Encoding of Discriminative Fear Memory by Input-Specific LTP in the Amygdala
In auditory fear conditioning, experimental subjects learn to associate an auditory conditioned stimulus (CS) with an aversive unconditioned stimulus. With sufficient training, animals fear conditioned to an auditory CS show fear response to the CS, but not to irrelevant auditory stimuli. Although l...
Saved in:
Published in | Neuron (Cambridge, Mass.) Vol. 95; no. 5; pp. 1129 - 1146.e5 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
30.08.2017
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In auditory fear conditioning, experimental subjects learn to associate an auditory conditioned stimulus (CS) with an aversive unconditioned stimulus. With sufficient training, animals fear conditioned to an auditory CS show fear response to the CS, but not to irrelevant auditory stimuli. Although long-term potentiation (LTP) in the lateral amygdala (LA) plays an essential role in auditory fear conditioning, it is unknown whether LTP is induced selectively in the neural pathways conveying specific CS information to the LA in discriminative fear learning. Here, we show that postsynaptically expressed LTP is induced selectively in the CS-specific auditory pathways to the LA in a mouse model of auditory discriminative fear conditioning. Moreover, optogenetically induced depotentiation of the CS-specific auditory pathways to the LA suppressed conditioned fear responses to the CS. Our results suggest that input-specific LTP in the LA contributes to fear memory specificity, enabling adaptive fear responses only to the relevant sensory cue.
[Display omitted]
•LTP is not induced globally in ACx/MGN-LA pathways in discriminative fear learning•LTP is induced in CS+, but not CS–, pathways to LA in discriminative fear learning•Synapses in CS+ pathways to LA remain potentiated after fear extinction•Depotentiation of CS+, but not CS–, pathways to LA prevents the recall of fear memory
Kim and Cho demonstrate that the formation of fear memory associated with a specific auditory cue requires selective synaptic strengthening in functionally defined neural pathways that convey the auditory signals to the amygdala. |
---|---|
AbstractList | In auditory fear conditioning, experimental subjects learn to associate an auditory conditioned stimulus (CS) with an aversive unconditioned stimulus. With sufficient training, animals fear conditioned to an auditory CS show fear response to the CS, but not to irrelevant auditory stimuli. Although long-term potentiation (LTP) in the lateral amygdala (LA) plays an essential role in auditory fear conditioning, it is unknown whether LTP is induced selectively in the neural pathways conveying specific CS information to the LA in discriminative fear learning. Here, we show that postsynaptically expressed LTP is induced selectively in the CS-specific auditory pathways to the LA in a mouse model of auditory discriminative fear conditioning. Moreover, optogenetically induced depotentiation of the CS-specific auditory pathways to the LA suppressed conditioned fear responses to the CS. Our results suggest that input-specific LTP in the LA contributes to fear memory specificity, enabling adaptive fear responses only to the relevant sensory cue.
[Display omitted]
•LTP is not induced globally in ACx/MGN-LA pathways in discriminative fear learning•LTP is induced in CS+, but not CS–, pathways to LA in discriminative fear learning•Synapses in CS+ pathways to LA remain potentiated after fear extinction•Depotentiation of CS+, but not CS–, pathways to LA prevents the recall of fear memory
Kim and Cho demonstrate that the formation of fear memory associated with a specific auditory cue requires selective synaptic strengthening in functionally defined neural pathways that convey the auditory signals to the amygdala. In auditory fear conditioning, experimental subjects learn to associate an auditory conditioned stimulus (CS) with an aversive unconditioned stimulus. With sufficient training, animals fear conditioned to an auditory CS show fear response to the CS, but not to irrelevant auditory stimuli. Although long-term potentiation (LTP) in the lateral amygdala (LA) plays an essential role in auditory fear conditioning, it is unknown whether LTP is induced selectively in the neural pathways conveying specific CS information to the LA in discriminative fear learning. Here, we show that postsynaptically expressed LTP is induced selectively in the CS-specific auditory pathways to the LA in a mouse model of auditory discriminative fear conditioning. Moreover, optogenetically induced depotentiation of the CS-specific auditory pathways to the LA suppressed conditioned fear responses to the CS. Our results suggest that input-specific LTP in the LA contributes to fear memory specificity, enabling adaptive fear responses only to the relevant sensory cue. VIDEO ABSTRACT.In auditory fear conditioning, experimental subjects learn to associate an auditory conditioned stimulus (CS) with an aversive unconditioned stimulus. With sufficient training, animals fear conditioned to an auditory CS show fear response to the CS, but not to irrelevant auditory stimuli. Although long-term potentiation (LTP) in the lateral amygdala (LA) plays an essential role in auditory fear conditioning, it is unknown whether LTP is induced selectively in the neural pathways conveying specific CS information to the LA in discriminative fear learning. Here, we show that postsynaptically expressed LTP is induced selectively in the CS-specific auditory pathways to the LA in a mouse model of auditory discriminative fear conditioning. Moreover, optogenetically induced depotentiation of the CS-specific auditory pathways to the LA suppressed conditioned fear responses to the CS. Our results suggest that input-specific LTP in the LA contributes to fear memory specificity, enabling adaptive fear responses only to the relevant sensory cue. VIDEO ABSTRACT. Our results demonstrate that LTP in the CS-specific ACx/MGN-LA pathways could contribute to encoding discriminative fear memory for the CS. Our neural activity-dependent behavioral labeling approach enabled the recording of synaptic responses in the CS-specific pathways and revealed a population of LA neurons that preferentially receives presynaptic inputs conveying specific auditory information. With this approach, we found that postsynaptically expressed LTP was induced selectively in the pathways conveying auditory CS+ information to the LA, whereas LTP was not detected in either the CS- pathways or randomly selected ACx/MGN-LA synapses in discriminative fear conditioning. Input-specific LTP was induced preferentially in a subset of LA neurons activated during auditory fear conditioning. CS-specific ACx/MGN-LA synapses remained potentiated after fear extinction. Moreover, depotentiation of the CS-specific ACx/MGN-LA pathways prevented the recall of fear memory for the CS, suggesting that input-specific LTP is necessary for conditioned fear responses to a specific auditory cue. In auditory fear conditioning, experimental subjects learn to associate an auditory conditioned stimulus (CS) with an aversive unconditioned stimulus. With sufficient training, animals fear conditioned to an auditory CS show fear response to the CS, but not to irrelevant auditory stimuli. Although long-term potentiation (LTP) in the lateral amygdala (LA) plays an essential role in auditory fear conditioning, it is unknown whether LTP is induced selectively in the neural pathways conveying specific CS information to the LA in discriminative fear learning. Here, we show that postsynaptically expressed LTP is induced selectively in the CS-specific auditory pathways to the LA in a mouse model of auditory discriminative fear conditioning. Moreover, optogenetically induced depotentiation of the CS-specific auditory pathways to the LA suppressed conditioned fear responses to the CS. Our results suggest that input-specific LTP in the LA contributes to fear memory specificity, enabling adaptive fear responses only to the relevant sensory cue. VIDEO ABSTRACT. |
Author | Cho, Jun-Hyeong Kim, Woong Bin |
Author_xml | – sequence: 1 givenname: Woong Bin surname: Kim fullname: Kim, Woong Bin organization: Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA – sequence: 2 givenname: Jun-Hyeong surname: Cho fullname: Cho, Jun-Hyeong email: juncho@ucr.edu organization: Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28823727$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URLcL_wAhS1x6SRjHzoc5IFWlLZUWgUQ5W44zLl4l9mInlfbf49W2HHqAw2guzzsaPe8ZOfHBIyFvGZQMWPNhW3pcYvBlBawtoSsBxAuyYiDbQjApT8gKOtkUTdXyU3KW0haAiVqyV-S06rqKt1W7Ipsrb8Lg_D0Nln52yUQ3Oa9n94D0GnWkX3EKcU_7Pb31u2UufuzQOOsM3dx9p87T-RfSi2l_P-hRvyYvrR4Tvnnca_Lz-uru8kux-XZze3mxKUwN1Vy0gx6s5La2bdP2VvQ92KG2FrTuUNhacxTABm6QNVI2vNYCMA9oyXoUhq_J-fHuLobfC6ZZTflzHEftMSxJMclB8qYWdUbfP0O3YYk-f3egat7BQcWavHukln7CQe2yBR336slTBsQRMDGkFNH-RRioQx1qq451qEMdCjqV68ixj89ixs1ZbvBz1G78X_jTMYxZ5YPDqJJx6A0OLqKZ1RDcvw_8ASWUp1M |
CitedBy_id | crossref_primary_10_1016_j_neures_2019_12_020 crossref_primary_10_1101_cshperspect_a039743 crossref_primary_10_1038_s41539_019_0048_y crossref_primary_10_3389_fncel_2022_874310 crossref_primary_10_1038_s41398_023_02384_8 crossref_primary_10_1007_s00213_018_5104_4 crossref_primary_10_1016_j_tins_2023_08_003 crossref_primary_10_1038_s41386_022_01480_5 crossref_primary_10_1523_JNEUROSCI_1741_21_2022 crossref_primary_10_1111_ejn_14839 crossref_primary_10_1126_science_aat3810 crossref_primary_10_1016_j_semcdb_2021_05_033 crossref_primary_10_1177_10738584221108083 crossref_primary_10_1371_journal_pone_0226211 crossref_primary_10_3389_fncel_2021_685838 crossref_primary_10_2174_0115665232269742231213110937 crossref_primary_10_1093_nsr_nwab004 crossref_primary_10_1016_j_neubiorev_2021_11_009 crossref_primary_10_1016_j_conb_2018_08_012 crossref_primary_10_1016_j_celrep_2019_01_098 crossref_primary_10_1016_j_neubiorev_2021_03_009 crossref_primary_10_3238_PersNeuro_2017_09_15_08 crossref_primary_10_1038_s41586_019_1433_7 crossref_primary_10_1093_cercor_bhx353 crossref_primary_10_1016_j_heares_2017_10_011 crossref_primary_10_1016_j_neuropharm_2022_109298 crossref_primary_10_1016_j_conb_2021_01_006 crossref_primary_10_7554_eLife_50601 crossref_primary_10_1016_j_nlm_2023_107845 crossref_primary_10_7554_eLife_69333 crossref_primary_10_1002_cbf_4100 crossref_primary_10_3389_fnsyn_2021_634558 crossref_primary_10_1523_JNEUROSCI_1941_20_2020 crossref_primary_10_1038_s41380_023_02137_5 crossref_primary_10_1038_s41593_019_0524_y crossref_primary_10_1523_JNEUROSCI_1944_20_2020 crossref_primary_10_1038_s41598_018_36023_w crossref_primary_10_1016_j_neuroscience_2024_10_017 crossref_primary_10_1152_physrev_00016_2020 crossref_primary_10_1101_lm_047555_118 crossref_primary_10_1177_10738584211069977 crossref_primary_10_3389_fncel_2023_1292822 crossref_primary_10_1016_j_biopsych_2023_02_013 crossref_primary_10_1523_JNEUROSCI_2252_22_2023 crossref_primary_10_1098_rstb_2023_0228 crossref_primary_10_1007_s12264_023_01129_3 crossref_primary_10_3390_ijms21083008 crossref_primary_10_7554_eLife_99988 crossref_primary_10_3389_fnsyn_2018_00005 crossref_primary_10_1155_2020_8858415 crossref_primary_10_3389_fnbeh_2022_936036 crossref_primary_10_1016_j_neuron_2021_07_003 crossref_primary_10_1073_pnas_2107661119 crossref_primary_10_1016_j_neuron_2022_07_004 crossref_primary_10_1016_j_neubiorev_2021_04_036 crossref_primary_10_1016_j_neuron_2024_09_012 crossref_primary_10_1038_s41593_021_00856_y crossref_primary_10_1016_j_conb_2022_102552 crossref_primary_10_1146_annurev_neuro_090919_022842 crossref_primary_10_1088_2516_1091_ac23e6 crossref_primary_10_3389_fnsys_2020_569108 crossref_primary_10_3389_fnsyn_2021_661476 crossref_primary_10_1523_ENEURO_0113_19_2019 crossref_primary_10_1016_j_cub_2023_10_074 crossref_primary_10_1016_j_jbc_2021_101044 crossref_primary_10_1523_ENEURO_0538_20_2021 crossref_primary_10_3389_fcell_2019_00236 crossref_primary_10_1016_j_brainresbull_2017_12_004 crossref_primary_10_1016_j_brainresbull_2020_12_015 crossref_primary_10_1016_j_neuron_2017_08_020 crossref_primary_10_1016_j_nlm_2021_107526 crossref_primary_10_4103_NRR_NRR_D_24_00054 crossref_primary_10_1016_j_conb_2023_102723 crossref_primary_10_1016_j_pnpbp_2025_111310 crossref_primary_10_3389_fncir_2019_00082 crossref_primary_10_1038_s41467_020_15121_2 crossref_primary_10_3390_biology12101274 crossref_primary_10_1016_j_celrep_2025_115320 crossref_primary_10_3389_fnins_2020_569517 crossref_primary_10_1002_cne_25149 crossref_primary_10_7554_eLife_99988_3 crossref_primary_10_1016_j_neulet_2020_135456 crossref_primary_10_1002_hipo_23213 crossref_primary_10_1016_j_neuron_2023_11_012 crossref_primary_10_1016_j_jbc_2022_101866 crossref_primary_10_1523_ENEURO_0133_18_2018 crossref_primary_10_7554_eLife_91421_3 crossref_primary_10_1002_advs_202300189 crossref_primary_10_1016_j_celrep_2023_112678 crossref_primary_10_1126_science_aaw0474 crossref_primary_10_1016_j_nlm_2021_107504 crossref_primary_10_1007_s00429_021_02326_4 crossref_primary_10_1016_j_bbr_2020_112907 crossref_primary_10_1186_s13041_023_01067_1 crossref_primary_10_3389_fnsyn_2023_1146665 crossref_primary_10_1016_j_nlm_2020_107164 crossref_primary_10_1016_j_cub_2024_05_008 crossref_primary_10_1016_j_jbc_2021_101034 crossref_primary_10_1016_j_conb_2018_02_010 crossref_primary_10_1523_ENEURO_0113_21_2021 crossref_primary_10_7554_eLife_91421 crossref_primary_10_1016_j_neuron_2019_03_017 crossref_primary_10_1101_lm_053612_122 crossref_primary_10_3389_fnsys_2022_832484 crossref_primary_10_1038_s41401_021_00661_0 |
Cites_doi | 10.1101/lm.7.2.97 10.1016/j.conb.2015.10.005 10.1038/nn.2993 10.1038/nature13294 10.1016/j.cub.2012.11.019 10.1038/nn1678 10.1126/science.1143839 10.1016/j.neuron.2011.06.004 10.1016/0896-6273(88)90148-1 10.1073/pnas.0710548105 10.1126/sciadv.1500251 10.1038/mp.2016.91 10.1038/37605 10.1126/science.1139438 10.1146/annurev.neuro.23.1.155 10.1038/37601 10.1038/366569a0 10.1126/science.1195298 10.1016/S0896-6273(03)00728-1 10.1016/j.neuron.2013.03.025 10.1038/nrn4000 10.1016/j.neuron.2013.09.025 10.1016/j.neuron.2004.12.019 10.1523/JNEUROSCI.3137-14.2015 10.1016/j.neuron.2014.07.017 10.1038/nature17996 10.1126/science.2904701 10.1111/j.1460-9568.2010.07101.x 10.1016/S0896-6273(02)00645-1 10.1038/nn.3888 10.1038/nn.3322 10.1146/annurev.physiol.64.092501.114547 10.1126/science.1103944 10.1126/science.7901909 10.1016/j.neuron.2006.10.010 10.1523/JNEUROSCI.4233-13.2014 10.1523/JNEUROSCI.1037-10.2010 10.1038/nrn3945 10.1146/annurev.neuro.24.1.897 10.1016/j.neuron.2011.04.023 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Aug 30, 2017 |
Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Aug 30, 2017 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 |
DOI | 10.1016/j.neuron.2017.08.004 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Nursing & Allied Health Premium MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4199 |
EndPage | 1146.e5 |
ExternalDocumentID | 28823727 10_1016_j_neuron_2017_08_004 S0896627317306955 |
Genre | Video-Audio Media Journal Article |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 3V. 4.4 457 4G. 53G 5RE 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFKRA AFTJW AGKMS AHHHB AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BKNYI BPHCQ BVXVI CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HCIFZ HVGLF IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M0R M0T M2M M2O M3Z M41 M7P N9A NCXOZ O-L O9- OK1 P2P P6G PQQKQ PROAC RCE RIG ROL RPZ SCP SDP SES SSZ TR2 WOW WQ6 ZA5 .55 .GJ 29N 3O- 5VS AAEDT AAFWJ AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB G-2 HZ~ ITC MVM OZT R2- X7M ZGI ZKB 0SF CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD EFKBS FR3 K9. NAPCQ P64 RC3 7X8 |
ID | FETCH-LOGICAL-c502t-7dadf93f5f767bf4bb0fd5ff0aa8e4f5a3e401d3ce1699635a40ea400a91be4c3 |
IEDL.DBID | IXB |
ISSN | 0896-6273 1097-4199 |
IngestDate | Sun Aug 24 04:08:24 EDT 2025 Fri Jul 25 11:05:41 EDT 2025 Thu Jan 02 22:41:23 EST 2025 Tue Jul 01 01:16:16 EDT 2025 Thu Apr 24 23:11:59 EDT 2025 Fri Feb 23 02:22:45 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | neuromodulation amygdala fear conditioning learning and memory electrophysiology fear extinction optogenetics engram depotentiation long-term potentiation |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2017 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-7dadf93f5f767bf4bb0fd5ff0aa8e4f5a3e401d3ce1699635a40ea400a91be4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0896627317306955 |
PMID | 28823727 |
PQID | 1935380882 |
PQPubID | 2031076 |
ParticipantIDs | proquest_miscellaneous_1930936545 proquest_journals_1935380882 pubmed_primary_28823727 crossref_primary_10_1016_j_neuron_2017_08_004 crossref_citationtrail_10_1016_j_neuron_2017_08_004 elsevier_sciencedirect_doi_10_1016_j_neuron_2017_08_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-30 |
PublicationDateYYYYMMDD | 2017-08-30 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Neuron (Cambridge, Mass.) |
PublicationTitleAlternate | Neuron |
PublicationYear | 2017 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Collins, Paré (bib6) 2000; 7 Humeau, Herry, Kemp, Shaban, Fourcaudot, Bissière, Lüthi (bib16) 2005; 45 Tovote, Esposito, Botta, Chaudun, Fadok, Markovic, Wolff, Ramakrishnan, Fenno, Deisseroth (bib36) 2016; 534 Nonaka, Toyoda, Miura, Hitora-Imamura, Naka, Eguchi, Yamaguchi, Ikegaya, Matsuki, Nomura (bib27) 2014; 34 Bukalo, Pinard, Silverstein, Brehm, Hartley, Whittle, Colacicco, Busch, Patel, Singewald, Holmes (bib2) 2015; 1 Gründemann, Lüthi (bib11) 2015; 35 Do-Monte, Manzano-Nieves, Quiñones-Laracuente, Ramos-Medina, Quirk (bib7) 2015; 35 Rogan, Stäubli, LeDoux (bib30) 1997; 390 Shin, Tsvetkov, Bolshakov (bib33) 2006; 52 Antunes, Moita (bib1) 2010; 30 Hessler, Shirke, Malinow (bib15) 1993; 366 Zucker, Regehr (bib40) 2002; 64 Han, Kushner, Yiu, Cole, Matynia, Brown, Neve, Guzowski, Silva, Josselyn (bib13) 2007; 316 Maren (bib22) 2001; 24 Gouty-Colomer, Hosseini, Marcelo, Schreiber, Slump, Yamaguchi, Houweling, Jaarsma, Elgersma, Kushner (bib10) 2016; 21 Nabavi, Fox, Proulx, Lin, Tsien, Malinow (bib26) 2014; 511 Rumpel, LeDoux, Zador, Malinow (bib32) 2005; 308 Kim, Lee, Park, Hong, Song, Son, Park, Kim, Park, Choe (bib19) 2007; 104 Tayler, Tanaka, Reijmers, Wiltgen (bib34) 2013; 23 Muller, Joly, Lynch (bib25) 1988; 242 Rosenmund, Clements, Westbrook (bib31) 1993; 262 Goosens, Hobin, Maren (bib9) 2003; 40 Guenthner, Miyamichi, Yang, Heller, Luo (bib12) 2013; 78 LeDoux (bib20) 2000; 23 Clem, Huganir (bib5) 2010; 330 Josselyn, Köhler, Frankland (bib17) 2015; 16 McKernan, Shinnick-Gallagher (bib24) 1997; 390 Kauer, Malenka, Nicoll (bib18) 1988; 1 Tsvetkov, Carlezon, Benes, Kandel, Bolshakov (bib37) 2002; 34 Yiu, Mercaldo, Yan, Richards, Rashid, Hsiang, Pressey, Mahadevan, Tran, Kushner (bib38) 2014; 83 Yizhar, Fenno, Davidson, Mogri, Deisseroth (bib39) 2011; 71 Maren (bib23) 2011; 70 Cho, Bayazitov, Meloni, Myers, Carlezon, Zakharenko, Bolshakov (bib3) 2011; 15 Reijmers, Perkins, Matsuo, Mayford (bib29) 2007; 317 Cho, Deisseroth, Bolshakov (bib4) 2013; 80 Plant, Pelkey, Bortolotto, Morita, Terashima, McBain, Collingridge, Isaac (bib28) 2006; 9 Tovote, Fadok, Lüthi (bib35) 2015; 16 Ghosh, Chattarji (bib8) 2015; 18 Li, Penzo, Taniguchi, Kopec, Huang, Li (bib21) 2013; 16 Herry, Ferraguti, Singewald, Letzkus, Ehrlich, Lüthi (bib14) 2010; 31 Do-Monte (10.1016/j.neuron.2017.08.004_bib7) 2015; 35 Yizhar (10.1016/j.neuron.2017.08.004_bib39) 2011; 71 Collins (10.1016/j.neuron.2017.08.004_bib6) 2000; 7 Rumpel (10.1016/j.neuron.2017.08.004_bib32) 2005; 308 LeDoux (10.1016/j.neuron.2017.08.004_bib20) 2000; 23 Nonaka (10.1016/j.neuron.2017.08.004_bib27) 2014; 34 Rosenmund (10.1016/j.neuron.2017.08.004_bib31) 1993; 262 McKernan (10.1016/j.neuron.2017.08.004_bib24) 1997; 390 Goosens (10.1016/j.neuron.2017.08.004_bib9) 2003; 40 Bukalo (10.1016/j.neuron.2017.08.004_bib2) 2015; 1 Shin (10.1016/j.neuron.2017.08.004_bib33) 2006; 52 Gouty-Colomer (10.1016/j.neuron.2017.08.004_bib10) 2016; 21 Plant (10.1016/j.neuron.2017.08.004_bib28) 2006; 9 Herry (10.1016/j.neuron.2017.08.004_bib14) 2010; 31 Gründemann (10.1016/j.neuron.2017.08.004_bib11) 2015; 35 Guenthner (10.1016/j.neuron.2017.08.004_bib12) 2013; 78 Rogan (10.1016/j.neuron.2017.08.004_bib30) 1997; 390 Tovote (10.1016/j.neuron.2017.08.004_bib35) 2015; 16 Antunes (10.1016/j.neuron.2017.08.004_bib1) 2010; 30 Kauer (10.1016/j.neuron.2017.08.004_bib18) 1988; 1 Tovote (10.1016/j.neuron.2017.08.004_bib36) 2016; 534 Muller (10.1016/j.neuron.2017.08.004_bib25) 1988; 242 Maren (10.1016/j.neuron.2017.08.004_bib22) 2001; 24 Humeau (10.1016/j.neuron.2017.08.004_bib16) 2005; 45 Nabavi (10.1016/j.neuron.2017.08.004_bib26) 2014; 511 Tayler (10.1016/j.neuron.2017.08.004_bib34) 2013; 23 Yiu (10.1016/j.neuron.2017.08.004_bib38) 2014; 83 Cho (10.1016/j.neuron.2017.08.004_bib4) 2013; 80 Kim (10.1016/j.neuron.2017.08.004_bib19) 2007; 104 Maren (10.1016/j.neuron.2017.08.004_bib23) 2011; 70 Tsvetkov (10.1016/j.neuron.2017.08.004_bib37) 2002; 34 Zucker (10.1016/j.neuron.2017.08.004_bib40) 2002; 64 Josselyn (10.1016/j.neuron.2017.08.004_bib17) 2015; 16 Li (10.1016/j.neuron.2017.08.004_bib21) 2013; 16 Cho (10.1016/j.neuron.2017.08.004_bib3) 2011; 15 Clem (10.1016/j.neuron.2017.08.004_bib5) 2010; 330 Ghosh (10.1016/j.neuron.2017.08.004_bib8) 2015; 18 Han (10.1016/j.neuron.2017.08.004_bib13) 2007; 316 Hessler (10.1016/j.neuron.2017.08.004_bib15) 1993; 366 Reijmers (10.1016/j.neuron.2017.08.004_bib29) 2007; 317 |
References_xml | – volume: 1 start-page: 911 year: 1988 end-page: 917 ident: bib18 article-title: A persistent postsynaptic modification mediates long-term potentiation in the hippocampus publication-title: Neuron – volume: 70 start-page: 830 year: 2011 end-page: 845 ident: bib23 article-title: Seeking a spotless mind: extinction, deconsolidation, and erasure of fear memory publication-title: Neuron – volume: 71 start-page: 9 year: 2011 end-page: 34 ident: bib39 article-title: Optogenetics in neural systems publication-title: Neuron – volume: 45 start-page: 119 year: 2005 end-page: 131 ident: bib16 article-title: Dendritic spine heterogeneity determines afferent-specific Hebbian plasticity in the amygdala publication-title: Neuron – volume: 83 start-page: 722 year: 2014 end-page: 735 ident: bib38 article-title: Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training publication-title: Neuron – volume: 80 start-page: 1491 year: 2013 end-page: 1507 ident: bib4 article-title: Synaptic encoding of fear extinction in mPFC-amygdala circuits publication-title: Neuron – volume: 330 start-page: 1108 year: 2010 end-page: 1112 ident: bib5 article-title: Calcium-permeable AMPA receptor dynamics mediate fear memory erasure publication-title: Science – volume: 24 start-page: 897 year: 2001 end-page: 931 ident: bib22 article-title: Neurobiology of Pavlovian fear conditioning publication-title: Annu. Rev. Neurosci. – volume: 104 start-page: 20955 year: 2007 end-page: 20960 ident: bib19 article-title: Amygdala depotentiation and fear extinction publication-title: Proc. Natl. Acad. Sci. USA – volume: 1 start-page: e1500251 year: 2015 ident: bib2 article-title: Prefrontal inputs to the amygdala instruct fear extinction memory formation publication-title: Sci. Adv. – volume: 7 start-page: 97 year: 2000 end-page: 103 ident: bib6 article-title: Differential fear conditioning induces reciprocal changes in the sensory responses of lateral amygdala neurons to the CS(+) and CS(-) publication-title: Learn. Mem. – volume: 308 start-page: 83 year: 2005 end-page: 88 ident: bib32 article-title: Postsynaptic receptor trafficking underlying a form of associative learning publication-title: Science – volume: 34 start-page: 289 year: 2002 end-page: 300 ident: bib37 article-title: Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala publication-title: Neuron – volume: 16 start-page: 332 year: 2013 end-page: 339 ident: bib21 article-title: Experience-dependent modification of a central amygdala fear circuit publication-title: Nat. Neurosci. – volume: 21 start-page: 1153 year: 2016 ident: bib10 article-title: Arc expression identifies the lateral amygdala fear memory trace publication-title: Mol. Psychiatry – volume: 35 start-page: 3607 year: 2015 end-page: 3615 ident: bib7 article-title: Revisiting the role of infralimbic cortex in fear extinction with optogenetics publication-title: J. Neurosci. – volume: 16 start-page: 521 year: 2015 end-page: 534 ident: bib17 article-title: Finding the engram publication-title: Nat. Rev. Neurosci. – volume: 9 start-page: 602 year: 2006 end-page: 604 ident: bib28 article-title: Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation publication-title: Nat. Neurosci. – volume: 316 start-page: 457 year: 2007 end-page: 460 ident: bib13 article-title: Neuronal competition and selection during memory formation publication-title: Science – volume: 18 start-page: 112 year: 2015 end-page: 120 ident: bib8 article-title: Neuronal encoding of the switch from specific to generalized fear publication-title: Nat. Neurosci. – volume: 242 start-page: 1694 year: 1988 end-page: 1697 ident: bib25 article-title: Contributions of quisqualate and NMDA receptors to the induction and expression of LTP publication-title: Science – volume: 15 start-page: 113 year: 2011 end-page: 122 ident: bib3 article-title: Coactivation of thalamic and cortical pathways induces input timing-dependent plasticity in amygdala publication-title: Nat. Neurosci. – volume: 31 start-page: 599 year: 2010 end-page: 612 ident: bib14 article-title: Neuronal circuits of fear extinction publication-title: Eur. J. Neurosci. – volume: 35 start-page: 200 year: 2015 end-page: 206 ident: bib11 article-title: Ensemble coding in amygdala circuits for associative learning publication-title: Curr. Opin. Neurobiol. – volume: 23 start-page: 99 year: 2013 end-page: 106 ident: bib34 article-title: Reactivation of neural ensembles during the retrieval of recent and remote memory publication-title: Curr. Biol. – volume: 366 start-page: 569 year: 1993 end-page: 572 ident: bib15 article-title: The probability of transmitter release at a mammalian central synapse publication-title: Nature – volume: 23 start-page: 155 year: 2000 end-page: 184 ident: bib20 article-title: Emotion circuits in the brain publication-title: Annu. Rev. Neurosci. – volume: 390 start-page: 604 year: 1997 end-page: 607 ident: bib30 article-title: Fear conditioning induces associative long-term potentiation in the amygdala publication-title: Nature – volume: 262 start-page: 754 year: 1993 end-page: 757 ident: bib31 article-title: Nonuniform probability of glutamate release at a hippocampal synapse publication-title: Science – volume: 52 start-page: 883 year: 2006 end-page: 896 ident: bib33 article-title: Spatiotemporal asymmetry of associative synaptic plasticity in fear conditioning pathways publication-title: Neuron – volume: 30 start-page: 9782 year: 2010 end-page: 9787 ident: bib1 article-title: Discriminative auditory fear learning requires both tuned and nontuned auditory pathways to the amygdala publication-title: J. Neurosci. – volume: 390 start-page: 607 year: 1997 end-page: 611 ident: bib24 article-title: Fear conditioning induces a lasting potentiation of synaptic currents in vitro publication-title: Nature – volume: 40 start-page: 1013 year: 2003 end-page: 1022 ident: bib9 article-title: Auditory-evoked spike firing in the lateral amygdala and Pavlovian fear conditioning: mnemonic code or fear bias? publication-title: Neuron – volume: 64 start-page: 355 year: 2002 end-page: 405 ident: bib40 article-title: Short-term synaptic plasticity publication-title: Annu. Rev. Physiol. – volume: 78 start-page: 773 year: 2013 end-page: 784 ident: bib12 article-title: Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations publication-title: Neuron – volume: 511 start-page: 348 year: 2014 end-page: 352 ident: bib26 article-title: Engineering a memory with LTD and LTP publication-title: Nature – volume: 317 start-page: 1230 year: 2007 end-page: 1233 ident: bib29 article-title: Localization of a stable neural correlate of associative memory publication-title: Science – volume: 16 start-page: 317 year: 2015 end-page: 331 ident: bib35 article-title: Neuronal circuits for fear and anxiety publication-title: Nat. Rev. Neurosci. – volume: 34 start-page: 9305 year: 2014 end-page: 9309 ident: bib27 article-title: Synaptic plasticity associated with a memory engram in the basolateral amygdala publication-title: J. Neurosci. – volume: 534 start-page: 206 year: 2016 end-page: 212 ident: bib36 article-title: Midbrain circuits for defensive behaviour publication-title: Nature – volume: 7 start-page: 97 year: 2000 ident: 10.1016/j.neuron.2017.08.004_bib6 article-title: Differential fear conditioning induces reciprocal changes in the sensory responses of lateral amygdala neurons to the CS(+) and CS(-) publication-title: Learn. Mem. doi: 10.1101/lm.7.2.97 – volume: 35 start-page: 200 year: 2015 ident: 10.1016/j.neuron.2017.08.004_bib11 article-title: Ensemble coding in amygdala circuits for associative learning publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2015.10.005 – volume: 15 start-page: 113 year: 2011 ident: 10.1016/j.neuron.2017.08.004_bib3 article-title: Coactivation of thalamic and cortical pathways induces input timing-dependent plasticity in amygdala publication-title: Nat. Neurosci. doi: 10.1038/nn.2993 – volume: 511 start-page: 348 year: 2014 ident: 10.1016/j.neuron.2017.08.004_bib26 article-title: Engineering a memory with LTD and LTP publication-title: Nature doi: 10.1038/nature13294 – volume: 23 start-page: 99 year: 2013 ident: 10.1016/j.neuron.2017.08.004_bib34 article-title: Reactivation of neural ensembles during the retrieval of recent and remote memory publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.11.019 – volume: 9 start-page: 602 year: 2006 ident: 10.1016/j.neuron.2017.08.004_bib28 article-title: Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation publication-title: Nat. Neurosci. doi: 10.1038/nn1678 – volume: 317 start-page: 1230 year: 2007 ident: 10.1016/j.neuron.2017.08.004_bib29 article-title: Localization of a stable neural correlate of associative memory publication-title: Science doi: 10.1126/science.1143839 – volume: 71 start-page: 9 year: 2011 ident: 10.1016/j.neuron.2017.08.004_bib39 article-title: Optogenetics in neural systems publication-title: Neuron doi: 10.1016/j.neuron.2011.06.004 – volume: 1 start-page: 911 year: 1988 ident: 10.1016/j.neuron.2017.08.004_bib18 article-title: A persistent postsynaptic modification mediates long-term potentiation in the hippocampus publication-title: Neuron doi: 10.1016/0896-6273(88)90148-1 – volume: 104 start-page: 20955 year: 2007 ident: 10.1016/j.neuron.2017.08.004_bib19 article-title: Amygdala depotentiation and fear extinction publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0710548105 – volume: 1 start-page: e1500251 year: 2015 ident: 10.1016/j.neuron.2017.08.004_bib2 article-title: Prefrontal inputs to the amygdala instruct fear extinction memory formation publication-title: Sci. Adv. doi: 10.1126/sciadv.1500251 – volume: 21 start-page: 1153 year: 2016 ident: 10.1016/j.neuron.2017.08.004_bib10 article-title: Arc expression identifies the lateral amygdala fear memory trace publication-title: Mol. Psychiatry doi: 10.1038/mp.2016.91 – volume: 390 start-page: 607 year: 1997 ident: 10.1016/j.neuron.2017.08.004_bib24 article-title: Fear conditioning induces a lasting potentiation of synaptic currents in vitro publication-title: Nature doi: 10.1038/37605 – volume: 316 start-page: 457 year: 2007 ident: 10.1016/j.neuron.2017.08.004_bib13 article-title: Neuronal competition and selection during memory formation publication-title: Science doi: 10.1126/science.1139438 – volume: 23 start-page: 155 year: 2000 ident: 10.1016/j.neuron.2017.08.004_bib20 article-title: Emotion circuits in the brain publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.23.1.155 – volume: 390 start-page: 604 year: 1997 ident: 10.1016/j.neuron.2017.08.004_bib30 article-title: Fear conditioning induces associative long-term potentiation in the amygdala publication-title: Nature doi: 10.1038/37601 – volume: 366 start-page: 569 year: 1993 ident: 10.1016/j.neuron.2017.08.004_bib15 article-title: The probability of transmitter release at a mammalian central synapse publication-title: Nature doi: 10.1038/366569a0 – volume: 330 start-page: 1108 year: 2010 ident: 10.1016/j.neuron.2017.08.004_bib5 article-title: Calcium-permeable AMPA receptor dynamics mediate fear memory erasure publication-title: Science doi: 10.1126/science.1195298 – volume: 40 start-page: 1013 year: 2003 ident: 10.1016/j.neuron.2017.08.004_bib9 article-title: Auditory-evoked spike firing in the lateral amygdala and Pavlovian fear conditioning: mnemonic code or fear bias? publication-title: Neuron doi: 10.1016/S0896-6273(03)00728-1 – volume: 78 start-page: 773 year: 2013 ident: 10.1016/j.neuron.2017.08.004_bib12 article-title: Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations publication-title: Neuron doi: 10.1016/j.neuron.2013.03.025 – volume: 16 start-page: 521 year: 2015 ident: 10.1016/j.neuron.2017.08.004_bib17 article-title: Finding the engram publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn4000 – volume: 80 start-page: 1491 year: 2013 ident: 10.1016/j.neuron.2017.08.004_bib4 article-title: Synaptic encoding of fear extinction in mPFC-amygdala circuits publication-title: Neuron doi: 10.1016/j.neuron.2013.09.025 – volume: 45 start-page: 119 year: 2005 ident: 10.1016/j.neuron.2017.08.004_bib16 article-title: Dendritic spine heterogeneity determines afferent-specific Hebbian plasticity in the amygdala publication-title: Neuron doi: 10.1016/j.neuron.2004.12.019 – volume: 35 start-page: 3607 year: 2015 ident: 10.1016/j.neuron.2017.08.004_bib7 article-title: Revisiting the role of infralimbic cortex in fear extinction with optogenetics publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3137-14.2015 – volume: 83 start-page: 722 year: 2014 ident: 10.1016/j.neuron.2017.08.004_bib38 article-title: Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training publication-title: Neuron doi: 10.1016/j.neuron.2014.07.017 – volume: 534 start-page: 206 year: 2016 ident: 10.1016/j.neuron.2017.08.004_bib36 article-title: Midbrain circuits for defensive behaviour publication-title: Nature doi: 10.1038/nature17996 – volume: 242 start-page: 1694 year: 1988 ident: 10.1016/j.neuron.2017.08.004_bib25 article-title: Contributions of quisqualate and NMDA receptors to the induction and expression of LTP publication-title: Science doi: 10.1126/science.2904701 – volume: 31 start-page: 599 year: 2010 ident: 10.1016/j.neuron.2017.08.004_bib14 article-title: Neuronal circuits of fear extinction publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2010.07101.x – volume: 34 start-page: 289 year: 2002 ident: 10.1016/j.neuron.2017.08.004_bib37 article-title: Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala publication-title: Neuron doi: 10.1016/S0896-6273(02)00645-1 – volume: 18 start-page: 112 year: 2015 ident: 10.1016/j.neuron.2017.08.004_bib8 article-title: Neuronal encoding of the switch from specific to generalized fear publication-title: Nat. Neurosci. doi: 10.1038/nn.3888 – volume: 16 start-page: 332 year: 2013 ident: 10.1016/j.neuron.2017.08.004_bib21 article-title: Experience-dependent modification of a central amygdala fear circuit publication-title: Nat. Neurosci. doi: 10.1038/nn.3322 – volume: 64 start-page: 355 year: 2002 ident: 10.1016/j.neuron.2017.08.004_bib40 article-title: Short-term synaptic plasticity publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev.physiol.64.092501.114547 – volume: 308 start-page: 83 year: 2005 ident: 10.1016/j.neuron.2017.08.004_bib32 article-title: Postsynaptic receptor trafficking underlying a form of associative learning publication-title: Science doi: 10.1126/science.1103944 – volume: 262 start-page: 754 year: 1993 ident: 10.1016/j.neuron.2017.08.004_bib31 article-title: Nonuniform probability of glutamate release at a hippocampal synapse publication-title: Science doi: 10.1126/science.7901909 – volume: 52 start-page: 883 year: 2006 ident: 10.1016/j.neuron.2017.08.004_bib33 article-title: Spatiotemporal asymmetry of associative synaptic plasticity in fear conditioning pathways publication-title: Neuron doi: 10.1016/j.neuron.2006.10.010 – volume: 34 start-page: 9305 year: 2014 ident: 10.1016/j.neuron.2017.08.004_bib27 article-title: Synaptic plasticity associated with a memory engram in the basolateral amygdala publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4233-13.2014 – volume: 30 start-page: 9782 year: 2010 ident: 10.1016/j.neuron.2017.08.004_bib1 article-title: Discriminative auditory fear learning requires both tuned and nontuned auditory pathways to the amygdala publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1037-10.2010 – volume: 16 start-page: 317 year: 2015 ident: 10.1016/j.neuron.2017.08.004_bib35 article-title: Neuronal circuits for fear and anxiety publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3945 – volume: 24 start-page: 897 year: 2001 ident: 10.1016/j.neuron.2017.08.004_bib22 article-title: Neurobiology of Pavlovian fear conditioning publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.24.1.897 – volume: 70 start-page: 830 year: 2011 ident: 10.1016/j.neuron.2017.08.004_bib23 article-title: Seeking a spotless mind: extinction, deconsolidation, and erasure of fear memory publication-title: Neuron doi: 10.1016/j.neuron.2011.04.023 |
SSID | ssj0014591 |
Score | 2.5511897 |
Snippet | In auditory fear conditioning, experimental subjects learn to associate an auditory conditioned stimulus (CS) with an aversive unconditioned stimulus. With... Our results demonstrate that LTP in the CS-specific ACx/MGN-LA pathways could contribute to encoding discriminative fear memory for the CS. Our neural... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1129 |
SubjectTerms | Acoustic Stimulation Amygdala Amygdala - physiology Animals Auditory Pathways - physiology Conditioning (Psychology) - physiology depotentiation Discrimination (Psychology) - physiology Electric Stimulation electrophysiology engram Extinction, Psychological - physiology Fear - physiology fear conditioning fear extinction Female Labeling learning and memory Long-term potentiation Long-Term Potentiation - physiology Long-Term Synaptic Depression - physiology Male Memory Memory - physiology Mice Mice, Transgenic neuromodulation Neurons optogenetics Rodents Synapses |
Title | Encoding of Discriminative Fear Memory by Input-Specific LTP in the Amygdala |
URI | https://dx.doi.org/10.1016/j.neuron.2017.08.004 https://www.ncbi.nlm.nih.gov/pubmed/28823727 https://www.proquest.com/docview/1935380882 https://www.proquest.com/docview/1930936545 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB1CSqGX0iT92DYNKpTexMqWZNnHTZqQNEkpbUL3JiRZCi6Jd0l3D_731cj2QqElkIMPtkcgRtLMkzTzBuCjEt5Y6R11RZBU-MrRCilcc8ejUbTBiET2fPm1OL0WX-ZyvgVHYy4MhlUOtr-36claD1-mgzany6aZ_mBlhezl0QFG2FtJTDTnokxJfPPDzU2CkH3VvChMUXpMn0sxXokzEllQM5WIPIdybf9wT_-Dn8kNnbyA5wN-JLO-izuw5dtd2Ju1ce9815FPJEV0pqPyXXjaF5rs9uDiuHUL9FJkEcjnBk0FhsCgqSMRBN6TSwy47YjtyFm7XK9oKksfGkcurr6RpiURJpLZXXdTm1vzEq5Pjq-OTulQR4E6yfIVVbWpQ8WDDKpQNghrWahlCMyY0osgDfdxl1Vz57Mibn-4NIL5-DBTZdYLx1_Bdrto_RsgXimbeZEFboVwrDS5U0UwpfQSmendBPioPu0GknGsdXGrx2iyX7pXukalayyBycQE6KbVsifZeEBejSOj_5osOvqBB1rujwOph8X6W0cMG80-7jUm8GHzOy4zvDsxrV-skwyreBHx5gRe9xNg09W8RMafXL19dLfewTN8S2fVbB-2V_dr_z6CnZU9gCez8-8_zw_SrP4DOmj-EA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NIcReEGz8KAwwEuItqhPbcfJYxqYW2gmJTuqbZTs2CtrSamsf8t_jc5JKSKBJPOQlPkvW2b77zj5_B_BRcqeNcDaxuRcJd6VNSqRwzSwLRtF4zSPZ8-Iyn17xryuxOoCz4S0MplX2tr-z6dFa93_GvTbHm7oe_6BFiezlwQEG2FsK8QAeBjQgsX7DbPV5f5XARVc2L0gnKD68n4tJXpE0EmlQUxmZPPt6bX_xT__Cn9EPXTyFJz2AJJNujM_gwDXHcDJpQvB805JPJKZ0xrPyY3jUVZpsT2B-3tg1uimy9uRLjbYCc2DQ1pGAAm_JAjNuW2JaMms2u20S69L72pL58jupGxJwIpnctD8rfa2fw9XF-fJsmvSFFBIraLZNZKUrXzIvvMyl8dwY6ivhPdW6cNwLzVwIsypmXZqH-IcJzakLH9Vlahy37AUcNuvGvQLipDSp46lnhnNLC51ZmXtdCCeQmt6OgA3qU7ZnGcdiF9dqSCf7pTqlK1S6whqYlI8g2ffadCwb98jLYWbUH6tFBUdwT8_TYSJVv1vvVACxwe5jsDGCD_vmsM_w8kQ3br2LMrRkeQCcI3jZLYD9ULMCKX8y-fq_h_UeHk-Xi7mazy6_vYEjbIkH1_QUDre3O_c2IJ-teRdX9m8CcP-M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Encoding+of+Discriminative+Fear+Memory+by+Input-Specific+LTP+in+the+Amygdala&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Kim%2C+Woong+Bin&rft.au=Cho%2C+Jun-Hyeong&rft.date=2017-08-30&rft.pub=Elsevier+Inc&rft.issn=0896-6273&rft.eissn=1097-4199&rft.volume=95&rft.issue=5&rft.spage=1129&rft.epage=1146.e5&rft_id=info:doi/10.1016%2Fj.neuron.2017.08.004&rft.externalDocID=S0896627317306955 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon |