71
  start-page: 9
  year: 2011
  end-page: 34
  ident: bib39
  article-title: Optogenetics in neural systems
  publication-title: Neuron
– volume: 45
  start-page: 119
  year: 2005
  end-page: 131
  ident: bib16
  article-title: Dendritic spine heterogeneity determines afferent-specific Hebbian plasticity in the amygdala
  publication-title: Neuron
– volume: 83
  start-page: 722
  year: 2014
  end-page: 735
  ident: bib38
  article-title: Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training
  publication-title: Neuron
– volume: 80
  start-page: 1491
  year: 2013
  end-page: 1507
  ident: bib4
  article-title: Synaptic encoding of fear extinction in mPFC-amygdala circuits
  publication-title: Neuron
– volume: 330
  start-page: 1108
  year: 2010
  end-page: 1112
  ident: bib5
  article-title: Calcium-permeable AMPA receptor dynamics mediate fear memory erasure
  publication-title: Science
– volume: 24
  start-page: 897
  year: 2001
  end-page: 931
  ident: bib22
  article-title: Neurobiology of Pavlovian fear conditioning
  publication-title: Annu. Rev. Neurosci.
– volume: 104
  start-page: 20955
  year: 2007
  end-page: 20960
  ident: bib19
  article-title: Amygdala depotentiation and fear extinction
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 1
  start-page: e1500251
  year: 2015
  ident: bib2
  article-title: Prefrontal inputs to the amygdala instruct fear extinction memory formation
  publication-title: Sci. Adv.
– volume: 7
  start-page: 97
  year: 2000
  end-page: 103
  ident: bib6
  article-title: Differential fear conditioning induces reciprocal changes in the sensory responses of lateral amygdala neurons to the CS(+) and CS(-)
  publication-title: Learn. Mem.
– volume: 308
  start-page: 83
  year: 2005
  end-page: 88
  ident: bib32
  article-title: Postsynaptic receptor trafficking underlying a form of associative learning
  publication-title: Science
– volume: 34
  start-page: 289
  year: 2002
  end-page: 300
  ident: bib37
  article-title: Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala
  publication-title: Neuron
– volume: 16
  start-page: 332
  year: 2013
  end-page: 339
  ident: bib21
  article-title: Experience-dependent modification of a central amygdala fear circuit
  publication-title: Nat. Neurosci.
– volume: 21
  start-page: 1153
  year: 2016
  ident: bib10
  article-title: Arc expression identifies the lateral amygdala fear memory trace
  publication-title: Mol. Psychiatry
– volume: 35
  start-page: 3607
  year: 2015
  end-page: 3615
  ident: bib7
  article-title: Revisiting the role of infralimbic cortex in fear extinction with optogenetics
  publication-title: J. Neurosci.
– volume: 16
  start-page: 521
  year: 2015
  end-page: 534
  ident: bib17
  article-title: Finding the engram
  publication-title: Nat. Rev. Neurosci.
– volume: 9
  start-page: 602
  year: 2006
  end-page: 604
  ident: bib28
  article-title: Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation
  publication-title: Nat. Neurosci.
– volume: 316
  start-page: 457
  year: 2007
  end-page: 460
  ident: bib13
  article-title: Neuronal competition and selection during memory formation
  publication-title: Science
– volume: 18
  start-page: 112
  year: 2015
  end-page: 120
  ident: bib8
  article-title: Neuronal encoding of the switch from specific to generalized fear
  publication-title: Nat. Neurosci.
– volume: 242
  start-page: 1694
  year: 1988
  end-page: 1697
  ident: bib25
  article-title: Contributions of quisqualate and NMDA receptors to the induction and expression of LTP
  publication-title: Science
– volume: 15
  start-page: 113
  year: 2011
  end-page: 122
  ident: bib3
  article-title: Coactivation of thalamic and cortical pathways induces input timing-dependent plasticity in amygdala
  publication-title: Nat. Neurosci.
– volume: 31
  start-page: 599
  year: 2010
  end-page: 612
  ident: bib14
  article-title: Neuronal circuits of fear extinction
  publication-title: Eur. J. Neurosci.
– volume: 35
  start-page: 200
  year: 2015
  end-page: 206
  ident: bib11
  article-title: Ensemble coding in amygdala circuits for associative learning
  publication-title: Curr. Opin. Neurobiol.
– volume: 23
  start-page: 99
  year: 2013
  end-page: 106
  ident: bib34
  article-title: Reactivation of neural ensembles during the retrieval of recent and remote memory
  publication-title: Curr. Biol.
– volume: 366
  start-page: 569
  year: 1993
  end-page: 572
  ident: bib15
  article-title: The probability of transmitter release at a mammalian central synapse
  publication-title: Nature
– volume: 23
  start-page: 155
  year: 2000
  end-page: 184
  ident: bib20
  article-title: Emotion circuits in the brain
  publication-title: Annu. Rev. Neurosci.
– volume: 390
  start-page: 604
  year: 1997
  end-page: 607
  ident: bib30
  article-title: Fear conditioning induces associative long-term potentiation in the amygdala
  publication-title: Nature
– volume: 262
  start-page: 754
  year: 1993
  end-page: 757
  ident: bib31
  article-title: Nonuniform probability of glutamate release at a hippocampal synapse
  publication-title: Science
– volume: 52
  start-page: 883
  year: 2006
  end-page: 896
  ident: bib33
  article-title: Spatiotemporal asymmetry of associative synaptic plasticity in fear conditioning pathways
  publication-title: Neuron
– volume: 30
  start-page: 9782
  year: 2010
  end-page: 9787
  ident: bib1
  article-title: Discriminative auditory fear learning requires both tuned and nontuned auditory pathways to the amygdala
  publication-title: J. Neurosci.
– volume: 390
  start-page: 607
  year: 1997
  end-page: 611
  ident: bib24
  article-title: Fear conditioning induces a lasting potentiation of synaptic currents in vitro
  publication-title: Nature
– volume: 40
  start-page: 1013
  year: 2003
  end-page: 1022
  ident: bib9
  article-title: Auditory-evoked spike firing in the lateral amygdala and Pavlovian fear conditioning: mnemonic code or fear bias?
  publication-title: Neuron
– volume: 64
  start-page: 355
  year: 2002
  end-page: 405
  ident: bib40
  article-title: Short-term synaptic plasticity
  publication-title: Annu. Rev. Physiol.
– volume: 78
  start-page: 773
  year: 2013
  end-page: 784
  ident: bib12
  article-title: Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations
  publication-title: Neuron
– volume: 511
  start-page: 348
  year: 2014
  end-page: 352
  ident: bib26
  article-title: Engineering a memory with LTD and LTP
  publication-title: Nature
– volume: 317
  start-page: 1230
  year: 2007
  end-page: 1233
  ident: bib29
  article-title: Localization of a stable neural correlate of associative memory
  publication-title: Science
– volume: 16
  start-page: 317
  year: 2015
  end-page: 331
  ident: bib35
  article-title: Neuronal circuits for fear and anxiety
  publication-title: Nat. Rev. Neurosci.
– volume: 34
  start-page: 9305
  year: 2014
  end-page: 9309
  ident: bib27
  article-title: Synaptic plasticity associated with a memory engram in the basolateral amygdala
  publication-title: J. Neurosci.
– volume: 534
  start-page: 206
  year: 2016
  end-page: 212
  ident: bib36
  article-title: Midbrain circuits for defensive behaviour
  publication-title: Nature
– volume: 7
  start-page: 97
  year: 2000
  ident: 10.1016/j.neuron.2017.08.004_bib6
  article-title: Differential fear conditioning induces reciprocal changes in the sensory responses of lateral amygdala neurons to the CS(+) and CS(-)
  publication-title: Learn. Mem.
  doi: 10.1101/lm.7.2.97
– volume: 35
  start-page: 200
  year: 2015
  ident: 10.1016/j.neuron.2017.08.004_bib11
  article-title: Ensemble coding in amygdala circuits for associative learning
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2015.10.005
– volume: 15
  start-page: 113
  year: 2011
  ident: 10.1016/j.neuron.2017.08.004_bib3
  article-title: Coactivation of thalamic and cortical pathways induces input timing-dependent plasticity in amygdala
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2993
– volume: 511
  start-page: 348
  year: 2014
  ident: 10.1016/j.neuron.2017.08.004_bib26
  article-title: Engineering a memory with LTD and LTP
  publication-title: Nature
  doi: 10.1038/nature13294
– volume: 23
  start-page: 99
  year: 2013
  ident: 10.1016/j.neuron.2017.08.004_bib34
  article-title: Reactivation of neural ensembles during the retrieval of recent and remote memory
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2012.11.019
– volume: 9
  start-page: 602
  year: 2006
  ident: 10.1016/j.neuron.2017.08.004_bib28
  article-title: Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1678
– volume: 317
  start-page: 1230
  year: 2007
  ident: 10.1016/j.neuron.2017.08.004_bib29
  article-title: Localization of a stable neural correlate of associative memory
  publication-title: Science
  doi: 10.1126/science.1143839
– volume: 71
  start-page: 9
  year: 2011
  ident: 10.1016/j.neuron.2017.08.004_bib39
  article-title: Optogenetics in neural systems
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.06.004
– volume: 1
  start-page: 911
  year: 1988
  ident: 10.1016/j.neuron.2017.08.004_bib18
  article-title: A persistent postsynaptic modification mediates long-term potentiation in the hippocampus
  publication-title: Neuron
  doi: 10.1016/0896-6273(88)90148-1
– volume: 104
  start-page: 20955
  year: 2007
  ident: 10.1016/j.neuron.2017.08.004_bib19
  article-title: Amygdala depotentiation and fear extinction
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0710548105
– volume: 1
  start-page: e1500251
  year: 2015
  ident: 10.1016/j.neuron.2017.08.004_bib2
  article-title: Prefrontal inputs to the amygdala instruct fear extinction memory formation
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500251
– volume: 21
  start-page: 1153
  year: 2016
  ident: 10.1016/j.neuron.2017.08.004_bib10
  article-title: Arc expression identifies the lateral amygdala fear memory trace
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2016.91
– volume: 390
  start-page: 607
  year: 1997
  ident: 10.1016/j.neuron.2017.08.004_bib24
  article-title: Fear conditioning induces a lasting potentiation of synaptic currents in vitro
  publication-title: Nature
  doi: 10.1038/37605
– volume: 316
  start-page: 457
  year: 2007
  ident: 10.1016/j.neuron.2017.08.004_bib13
  article-title: Neuronal competition and selection during memory formation
  publication-title: Science
  doi: 10.1126/science.1139438
– volume: 23
  start-page: 155
  year: 2000
  ident: 10.1016/j.neuron.2017.08.004_bib20
  article-title: Emotion circuits in the brain
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.23.1.155
– volume: 390
  start-page: 604
  year: 1997
  ident: 10.1016/j.neuron.2017.08.004_bib30
  article-title: Fear conditioning induces associative long-term potentiation in the amygdala
  publication-title: Nature
  doi: 10.1038/37601
– volume: 366
  start-page: 569
  year: 1993
  ident: 10.1016/j.neuron.2017.08.004_bib15
  article-title: The probability of transmitter release at a mammalian central synapse
  publication-title: Nature
  doi: 10.1038/366569a0
– volume: 330
  start-page: 1108
  year: 2010
  ident: 10.1016/j.neuron.2017.08.004_bib5
  article-title: Calcium-permeable AMPA receptor dynamics mediate fear memory erasure
  publication-title: Science
  doi: 10.1126/science.1195298
– volume: 40
  start-page: 1013
  year: 2003
  ident: 10.1016/j.neuron.2017.08.004_bib9
  article-title: Auditory-evoked spike firing in the lateral amygdala and Pavlovian fear conditioning: mnemonic code or fear bias?
  publication-title: Neuron
  doi: 10.1016/S0896-6273(03)00728-1
– volume: 78
  start-page: 773
  year: 2013
  ident: 10.1016/j.neuron.2017.08.004_bib12
  article-title: Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.03.025
– volume: 16
  start-page: 521
  year: 2015
  ident: 10.1016/j.neuron.2017.08.004_bib17
  article-title: Finding the engram
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn4000
– volume: 80
  start-page: 1491
  year: 2013
  ident: 10.1016/j.neuron.2017.08.004_bib4
  article-title: Synaptic encoding of fear extinction in mPFC-amygdala circuits
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.09.025
– volume: 45
  start-page: 119
  year: 2005
  ident: 10.1016/j.neuron.2017.08.004_bib16
  article-title: Dendritic spine heterogeneity determines afferent-specific Hebbian plasticity in the amygdala
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.12.019
– volume: 35
  start-page: 3607
  year: 2015
  ident: 10.1016/j.neuron.2017.08.004_bib7
  article-title: Revisiting the role of infralimbic cortex in fear extinction with optogenetics
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3137-14.2015
– volume: 83
  start-page: 722
  year: 2014
  ident: 10.1016/j.neuron.2017.08.004_bib38
  article-title: Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.07.017
– volume: 534
  start-page: 206
  year: 2016
  ident: 10.1016/j.neuron.2017.08.004_bib36
  article-title: Midbrain circuits for defensive behaviour
  publication-title: Nature
  doi: 10.1038/nature17996
– volume: 242
  start-page: 1694
  year: 1988
  ident: 10.1016/j.neuron.2017.08.004_bib25
  article-title: Contributions of quisqualate and NMDA receptors to the induction and expression of LTP
  publication-title: Science
  doi: 10.1126/science.2904701
– volume: 31
  start-page: 599
  year: 2010
  ident: 10.1016/j.neuron.2017.08.004_bib14
  article-title: Neuronal circuits of fear extinction
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2010.07101.x
– volume: 34
  start-page: 289
  year: 2002
  ident: 10.1016/j.neuron.2017.08.004_bib37
  article-title: Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00645-1
– volume: 18
  start-page: 112
  year: 2015
  ident: 10.1016/j.neuron.2017.08.004_bib8
  article-title: Neuronal encoding of the switch from specific to generalized fear
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3888
– volume: 16
  start-page: 332
  year: 2013
  ident: 10.1016/j.neuron.2017.08.004_bib21
  article-title: Experience-dependent modification of a central amygdala fear circuit
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3322
– volume: 64
  start-page: 355
  year: 2002
  ident: 10.1016/j.neuron.2017.08.004_bib40
  article-title: Short-term synaptic plasticity
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev.physiol.64.092501.114547
– volume: 308
  start-page: 83
  year: 2005
  ident: 10.1016/j.neuron.2017.08.004_bib32
  article-title: Postsynaptic receptor trafficking underlying a form of associative learning
  publication-title: Science
  doi: 10.1126/science.1103944
– volume: 262
  start-page: 754
  year: 1993
  ident: 10.1016/j.neuron.2017.08.004_bib31
  article-title: Nonuniform probability of glutamate release at a hippocampal synapse
  publication-title: Science
  doi: 10.1126/science.7901909
– volume: 52
  start-page: 883
  year: 2006
  ident: 10.1016/j.neuron.2017.08.004_bib33
  article-title: Spatiotemporal asymmetry of associative synaptic plasticity in fear conditioning pathways
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.10.010
– volume: 34
  start-page: 9305
  year: 2014
  ident: 10.1016/j.neuron.2017.08.004_bib27
  article-title: Synaptic plasticity associated with a memory engram in the basolateral amygdala
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4233-13.2014
– volume: 30
  start-page: 9782
  year: 2010
  ident: 10.1016/j.neuron.2017.08.004_bib1
  article-title: Discriminative auditory fear learning requires both tuned and nontuned auditory pathways to the amygdala
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1037-10.2010
– volume: 16
  start-page: 317
  year: 2015
  ident: 10.1016/j.neuron.2017.08.004_bib35
  article-title: Neuronal circuits for fear and anxiety
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3945
– volume: 24
  start-page: 897
  year: 2001
  ident: 10.1016/j.neuron.2017.08.004_bib22
  article-title: Neurobiology of Pavlovian fear conditioning
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.24.1.897
– volume: 70
  start-page: 830
  year: 2011
  ident: 10.1016/j.neuron.2017.08.004_bib23
  article-title: Seeking a spotless mind: extinction, deconsolidation, and erasure of fear memory
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.04.023
SSID ssj0014591
Score 2.5511897
Snippet In auditory fear conditioning, experimental subjects learn to associate an auditory conditioned stimulus (CS) with an aversive unconditioned stimulus. With...
Our results demonstrate that LTP in the CS-specific ACx/MGN-LA pathways could contribute to encoding discriminative fear memory for the CS. Our neural...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1129
SubjectTerms Acoustic Stimulation
Amygdala
Amygdala - physiology
Animals
Auditory Pathways - physiology
Conditioning (Psychology) - physiology
depotentiation
Discrimination (Psychology) - physiology
Electric Stimulation
electrophysiology
engram
Extinction, Psychological - physiology
Fear - physiology
fear conditioning
fear extinction
Female
Labeling
learning and memory
Long-term potentiation
Long-Term Potentiation - physiology
Long-Term Synaptic Depression - physiology
Male
Memory
Memory - physiology
Mice
Mice, Transgenic
neuromodulation
Neurons
optogenetics
Rodents
Synapses
Title Encoding of Discriminative Fear Memory by Input-Specific LTP in the Amygdala
URI https://dx.doi.org/10.1016/j.neuron.2017.08.004
https://www.ncbi.nlm.nih.gov/pubmed/28823727
https://www.proquest.com/docview/1935380882
https://www.proquest.com/docview/1930936545
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB1CSqGX0iT92DYNKpTexMqWZNnHTZqQNEkpbUL3JiRZCi6Jd0l3D_731cj2QqElkIMPtkcgRtLMkzTzBuCjEt5Y6R11RZBU-MrRCilcc8ejUbTBiET2fPm1OL0WX-ZyvgVHYy4MhlUOtr-36claD1-mgzany6aZ_mBlhezl0QFG2FtJTDTnokxJfPPDzU2CkH3VvChMUXpMn0sxXokzEllQM5WIPIdybf9wT_-Dn8kNnbyA5wN-JLO-izuw5dtd2Ju1ce9815FPJEV0pqPyXXjaF5rs9uDiuHUL9FJkEcjnBk0FhsCgqSMRBN6TSwy47YjtyFm7XK9oKksfGkcurr6RpiURJpLZXXdTm1vzEq5Pjq-OTulQR4E6yfIVVbWpQ8WDDKpQNghrWahlCMyY0osgDfdxl1Vz57Mibn-4NIL5-DBTZdYLx1_Bdrto_RsgXimbeZEFboVwrDS5U0UwpfQSmendBPioPu0GknGsdXGrx2iyX7pXukalayyBycQE6KbVsifZeEBejSOj_5osOvqBB1rujwOph8X6W0cMG80-7jUm8GHzOy4zvDsxrV-skwyreBHx5gRe9xNg09W8RMafXL19dLfewTN8S2fVbB-2V_dr_z6CnZU9gCez8-8_zw_SrP4DOmj-EA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NIcReEGz8KAwwEuItqhPbcfJYxqYW2gmJTuqbZTs2CtrSamsf8t_jc5JKSKBJPOQlPkvW2b77zj5_B_BRcqeNcDaxuRcJd6VNSqRwzSwLRtF4zSPZ8-Iyn17xryuxOoCz4S0MplX2tr-z6dFa93_GvTbHm7oe_6BFiezlwQEG2FsK8QAeBjQgsX7DbPV5f5XARVc2L0gnKD68n4tJXpE0EmlQUxmZPPt6bX_xT__Cn9EPXTyFJz2AJJNujM_gwDXHcDJpQvB805JPJKZ0xrPyY3jUVZpsT2B-3tg1uimy9uRLjbYCc2DQ1pGAAm_JAjNuW2JaMms2u20S69L72pL58jupGxJwIpnctD8rfa2fw9XF-fJsmvSFFBIraLZNZKUrXzIvvMyl8dwY6ivhPdW6cNwLzVwIsypmXZqH-IcJzakLH9Vlahy37AUcNuvGvQLipDSp46lnhnNLC51ZmXtdCCeQmt6OgA3qU7ZnGcdiF9dqSCf7pTqlK1S6whqYlI8g2ffadCwb98jLYWbUH6tFBUdwT8_TYSJVv1vvVACxwe5jsDGCD_vmsM_w8kQ3br2LMrRkeQCcI3jZLYD9ULMCKX8y-fq_h_UeHk-Xi7mazy6_vYEjbIkH1_QUDre3O_c2IJ-teRdX9m8CcP-M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Encoding+of+Discriminative+Fear+Memory+by+Input-Specific+LTP+in+the+Amygdala&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Kim%2C+Woong+Bin&rft.au=Cho%2C+Jun-Hyeong&rft.date=2017-08-30&rft.pub=Elsevier+Inc&rft.issn=0896-6273&rft.eissn=1097-4199&rft.volume=95&rft.issue=5&rft.spage=1129&rft.epage=1146.e5&rft_id=info:doi/10.1016%2Fj.neuron.2017.08.004&rft.externalDocID=S0896627317306955
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon