Synthesis and Characterization of Fatty Acid Grafted Chitosan Polymeric Micelles for Improved Gene Delivery of VGF to the Brain through Intranasal Route
Multifunctional fatty acid grafted polymeric micelles are an effective and promising approach for drug and gene delivery to the brain. An alternative approach to bypass the blood–brain barrier is administration through intranasal route. Multifunctional fatty acid grafted polymeric micelles were prep...
Saved in:
Published in | Biomedicines Vol. 10; no. 2; p. 493 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
19.02.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2227-9059 2227-9059 |
DOI | 10.3390/biomedicines10020493 |
Cover
Loading…
Abstract | Multifunctional fatty acid grafted polymeric micelles are an effective and promising approach for drug and gene delivery to the brain. An alternative approach to bypass the blood–brain barrier is administration through intranasal route. Multifunctional fatty acid grafted polymeric micelles were prepared and characterized for pVGF delivery to the brain. In vitro pVGF expression was analyzed in bEnd.3 cells, primary astrocytes, and neurons. Comparative in-vivo pVGF expression was analyzed to evaluate the effective route of administration between intranasal and intravenous. Biocompatible, multifunctional polymeric micelles were prepared, having an average size of 200 nm, and cationic zeta potential. Modified polymers were found to be hemo- and cyto-compatible. When transfected with the different modified chitosan formulations, significantly (p < 0.05) higher VGF expression was observed in primary astrocytes and neurons using the mannose, Tat peptide, and oleic acid grafted chitosan polymer. Compared to intravenous administration, intranasal administration of pVGF in polyplex formulation led to significantly (p < 0.05) higher pVGF expression. Developed multifunctional polymeric micelles were an effective pVGF delivery platform to the brain. Mannose and Tat ligand tagging improved the pVGF delivery to the brain. |
---|---|
AbstractList | Multifunctional fatty acid grafted polymeric micelles are an effective and promising approach for drug and gene delivery to the brain. An alternative approach to bypass the blood–brain barrier is administration through intranasal route. Multifunctional fatty acid grafted polymeric micelles were prepared and characterized for pVGF delivery to the brain. In vitro pVGF expression was analyzed in bEnd.3 cells, primary astrocytes, and neurons. Comparative in-vivo pVGF expression was analyzed to evaluate the effective route of administration between intranasal and intravenous. Biocompatible, multifunctional polymeric micelles were prepared, having an average size of 200 nm, and cationic zeta potential. Modified polymers were found to be hemo- and cyto-compatible. When transfected with the different modified chitosan formulations, significantly (p < 0.05) higher VGF expression was observed in primary astrocytes and neurons using the mannose, Tat peptide, and oleic acid grafted chitosan polymer. Compared to intravenous administration, intranasal administration of pVGF in polyplex formulation led to significantly (p < 0.05) higher pVGF expression. Developed multifunctional polymeric micelles were an effective pVGF delivery platform to the brain. Mannose and Tat ligand tagging improved the pVGF delivery to the brain. Multifunctional fatty acid grafted polymeric micelles are an effective and promising approach for drug and gene delivery to the brain. An alternative approach to bypass the blood-brain barrier is administration through intranasal route. Multifunctional fatty acid grafted polymeric micelles were prepared and characterized for pVGF delivery to the brain. In vitro pVGF expression was analyzed in bEnd.3 cells, primary astrocytes, and neurons. Comparative in-vivo pVGF expression was analyzed to evaluate the effective route of administration between intranasal and intravenous. Biocompatible, multifunctional polymeric micelles were prepared, having an average size of 200 nm, and cationic zeta potential. Modified polymers were found to be hemo- and cyto-compatible. When transfected with the different modified chitosan formulations, significantly ( < 0.05) higher VGF expression was observed in primary astrocytes and neurons using the mannose, Tat peptide, and oleic acid grafted chitosan polymer. Compared to intravenous administration, intranasal administration of pVGF in polyplex formulation led to significantly ( < 0.05) higher pVGF expression. Developed multifunctional polymeric micelles were an effective pVGF delivery platform to the brain. Mannose and Tat ligand tagging improved the pVGF delivery to the brain. Multifunctional fatty acid grafted polymeric micelles are an effective and promising approach for drug and gene delivery to the brain. An alternative approach to bypass the blood–brain barrier is administration through intranasal route. Multifunctional fatty acid grafted polymeric micelles were prepared and characterized for pVGF delivery to the brain. In vitro pVGF expression was analyzed in bEnd.3 cells, primary astrocytes, and neurons. Comparative in-vivo pVGF expression was analyzed to evaluate the effective route of administration between intranasal and intravenous. Biocompatible, multifunctional polymeric micelles were prepared, having an average size of 200 nm, and cationic zeta potential. Modified polymers were found to be hemo- and cyto-compatible. When transfected with the different modified chitosan formulations, significantly ( p < 0.05) higher VGF expression was observed in primary astrocytes and neurons using the mannose, Tat peptide, and oleic acid grafted chitosan polymer. Compared to intravenous administration, intranasal administration of pVGF in polyplex formulation led to significantly ( p < 0.05) higher pVGF expression. Developed multifunctional polymeric micelles were an effective pVGF delivery platform to the brain. Mannose and Tat ligand tagging improved the pVGF delivery to the brain. Multifunctional fatty acid grafted polymeric micelles are an effective and promising approach for drug and gene delivery to the brain. An alternative approach to bypass the blood-brain barrier is administration through intranasal route. Multifunctional fatty acid grafted polymeric micelles were prepared and characterized for pVGF delivery to the brain. In vitro pVGF expression was analyzed in bEnd.3 cells, primary astrocytes, and neurons. Comparative in-vivo pVGF expression was analyzed to evaluate the effective route of administration between intranasal and intravenous. Biocompatible, multifunctional polymeric micelles were prepared, having an average size of 200 nm, and cationic zeta potential. Modified polymers were found to be hemo- and cyto-compatible. When transfected with the different modified chitosan formulations, significantly (p < 0.05) higher VGF expression was observed in primary astrocytes and neurons using the mannose, Tat peptide, and oleic acid grafted chitosan polymer. Compared to intravenous administration, intranasal administration of pVGF in polyplex formulation led to significantly (p < 0.05) higher pVGF expression. Developed multifunctional polymeric micelles were an effective pVGF delivery platform to the brain. Mannose and Tat ligand tagging improved the pVGF delivery to the brain.Multifunctional fatty acid grafted polymeric micelles are an effective and promising approach for drug and gene delivery to the brain. An alternative approach to bypass the blood-brain barrier is administration through intranasal route. Multifunctional fatty acid grafted polymeric micelles were prepared and characterized for pVGF delivery to the brain. In vitro pVGF expression was analyzed in bEnd.3 cells, primary astrocytes, and neurons. Comparative in-vivo pVGF expression was analyzed to evaluate the effective route of administration between intranasal and intravenous. Biocompatible, multifunctional polymeric micelles were prepared, having an average size of 200 nm, and cationic zeta potential. Modified polymers were found to be hemo- and cyto-compatible. When transfected with the different modified chitosan formulations, significantly (p < 0.05) higher VGF expression was observed in primary astrocytes and neurons using the mannose, Tat peptide, and oleic acid grafted chitosan polymer. Compared to intravenous administration, intranasal administration of pVGF in polyplex formulation led to significantly (p < 0.05) higher pVGF expression. Developed multifunctional polymeric micelles were an effective pVGF delivery platform to the brain. Mannose and Tat ligand tagging improved the pVGF delivery to the brain. |
Author | Trivedi, Riddhi Singh, Jagdish Lamptey, Richard Nii Lante Arora, Sanjay Gothwal, Avinash |
AuthorAffiliation | Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA; richard.lamptey@ndsu.edu (R.N.L.L.); avinash.gothwal@ndsu.edu (A.G.); riddhi.trivedi@ndsu.edu (R.T.); or sanjay.arora@ndus.edu (S.A.) |
AuthorAffiliation_xml | – name: Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA; richard.lamptey@ndsu.edu (R.N.L.L.); avinash.gothwal@ndsu.edu (A.G.); riddhi.trivedi@ndsu.edu (R.T.); or sanjay.arora@ndus.edu (S.A.) |
Author_xml | – sequence: 1 givenname: Richard Nii Lante orcidid: 0000-0002-9659-9083 surname: Lamptey fullname: Lamptey, Richard Nii Lante – sequence: 2 givenname: Avinash orcidid: 0000-0001-6073-5533 surname: Gothwal fullname: Gothwal, Avinash – sequence: 3 givenname: Riddhi surname: Trivedi fullname: Trivedi, Riddhi – sequence: 4 givenname: Sanjay surname: Arora fullname: Arora, Sanjay – sequence: 5 givenname: Jagdish surname: Singh fullname: Singh, Jagdish |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35203704$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstuEzEUhkeoiJbSN0DIEhs2AY8vMzYLpBJIiFQE4ra1HPtM4mpiB9sTKTwJj4unKVVbIbzxsf2d3-f2uDrywUNVPa3xS0olfrV0YQPWGech1RgTzCR9UJ0QQtqJxFwe3bKPq7OULnFZsqaiZo-qY8oJpi1mJ9Xvr3uf15BcQtpbNF3rqE2G6H7p7IJHoUMznfMenRtn0TzqLsOIuRyS9uhz6PebQhv00Rnoe0ioCxEtNtsYdgWcgwf0Dnq3g7gfxX7MZygHVL5Eb6N2vlgxDKs1WvgctddJ9-hLGDI8qR52uk9wdr2fVt9n779NP0wuPs0X0_OLieGY5AmnHbaSSMEpA2MYFUwsuW24kJiS1nLdCgtcCEzqZsk0Lwil3NpyboEt6Wm1OOjaoC_VNrqNjnsVtFNXFyGulI7ZmR4U4JoSLYw1HTCMW60FxoxwSxosMauL1puD1nZYlvYYGHPq74jeffFurVZhp4RsCKt5EXhxLRDDzwFSVhuXxrpqD2FIijSUCiFZ2xT0-T30MgzRl1KNVOl9qURbqGe3I7oJ5e8AFIAdABNDShG6G6TGahw19a9RK26v77kZl68mpuTl-v87_wEXOt3x |
CitedBy_id | crossref_primary_10_1007_s11064_025_04333_x crossref_primary_10_1016_j_biopha_2024_117790 crossref_primary_10_1208_s12249_024_02946_z crossref_primary_10_3390_biomedicines10071734 crossref_primary_10_3390_ijms241613019 crossref_primary_10_3390_pharmaceutics15030774 crossref_primary_10_2174_0118744710269885231113070356 crossref_primary_10_3390_ijms23179932 crossref_primary_10_1002_anbr_202300030 crossref_primary_10_17816_RCF203281_288 crossref_primary_10_1016_j_ijpharm_2023_122841 crossref_primary_10_3389_fphar_2024_1405423 crossref_primary_10_1016_j_ijbiomac_2024_129581 crossref_primary_10_1021_acs_molpharmaceut_3c00031 crossref_primary_10_3390_ijms23105336 crossref_primary_10_3390_ijms24032213 crossref_primary_10_1016_j_jddst_2023_105325 crossref_primary_10_3390_pharmaceutics15010207 crossref_primary_10_4155_tde_2022_0018 crossref_primary_10_1097_CAD_0000000000001657 crossref_primary_10_1016_j_omtn_2024_102210 |
Cites_doi | 10.1186/1471-2202-9-S3-S5 10.1007/s13346-011-0050-2 10.1016/j.addr.2011.11.002 10.1007/978-1-0716-1262-0_7 10.2174/1871527319999200819095620 10.1016/j.ijpharm.2019.02.012 10.7150/thno.21254 10.1016/j.bbamem.2014.12.015 10.1021/bm401906p 10.1016/j.ijbiomac.2021.05.192 10.1007/s11095-007-9324-2 10.1211/0022357022539 10.3390/ijms21176070 10.1021/acschemneuro.0c00076 10.3390/ijms161226142 10.1016/j.jconrel.2015.01.017 10.1016/B978-0-12-811837-5.00010-1 10.1023/A:1023892223074 10.4103/1673-5374.250570 10.1038/mp.2017.233 10.1111/j.1469-7580.2010.01309.x 10.1080/17425247.2018.1429401 10.3390/nano9091208 10.1007/s12221-017-6690-1 10.1016/j.jconrel.2013.01.016 10.1016/j.biomaterials.2012.09.047 10.1007/978-1-4939-7571-6_36 10.1615/CritRevTherDrugCarrierSyst.2018024697 10.1016/B978-0-12-821437-4.00005-0 10.1016/j.jconrel.2020.04.012 10.1016/j.jddst.2020.102098 10.1002/jgm.1587 10.1016/j.nano.2020.102357 10.3389/fnagi.2019.00373 10.1021/acs.bioconjchem.7b00505 10.3389/fendo.2015.00003 10.1007/s13346-020-00891-5 10.4037/ccn2018836 10.1016/B978-0-12-821437-4.00018-9 10.1007/978-981-15-0263-7_8 10.2147/IJN.S145951 10.1021/mp400633r 10.1073/pnas.1108795108 10.1021/bm301720g 10.1007/s10544-007-9139-2 10.3390/cancers5031020 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/biomedicines10020493 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2227-9059 |
ExternalDocumentID | oai_doaj_org_article_e0132a8cdcfe4007aa800425d2609041 PMC8962415 35203704 10_3390_biomedicines10020493 |
Genre | Journal Article |
GeographicLocations | Canada United States--US |
GeographicLocations_xml | – name: Canada – name: United States--US |
GrantInformation_xml | – fundername: NIH HHS grantid: RO1 AG051574, RF1 AG068034 |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ACPRK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION EMOBN GROUPED_DOAJ GX1 HCIFZ HYE IAO IHR INH ITC KQ8 LK8 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c502t-53f0d9298534ecc43848b5d65890327d5a78de5880216b4a5c43335dd0217e4b3 |
IEDL.DBID | BENPR |
ISSN | 2227-9059 |
IngestDate | Wed Aug 27 01:28:35 EDT 2025 Thu Aug 21 18:39:52 EDT 2025 Tue Aug 05 11:29:01 EDT 2025 Fri Jul 25 11:51:59 EDT 2025 Thu Apr 03 06:56:43 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 Tue Jul 01 03:17:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | polymer synthesis targeted gene delivery blood–brain barrier chitosan grafted micelles transfection intranasal polyplex |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-53f0d9298534ecc43848b5d65890327d5a78de5880216b4a5c43335dd0217e4b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9659-9083 0000-0001-6073-5533 |
OpenAccessLink | https://www.proquest.com/docview/2632273847?pq-origsite=%requestingapplication% |
PMID | 35203704 |
PQID | 2632273847 |
PQPubID | 2032426 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e0132a8cdcfe4007aa800425d2609041 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8962415 proquest_miscellaneous_2633889476 proquest_journals_2632273847 pubmed_primary_35203704 crossref_primary_10_3390_biomedicines10020493 crossref_citationtrail_10_3390_biomedicines10020493 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220219 |
PublicationDateYYYYMMDD | 2022-02-19 |
PublicationDate_xml | – month: 2 year: 2022 text: 20220219 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Biomedicines |
PublicationTitleAlternate | Biomedicines |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_10 ref_52 Sharma (ref_43) 2013; 167 Gao (ref_24) 2014; 15 Lochhead (ref_9) 2012; 64 Kim (ref_25) 2013; 34 Kumar (ref_40) 2017; 5 ref_17 Fan (ref_13) 2018; 35 ref_16 Surendran (ref_36) 2017; 12 Layek (ref_15) 2015; 16 Zhang (ref_47) 2008; 10 ref_21 Jhaveri (ref_50) 2015; 1 Battaglia (ref_14) 2018; 15 Layek (ref_51) 2014; 11 Dong (ref_6) 2018; 8 Pandey (ref_11) 2020; 19 Ruponen (ref_48) 2011; 13 Wauthoz (ref_12) 2013; 5 Sharma (ref_20) 2021; 183 Pardridge (ref_5) 2007; 24 ref_34 Baba (ref_39) 2015; 201 Veronesi (ref_2) 2020; 10 Sharma (ref_26) 2021; 33 Layek (ref_19) 2013; 14 ref_38 Yu (ref_18) 2019; 560 ref_37 Jiang (ref_31) 2018; 23 Sharma (ref_23) 2017; 28 Khatoon (ref_3) 2021; 61 Hanson (ref_4) 2012; 2 Shah (ref_46) 2014; 25 Korenstein (ref_28) 2015; 1848 Sharma (ref_33) 2020; 323 Cocco (ref_30) 2010; 217 Divya (ref_22) 2017; 18 Audrain (ref_32) 2020; 15 Illum (ref_8) 2004; 56 Qu (ref_42) 2019; 14 Arora (ref_44) 2020; 11 Lewis (ref_29) 2015; 6 ref_49 Kanazawa (ref_35) 2018; 141 Tucker (ref_41) 2018; 38 Mishra (ref_27) 2011; 108 Rusnati (ref_45) 2002; 5 ref_7 Pardridge (ref_1) 2020; 11 |
References_xml | – volume: 15 start-page: 1 year: 2020 ident: ref_32 article-title: VGF-derived peptide TLQP-21 modulates microglial function through C3aR1 signaling pathways and reduces neuropathology in 5xFAD mice publication-title: Mol. Neurodegener. – ident: ref_34 doi: 10.1186/1471-2202-9-S3-S5 – volume: 2 start-page: 160 year: 2012 ident: ref_4 article-title: Intranasal delivery of deferoxamine reduces spatial memory loss in APP/PS1 mice publication-title: Drug Deliv. Transl. Res. doi: 10.1007/s13346-011-0050-2 – volume: 64 start-page: 614 year: 2012 ident: ref_9 article-title: Intranasal delivery of biologics to the central nervous system publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2011.11.002 – ident: ref_37 doi: 10.1007/978-1-0716-1262-0_7 – volume: 19 start-page: 648 year: 2020 ident: ref_11 article-title: Nanoparticles based intranasal delivery of drug to treat Alzheimer’s disease: A recent update publication-title: CNS Neurol. Disord. -Drug Targets doi: 10.2174/1871527319999200819095620 – volume: 560 start-page: 282 year: 2019 ident: ref_18 article-title: Chitosan and chitosan coating nanoparticles for the treatment of brain disease publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2019.02.012 – volume: 8 start-page: 1481 year: 2018 ident: ref_6 article-title: Current strategies for brain drug delivery publication-title: Theranostics doi: 10.7150/thno.21254 – volume: 25 start-page: 59 year: 2014 ident: ref_46 article-title: Optimisation and stability assessment of solid lipid nanoparticles using particle size and zeta potential publication-title: J. Phys. Sci. – volume: 1848 start-page: 869 year: 2015 ident: ref_28 article-title: The uptake of HIV Tat peptide proceeds via two pathways which differ from macropinocytosis publication-title: Biochim. Biophys. Acta (BBA)-Biomembr. doi: 10.1016/j.bbamem.2014.12.015 – volume: 15 start-page: 1010 year: 2014 ident: ref_24 article-title: RVG-peptide-linked trimethylated chitosan for delivery of siRNA to the brain publication-title: Biomacromolecules doi: 10.1021/bm401906p – volume: 183 start-page: 2055 year: 2021 ident: ref_20 article-title: A review of the tortuous path of nonviral gene delivery and recent progress publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.05.192 – volume: 24 start-page: 1733 year: 2007 ident: ref_5 article-title: Drug targeting to the brain publication-title: Pharm. Res. doi: 10.1007/s11095-007-9324-2 – volume: 56 start-page: 3 year: 2004 ident: ref_8 article-title: Is nose-to-brain transport of drugs in man a reality? publication-title: J. Pharm. Pharmacol. doi: 10.1211/0022357022539 – ident: ref_38 doi: 10.3390/ijms21176070 – volume: 11 start-page: 1620 year: 2020 ident: ref_44 article-title: GLUT-1: An effective target to deliver brain-derived neurotrophic factor gene across the blood brain barrier publication-title: ACS Chem. Neurosci. doi: 10.1021/acschemneuro.0c00076 – volume: 141 start-page: e58485 year: 2018 ident: ref_35 article-title: Novel methods for intranasal administration under inhalation anesthesia to evaluate nose-to-brain drug delivery publication-title: J. Vis. Exp. – volume: 16 start-page: 28912 year: 2015 ident: ref_15 article-title: Cell penetrating peptide conjugated chitosan for enhanced delivery of nucleic acid publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms161226142 – volume: 201 start-page: 41 year: 2015 ident: ref_39 article-title: Treatment of neurological disorders by introducing mRNA in vivo using polyplex nanomicelles publication-title: J. Control. Release doi: 10.1016/j.jconrel.2015.01.017 – ident: ref_7 doi: 10.1016/B978-0-12-811837-5.00010-1 – volume: 5 start-page: 141 year: 2002 ident: ref_45 article-title: HIV-1 Tat protein and endothelium: From protein/cell interaction to AIDS-associated pathologies publication-title: Angiogenesis doi: 10.1023/A:1023892223074 – volume: 14 start-page: 931 year: 2019 ident: ref_42 article-title: Characteristics and advantages of adeno-associated virus vector-mediated gene therapy for neurodegenerative diseases publication-title: Neural Regen. Res. doi: 10.4103/1673-5374.250570 – volume: 23 start-page: 1632 year: 2018 ident: ref_31 article-title: VGF function in depression and antidepressant efficacy publication-title: Mol. Psychiatry doi: 10.1038/mp.2017.233 – volume: 217 start-page: 683 year: 2010 ident: ref_30 article-title: Distribution of VGF peptides in the human cortex and their selective changes in Parkinson’s and Alzheimer’s diseases publication-title: J. Anat. doi: 10.1111/j.1469-7580.2010.01309.x – volume: 15 start-page: 369 year: 2018 ident: ref_14 article-title: Lipid nanoparticles for intranasal administration: Application to nose-to-brain delivery publication-title: Expert Opin. Drug Deliv. doi: 10.1080/17425247.2018.1429401 – ident: ref_52 doi: 10.3390/nano9091208 – volume: 18 start-page: 221 year: 2017 ident: ref_22 article-title: Antimicrobial properties of chitosan nanoparticles: Mode of action and factors affecting activity publication-title: Fibers Polym. doi: 10.1007/s12221-017-6690-1 – volume: 167 start-page: 1 year: 2013 ident: ref_43 article-title: Cell penetrating peptide tethered bi-ligand liposomes for delivery to brain in vivo: Biodistribution and transfection publication-title: J. Control. Release doi: 10.1016/j.jconrel.2013.01.016 – volume: 34 start-page: 1170 year: 2013 ident: ref_25 article-title: Brain-targeted delivery of protein using chitosan-and RVG peptide-conjugated, pluronic-based nano-carrier publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.09.047 – ident: ref_17 doi: 10.1007/978-1-4939-7571-6_36 – volume: 35 start-page: 433 year: 2018 ident: ref_13 article-title: Updated progress of nanocarrier-based intranasal drug delivery systems for treatment of brain diseases publication-title: Crit. Rev. Ther. Drug Carr. Syst. doi: 10.1615/CritRevTherDrugCarrierSyst.2018024697 – ident: ref_49 doi: 10.1016/B978-0-12-821437-4.00005-0 – volume: 5 start-page: 203 year: 2017 ident: ref_40 article-title: Intranasal drug delivery: A non-invasive approach for the better delivery of neurotherapeutics publication-title: Pharm. Nanotechnol. – volume: 323 start-page: 161 year: 2020 ident: ref_33 article-title: Long-term glycemic control and prevention of diabetes complications in vivo using oleic acid-grafted-chitosan-zinc-insulin complexes incorporated in thermosensitive copolymer publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.04.012 – volume: 61 start-page: 102098 year: 2021 ident: ref_3 article-title: Current approaches and prospective drug targeting to brain publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2020.102098 – volume: 13 start-page: 402 year: 2011 ident: ref_48 article-title: Mechanisms of polyethylenimine-mediated DNA delivery: Free carrier helps to overcome the barrier of cell-surface glycosaminoglycans publication-title: J. Gene Med. doi: 10.1002/jgm.1587 – volume: 33 start-page: 102357 year: 2021 ident: ref_26 article-title: Improved insulin sensitivity in obese-diabetic mice via chitosan Nanomicelles mediated silencing of pro-inflammatory Adipocytokines publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2020.102357 – volume: 11 start-page: 373 year: 2020 ident: ref_1 article-title: Blood-brain barrier and delivery of protein and gene therapeutics to brain publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2019.00373 – volume: 28 start-page: 2772 year: 2017 ident: ref_23 article-title: Synthesis and characterization of fatty acid grafted chitosan polymer and their nanomicelles for nonviral gene delivery applications publication-title: Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.7b00505 – volume: 10 start-page: 1 year: 2020 ident: ref_2 article-title: Imaging of intranasal drug delivery to the brain publication-title: Am. J. Nucl. Med. Mol. Imaging – volume: 6 start-page: 3 year: 2015 ident: ref_29 article-title: Neuroendocrine Role for VGF publication-title: Front. Endocrinol. doi: 10.3389/fendo.2015.00003 – ident: ref_10 doi: 10.1007/s13346-020-00891-5 – volume: 38 start-page: 26 year: 2018 ident: ref_41 article-title: The intranasal route as an alternative method of medication administration publication-title: Crit. Care Nurse doi: 10.4037/ccn2018836 – volume: 1 start-page: 1 year: 2015 ident: ref_50 article-title: Stimuli-Sensitive Nanopreparations: Overview publication-title: Smart Pharm. Nanocarr. – ident: ref_16 doi: 10.1016/B978-0-12-821437-4.00018-9 – ident: ref_21 doi: 10.1007/978-981-15-0263-7_8 – volume: 12 start-page: 6997 year: 2017 ident: ref_36 article-title: Nanoparticles for the treatment of liver fibrosis publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S145951 – volume: 11 start-page: 982 year: 2014 ident: ref_51 article-title: Hexanoic acid and polyethylene glycol double grafted amphiphilic chitosan for enhanced gene delivery: Influence of hydrophobic and hydrophilic substitution degree publication-title: Mol. Pharm. doi: 10.1021/mp400633r – volume: 108 start-page: 16883 year: 2011 ident: ref_27 article-title: Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1108795108 – volume: 14 start-page: 485 year: 2013 ident: ref_19 article-title: Amino acid grafted chitosan for high performance gene delivery: Comparison of amino acid hydrophobicity on vector and polyplex characteristics publication-title: Biomacromolecules doi: 10.1021/bm301720g – volume: 10 start-page: 321 year: 2008 ident: ref_47 article-title: Zeta potential: A surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells publication-title: Biomed. Microdevices doi: 10.1007/s10544-007-9139-2 – volume: 5 start-page: 1020 year: 2013 ident: ref_12 article-title: Formulations for intranasal delivery of pharmacological agents to combat brain disease: A new opportunity to tackle GBM? publication-title: Cancers doi: 10.3390/cancers5031020 |
SSID | ssj0000913814 |
Score | 2.304443 |
Snippet | Multifunctional fatty acid grafted polymeric micelles are an effective and promising approach for drug and gene delivery to the brain. An alternative approach... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 493 |
SubjectTerms | Alzheimer's disease Astrocytes Blood-brain barrier Brain research Chitosan chitosan grafted micelles Ethanol Fatty acids Fourier transforms Gene transfer Growth factors Hemodialysis intranasal Intranasal administration Intravenous administration Mannose Micelles Nanoparticles Nervous system NMR Nuclear magnetic resonance Oleic acid Peptides polymer Polymers synthesis transfection Zeta potential |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb5wwELaqnNJD1aYv2qSaSr2iADZgH5M0m4eUqlKbKjdksK2utDJRIIf9J_25nbEJ2q0i5dIrDGCYGeYb2_MNY18MN7nTwqWqrWwqatmmiqY5jCps7rjjNhTSXn2rzq_F5U15s9Hqi_aERXrg-OEOLS0GaNmZzlnq4a21DIZmEIirLJSsFxjzNpKp8A9WOYYiEWvlOOb1h7GaPaxWD3koCVV8KxYFyv7HcOa_2yU34s_iJXsxAUc4igN-xZ5Zv8eeb9AJvmZ_fqw94rlhOYD2Bk5mLuZYagm9g4UexzUcdUsDZ3fUH5zE0KkH7eF7v1qH9Ru4Wob5_AEQ0UKcdkBBYqiGr3ZFOznWdLNfZwsYe8BHwjF1moCp6Q9c0Bt4PeB4aceRfcOuF6c_T87TqfNC2pVZMaYldxlqS2EsF6hjwaWQbWkQraiMF7UpdS2NLdH3i7xqhS5RhPPSGMpwrGj5W7bje2_fMxDOWp5pxBG6E66Tsmpri2kT3qdyaAwJ4w86aLqJlpy6Y6waTE9Ic81jmktYOl91G2k5npA_JvXOskSqHQ6gqTWTqTVPmVrC9h-Mo5k8fWiI757Km0SdsM_zafRRUpT2tr8PMlxKJeoqYe-iLc0jQQCc8ToTCau3rGxrqNtn_PJ34AGXqiL89eF_vNtHtltQYQe1ulH7bGe8u7cHCLfG9lPwrL8Dxysc priority: 102 providerName: Directory of Open Access Journals |
Title | Synthesis and Characterization of Fatty Acid Grafted Chitosan Polymeric Micelles for Improved Gene Delivery of VGF to the Brain through Intranasal Route |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35203704 https://www.proquest.com/docview/2632273847 https://www.proquest.com/docview/2633889476 https://pubmed.ncbi.nlm.nih.gov/PMC8962415 https://doaj.org/article/e0132a8cdcfe4007aa800425d2609041 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwELZauLSHqu-GUuRKvUYksZPYJ8QCC60EQm2puEVObNOVVg7dhMP-E34uM443sBVqr_EkcTIPz4w93xDyRTOdWsVtLOvCxLwUdSwxzaFlZlLLLDO-kPb0rDi54N8u88uQcOvCscqVTfSGWrcN5sh3EVccy0h4uXf9J8auUbi7GlpoPCWbYIIFSPjm5Ojs_PuYZUHUS5HyoWaOQXy_O1S1-13rLvWloZKtrUkeuv8xf_PvY5MP1qHpS_IiOJB0f-D4K_LEuNfk-QNYwTfk9sfSgV_XzTqqnKYHIybzUHJJW0unqu-XdL-ZaXq8wD7hSAbK3SlHz9v50u_j0NOZz-t3FDxbOqQfgBCRqumhmeOJjiU-7NfxlPYthVfSCXacoKH5D_2KX-BUB_PFk0fmLbmYHv08OIlDB4a4yZOsj3NmE-CahDWdA685_H5R5xq8FpmwrNS5KoU2OdiALC1qrnIgYSzXGiMdw2v2jmy41pkPhHJrDEsU-BOq4bYRoqhLA-ETPKewIBQRYSseVE2AJ8cuGfMKwhTkXPUY5yISj3ddD_Ac_6GfIHtHWgTX9hfaxVUVdLUyuP-kRKMba7BtvFLC2zYNsZ9MeBqR7ZVwVEHju-pePiPyeRwGXUVGKWfaG0_DhJC8LCLyfpClcSbgCCesTHhEyjUpW5vq-oib_fZ44EIW6Idt_XtaH8mzDEs3sJmN3CYb_eLGfAKHqq93gtbs-ITEHZuRJd8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdG9wA8IP4TGGAkeIyWxE5iPyC0butatlYTbGhvmRM7UKlKRpMJ5ZvwKfiM3DlpWNEET3tNrs5Vdz7_7PPdj5C3mmk_Vzx3ZRoZl8cidSUec2gZGD9nOTO2kHY6i8an_ONZeLZBfq1qYfBa5Som2kCtywzPyLexrziWkfD4w8V3F1mjMLu6otBo3eLQND9gy1a9n-yBfd8FwWj_ZHfsdqwCbhZ6Qe2GLPdAEwnrFAf9OQwp0lDDSiw9FsQ6VLHQJgS_Dvwo5SoEEcZCrRG9G54yGPcW2eQMoMKAbA73Z8ef-lMd7LIpfN7W6DEmve22it5mySvflqJKtrYGWqqA6_Dt39c0r6x7o_vkXgdY6U7rYQ_IhikekrtX2hg-Ij8_NwXgyGpeUVVoutv3gG5LPGmZ05Gq64buZHNND5bIS45iEEwqVdDjctHYvBGdzm0eoaKApGl73AGC2Bmb7pkF3iBpcLAvByNalxQ-SYfIcEE7siE6wX9QqAr0xZtO5jE5vRHbPCGDoizMM0J5bgzzFOAXlfE8EyJKYwPbNRgnysEJHcJWNkiyrh06snIsEtgWoeWS6yznELf_1UXbDuQ_8kM0by-Lzbztg3L5NeliQ2Iw36VEprPcIE29UsLGUg17Telx3yFbK-dIughTJX_mg0Pe9K8hNqChVGHKSyvDhJA8jhzytPWlXhMA3h6LPe6QeM3L1lRdf1PMv9n-40JGiPue_1ut1-T2-GR6lBxNZocvyJ0Ay0aQSEdukUG9vDQvAczV6atuBlFyftOT9jfWSF9b |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwQLwJFDASHKNNYufhA0LdbrddSlcroKi31IltWGmVlE0qlH_Cb-HXMeNkQxdVcOo1mThjzXg89jw-Ql4rpnwjuXFFFmmXx0nmCrzmUCLQvmGGaVtIezyLDk_4-9PwdIv8WtfCYFrl2iZaQ63KHO_Ih9hXHMtIeDw0XVrEfDx5d_7dRQQpjLSu4TRaFTnSzQ84vlVvp2OQ9ZsgmOx_3jt0O4QBNw-9oHZDZjzgSsCexWEuHIZPslDBriw8FsQqlHGidAg6HvhRxmUIJIyFSqEnr3nGYNwbZDvG8tEB2R7tz-Yf-xse7LiZ-Lyt12NMeMO2ot5GzCvflqUKtrEfWtiAq3zdv1M2L-2Bk7vkTue80t1W2-6RLV3cJ7cvtTR8QH5-agrwKatFRWWh6F7fD7ot96SloRNZ1w3dzReKHqwQoxzJwLBUsqDzctnYGBI9XtiYQkXBq6bt1QcQYpdsOtZLzCZpcLAvBxNalxR-SUeIdkE74CE6xRkUsgJ-MetJPyQn1yKbR2RQlIV-Qig3WjNPgi8jc27yJImyWMPRDcaJDCikQ9haBmnetUZHhI5lCkcklFx6leQc4vZfnbetQf5DP0Lx9rTY2Ns-KFdf085OpBpjXzLJVW40QtZLmVi7quDcKTzuO2RnrRxpZ22q9M_acMir_jXYCRSULHR5YWlYkggeRw553OpSzwk44R6LPe6QeEPLNljdfFMsvtle5ImI0Ad8-m-2XpKbsFjTD9PZ0TNyK8AKEsTUETtkUK8u9HPw6-rsRbeAKDm77jX7GzajY5k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+Characterization+of+Fatty+Acid+Grafted+Chitosan+Polymeric+Micelles+for+Improved+Gene+Delivery+of+VGF+to+the+Brain+through+Intranasal+Route&rft.jtitle=Biomedicines&rft.au=Richard+Nii+Lante+Lamptey&rft.au=Gothwal%2C+Avinash&rft.au=Trivedi%2C+Riddhi&rft.au=Arora%2C+Sanjay&rft.date=2022-02-19&rft.pub=MDPI+AG&rft.eissn=2227-9059&rft.volume=10&rft.issue=2&rft.spage=493&rft_id=info:doi/10.3390%2Fbiomedicines10020493&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9059&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9059&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9059&client=summon |