An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration
A new optimization strategy for multivariate partial-least-squares (PLS) regression analysis is described. It was achieved by integrating three efficient strategies to improve PLS calibration models: (1) variable selection based on ant colony optimization, (2) mathematical pre-processing selection b...
Saved in:
Published in | Talanta (Oxford) Vol. 115; pp. 755 - 760 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.10.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0039-9140 1873-3573 1873-3573 |
DOI | 10.1016/j.talanta.2013.06.051 |
Cover
Loading…
Abstract | A new optimization strategy for multivariate partial-least-squares (PLS) regression analysis is described. It was achieved by integrating three efficient strategies to improve PLS calibration models: (1) variable selection based on ant colony optimization, (2) mathematical pre-processing selection by a genetic algorithm, and (3) sample selection through a distance-based procedure. Outlier detection has also been included as part of the model optimization. All the above procedures have been combined into a single algorithm, whose aim is to find the best PLS calibration model within a Monte Carlo-type philosophy. Simulated and experimental examples are employed to illustrate the success of the proposed approach.
[Display omitted]
•A new strategy for partial least-squares optimization is presented.•Variables, pre-processing, samples and outliers are selected.•Calibrations of near infrared spectra are improved. |
---|---|
AbstractList | A new optimization strategy for multivariate partial-least-squares (PLS) regression analysis is described. It was achieved by integrating three efficient strategies to improve PLS calibration models: (1) variable selection based on ant colony optimization, (2) mathematical pre-processing selection by a genetic algorithm, and (3) sample selection through a distance-based procedure. Outlier detection has also been included as part of the model optimization. All the above procedures have been combined into a single algorithm, whose aim is to find the best PLS calibration model within a Monte Carlo-type philosophy. Simulated and experimental examples are employed to illustrate the success of the proposed approach.
[Display omitted]
•A new strategy for partial least-squares optimization is presented.•Variables, pre-processing, samples and outliers are selected.•Calibrations of near infrared spectra are improved. A new optimization strategy for multivariate partial-least-squares (PLS) regression analysis is described. It was achieved by integrating three efficient strategies to improve PLS calibration models: (1) variable selection based on ant colony optimization, (2) mathematical pre-processing selection by a genetic algorithm, and (3) sample selection through a distance-based procedure. Outlier detection has also been included as part of the model optimization. All the above procedures have been combined into a single algorithm, whose aim is to find the best PLS calibration model within a Monte Carlo-type philosophy. Simulated and experimental examples are employed to illustrate the success of the proposed approach. A new optimization strategy for multivariate partial-least-squares (PLS) regression analysis is described. It was achieved by integrating three efficient strategies to improve PLS calibration models: (1) variable selection based on ant colony optimization, (2) mathematical pre-processing selection by a genetic algorithm, and (3) sample selection through a distance-based procedure. Outlier detection has also been included as part of the model optimization. All the above procedures have been combined into a single algorithm, whose aim is to find the best PLS calibration model within a Monte Carlo-type philosophy. Simulated and experimental examples are employed to illustrate the success of the proposed approach.A new optimization strategy for multivariate partial-least-squares (PLS) regression analysis is described. It was achieved by integrating three efficient strategies to improve PLS calibration models: (1) variable selection based on ant colony optimization, (2) mathematical pre-processing selection by a genetic algorithm, and (3) sample selection through a distance-based procedure. Outlier detection has also been included as part of the model optimization. All the above procedures have been combined into a single algorithm, whose aim is to find the best PLS calibration model within a Monte Carlo-type philosophy. Simulated and experimental examples are employed to illustrate the success of the proposed approach. |
Author | Allegrini, Franco Olivieri, Alejandro C. |
Author_xml | – sequence: 1 givenname: Franco surname: Allegrini fullname: Allegrini, Franco – sequence: 2 givenname: Alejandro C. surname: Olivieri fullname: Olivieri, Alejandro C. email: olivieri@iquir-conicet.gov.ar, aolivier@fbioyf.unr.edu.ar |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24054659$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1u1DAUhS1URKeFRwC8ZNEM_s9ELFBVUUCqxAK6tm6cm6lH-avtVOKNeEw8k6mE2MzGluzv3CMfnwtyNowDEvKWszVn3HzcrRN0MCRYC8blmpk10_wFWfFNKQupS3lGVozJqqi4YufkIsYdY0xIJl-Rc6GYVkZXK_LneqB-SLgNkLChME1hBPdA00jTA9Lo-7lLMOA4RxqxQ5f8ONCxpU8QPNQdxivaQ0bz4h10dApY5BkOY_TDlsLQ0Hzs6zx_r4zQT1mUPekEIfms6BBiKuLjDCFf7P38YXjCf5WvycsWuohvjvslub_98uvmW3H34-v3m-u7wmkmUlEKXSGoZtOqqtVCmBYQua7LSrctM46VIHhT67IRspUGnUDQjRA1qFqVBuUl-bDMzY94nDEm2_vosOuWEKxghxg1ZydRXlZSbIxR6jSqpN5oXiqd0XdHdK57bOwUfA_ht33-swx8WgAXxhgDttb5dMgoBfCd5czuG2J39tgQu2-IZcbmhmS1_k_9bHBK937RtTBa2AYf7f3PDJgcB-eVKDPxeSEwf8-Tx2Cj8zg4bHzIvbHN6E94_AVfsOW1 |
CitedBy_id | crossref_primary_10_1016_j_chemolab_2016_10_003 crossref_primary_10_3390_s23104815 crossref_primary_10_1016_j_aca_2022_340248 crossref_primary_10_1039_D3AY01942J crossref_primary_10_3389_frans_2022_867527 crossref_primary_10_1016_j_chemolab_2016_02_001 crossref_primary_10_1016_j_chemolab_2022_104736 crossref_primary_10_1016_j_microc_2021_106550 crossref_primary_10_1002_cem_2737 crossref_primary_10_1007_s10586_018_1877_9 crossref_primary_10_1016_j_talanta_2014_07_053 crossref_primary_10_1016_j_bbrc_2018_01_023 crossref_primary_10_1016_j_microc_2024_112323 crossref_primary_10_1016_j_aca_2019_06_012 crossref_primary_10_1016_j_saa_2019_117267 crossref_primary_10_1016_j_chemolab_2021_104444 crossref_primary_10_1016_j_jpba_2017_06_017 crossref_primary_10_1016_j_saa_2020_118740 crossref_primary_10_3389_fbioe_2022_856591 crossref_primary_10_1016_j_aca_2017_11_028 crossref_primary_10_1016_j_foodchem_2014_05_072 crossref_primary_10_1016_j_saa_2022_121247 crossref_primary_10_1016_j_chemolab_2017_09_013 crossref_primary_10_1016_j_aca_2021_339255 crossref_primary_10_1177_09670335211047959 |
Cites_doi | 10.1016/j.chemolab.2011.01.008 10.1016/S0169-7439(98)00051-3 10.1002/cem.1180020108 10.1016/S0003-2670(97)00065-2 10.1016/j.talanta.2005.03.025 10.1021/ac60214a047 10.1016/S0003-2670(02)00272-6 10.1016/0169-7439(94)85050-X 10.1016/j.aca.2011.04.061 10.1021/ac950482a 10.1016/S0169-7439(01)00158-7 10.1366/0003702854248656 10.1021/ci0255228 10.1255/jnirs.411 10.1002/cem.812 10.1016/j.chemolab.2010.04.009 10.1366/0003702894202201 10.1016/j.chemolab.2004.02.008 10.1080/00401706.1969.10490666 10.1021/ac00162a020 10.1002/cem.1002 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. Copyright © 2013 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: Copyright © 2013 Elsevier B.V. All rights reserved. |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QQ 7SR 8BQ 8FD JG9 7S9 L.6 |
DOI | 10.1016/j.talanta.2013.06.051 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Ceramic Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Philosophy |
EISSN | 1873-3573 |
EndPage | 760 |
ExternalDocumentID | 24054659 10_1016_j_talanta_2013_06_051 US201600011927 S0039914013005511 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNCT ACRLP ADBBV ADECG ADEZE ADIYS AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SCH SDF SDG SDP SES SPC SPCBC SSK SSZ T5K TN5 TWZ WH7 XPP YK3 YNT ZMT ~02 ~G- 29Q 3O- AAHBH AAQXK AATTM AAXKI AAYJJ ABDPE ABEFU ABFNM ABWVN ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AJQLL AKRWK ANKPU ASPBG AVWKF AZFZN BNPGV EJD FBQ FEDTE FGOYB HMU HVGLF HZ~ R2- RIG SCB SEW SSH WUQ XOL AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7QQ 7SR 8BQ 8FD JG9 7S9 L.6 |
ID | FETCH-LOGICAL-c502t-7259ea4d8f49f5226faee15b795ff06c07a21db57d23f36ec2ea5d22ba4b476e3 |
IEDL.DBID | AIKHN |
ISSN | 0039-9140 1873-3573 |
IngestDate | Fri Sep 05 12:37:47 EDT 2025 Fri Sep 05 09:39:43 EDT 2025 Fri Sep 05 14:34:49 EDT 2025 Thu Apr 03 06:49:25 EDT 2025 Thu Apr 24 22:55:46 EDT 2025 Tue Jul 01 03:58:07 EDT 2025 Thu Apr 03 09:46:17 EDT 2025 Fri Feb 23 02:35:26 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Outlier detection Pre-processing selection Sample selection Multivariate calibration Variable selection Partial least-squares |
Language | English |
License | Copyright © 2013 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-7259ea4d8f49f5226faee15b795ff06c07a21db57d23f36ec2ea5d22ba4b476e3 |
Notes | http://dx.doi.org/10.1016/j.talanta.2013.06.051 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://ars.els-cdn.com/content/image/1-s2.0-S0039914013005511-fx1_lrg.jpg |
PMID | 24054659 |
PQID | 1435851745 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2000023510 proquest_miscellaneous_1793286644 proquest_miscellaneous_1435851745 pubmed_primary_24054659 crossref_citationtrail_10_1016_j_talanta_2013_06_051 crossref_primary_10_1016_j_talanta_2013_06_051 fao_agris_US201600011927 elsevier_sciencedirect_doi_10_1016_j_talanta_2013_06_051 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-15 |
PublicationDateYYYYMMDD | 2013-10-15 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Talanta (Oxford) |
PublicationTitleAlternate | Talanta |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Allegrini, Olivieri (bib12) 2011; 699 Savitzky, Golay (bib26) 1964; 36 Gauchi, Chagnon (bib4) 2001; 58 Boschetti, Olivieri (bib14) 2004; 12 Lorber, Kowalski (bib7) 1988; 2 van der Voet (bib27) 1994; 25 Galvão, Araujo, José, Pontes, Silva, Saldanha (bib22) 2005; 67 Kennard, Stone (bib21) 1969; 11 Sorol, Arancibia, Bortolato, Olivieri (bib16) 2010; 102 Geladi, MacDougall, Martens (bib5) 1985; 39 Leardi, Seasholtz, Pell (bib17) 2002; 461 Massart, Vandeginste, Buydens, De Jong, Lewi, Smeyers-Verbeke (bib8) 1997 MATLAB. The Mathworks Inc., Natick, Massachusetts, USA. Massart, Vandeginste, Buydens, De Jong, Lewi, Smeyers-Verbeke (bib9) 1997 Goicoechea, Olivieri (bib15) 2003; 17 Broadhurst, Goodacre, Jones, Rowland, Kell (bib3) 1997; 348 Barnes, Dhanoa, Lister (bib6) 1989; 43 Shamsipur, Zare-Shahabadi, Hemmateenejad, Akhond (bib11) 2006; 20 Dantas Filho, Galvão, Ugulino Araújo, Silva, Saldanha, José, Pasquini, Raimundo, Rohwedder (bib20) 2004; 72 . (bib2) 2002 Haaland, Thomas (bib23) 1988; 60 Galvão, Araújo (bib1) 2009; vol. 3 Devos, Duponchel (bib10) 2011; 107 Goicoechea, Olivieri (bib13) 2002; 42 Leardi, Lupiáñez González (bib18) 1998; 41 Ferré, Rius (bib19) 1996; 68 Broadhurst (10.1016/j.talanta.2013.06.051_bib3) 1997; 348 Kennard (10.1016/j.talanta.2013.06.051_bib21) 1969; 11 Geladi (10.1016/j.talanta.2013.06.051_bib5) 1985; 39 10.1016/j.talanta.2013.06.051_bib24 Allegrini (10.1016/j.talanta.2013.06.051_bib12) 2011; 699 10.1016/j.talanta.2013.06.051_bib25 Goicoechea (10.1016/j.talanta.2013.06.051_bib15) 2003; 17 Barnes (10.1016/j.talanta.2013.06.051_bib6) 1989; 43 Ferré (10.1016/j.talanta.2013.06.051_bib19) 1996; 68 Galvão (10.1016/j.talanta.2013.06.051_bib22) 2005; 67 Massart (10.1016/j.talanta.2013.06.051_bib8) 1997 Devos (10.1016/j.talanta.2013.06.051_bib10) 2011; 107 Sorol (10.1016/j.talanta.2013.06.051_bib16) 2010; 102 Lorber (10.1016/j.talanta.2013.06.051_bib7) 1988; 2 Leardi (10.1016/j.talanta.2013.06.051_bib17) 2002; 461 Gauchi (10.1016/j.talanta.2013.06.051_bib4) 2001; 58 Galvão (10.1016/j.talanta.2013.06.051_bib1) 2009; vol. 3 Leardi (10.1016/j.talanta.2013.06.051_bib18) 1998; 41 Goicoechea (10.1016/j.talanta.2013.06.051_bib13) 2002; 42 Haaland (10.1016/j.talanta.2013.06.051_bib23) 1988; 60 Boschetti (10.1016/j.talanta.2013.06.051_bib14) 2004; 12 Dantas Filho (10.1016/j.talanta.2013.06.051_bib20) 2004; 72 Massart (10.1016/j.talanta.2013.06.051_bib9) 1997 van der Voet (10.1016/j.talanta.2013.06.051_bib27) 1994; 25 Savitzky (10.1016/j.talanta.2013.06.051_bib26) 1964; 36 (10.1016/j.talanta.2013.06.051_bib2) 2002 Shamsipur (10.1016/j.talanta.2013.06.051_bib11) 2006; 20 |
References_xml | – volume: 39 start-page: 491 year: 1985 end-page: 500 ident: bib5 publication-title: Appl. Spectrosc. – volume: vol. 3 year: 2009 ident: bib1 publication-title: Comprehensive Chemometrics – volume: 43 start-page: 772 year: 1989 end-page: 777 ident: bib6 publication-title: Appl. Spectrosc. – year: 1997 ident: bib8 publication-title: Handbook of Chemometrics and Qualimetrics: Part A – reference: MATLAB. The Mathworks Inc., Natick, Massachusetts, USA. – volume: 699 start-page: 18 year: 2011 end-page: 25 ident: bib12 publication-title: Anal. Chim. Acta – volume: 11 start-page: 137 year: 1969 end-page: 148 ident: bib21 publication-title: Technometrics – volume: 42 start-page: 1146 year: 2002 end-page: 1153 ident: bib13 publication-title: J. Chem. Inf. Comput. Sci. – volume: 107 start-page: 50 year: 2011 end-page: 58 ident: bib10 publication-title: Chemom. Intelligent Lab. Syst. – volume: 60 start-page: 1193 year: 1988 end-page: 1202 ident: bib23 publication-title: Anal. Chem. – volume: 12 start-page: 85 year: 2004 end-page: 91 ident: bib14 publication-title: J. NIR Spectrosc. – volume: 67 start-page: 736 year: 2005 end-page: 740 ident: bib22 publication-title: Talanta – volume: 72 start-page: 83 year: 2004 end-page: 91 ident: bib20 publication-title: Chemom. Intelligent Lab. Syst. – volume: 348 start-page: 71 year: 1997 end-page: 86 ident: bib3 publication-title: Anal. Chim. Acta – volume: 102 start-page: 100 year: 2010 end-page: 109 ident: bib16 publication-title: Chemom. Intelligent Lab. Syst. – volume: 68 start-page: 1565 year: 1996 end-page: 1571 ident: bib19 publication-title: Anal. Chem. – year: 2002 ident: bib2 publication-title: Near-infrared Spectroscopy: Principles, Instruments, Applications – year: 1997 ident: bib9 publication-title: Handbook of Chemometrics and Qualimetrics: Part A – volume: 461 start-page: 189 year: 2002 end-page: 200 ident: bib17 publication-title: Anal. Chim. Acta – volume: 2 start-page: 67 year: 1988 end-page: 79 ident: bib7 publication-title: J. Chemom. – volume: 58 start-page: 171 year: 2001 end-page: 193 ident: bib4 publication-title: Chemom. Intelligent Lab. Syst. – volume: 41 start-page: 195 year: 1998 end-page: 207 ident: bib18 publication-title: Chemom. Intelligent Lab. Syst. – volume: 36 start-page: 1627 year: 1964 end-page: 1639 ident: bib26 publication-title: Anal. Chem. – volume: 25 start-page: 313 year: 1994 end-page: 323 ident: bib27 publication-title: Chemom. Intelligent Lab. Syst. – reference: . – volume: 17 start-page: 338 year: 2003 end-page: 345 ident: bib15 publication-title: J. Chemom. – volume: 20 start-page: 146 year: 2006 end-page: 157 ident: bib11 publication-title: J. Chemom. – volume: 107 start-page: 50 year: 2011 ident: 10.1016/j.talanta.2013.06.051_bib10 publication-title: Chemom. Intelligent Lab. Syst. doi: 10.1016/j.chemolab.2011.01.008 – volume: 41 start-page: 195 year: 1998 ident: 10.1016/j.talanta.2013.06.051_bib18 publication-title: Chemom. Intelligent Lab. Syst. doi: 10.1016/S0169-7439(98)00051-3 – volume: 2 start-page: 67 year: 1988 ident: 10.1016/j.talanta.2013.06.051_bib7 publication-title: J. Chemom. doi: 10.1002/cem.1180020108 – ident: 10.1016/j.talanta.2013.06.051_bib25 – volume: 348 start-page: 71 year: 1997 ident: 10.1016/j.talanta.2013.06.051_bib3 publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(97)00065-2 – volume: 67 start-page: 736 year: 2005 ident: 10.1016/j.talanta.2013.06.051_bib22 publication-title: Talanta doi: 10.1016/j.talanta.2005.03.025 – volume: 36 start-page: 1627 year: 1964 ident: 10.1016/j.talanta.2013.06.051_bib26 publication-title: Anal. Chem. doi: 10.1021/ac60214a047 – volume: 461 start-page: 189 year: 2002 ident: 10.1016/j.talanta.2013.06.051_bib17 publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(02)00272-6 – volume: 25 start-page: 313 year: 1994 ident: 10.1016/j.talanta.2013.06.051_bib27 publication-title: Chemom. Intelligent Lab. Syst. doi: 10.1016/0169-7439(94)85050-X – volume: 699 start-page: 18 year: 2011 ident: 10.1016/j.talanta.2013.06.051_bib12 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2011.04.061 – volume: 68 start-page: 1565 year: 1996 ident: 10.1016/j.talanta.2013.06.051_bib19 publication-title: Anal. Chem. doi: 10.1021/ac950482a – volume: 58 start-page: 171 year: 2001 ident: 10.1016/j.talanta.2013.06.051_bib4 publication-title: Chemom. Intelligent Lab. Syst. doi: 10.1016/S0169-7439(01)00158-7 – volume: 39 start-page: 491 year: 1985 ident: 10.1016/j.talanta.2013.06.051_bib5 publication-title: Appl. Spectrosc. doi: 10.1366/0003702854248656 – volume: vol. 3 year: 2009 ident: 10.1016/j.talanta.2013.06.051_bib1 – year: 1997 ident: 10.1016/j.talanta.2013.06.051_bib9 – volume: 42 start-page: 1146 year: 2002 ident: 10.1016/j.talanta.2013.06.051_bib13 publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci0255228 – year: 1997 ident: 10.1016/j.talanta.2013.06.051_bib8 – volume: 12 start-page: 85 year: 2004 ident: 10.1016/j.talanta.2013.06.051_bib14 publication-title: J. NIR Spectrosc. doi: 10.1255/jnirs.411 – year: 2002 ident: 10.1016/j.talanta.2013.06.051_bib2 – volume: 17 start-page: 338 year: 2003 ident: 10.1016/j.talanta.2013.06.051_bib15 publication-title: J. Chemom. doi: 10.1002/cem.812 – ident: 10.1016/j.talanta.2013.06.051_bib24 – volume: 102 start-page: 100 year: 2010 ident: 10.1016/j.talanta.2013.06.051_bib16 publication-title: Chemom. Intelligent Lab. Syst. doi: 10.1016/j.chemolab.2010.04.009 – volume: 43 start-page: 772 year: 1989 ident: 10.1016/j.talanta.2013.06.051_bib6 publication-title: Appl. Spectrosc. doi: 10.1366/0003702894202201 – volume: 72 start-page: 83 year: 2004 ident: 10.1016/j.talanta.2013.06.051_bib20 publication-title: Chemom. Intelligent Lab. Syst. doi: 10.1016/j.chemolab.2004.02.008 – volume: 11 start-page: 137 year: 1969 ident: 10.1016/j.talanta.2013.06.051_bib21 publication-title: Technometrics doi: 10.1080/00401706.1969.10490666 – volume: 60 start-page: 1193 year: 1988 ident: 10.1016/j.talanta.2013.06.051_bib23 publication-title: Anal. Chem. doi: 10.1021/ac00162a020 – volume: 20 start-page: 146 year: 2006 ident: 10.1016/j.talanta.2013.06.051_bib11 publication-title: J. Chemom. doi: 10.1002/cem.1002 |
SSID | ssj0002303 |
Score | 2.2197561 |
Snippet | A new optimization strategy for multivariate partial-least-squares (PLS) regression analysis is described. It was achieved by integrating three efficient... |
SourceID | proquest pubmed crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 755 |
SubjectTerms | Algorithms Calibration Computer simulation least squares Least squares method Least-Squares Analysis Mathematical models Monte Carlo Method Multivariate Analysis Multivariate calibration Optimization Outlier detection Partial least-squares Philosophy Pre-processing selection Sample selection Software Spectrum Analysis - standards Spectrum Analysis - statistics & numerical data Strategy system optimization Variable selection |
Title | An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration |
URI | https://dx.doi.org/10.1016/j.talanta.2013.06.051 https://www.ncbi.nlm.nih.gov/pubmed/24054659 https://www.proquest.com/docview/1435851745 https://www.proquest.com/docview/1793286644 https://www.proquest.com/docview/2000023510 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELba7QEuqDy7UCojccTd2LHzOK5WrRaQeoGVerOc2EZblexC0h77e_iZzDhOoIelEsdYmST22DPfKDPfEPLewDGraumZk75mMrWWGZUYlntAr2WPiTHb4iJbruSnS3W5RxZDLQymVUbb39v0YK3jyCyu5my7XmONLzjXEB8gkRTW9x6ItMzUhBzMP35eXowGGVB25N4tGQr8KeSZXSHPIEwBGYh4Gpg8Fd_lova92ewGosEhnR-SJxFJ0nn_sU_JnmuekUeLoYHbc_Jr3tCRDcLSgT2cdhsKqI-2a0wmNI2D2J-2oR0O6IhuPL2F-BkrqtoP9PvI6gqvwoyRbV9YAA6PmsZSGMZ4O0i2BpmGW3gn3eISgsQ1dgZi7Y8brHKiIXkxPLxzf0u-IKvzs6-LJYuNGVitEtGxHGImZ6QtvCw9AjhvnOOqykvlfZLVSW4Et5XKrUh9mrlaOKOsEJWRlcwzl74kk2bTuCNCywogi0lVinGh5QXgTQWgiTvhMpM7OyVy0IWuI2s5Ns-41kN62pWOKtSoQo1peopPyekotu1pOx4SKAZF63v7T4NreUj0CDaGNt_AKuvVF4GcfYFKT-RT8m7YLRqUj_9ierVqhKkFsoSrf9wDtlMUGSDW3fdgpRVSFvFkSl7123GcMIA1bHVfvv7_ub0hj_EKnTVXx2TS_bxxbwGFddUJ2T-94yfxrP0Ge50zSg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUoPdAL6gctC_1wJY6YjR07To5oVbRtKRdYiZvlxHa1iGa3JHDs7-nPZMZJlvawReo169msM87MG-2bN4QcWHjNykoG5mWomEydY1YllukA6LXoMDGyLc6y6Ux-uVSXG2Qy9MIgrbKP_V1Mj9G6vzLun-Z4OZ9jjy8k11gfoJAU9vc-lSrVyOs7-vXA8wCM3SvvFgyXP7TxjK9QZRA2gPpDPI06noqvS1BPgl2sh6ExHZ08J9s9jqTH3U99QTZ8_ZJsTYbxba_I7-OarrQgHB20w2m7oID5aDNHKqGtPVT-tInDcMBDdBHoHVTP2E_VHNIfK01XuBXyRZZdWwGkO2prR-EyVtvRsrGoM9zAPekSHyBYXONcINb8vMUeJxqpi_HLW_-n5Q6ZnXy6mExZP5aBVSoRLdNQMXkrXR5kERC-Bes9V6UuVAhJViXaCu5KpZ1IQ5r5SnirnBCllaXUmU9fk816UftdQosSAItNVYpVoeM5oE0FkIl74TOrvRsROfjCVL1mOY7OuDYDOe3K9C406EKDJD3FR-RoZbbsRDseM8gHR5u_Tp-BxPKY6S4cDGO_Q0w2s3OBin1RSE_oEfk4nBYDzsd_Yjq3GgSpOWqEq3-sgcgp8gzw6vo12GeFgkU8GZE33XFcbRigGg66L_b-f28fyNb04tupOf189nWfPMNPMG1z9ZZstje3_h3gsbZ8H9-3eyD3NBU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+approach+to+the+simultaneous+selection+of+variables%2C+mathematical+pre-processing+and+calibration+samples+in+partial+least-squares+multivariate+calibration&rft.jtitle=Talanta+%28Oxford%29&rft.au=Allegrini%2C+Franco&rft.au=Olivieri%2C+Alejandro&rft.date=2013-10-15&rft.issn=0039-9140&rft.volume=115&rft.spage=755&rft.epage=760&rft_id=info:doi/10.1016%2Fj.talanta.2013.06.051&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-9140&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-9140&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-9140&client=summon |